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Abstractions ofHamiltonianControl Systems ?

Paulo Tabuada aGeorge J. Pappas a

aDepartment of Electrical and Systems Engineering
200 South 33rd Street,

University of Pennsylvania
Philadelphia, PA 19104

Abstract

Given a control system and a desired property, an abstracted system is a reduced system that preserves the property of
interest while ignoring modeling detail. In previous work, abstractions of linear and nonlinear control systems were considered
while preserving reachability properties. In this paper, we consider the abstraction problem for Hamiltonian control systems
where in addition to the property of interest we also preserve the Hamiltonian structure of the control system. We show
how the Hamiltonian structure of control systems can be exploited to simplify the abstraction process. We then focus on
local accessibility preserving abstractions, and provide conditions under which local accessibility properties of the abstracted
Hamiltonian system are equivalent to the local accessibility properties of the original Hamiltonian control system.

Key words: Nonlinear control systems, Hamiltonian control systems, abstractions.

1 Introduction

Property preserving abstractions of control systems are
important for reducing the complexity of their analysis
or design. From an analysis perspective, given a large-
scale control system and a property to be verified, one ex-
tracts a smaller abstracted system with equivalent prop-
erties. Checking the property on the abstraction is then
equivalent to checking the property on the original sys-
tem. From a design perspective, rather than designing a
controller for the original large scale system, one designs
a controller for the smaller abstracted system, and then
refines the design to the original system while incorpo-
rating modeling detail.

This approach critically depends on whether we are able
to construct hierarchies of abstractions as well as char-
acterize conditions under which various properties of
interest propagate from the original to the abstracted
system and vice versa. In [19], hierarchical abstractions

? This paper was not presented at any IFAC meeting.
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215 573 2068.
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of linear control systems were extracted using compu-
tationally efficient constructions, and conditions under
which controllability of the abstracted system implied
controllability of the original system were obtained. This
led to extremely efficient hierarchical controllability al-
gorithms. In the same spirit, abstractions of nonlinear
control affine systems were considered in [20], and the
canonical construction for linear systems was general-
ized to nonlinear control affine systems. In [22] exis-
tence of abstractions (regarded as quotients in a cat-
egory) was shown for fully nonlinear control systems.
Furthermore, a characterization of the relation between
the state/input space of the original system with the
state/input space of its abstraction was also presented.

In this paper, we proceed in the spirit of [20], and con-
sider abstractions of Hamiltonian control systems, which
are control systems completely specified by controlled
Hamiltonians. This additional structure allows to sim-
plify the abstraction process by working with functions
instead of vector fields or distributions as is the case for
general nonlinear systems [20]. This is possible since the
controlled Hamiltonian contains all the relevant infor-
mation that must be captured by the abstracted system.
On the other hand, to be able to relate the dynamics in-
duced by the controlled Hamiltonians, we need to restrict
the class of abstracting maps to those that preserve the
Hamiltonian structure. More precisely, given a Hamil-
tonian control system on a Poisson manifold M , and a
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(quotient) Poisson map φ : M → N , we present a canon-
ical construction that extracts an abstracted Hamilto-
nian control system on N . We then characterize ab-
stracting maps for which the original and abstracted
system are equivalent from a local accessibility point of
view.

Reduction of mechanical dynamical systems is a very
rich and mature area and we point the reader to the stan-
dard references [14,15]. Similar ideas were applied to me-
chanical control systems [8,12,21,23] including also non-
holonomic constraints [3,11]. The approach presented in
this paper is quite different from these established no-
tions of reduction for mechanical systems. When per-
forming an abstraction one is interested in ignoring ir-
relevant modeling details. In this spirit, one quotients
the original model by group actions that do not neces-
sarily represent symmetries. Furthermore, the proposed
abstraction methodology does not rely on the existence
of a Lie group acting on the state space. This extra free-
dom when abstracting is balanced by the fact that infor-
mation about the system is lost, whereas when reducing
using symmetries no essential information is lost.

The structure of this paper is as follows : In Section 2
we review Poisson geometry and controlled Hamiltonian
systems. Sections 3 and 4 contain the main contributions
of the paper: in Section 3 a notion of abstraction is in-
troduced for Hamiltonian control systems and an algo-
rithm for its construction is given; while in Section 4 we
present conditions for local accessibility equivalence be-
tween the original and the abstracted system. Section 5
illustrates the paper results on a spherical pendulum ex-
ample and at Section 6 interesting topics for further re-
search are discussed.

2 Hamiltonian Control Systems on Poisson
Manifolds

In this section we review some basic facts from Pois-
son geometry as well as Hamiltonian control systems, in
order to establish consistent notation. The reader may
whish to consult numerous books on these subjects such
as [7,16,17].

2.1 Poisson Geometry

Hamiltonian control systems can be defined on either
symplectic or Poisson manifolds, however for the pur-
poses of this paper, it will be more natural to work
within the Poisson context. A Poisson structure on a
smooth manifold M is a bilinear map {−,−} : C∞(M)×
C∞(M) → C∞(M) called Poisson bracket, satisfying
the following identities:

{f, g} = −{g, f} (2.1)
{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (2.2)
{fg, h} = {f, h}g + f{g, h} (2.3)

A Poisson manifold is a smooth manifold M equipped
with a Poisson structure. Given a smooth function h :
M → R, the Poisson bracket allows us to obtain a Hamil-
tonian vector field Xh with Hamiltonian h through the
equality:

LXh
f = {f, h} ∀f ∈ C∞(M) (2.4)

where LXh
f is the Lie derivative of f along Xh. Note

that the vector field Xh is well defined since the Poisson
bracket verifies the Leibnitz rule and therefore defines
a derivation on C∞(M) ([16]). Furthermore C∞(M)
equipped with a Poisson bracket is a Lie algebra, called
a Poisson algebra.

As an example of a Poisson bracket consider M = R4

with coordinates (q1, q2, p1, p2). We can define a Poisson
bracket through the expression:

{f, g} =
∂f

∂q1

∂g

∂p1
+

∂f

∂q2

∂g

∂p2
− ∂f

∂p1

∂g

∂q1
− ∂f

∂p2

∂g

∂q2
(2.5)

Given now a smooth Hamiltonian h : M → R, we
use (2.5) to define the corresponding Hamiltonian vector
field Xh through relation (2.4):

q̇1 =LXh
q1 = {q1, h} =

∂h

∂p1

q̇2 =LXh
q2 = {q2, h} =

∂h

∂p2

ṗ1 =LXh
p1 = {p1, h} = − ∂h

∂q1

ṗ2 =LXh
p2 = {p2, h} = − ∂h

∂q2

We thus see that a Poisson bracket provides a geomet-
ric, coordinate free way of describing the Hamiltonian
dynamics.

We also introduce some additional notation used
throughout the paper. Given a smooth map f : M → N
we denote by Tf : TM → TN the tangent map of f ,
taking tangent vectors X(x) ∈ TxM at x ∈ M to tan-
gent vectors Txf ·X(x) ∈ Tf(x)N at f(x) ∈ N . Given a
smooth map g : N → R we also define de pullback of dg
by f , denoted by f∗dg:

(f∗dg)(x)(X) = dg(f(x))(Txf ·X) ∀X ∈ TM

and in the case of a covariant two-tensor ω : TN×TN →
R, f∗ω is defined by:

(f∗ω)(x)(X, Y ) = ω(f(x))(Txf ·X,Txf ·Y ) ∀X,Y ∈ TM

When f is in fact a diffeomorphism, that is, a smooth
map with a smooth inverse, we also define the pullback
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of a vector field Y ∈ TN to be:

(f∗Y )(x) = Tf(x)(f−1) · Y ◦ f(x)

Associated with the Poisson bracket there is a con-
travariant anti-symmetric two-tensor:

B : T ∗M × T ∗M → R (2.6)

such that:
B(x)(df, dg) = {f, g}(x) (2.7)

where we have denoted by df the exterior derivative of
f . We say that the Poisson structure is nondegenerate if
the map B# : T ∗M → TM defined by:

dg(B#(x)(df)) = B(x)(df, dg)

is an isomorphism for every x ∈ M . When the Poisson
bracket is nondegenerate it also induces a covariant anti-
symmetric two-tensor 1 ω : TM × TM → R defined by:

ω(x)(Xf , Xg) = {f, g}(x) (2.8)

Given a map φ : M → N between Poisson manifolds,
we say that φ preserves the Poisson structure or that φ
is a Poisson map if:

{f ◦ φ, g ◦ φ}M = {f, g}N ◦ φ (2.9)

for every f, g ∈ C∞(N). Dually, we call a map φ : M →
N between Poisson manifolds, symplectic if:

ωM = φ∗ωN (2.10)

2.2 Hamiltonian Control Systems

In this paper we will focus on affine Hamiltonian control
systems that we now define:

Definition 2.1 An affine Hamiltonian control system
Σ = (U,M, H) consists of a smooth manifold U (the
input space), a Poisson manifold M with nondegenerate
Poisson bracket (the state space), and a smooth function
H : M × U → R (the controlled Hamiltonian). Further-
more, H is locally of the form H = h0 +

∑n
i=1 hiui,

with hi locally defined smooth real valued maps and
(u1, u2, . . . , un) local coordinates for U .

Using the controlled Hamiltonian and the Poisson struc-
ture on M we can recover the familiar system map F :
M × U → TM which is locally given by:

F = Xh0 +
n∑

i=1

Xhiui

1 Such tensor is in fact a symplectic form.

and defines an affine distribution on M given by:

DM (x) = Xh0(x) + span{Xh1(x), Xh2(x), . . . , Xhn
(x)}

This distribution captures all the possible directions of
motion available at a certain point x, and therefore de-
scribes a control system, up to a parameterization by
control inputs. This affine distribution will be the ob-
ject of interest throughout the remaining paper, and
we will assume that the rank of DM does not change
with x. Furthermore, we will denote an affine distribu-
tion DM by X + ∆, where X is a vector field and ∆ a
distribution. When this affine distribution is defined by
a Hamiltonian control system we have X = Xh0 and
∆ = span{Xh1 , Xh2 , . . . , Xhn

}. A similar reasoning is
possible at the level of Hamiltonians. Locally, we can
define the following affine space of smooth maps:

HM = h0 + spanR{h1, h1, . . . , hn}

which defines DM by the equality:

DM = B#(dHM )

Here we used the notation dHM to denote the set
∪h∈HM dh. We will also use the notationHM = h0 +H∆

for an affine space of smooth maps where h0 is a smooth
map and H∆ a linear space of smooth maps.

Having defined Hamiltonian control systems we turn to
their trajectories or solutions:

Definition 2.2 A smooth curve c : I → M , I ⊆ R+
0 is

called a trajectory of control system Σ = (U,M, H), if
there exists a curve cU : I → U satisfying:

d

dt
c(t) = F (c(t), cU (t)) (2.11)

for every t ∈ I.

3 Abstractions of Hamiltonian Control Systems

Given a Hamiltonian control system ΣM on a manifold
M and a map φ : M → N , our goal is to determine a
new Hamiltonian control system ΣN on the manifold N
having as trajectories φ(cM ), where cM are trajectories
of ΣM . This new control system ΣN can be regarded as
an abstraction of ΣM if the manifold N is lower dimen-
sional then M . In this case we are reducing the dimen-
sion of the control system, although capturing the rel-
evant properties of the trajectories of ΣM through the
map φ. The choice of the map φ is problem dependent
and reflects the knowledge one has about the system be-
ing analyzed. The following definition captures precisely
this idea:
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Definition 3.1 Let ΣM and ΣN be two Hamiltonian
control systems on manifolds M and N , respectively and
φ : M → N a Poisson map. Control system ΣN is a φ-
abstraction of control system ΣM iff for every trajectory
cM of ΣM , φ(cM ) is a trajectory of ΣN .

From the above definition it is clear that an abstraction
captures all the trajectories of the original system. It
is this relation between trajectories that will allow us
to relate properties of control systems with properties
of its abstractions. Clearly, it is difficult to determine
whether a control system is an abstraction of another
at the level of trajectories. One is then interested in a
characterization of abstractions which is equivalent to
Definition 3.1 but algebraic. Such a description is given
in the next result adapted from [19]:

Theorem 3.2 Let ΣM and ΣN be two Hamiltonian con-
trol systems defined on manifolds M and N , respectively
and φ : M → N a Poisson map. Control system ΣN is
a φ-abstraction of ΣM if and only if ΣN is φ-related to
ΣM , that is for every x ∈ M :

Txφ (DM (x)) ⊆ DN ◦ φ(x) (3.1)

Making use of the above result we see that the notion of
φ-related control system is a generalization of the notion
of φ-related vector fields commonly found in differential
geometry [1]. This justifies the name of φ-related control
systems.

3.1 Computing φ-related control systems

Given a Poisson map, Definition 3.1 provides us with a
geometric definition for Hamiltonian abstractions which
is useful conceptually but not computationally. We now
present a canonical construction that will allow us to
construct an abstraction ΣN from an Hamiltonian con-
trol system ΣM and a Poisson map φ : M → N . From
this point on, we will work locally and assume that the
map φ is a surjective, Poisson submersion with connected
fibers, that is, the submanifolds φ−1(y) ⊆ M are con-
nected for every y ∈ N .

The construction to be presented is similar, in spirit, to
the canonical construction in [20], even though we work
with Hamiltonians as opposed to distributions. This is
natural for Hamiltonian systems since the differentials
of the Hamiltonians capture all system information, that
is, every Xh in a basis of DM is uniquely determined
from h, given the Poisson structure.

Given a distribution D ⊆ TM we say that D is invariant
under a vector field Z ∈ TM when γ∗t (D) ⊆ D for every
t ∈ R such that the flow γt : M → M of Z is defined.
This concept naturally extends to invariance under a
distribution ∆ by requiringD to be invariant under every

vector field belonging in ∆. Invariant affine distributions
can alternatively be characterized as follows:

Proposition 3.3 ([20]) An affine distribution D =
X + ∆ on M is invariant under a vector field Z iff for
every Y ∈ D:

[Z, Y ] ⊆ ∆ (3.2)

When the affine distribution of interest DM is invariant
under the distribution Ker(Tφ), it is shown in [20] that
DM satisfies the equality:

Txφ(DM (x)) = Tx′φ(DM (x′)) (3.3)

for every x′ ∈ φ−1◦φ(x). This provides a simple method
to compute a φ-related control system defined by an
affine distribution DN on N . To obtain DN at a partic-
ular y = φ(x), it suffices to compute Txφ(DM (x)) for
some x ∈ φ−1(y) in virtue of (3.3). This is, in fact, the
rational behind the construction given in [20]. We now
exploit the same idea, although we will work at the level
of Hamiltonians. We start with an affine distribution de-
fined by an affine space of Hamiltonians HM = h0 +H∆

and extend it to ensure that it defines a new affine distri-
bution invariant under Ker(Tφ). This new affine space
of Hamiltonians will allow one to determine the desired
affine space of Hamiltonians on N by the use of a local
section of φ.

Definition 3.4 (Canonical construction) Let φ :
M → N be a Poisson map between manifolds with
nondegenerate Poisson brackets, HM = h0 + H∆

a locally defined affine space of Hamiltonians, G =
spanR{g1, g2, . . . , gk} a locally defined linear space
of Hamiltonians such that Ker(Tφ) = B#

M (dG) =
span{Xg1 , Xg2 , . . . , Xgk

}, and HM the following affine
space of smooth maps:

HM = h0 + H∆ + {H∆,G}+ {{H∆,G},G}+ . . . (3.4)

for H∆ = H∆+{h0,G}. The affine space of Hamiltonians
HN defined by:

HN = HM ◦ i (3.5)
for any locally defined symplectic inclusion i : N → M
satisfying φ ◦ i = idN is called canonically φ-related to
HM .

Remark 3.5 We note that the above construction can
also be performed without using a basis of Hamiltonian
vector fields for Ker(Tφ). Any other basis for Ker(Tφ)
will equally work if we replace (3.4) with:

HM = h0 + H∆ + LXH∆ + LXLXH∆ + . . .

for every X in the chosen basis of Ker(Tφ). This allows
to compute HM even if G is not available. Nevertheless,
it can be shown that, locally, such family G always exists.
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The control system defined by B#
M (dHM ) enjoys some

properties which justify the use of the word canonical in
Definition 3.4.

Proposition 3.6 The affine distribution DM =
B#

M (dHM ) is the smallest affine distribution, invariant
under Ker(Tφ) which contains DM .

Proof:

The distribution DM contains DM sinceHM ⊆ HM and
is affine by construction. Invariance under Ker(Tφ) fol-
lows from the equality {h, g} = −[Xh, Xg] and Propo-
sition 3.3. To show that DM is the smallest affine dis-
tribution with these properties we consider any other
affine distribution E with the same properties. We now
show that every vector field inDM also belongs to E . Re-
call that, by construction, any vector field in DM can be
written as a linear combination of vectors of the form:

Y =
k∑

j=0

adj
Xg(j)

X

for some X ∈ DM , Xg(j) ∈ {Xg1 , Xg2 , . . . , Xgk
} and

adj
Xg(j)

X defined by:

ad0
Xg(0)

X = X

adj+1
Xg(j+1)

X = [adj
Xg(j)

X,Xg(j+1)]

In view of this, we now show that Y ∈ E by induction
on the number k of Lie bracket depth:

If k = 0 then X ∈ DM ⊆ E .

If k = m and k > 1, then we can write Y as
Y = Z + [Z,Xg] for some Z ∈ DM and some
Xg ∈ {Xg1 , Xg2 , . . . , Xgk

}. Clearly Z has bracket depth
m− 1 so that by the induction hypothesis Z ∈ E . How-
ever E is Ker(Tφ) invariant so that Proposition 3.3 im-
plies that Y = Z + [Z, Xg] ∈ E . Since every vector field
in DM is a linear combination of vector fields belonging
to E , the desired inclusion DM ⊆ E follows.¤

The control system defined by DN is the minimal ab-
straction of control system defined by DM :

Proposition 3.7 The affine Hamiltonian control sys-
tem ΣN , obtained from ΣM by the canonical construc-
tion is the smallest Hamiltonian control system on N φ-
related to ΣM .

Proof: We start by showing that the Hamiltonian con-
trol system defined by HN is φ-related to the Hamilto-
nian control system defined byHM . Let x ∈ M , φ(x) = y
and i(y) = x′. Consider any X ∈ DM (x), since DM

is Ker(Tφ)-invariant, it follows that Txγ · X = X ′ ∈
DM (x′) where γ is the composition of local flows Ki

t of
vector fields Ki ∈ Ker(Tφ) satisfying:

γ(x) = K1
t1 ◦K2

t2 ◦ . . . ◦Kl
tl
(x) = x′ (3.6)

Such sequence of flows exists since the fibers of φ are
connected. Note that Txφ·X = Tx′φ·X ′ = Tx′φ(Txγ ·X)
since φ ◦ γ = φ. This shows that the inclusion Tx′φ ·
X ′ ∈ DN ◦ φ(x′) = DN ◦ φ(x) is sufficient to ensure φ-
relatedness of the control systems. Since X ′ ∈ DM (x′) it
follows that X ′ can be written as X ′ = Xh for some h ∈
HM . We now proceed by showing that Tx′φ · Xh(x′) ∈
DN ◦ φ(x′).

Recall that φ is a surjective submersion so that it lo-
cally factors uniquely through the Poisson projection
π : M → M/ ∼, where ∼ is the regular equivalence re-
lation on M defined by considering each leaf of the fo-
liation induced by the integrable distribution Ker(Tφ)
an equivalence class [13]. This means that there are
coordinates a = (a1, . . . , an) on N such that φ takes
the form π(a, b) = a for (a, b) coordinates on M with
b = (b1, . . . , bm). Furthermore b can be chosen so as
to satisfy {ai, bj} = 0, for any i ∈ {1, . . . , n} and any
j ∈ {1, . . . ,m} since the Poisson structure has constant
rank [13], see also [26,25]. From {ai, bj} = 0 we conclude
that the symplectic form associated with the Poisson
bracket on M can be written as ωM =

∑
i 6=j αij(a)dai∧

daj +
∑

k 6=l βkl(b)dbk ∧ dbl, while the symplectic form
associated with the Poisson bracket on N equals ωN =∑

i6=j αij(a)dai ∧ daj . Since in these local coordinates
the map φ is the projection π(a, b) = a, the local section
i of φ is of the form i(a) = (a, ξ(a)). Condition (2.10)
now reduces to:

∑

i 6=j

αij(a)dai ∧ daj =
∑

i 6=j

αij(a)dai ∧ daj

+
∑

k 6=l

βkl(ξ(a))dξk ∧ dξl

from which we conclude that dξ = 0 or equivalently that
ξ is constant. A vector field Xh is now given by:

Xh(a, b) = B#
M

(
dh|(a,b)

)

= B#
M

(∂h

∂a
da|(a,b) +

∂h

∂b
db|(a,b)

)

= B#
M

(∂h

∂a
da|(a,b)

)
+ B#

M

(∂h

∂b
db|(a,b)

)

Furthermore, from {ai, bj} = 0, we conclude that
B#

M (∂h
∂b db|(a,b)) will be a linear combination of vec-

tors { ∂
∂b1

, . . . , ∂
∂bm

} ⊆ Ker(Tπ). This allows to express
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T(a,b)π ·Xh(a, b) as:

T(a,b)π ·Xh(a, b) = T(a,b)π ·B#
M

(∂h

∂a
da|(a,b)

)

+T(a,b)π ·B#
M

(∂h

∂b
db|(a,b)

)

= T(a,b)π ·B#
M

(∂h

∂a
d(i ◦ π)|(a,b)

)
+ 0

= T(a,b)π ·B#
M

(
π∗d(h ◦ i)|(a,b)

)

= B#
N

(
d(h ◦ i)|a

)
= Yh◦i(a) (3.7)

where the second equality follows from dξ = 0 and the
last equality follows from the Poisson character of π.
Since h ◦ i ∈ HN we have shown, as desired, that Tx′φ ·
Xh(x′) ∈ DN ◦ φ(x) and consequently that:

Txφ
(DM

) ⊆ Txφ
(DM

) ⊆ DN ◦ φ(x) (3.8)

for every x ∈ M . Furthermore, since every g ∈ HN is
obtained from a h ∈ HM by restriction via i : N → M ,
the following equality also holds:

Txφ
(DM

)
= DN ◦ φ(x) (3.9)

It remains to show that DN is the smallest affine dis-
tribution satisfying (3.8). Consider any other affine dis-
tribution E on N satisfying Txφ(DM ) ⊆ E ◦ φ. From E
we build a new distribution E on M by E = (Tφ)−1(E),
that is E = {X ∈ TM : Tφ · X ∈ E}. It is clear
that DM ⊆ E and it is also true that E is Ker(Tφ) in-
variant since for any x, x′ ∈ M such that φ(x) = φ(x′),
Txφ(E(x)) = E ◦ φ(x) = E ◦ φ(x′) = Tx′φ(E(x′)). How-
ever, by Proposition 3.6, DM is the smallest Ker(Tφ) in-
variant distribution containingDM . It then follows that:

DM ⊆ E ⇒ Tφ
(DM

) ⊆ Tφ(E) ⇒ DN ◦ φ ⊆ E ◦ φ

which shows that DN is, in fact, the smallest affine dis-
tribution satisfying (3.8).¤

The previous proposition is very important since it en-
sures that given any affine Hamiltonian control system
ΣM on a manifold M , and any Poisson surjective sub-
mersion φ : M → N , with connected fibers, it is always
possible to compute the corresponding abstraction. Fur-
thermore, it also ensures, that the resulting abstraction
is the smallest over all affine control systems on N φ-
related to ΣM . This fact justifies the term canonical for
the construction given in Definition 3.4.

4 Local Accessibility Equivalence

In addition to propagating trajectories and Hamiltoni-
ans from the original control system to the abstracted

system, we will investigate how accessibility properties
can be preserved in the abstraction process. We first re-
view several (local) accessibility properties for control
systems [9,10,17].

Definition 4.1 Let ΣM be a control system on a smooth
manifold M . For each T > 0 and each x ∈ M , the
set of points reachable from x at time T by trajectories
which remain in a open set V containing x for t ≤ T ,
denoted by ReachV (x, T ), is equal to the set of terminal
points cM (T ) of ΣM trajectories that originate at x and
that satisfy cM (t) ∈ V , for all t ≤ T . The set of points
reachable from x in T or fewer units of time while re-
maining in V , denoted by ReachV (x,≤ T ) is given by
ReachV (x,≤ T ) = ∪t≤T ReachV (x, T ).

Definition 4.2 A control system ΣM is said to be

• Locally accessible from x if ReachV (x,≤ T ) contains
a non-empty open set O of M for all open sets V and
all T > 0.

• Locally accessible if it is locally accessible from all x ∈
M .

• Controllable if for any x1, x2 ∈ M , there exists a T ∈ R
and a trajectory cM (t) of ΣM such that cM (0) = x1

and cM (T ) = x2.

These local accessibility properties can be characterized
by simple rank conditions on the Poisson algebra gener-
ated 2 by the affine space of Hamiltonians HM .

Proposition 4.3 (Accessibility Rank Conditions)
Let ΣM be an Hamiltonian control system on a manifold
M of dimension m and denote by P(HM ) the Poisson
algebra generated by the smooth maps in HM . Then:

• If dim(dP(HM (x))) = m, then control system ΣM is
locally accessible at x ∈ M .

• If dim(dP(HM (x))) = m for all x ∈ M , then control
system ΣM is locally accessible.

• If dim(dP(HM (x))) = m for all x ∈ M , HM is sym-
metric, that is h ∈ HM ⇒ −h ∈ HM , and M is con-
nected, then control system ΣM is controllable.

We now determine under what conditions on the ab-
stracting maps, local accessibility of the original system
ΣM is equivalent to local accessibility of its canonical
abstraction ΣN . In particular, conditions to propagate
accessibility from the abstracted system ΣN to the orig-
inal system ΣM , are given in the next result.

Theorem 4.4 (Local Accessibility Equivalence)
Let ΣM be a control system canonically φ-related to
control system ΣN , G = spanR{g1, g2, . . . , gk} a lo-
cally defined linear space of Hamiltonians such that

2 The Poisson algebra generated by a set of S smooth maps
on M is the smallest Poisson subalgebra of C∞(M) contain-
ing S.
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Ker(Tφ) = B#
M (dG) = span{Xg1 , Xg2 , . . . , Xgk

},
and P(HM ) the Poisson algebra generated by HM . If
G ⊆ P(HM ) then ΣM is locally accessible (at x) if and
only if ΣN is locally accessible (at φ(x)).

Proof: If DM is locally accessible (at x) then by Theo-
rem 3.2, DN is also locally accessible (at φ(x)).

To show the converse we note that the equality {f, g} =
[Xg, Xf ] implies dim(dP(HM (x))) = dim(Lie(DM (x)))
where Lie(DM ) denotes the Lie algebra generated by
the vector fields in DM . In virtue of this, we start by
showing the following equality between the Lie algebras
generated by DM and its canonical φ-abstraction DN :

Txφ
(
Lie(DM )(x)

)
= Lie(DN ) ◦ φ(x) (4.1)

Recall that DM (defined in Proposition 3.6) is Ker(Tφ)-
invariant, therefore there exists a local basis for DM of
Ker(Tφ)-invariant vector fields. Let us denote by X0 +
{X1, X2, . . . , Xn} this basis. Since every vector field X
in this basis is Ker(Tφ) invariant, it is φ-related to its
projection Y ◦ φ = Tφ(X). It then follows that X1 and
X2 being φ-related to Y1 and Y2, respectively, implies
that [X1, X2] is also φ-related to [Y1, Y2] and an induc-
tion argument shows that:

Tφ(Lie(DM )) = Lie(DN ) ◦ φ (4.2)

The assumption G ⊆ P(HM ) and the equality {f, g} =
[Xg, Xf ] imply:

Ker(Tφ) ⊆ Lie(DM ) (4.3)

and by construction ofDM we have Lie(DM ) = Lie(DM )
which combined with (4.2) gives (4.1). Using now (4.1)
we conclude:

dim(Lie(DM )(x)) = dim(Txφ(Lie(DM )(x)))
+dim(Ker(Tφ)(x))

= dim(Lie(DN ) ◦ φ(x))
+dim(Ker(Tφ)(x)) (4.4)

It is now easy to see that if ΣN is locally accessible
at φ(x), then dim(dP(HN ) ◦ φ(x)) = dim(Lie(DN ) ◦
φ(x)) = dim(N) and dim(dP(HM )(x)) = dim(Lie(DM )(x)) =
dim(N) + dim(Ker(Tφ)(x)) = dim(M) since φ is a
submersion. Local accessibility (at x) now follows from
dim(dP(HM )(x)) = dim(M) and Proposition 4.3.¤

As an immediate corollary we have:

Corollary 4.5 Let ΣM be a control system canonically
φ-related to control system ΣN , G = spanR{g1, g2, . . . , gk}

MG

k

q

Fig. 1. Spherical pendulum with gravity force represented.

a linear space of Hamiltonians such that Ker(Tφ) =
B#

M (dG) = span{Xg1 , Xg2 , . . . , Xgk
}, and P(HM ) the

Poisson algebra generated by HM . If G ⊆ P(HM ) and
both HM and HN are symmetric and furthermore M is
connected then ΣM is controllable iff ΣN is controllable.

Theorem 4.4 provides moderate conditions to propagate
accessibility properties in a hierarchy of abstractions.
This allows for a hierarchical approach to the determi-
nation of accessibility properties. As long as there are
control inputs on the abstracted control system ΣN , the
Poisson algebra P(HN ) contains non constant maps and
consequently the system can be further abstracted to
an equivalent system regarding local accessibility by the
use of a map φ such that Ker(Tφ) ⊆ B#

N (dP(HN )).

5 A spherical pendulum example

As an illustrative example, consider the spherical pen-
dulum as a fully actuated mechanical control system.
This system can be used to model, for example, the sta-
bilization of the spinning axis of a satellite or a pan and
tilt camera. Consider a massless rigid rod of length l
fixed in one end by a spherical joint and having a bulb
of mass m on the other end. The configuration space for
this control system is S2, however we will work locally
on C2 ⊂ S2, C2 =]0, π[×]0, 2π[ parameterized by spher-
ical coordinates (θ, α), see Figure 1.

The kinetic energy of the system is given by:

T =
1
2
ml2(θ̇2 + sin2 θ α̇2) (5.1)

and the potential energy of the system is:

V = −mgl cos θ (5.2)

Through the Legendre transform of the Lagrangian L =
T − V one arrives at the Hamiltonian:

h0 =
1

2ml2
p2

θ +
1

2ml2 sin2 θ
p2

α −mgl cos θ (5.3)
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where pθ is given by pθ = ml2θ̇ and pα = ml2 sin2 θ α̇.
Since the system is fully actuated, the controlled Hamil-
tonian defined over M = T ∗C2 is given by:

HM = h0 + h1u1 + h2u2 (5.4)

with h1 = θ and h2 = α and where u1 and u2 are the
control inputs. Such controlled Hamiltonian defines con-
trol system ΣM through the use of the Poisson bracket:

{f, g} =
∂f

∂θ

∂g

∂pθ
+

∂f

∂α

∂g

∂pα
− ∂f

∂pθ

∂g

∂θ
− ∂f

∂pα

∂g

∂α
(5.5)

as described in Section 2. The drift vector field associated
with h0 is invariant under rotations around the vertical
axis and could be reduced using this symmetry by using
the methods in [15]. However to emphasize the advan-
tages of the abstraction method we will abstract away
precisely the directions where there are no symmetries.
Consider the abstracting map:

φ : T ∗C2 → T ∗C1 (5.6)
(θ, α, pθ, pα) 7→ (α, pα) (5.7)

where C1 =]0, 2π[⊂ S1 is equipped with the following
Poisson bracket:

{f, g} =
∂f

∂α

∂g

∂pα
− ∂f

∂pα

∂g

∂α
(5.8)

If one lets g1 = pθ, g2 = θ and follow the steps of the
canonical construction one obtains:

{h0, g1}=
∂h0

∂θ
=

cos θ

ml2 sin3 θ
pα + mgl sin θ

{{h0, g1}, g1}=
∂{h0, g1}

∂θ
= −2 + cos 2θ

ml2 sin4 θ
+ mgl cos θ

{h0, g2}=
∂h0

∂pθ
=

1
ml2

pθ

H∆ = H∆ + spanR{{h0, g1}, {h0, g2}}
= spanR{θ, α,

cos θ

ml2 sin3 θ
pα + mgl sin θ,

1
ml2

pθ}

Note that H∆ is of rank 4 except when θ = π
2 , how-

ever by considering also {{h0, g1}, g1} we see that
the affine distribution H∆ + spanR{{{h0, g1}, g1}}
has rank 4 on C2. This implies that no further
brackets need to be computed. Furthermore, we also
see that H∆ + spanR{{h0, g1}, {h0, g2}} = H∆ +
spanR{{{h0, g1}, g1}, {h0, g2}} so that we will work
with HM = H∆ + spanR{{{h0, g1}, g1}, {h0, g2}}. The
locally defined inclusion i : N → M mapping (α, pα) to
i(α, pα) = (π/4, α, 0, pα) satisfies φ ◦ i = idN . To show
that it is also symplectic, we note that the covariant
tensor associated with BC2 is given by:

ωC2 = dα ∧ dpα + dθ ∧ dpθ (5.9)

while the covariant tensor associated with BC1 is given
by:

ωC1 = dα ∧ dpα (5.10)
Computing now i∗ωC2 we obtain:

i∗ωC2 = dα∧dpα+dπ/4∧d0 = dα∧dpα = ωC1 (5.11)

which shows that i is symplectic. The abstracted system
is now obtained through HN :

HN =HM ◦ i

=
1

ml2 sin2 θ
p2

α −
mgl√

2
+ spanR

{π

3
, α,− 8

ml2
pα +

mgl√
2

}

Discarding constant terms, which are associated with
the zero vector field, we compute the abstraction to be:

α̇ =
2

ml2
(pα − 4v1) (5.12)

ṗα = v2 (5.13)

which is a Hamiltonian control system on N = T ∗C1.
Furthermore, since both g1 and g2 belong to P(HM ) and
ΣN is locally accessible, by making use of Theorem 4.4
we infer that ΣM is also locally accessible. This allows
to use the abstracted model to do a preliminary control
design to regulate the angle α on the smaller, abstracted
model, which can be later extended to a complete de-
sign regulating both α and θ. This has the advantage of
breaking the design in two phases, where only one vari-
able is regulated in each phase. In concrete applications
one would build an hierarchy of abstractions where The-
orem 4.4 would be used to ensure that every control de-
sign at the upper levels can be implemented at the lower
levels, therefore reducing the complexity of control de-
sign. Furthermore, since each level is an Hamiltonian
control system, specific techniques for mechanical sys-
tems control design [18,4,2,5,6] can be used at each level
of design.

6 Conclusions

In this paper, we have presented a hierarchical abstrac-
tion methodology for affine Hamiltonian control sys-
tems. We presented an algorithm for its determination
which computes the smallest abstraction based on a
given abstraction map. All the computations are per-
formed at the level of Hamiltonians which simplifies the
process. We have also characterized local accessibility
preserving maps. This allows to build an hierarchy of
control systems with different dimensions but equivalent
local accessibility properties. These results are very en-
couraging for hierarchical control of mechanical systems.

Refining controller design from the abstracted to the
original system is clearly important and will cer-
tainly build on the recent results [22] describing how
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state/inputs of the original system are related to
state/inputs of the abstracted system. Other research
topics of great interest include the extension of present
framework to port controlled Hamiltonian system
(pcHs) and related notions of interconnection [24] as
well as the propagation of nonholonomic constraints in
the context of pcHs.
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