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Bayesian L1-Norm Sparse Learning

Abstract
We propose a Bayesian framework for learning the optimal regularization parameter in the L1-norm penalized
least-mean-square (LMS) problem, also known as LASSO [1] or basis pursuit [2]. The setting of the
regularization parameter is critical for deriving a correct solution. In most existing methods, the scalar
regularization parameter is often determined in a heuristic manner; in contrast, our approach infers the
optimal regularization setting under a Bayesian framework. Furthermore, Bayesian inference enables an
independent regularization scheme where each coefficient (or weight) is associated with an independent
regularization parameter. Simulations illustrate the improvement using our method in discovering sparse
structure from noisy data.
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BAYESIAN L1-NORM SPARSE LEARNING

Yuanqing Lin, Daniel D. Lee

GRASP Laboratory, Department of Electrical and Systems Engineering,

University of Pennsylvania, Philadelphia, PA 19104

ABSTRACT

We propose a Bayesian framework for learning the opti-

mal regularization parameter in the L1-norm penalized least-

mean-square (LMS) problem, also known as LASSO [1] or

basis pursuit [2]. The setting of the regularization parame-

ter is critical for deriving a correct solution. In most existing

methods, the scalar regularization parameter is often deter-

mined in a heuristic manner; in contrast, our approach infers

the optimal regularization setting under a Bayesian frame-

work. Furthermore, Bayesian inference enables an indepen-

dent regularization scheme where each coefficient (or weight)

is associated with an independent regularization parameter.

Simulations illustrate the improvement using our method in

discovering sparse structure from noisy data.

1. INTRODUCTION

Finding a sparse solution of a least-mean-square (LMS)

problem is key to many applications in signal process-

ing [1][2][3][4]. An effective approach for deriving sparse

LMS solution is L1-norm regularization [1][2][5], and the op-

timization problem is:

w∗ = arg min
w

1
2
‖y − Φw‖2 + λ̂

M∑
i=1

|wi|, (1)

where y is an N × 1 data vector, Φ is an N × M matrix, w∗

is the M × 1 weight vector that needs to be optimized, and

λ̂ is the regularization parameter that balances favoring the

LMS fit versus the sparseness of the solution described by the

L1-norm.

Although the setting of the regularization parameter λ̂ in

Eq. 1 is critical for deriving a correct solution, it is often deter-

mined heuristically. For instance, for the special case where

the columns of Φ are orthogonal, S. S. Chen et. al [2] spec-

ulated that λ̂ = σ
√

2 log(M) with σ being the noise level

in amplitude; J.J. Fuchs [4] argued that λ̂ should be propor-

tional to the noise level and signal level; D. M. Malioutov

et. al [6] considered solving a piece-wise linear problem with

respect to λ̂ to derive a complete set of possible solutions,

from which one may select an appropriate solution according

to some empirical criterion. However, the main drawback of

these approaches originates from their lack of a generalized

criterion for sparsity. In contrast, our approach models spar-

sity in a Bayesian framework and the optimal regularization

parameter is inferred by maximizing the posterior distribution

of the regularization parameter.

In our approach, we are able to deal with a more general

form than Eq. 1, namely,

w∗ = arg min
w

1
2
‖y − Φw‖2 +

M∑
i=1

λ̂i|wi|, (2)

where each element in w is associated with an independent

regularization parameter. We will refer to Eq. 2 as indepen-

dent regularization, and Eq. 1 as unform regularization. The

extension in Eq. 2 was inspired by M. E. Tipping’s work [7]

which found that independent L2-norm regularization was

able to yield a much sparser solution than uniform L2-norm

regularization. Therefore, we can expect that Eq. 2 will yield

stronger sparsity regularization than Eq. 1 if the regularization

parameters are optimally inferred.

The remainder of this paper is organized as follows. In

Section 2, Expectation-Maximization (EM) type update rules

are derived from a Bayesian framework for iteratively esti-

mating the optimal regularization parameters. In Section 3,

we employ simulations to demonstrate the advantage of the

Baysesian L1-norm sparse learning. Finally, a brief discus-

sion of these results is presented in Section 4.

2. BAYESIAN FRAMEWORK FOR L1-NORM
SPARSE LEARNING

In this section, the EM type update rules are derived for itera-

tively estimating the regularization parameter in Eq. 1. In the

EM procedure, we introduce a variational method for over-

coming the difficulties in inference with non-Gaussian prob-

ability distributions. To compute the mode of the distribution

for its variational approximation, we present an algorithm for

solving the L1-norm penalized LMS problem via auxiliary

function minimization. Then, we extend the EM procedure

for computing the independent regularization parameters in

Eq. 2.

In the probabilistic model for Eq.1, the data y are assumed

to be coupled with additive I.I.D. zero-mean Gaussian noise,
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namely,

P (y|Φ,w, σ2) =
1

(2πσ2)N/2
exp

(
− 1

2σ2
‖y − Φw‖2

)
,

(3)

and the prior on the weights is a Laplacian distribution,

P (w|λ) = (
λ

2
)M

M∏
i=1

exp{−λ|wi|}. (4)

The regularization parameter λ̂ in Eq. 1 will be a function of

σ2 and λ. Then, the optimal regularization parameters (σ2

and λ) are computed by maximizing the posterior distribution

P (σ2, λ|Φ,y). According to the Bayes’ rule, if the hyper-

prior distributions on σ2 and λ are flat, maximizing the pos-

terior is equivalent to maximizing the marginal likelihood:

P (y|λ, σ2,Φ) =
∫ +∞

−∞
dw P (y|Φ,w, σ2)P (w|λ) (5)

=
λM

2M (2πσ2)N/2

∫ +∞

−∞
dw exp[−F (w)]

where

F (w) =
1

2σ2
‖y − Φw‖2 + λ

M∑
i=1

|wi|. (6)

Unfortunately, this marginal likelihood can not be evaluated

analytically, and thus it can not be maximized directly. Our

strategy is to treat w as hidden variables, σ2 and λ as parame-

ters, and to optimize the marginal likelihood via Expectation-

Maximization (EM) update rules:

1
λ

←− 1
M

∫ +∞

−∞
dw

∑
i

|wi|Q(w) (7)

σ2 ←− 1
N

∫ +∞

−∞
dw ‖y − Φw‖2Q(w) (8)

where the expectations are taken over the distribution

Q(w) = 1
Zw

exp[−F (w)] with normalization constant Zw =∫ +∞
−∞ dw exp[−F (w)]. The EM procedure can be thought as

iteratively re-estimating the optimal parameters (σ2 and λ)

from the current estimate of the weight statistics Q(w). Be-

cause it is difficult to analytically compute the integrals in

Eqs. 7 and 8, we seek to approximate the distribution Q(w)
around its mode, wMP .

2.1. Computing wMP

The mode, wMP , is defined as the w that maximizes the

Q(w), namely

wMP = arg min
w

1
2
wT Aw + bT w + λ

M∑
i=1

|wi|, (9)

w0 w1 w2 w* w

F(w)G(w,w0)

G(w,w1)

Fig. 1. The iterative procedure of minimizing F (w) via auxiliary

functions G(w, w̃), with w̃ = w0,w1,w2, ....

where A = σ−2ΦT Φ, and b = σ−2ΦT y. Note that Eq. 9

is equivalent to Eq. 1 with λ̂ = σ2λ. We will also represent

the objective function in Eq. 9 with F (w). This minimiza-

tion problem can be solved with several different optimiza-

tion techniques such as the simplex method and interior point

methods. However, we introduce here a method that solves

this optimization problem by constructing auxiliary functions.

Because of the concavity of a square-root function, |wi| =
(w2

i )1/2 is upper bounded as |wi| ≤ |w̃i| + 1
2|w̃i| (w

2
i − w̃2

i )
for any w̃i, and equality holds only when wi = w̃i. As a

result, we construct the auxiliary function:

G(w, w̃) =
1
2
wT Aw + bT w +

∑
i

λi

2|w̃i|w
2
i +

∑
i

λi

2
|w̃i|,
(10)

which satisfies the two conditions: 1) G(w̃, w̃) = F (w̃),
and 2) G(w, w̃) ≥ F (w) where the equality holds only

when w = w̃. Then, the iterative update rule, w̃ ←−
arg minw G(w, w̃), will converge to a local minimum of

F (w) [8], which is also the global minimum since F (w)
in Eq. 9 is convex. An example for illustrating the iterative

scheme is shown in Fig. 1. At each iterative step, since the

auxiliary function is a quadratic function, its optimal solution

can be computed analytically:

w̃∗ = (A + Λ)−1b (11)

where Λ = diag([λ1/|w̃1|, λ2/|w̃2|, ..., λM/|w̃M |]). Be-

cause the columns in Φ associated with zero solutions during

the iterations can be pruned, the matrix inversion in Eq. 11

is performed on a gradually reduced matrix. Generally, the

resulting algorithm for solving the optimization problem in

Eq. 11 is easy to implement, has excellent convergence prop-

erty, and is computationally efficient when the optimal solu-

tion is sparse.

2.2. Approximating Q(w)

After wMP is computed, one may approximate Q(w) as a δ-

function at wMP . Unfortunately, this simple treatment may

cause divergence of the updates when σ2 and λ are not initial-

ized properly. Here we adopt a similar approximation scheme

recently developed for nonnegative deconvolution [9].
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The solution of wMP naturally partitions itself into two

distinct groups: non-zero elements (indexed by J) and zero

elements (indexed by I). As a result, we choose to approxi-

mate the joint distribution Q(w) as a factorized distribution,

namely, Q(w) ≈ QJ(wJ)QI(wI).
Since wJ �= 0, and the first order derivative

(∇F (w)|wMP )J = 0, QJ(wJ) is approximated as a Gaus-

sian distribution with mean wMP
J and variance A−1

JJ with

AJJ being the sub-matrix of A.

For QI(wI) = Q(w)|wJ=wMP
J

, because wI = 0 and the

first order derivative (∇F (w)|wMP )I �= 0, we approximate it

with a factorized asymmetric Laplacian distribution, namely

Q̂I(wI) =
∏
i∈I

Q̂i(wi), (12)

with

Q̂i(wi) =

{
µ−

i

2 eµ−
i wi when wi < 0

µ+
i

2 e−µ+
i wi when wi ≥ 0,

(13)

where the variational parameters µ+ ≥ 0 and µ− ≥ 0 is

defined by minimizing the KL-divergence between QI and

Q̂I , yielding the optimization problem:

min
µ≥0

b̂T µ +
1
2
µT Âµ −

∑
i

lnµi, (14)

where µ = [µ+; µ−], b̂ = [(AwMP + b +
λe)I ; (−AwMP −b+λe)I ] with e = [1, 1, ..., 1]T , and Â =[

Â11 Â12

Â21 Â22

]
, where Â11 = Â22 = 1

2AII + 3
2diag(AII),

and Â21 = Â12 = 1
2AII − 1

2diag(AII) with AII being the

sub-matrix of A. Since this minimization problem can not

be solved analytically, we employ the same auxiliary func-

tion developed in [9], resulting multiplicative update rules

for iteratively estimating µ with guaranteed convergence:

µi ←− µi

−b̂i +
√

b̂2
i + 4(Â+µ)i[(Â−µ)i + 1

µi
]

2(Â+µ)i

. (15)

After the variational parameters µ are derived, the mean

w̄, the absolute mean |wi|, i = 1, 2, ..., M , and the covariance

C of w under the approximated distribution can be computed:

w̄i =
{

wML
i if i ∈ J

(µ+
i − µ−

i )/2 if i ∈ I
, (16)

|wi| =
{ |wML

i | if i ∈ J
(µ+

i + µ−
i )/2 if i ∈ I

, (17)

Cij =

{
(AJJ

−1)ij if i, j ∈ J

δij [
(µ+

i +µ−
i )2

4 + (µ+
i )2+(µ−

i )2

2 ] otherwise.

From these statistics, the integrals in Eqs. 7 and 8 can be eval-

uated analytically, and the update rules for estimating λ and

σ2 becomes:

λ ←− M∑M
i=1 |wi|

(18)

σ2 ←− 1
N

[(y − Φw̄)T (y − Φw̄) + Tr(ΦT ΦC)].(19)

2.3. Extension to independent L1-norm regularization

We can adapt the Bayesian framework to infer the optimal

regularization parameters in Eq. 2 by assuming a Laplacian

distribution with independent decay parameters, namely,

P (w|λ) =
M∏
i=1

λi

2
exp{−λi|wi|}. (20)

Then, the Bayesian formulation would be similar as the uni-

form regularization case except that Eqs. 6, 7 and 18 respec-

tively become

F (w) =
1

2σ2
(y − Φw)T (y − Φw) +

M∑
i=1

λi|wi|, (21)

1
λi

←−
∫ +∞

−∞
dw |wi|Q(w), (22)

λi ←− 1
|wi|

. (23)

3. SIMULATION

In this section, we employ simulation to demonstrate that the

update rules derived in Section 2 converge to the correct noise

level (σ2) and the Bayesian L1-norm sparsity learning is bet-

ter at discovering sparse solutions. In particular, with inferred

optimal independent regularization parameters, the optimiza-

tion problem in Eq. 2 is able to accurately resolve the correct

sparseness of the solution even in very noisy data.

We use deconvolution as an example for simulation, and

demonstrate that sparsity regularization can be utilized to

achieve high temporal resolution (or sub-sample resolution)

in FIR filter identification. A speech segment (1024 sam-

ples, sampling frequency was 16,000Hz) was employed as

the source signal s. The simulated sparse FIR filter w has

nonzero amplitudes of -0.5, 0.35, 1, 0.6, and -0.4 at -9.75Ts, -

6Ts, 1Ts, 2.5Ts, and 7.75Ts (Ts denotes the sample interval),

respectively, and has zero amplitude elsewhere. Then the ob-

servation y is the convolution of the source and the simulated

filter corrupted by I.I.D. sampled zero-mean Gaussian noise.

The task of the deconvolution is to discover the filter w given

the source s and the observation y.

In deconvolution, the columns of the designed matrix Φ
are the delayed patterns of the source with delays from −10Ts
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Fig. 2. Convergence of σ2 estimation in Bayesian L1-norm sparse

learning. The signal was normalized so that it had unit power.

to +10Ts incremented by 0.25Ts. Due to the fact that the ad-

jacent columns in Φ are very similar to each other and the

matrix ΦT Φ is ill-conditioned, sparsity regularization is cru-

cial for deriving a correct solution.

Figure 2 illustrates the convergence of the σ2 estimation

under different noise levels (from -60dB to -10dB) using the

update rules of Bayesian L1-norm sparse learning derived in

Section 2. In the simulation, uniform regularization was em-

ployed in the first 15 iterations, and then independent regular-

ization was utilized in the next 15 iterations to further refine

the solution. From Figure 2, we observe that the σ2 estimate

often converges to the true value even with bad initialization.

The resulting filter estimate when SNR=10dB is shown in

Figure 3 (d). Compared to the estimate of the first 15 itera-

tions with uniform regularization (shown in Figure 3 (c) ), the

result of an additional 15 iterations with independent regular-

ization exhibits the same sparseness as the true solution and

has very small misalignment (defined as ‖ŵ − w0‖2/‖w0‖2

with ŵ being the estimate and w0 being the ground truth).

By contrast, other approaches that empirically determine the

regularization parameter often yield sub-optimal solutions, as

shown in Figure 3 (b). Because the simulated deconvolution

is ill-conditioned without sparsity regularization, the estimate

in Figure 3 (a) with no regularization fluctuates widely, con-

taining little information about the true filter.

4. CONCLUSION

We have developed a Bayesian framework for inferring the

optimal regularization parameters for L1-norm regularized

LMS problem. We have demonstrated that, by extending

a uniform regularization to independent regularization, our

Bayesian L1-norm sparse learning algorithm is able to pre-

cisely resolve the sparse solution even in very noisy condi-

tions.

Our work provides an unified probabilistic framework for

L1-norm sparse learning. It can be easily adapted to other

variants of L1-norm regularized problems(such as nonnega-

tive LMS [9]), and can be used to elucidate the role of sparsity
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=5.4x10-4

Mialignment
=0.23

Bayesian independent regularization

Mialignment
=0.26
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Fig. 3. Deconvolution result by different L1-norm regularization

schemes. a) no regularization; b) the regularization proposed by S.

S. Chen et. al [2](λ̂ = 0.94); c)Bayesian uniform regularization,

(λ = 28 and σ2 = 0.1, thus λ̂ = 2.8); d) Bayesian independent

regularization. The dot lines in the figures indicate the ground truth

of the filter, while the solid lines with dots are the estimates.

in these algorithms. Future work will concentrate on extend-

ing our Bayesian L1-norm sparse learning algorithm to other

applications in signal processing.
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