
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

8-23-2008

Recycling controllers
Hadas Kress-Gazit
University of Pennsylvania, hadaskg@grasp.upenn.edu

Nora Ayanian
University of Pennsylvania, nayanian@grasp.upenn.edu

George J. Pappas
University of Pennsylvania, pappasg@seas.upenn.edu

Vijay Kumar
University of Pennsylvania, kumar@grasp.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Copyright 2008 IEEE. Reprinted from:
Kress-Gazit, H.; Ayanian, N.; Pappas, G.J.; Kumar, V., "Recycling controllers," Automation Science and Engineering, 2008. CASE 2008. IEEE
International Conference on , vol., no., pp.772-777, 23-26 Aug. 2008
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4626521&isnumber=4626395

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Recommended Citation
Hadas Kress-Gazit, Nora Ayanian, George J. Pappas, and Vijay Kumar, "Recycling controllers", . August 2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages

Recycling controllers

Abstract
The problem of designing control schemes for teams of robots to satisfy complex high-level tasks is a
challenging problem which becomes more difficult when adding constraints on relative locations of robots.
This paper presents a method for automatically creating hybrid controllers that ensure a team of
heterogeneous robots satisfy some user specified high-level task while guaranteeing collision avoidance and
predicting and reducing deadlock. The generated hybrid controller composes atomic controllers based on
information the robots gather during runtime; thus these atomic controllers can be reused in different
scenarios for multiple tasks. As a demonstration of this general approach we examine a task in which a group
of robots sort different items to be recycled.

Keywords
atomic controller, collision avoidance, control scheme design, deadlock reduction, discrete automaton,
heterogeneous robot team, recycling controller, automata theory, collision avoidance, control system
synthesis, mobile robots, multi-robot systems

Comments
Copyright 2008 IEEE. Reprinted from:
Kress-Gazit, H.; Ayanian, N.; Pappas, G.J.; Kumar, V., "Recycling controllers," Automation Science and
Engineering, 2008. CASE 2008. IEEE International Conference on , vol., no., pp.772-777, 23-26 Aug. 2008
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4626521&isnumber=4626395

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/489

http://repository.upenn.edu/ese_papers/489?utm_source=repository.upenn.edu%2Fese_papers%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages

Recycling Controllers

Hadas Kress-Gazit, Nora Ayanian, George J. Pappas, Vijay Kumar*
GRASP Laboratory, University of Pennsylvania

Philadelphia, PA 19104, USA
{hadaskg,nayanian,pappasg,kumar}@grasp.upenn.edu

Abstract— The problem of designing control schemes for
teams of robots to satisfy complex high-level tasks is a chal-
lenging problem which becomes more difficult when adding
constraints on relative locations of robots. This paper presents
a method for automatically creating hybrid controllers that
ensure a team of heterogeneous robots satisfy some user
specified high-level task while guaranteeing collision avoidance
and predicting and reducing deadlock. The generated hybrid
controller composes atomic controllers based on information
the robots gather during runtime; thus these atomic controllers
can be reused in different scenarios for multiple tasks. As a
demonstration of this general approach we examine a task in
which a group of robots sort different items to be recycled.

I. INTRODUCTION

Robot swarms and self-driving cars are no longer a distant
dream. As systems’ abilities and complexity increase, it
becomes infeasible for a system designer to take care of
every detail. Currently, behaviors of such systems are most
often hard coded and changing them is time consuming,
error prone, and requires expert knowledge. A significant
challenge for the automation community is creating methods
that facilitate “programming” of complex systems by allow-
ing behavior specification at a high-level and automatically
generating or adjusting the system such that it satisfies the
new behavior while providing guarantees of correctness.

One can distinguish between reactive and non-reactive
high-level system behaviors. Non-reactive or open-loop be-
haviors are predefined and do not change no matter what
occurs at a high level in the environment. They include
robot formations driving to goal positions and complex aerial
maneuvering of UAVs [2], [17]. These systems must react
to low-level disturbances but high-level behavior remains
the same. Reactive behaviors, in contrast, may cause the
system to behave differently depending on sensory infor-
mation gathered. Such behaviors are useful, for example,
in robotic search and rescue missions, where hazards may
alter the robots’ behavior, or a computer game in which the
computer must adjust its player’s behavior based on actions
of other players. Creating a system controller for non-reactive
behavior [2] that is correct and robust at the low-level is
nontrivial [4]; simultaneously addressing reactive behaviors
adds additional complexity to the decision making process.

When dealing with physical systems such as teams of
robots working together, high-level planning and behavioral
issues, reactive or not, are coupled with the challenges
of low-level continuous control. The latter must guarantee
safety: for example, drive the robots while guaranteeing they

*This work was supported by ARO MURI SUBTLE W911NF-07-1-
0216, grants DAAD19-02-01-0383, W911NF-05-1-0219, and W911NF-
04-1-0148, NSF CNS-0410514, IIP-0742304, and IIS-0427313, and ONR
N00014-07-1-0829. N. Ayanian gratefully acknowledges support from NSF.
The authors thank Yaniv Sa’ar for his code and assistance.

do not collide with obstacles, humans, or each other. Fur-
thermore, the low-level control must provide a solution for
global system issues which cannot be solved in a natural way
at the high-level, such as liveness requirements (for multiple
agents, ensuring deadlocks are avoided when possible1).

In this paper we propose a method for controlling a
team of robots, addressing both high-level planning and
low-level control challenges. The team accomplishes a user
defined reactive high-level task (such as sorting), if feasible,
while providing global guarantees for collision and deadlock
avoidance. After specifying the high-level task, workspace,
number of robots, and robot proximity constraints, a hybrid
controller is automatically generated such that the team is
guaranteed to accomplish the task, under some assumptions.

The novelty of this work is in combining provably-correct,
high-level planning techniques for multi-robot tasks with
reactive behaviors that satisfy user-specified constraints such
as proximity between robots and safety. This results in a
hybrid system that allows automatic generation of provably
correct robot control from a high-level description. Moreover,
as illustrated in Section V the method is flexible, allowing
several behaviors to be created easily and quickly.

The method we propose builds on the work in [10], where
a high-level reactive task intended for a single robot was
captured using a linear temporal logic formula (LTL) [6].
This formula was then synthesized into a hybrid controller
that guaranteed the robot behaved as desired under certain
assumptions. That work was later extended to handle multi-
robot scenarios in a decentralized way [8]. While this method
scales well with the number of robots, it cannot provide
collision avoidance in a natural way. It is achieved by
enforcing contrived constraints such as two robots cannot be
in the same room concurrently (mutual exclusion), or adding
sensor inputs that alert robots when too close [8]; in both
cases, deadlock may occur. Additionally, this method does
not naturally allow for pairwise constraints on robots, such
as staying within a specified distance.

Here, following [9], [10], we decompose the workspace
into convex regions. Then, based on the decomposition and
the robots’ sensors and actions, we write the high-level
specification as a set of Structured English sentences. These
sentences are automatically translated into an LTL formula
and synthesized into an automaton such that every run of the
automaton achieves the desired task. The hybrid controller
used to control the team of robots continuously executes
the discrete automaton by composing continuous atomic
controllers, based on sensory information gathered online.

There are many choices of atomic controllers to use. One

1Based on the environment and proximity constraints, deadlocks may not
always be avoided, see Section IV for further discussion

4th IEEE Conference on Automation Science and Engineering
Key Bridge Marriott, Washington DC, USA
August 23-26, 2008

978-1-4244-2023-0/08/$25.00 ©2008 IEEE. 772

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 28, 2009 at 11:28 from IEEE Xplore. Restrictions apply.

can use single robot controllers [3], [5], [12], which plan on
a low dimensional space, but will not guarantee liveness with
the collision avoidance schemes described above. To reduce
liveness issues, we use controllers which guide multiple
robots to a goal set while avoiding collisions with obstacles
and other robots. Controllers such as the ones described
in [13], [16] are not suitable, however, since they require
hand-tuning. We base the low-level continuous controllers
on the work described in [1] which, though computationally
expensive, is generated automatically. Once these controllers
are created (as a preprocessing step) they can be reused to
accommodate many different tasks in the same workspace.

The outline of the paper is as follows. Section II defines
the problem. Section III describes the process that takes a
high-level task description in Structured English and auto-
matically generates a hybrid controller that accomplishes the
task, and introduces our example task. Section IV discusses
how the atomic multi-robot controllers are generated and
Section V presents simulations and shows how different
behaviors can be addressed. We conclude in Section VI.

II. PROBLEM

Consider a team of n kinematic robots VA = {ai|i =
1, . . . , n} moving in a polygonal workspace W ⊂ Rdi . Each
robot ai has the configuration xi ∈ Rdi with dynamics:

ẋi = ui, xi ∈ Xi ⊂ Rdi , ui ∈ Ui, i = 1, . . . , n. (1)
The robots must maintain static proximity constraints to
ensure collision avoidance (minimum pairwise distance).

Each robot has a set of sensors Sen={sij
|i=1, . . . , n; j =

1, . . . ,mi} that capture high level information about the
world (e.g. whether a person is seen or a fire is detected).
The robots may also have a set of actions Act= {actik

|i=
1, . . . , n; k=1, . . . , li} such as picking up objects, transmit-
ting messages, or sounding alarms. In this paper we assume
such actions do not have explicit time constraints (minimal
or maximal duration).

In addition, we consider a high level task ϕ given as a set
of Structured English sentences that the team must achieve.
This task describes the desired behavior of the robots and
assumptions on the sensor information.

Problem 2.1: Consider a team of robots moving on Rd,
d =

∑n
i=1 di with dynamics (1), sensors Sen and actions

Act and a high level specification ϕ. For any possible initial
state {x0, Sen0, Act0} such that {x0, Sen0, Act0} |= ϕ find
a control law u = [u1, u2, . . . , un] and an action activation
policy π : t → 2Act that for each time t specifies which
actions should be active, such that

1) ẋi = ui;
2) an action actik

is activated at time t if and only if
actik

∈ π(t);
3) if sij

(t) |= ϕ, ∀t ≥ 0, ij (the sensors satisfy the as-
sumptions on their behavior) then {xi(t), actik

(t)} |=
ϕ, ∀t ≥ 0, i, ik (the robots satisfy the task);

if such a system exists.

III. TASK CONTROLLER

This section presents the method used to transform a
multi-robot high-level task, captured by Structured English
instructions and a discrete abstraction of the workspace, into
a hybrid controller guaranteed to drive the robots according
to the desired behavior. We demonstrate this method with a
recycling example.

(a) (b)

Fig. 1: Overview of method (a) and workspace (b).

Figure 1a shows the three main steps of our approach.
First, the user specification and assumptions regarding the
environment (the behavior of the sensor inputs, Sen) are
captured using Structured English sentences. These are then
translated automatically into linear temporal logic (LTL)
formulas [6] and combined with a discrete abstraction of
the workspace to create the formula ϕ which belongs to
a specific fragment of LTL [10], [14]. Next, an automaton
A is automatically synthesized such that every execution of
A satisfies ϕ. Finally, a hybrid controller based on the the
automaton A is created.

We illustrate these steps with the following scenario. Three
robots, denoted a1, a2 and a3, are moving in workspace
W ⊂ R2 with ten rooms, shown in Fig 1b. Initially a1 (blue
square) is in Room 1, a2 (green triangle) is in Room 3 and a3

(magenta circle) is in Room 5. The high-level task requires
robots to pick up different items from predesignated locations
and deposit them, according to composition, in the correct
location while avoiding collisions and deadlocks.

Example 1: Here robots pick up items from Rooms 6 and
7. These items can be metal, glass, or paper. When an item
is ready for pickup, a robot must deposit it appropriately:
metal in Room 8, glass in Room 9, paper in Room 10. If no
item is present, the robots must wait in Rooms 1, 3, and 5.
We additionally impose that there be at most one robot in
Rooms 6 and 7 at a time, for the recyclers’ peace of mind.

The first step, translation, builds upon [9]. There, the user
must first define two sets of binary propositions. One set,
Sen in Problem 2.1, represents information robots gather
through sensors and communication. The other represents
the state of the robots, controlled by the system, including
locations and possible actions Act. All these propositions are
then used to write the task using Structured English sentences
that are automatically translated to an LTL formula.

A task description can be divided into three components,
initial conditions, goals, and transitions. The initial condi-
tions capture the state of the environment and system the
moment the system is turned on. Goals include assumptions
about the environment, for example “Eventually you will
sense a flower”, and desired behavior for the system , for
example “eventually go to Room 9 and eventually go to
Room 6”. Transitions contain assumed constraints on the
changes in sensor information from one time step to the next,
for example “If Mika is true it stays true in the next time
step” which means that once a robot senses Mika she does
not disappear. It also constrains possible moves the system
can make, for example “Never go to Room 6” or “If you are
beeping, do not beep in the next state”.

Tasks we are interested in involve continuous robot mo-
tion. To capture the motion of the robots using the discrete

773

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 28, 2009 at 11:28 from IEEE Xplore. Restrictions apply.

LTL formalism, we partition the workspace into regions and
create propositions that relate the location of the robots to
these regions. For example, a proposition 2 3 8 is true if a1

is in Region 2, a2 is in Region 3 and a3 is in Region 8
and false otherwise Then, based on adjacency of the regions
and allowable robot combinations we restrict the changes
in these propositions, constraining robot motion to a feasible
behavior. Given a decomposition, adding these restrictions to
the transitions component of the LTL formula is automatic.

In Example 1 the sensor propositions, Sen, are: pu6, pu7
there is an available item in Rooms 6 and 7, respectively;
m1,g1,p1,m2,g2,p2,m3,g3,p3 composition of the item ai

just picked up (metal, glass, paper, respectively). The system
propositions relate to different robot actions Act: a1PU,
a2PU, a3PU ai should pick up an item; a1Carry, a2Carry,
a3Carry ai is carrying an item; a1D, a2D, a3D ai should
deposit the item it has been carrying; as well as robot motion
(locations). The latter correspond to all room combinations:
for example, 1 3 5 is true when a1 is in Room 1, a2 is in
Room 3 and a3 is in Room 5. Our workspace contains ten
rooms and three robots; therefore, there are 1000 possible
combinations in general.

Once the propositions are defined, the task must be
specified using Structured English. In the following, the
sentences refer to a1 but the full specification contains the
same sentences for a2 and a3 as well. S1 − S5 capture
assumptions about sensor behavior:
S1 “environment starts with false”: At system start up,

there is no known item to pick up.
S2 “if you did not activate a1Carry then always not m1

and not g1 and not p1”: If a1 is not carrying an item,
it has no knowledge about material.

S3 “if you activated a1Carry and you sensed m1 then
always m1” (same for g and p): Once the material type
of a carried item is determined, it does not change.

S4 “if you activated a1Carry then always m1 or g1 or
p1”: The sensors tell the robot what type of material.

S5 “if you sensed pu6 and you did not activate a1PU
and 6 X X and you did not activate a2PU and X 6 X
and you did not activate a3PU and X X 6 then always
pu6”(where 6 X X corresponds to all room combina-
tions in which a1 is in Room 6. The same assumption
is also written for pu7): If an item appears in Room 6
(7) and no robot picked up an item in Room 6 (7),
then the item is still there. Without this assumption
the environment can prevent satisfying the task (as
explained in S13).

Desired system behavior is captured in S6−S14 together
with the LTL formula relating to motion that allows the
system state to change at most one robot’s region at a time,
thus 1 2 5 can change to 1 3 5 but not to 1 3 4.
S6 “system starts in 1 3 5 with false”: Initially robots are

not carrying, picking up or depositing anything.
S7 “activate a1PU if and only if you did not activate

a1Carry and (you are in 6 X X and you are sensing
pu6 or you are in 7 X X and you are sensing pu7)” -
If the robot is not carrying an item and it is in a room
with an available item, it should pick it up.

S8 “activate a1D if and only if you activated a1Carry
and you are in 8 X X and you are sensing m1 or you
activated a1Carry and you are in 9 X X and you are

sensing g1 or you activated a1Carry and you are in
10 X X and you are sensing p1”: The robot should drop
the item it is carrying if it is in the correct room.

S9 “if you activated a1PU or you activated a1Carry and
did not activate a1D then do a1Carry”: With S10 and
S11 defines that a1Carry should be true between pick
up and drop.

S10 “if you did not activate a1PU and did not activate
a1Carry then do not a1Carry”

S11 “if you activated a1D and activated a1Carry then do
not a1Carry”

S12 “if you are not activating pu6 and you are not activat-
ing pu7 and you are not activating a1Carry and you
are not activating a2Carry and you are not activating
a3Carry then go to WaitRegions” (WaitRegions is all
possible permutations of Rooms 1,3 and 5): If there are
no items in the workspace, the system must drive the
robots to the waiting rooms.

S13 “if you are not activating a1Carry then if you are
sensing pu6 then go to 6 X X and if you are sensing
pu7 then go to 7 X X”: When conjuncted with corre-
sponding sentences for a2 and a3, if there is an itemless
robot and an item, the robot must go pick it up. To
satisfy this goal, we must assume S5 otherwise the
environment can prevent reaching this goal by switching
pu6 and pu7 on and off so that the robots cycle between
these rooms without picking up an item.

S14 “if you are activating a1Carry and you are sensing
m1 then go to 8 X X”: When conjuncted with the
corresponding sentences for a2, a3, 9 X X, 10 X X, g,
and p, if a robot is carrying an item, it will go to the
correct drop off location.

The requirement that there be at most one robot at a
time in Rooms 6 and 7 can be easily captured in the
Structured English description (for example “Always not
6 6 X”). However, to reduce the size of the problem, we
refer to such combinations as illegal and they are omitted
from the discrete graph that represents the locations of the
robots and thus never reached. This constraint reduces the
number of combinations from the general 1000 to 944.

The next two steps (automaton synthesis and hybrid
controller creation) follow the work in [10]. The synthesis
algorithm [14] generates an automaton A that implements
the desired behavior, if this behavior can be achieved. The
states of this automaton contain the truth values of the system
propositions while the truth values of the sensor propositions
guard its transitions. Every execution of the automaton, based
on sensor information, is guaranteed to satisfy the desired
system behavior as long as the environment satisfies the
assumptions encoded in ϕ. If the environment does not
satisfy these assumptions, the automaton is no longer valid
and cannot be executed.

The synthesized automaton for Example 1 contains 12,585
states. While such a task can potentially be encoded by hand
in a much smaller automaton, this was created automatically
and is guaranteed to be correct. A portion of the automaton is
shown in Fig. 2. Circles represent the automaton states; robot
propositions written inside each circle are those that are true
in that state. Edges are labeled with all sensor propositions
that are true when that transition is enabled. Starting from
the top most state, in which the robots are in Rooms 6,3 and

774

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 28, 2009 at 11:28 from IEEE Xplore. Restrictions apply.

Fig. 2: Part of the automaton that satisfies Example 1

(a) Left branch (b) Middle branch

Fig. 3: Simulation of the automaton segment of Fig. 2

7, a1 is picking up an item and a3 is carrying an item. If
there are no more items to pick up (left and right branches, in
both pu6 and pu7 are false) the robots proceed to the drop
off location (in the right branch, a3 drops the paper item
in Room 10, as required). If there are more items (middle
branch, pu7 is true) a2 proceeds to pick up the item.

The final step is to construct the hybrid controller that
continuously executes A, based on the sensor inputs. Recall,
from Problem 2.1, that we need to construct a motion control
law u as well as an action activation policy π.

Definition 3.1: Atomic controllers or primitives are low-
level continuous controllers which drive robots from any
initial position in one set of locations x y z to another set
l m n without going through any other combination. Fur-
thermore, they maintain prescribed inter-agent constraints,
such as avoiding collisions and maintaining communication.

The continuous motion control u is generated by switching
between multi-robot atomic controllers, discussed in Section
IV, according to the sensor inputs and the automaton states.
As for the actions, for each time t the action policy π(t) is
the set of all system propositions that are true at the current
automaton state.

It is important to note about automata and hybrid con-
trollers created using this method that goals are satisfied
cyclically, that is, the first goal written is reached, then
the second, and finally after the last goal is achieved the
automaton satisfies the first goal again and so on. In Example
1 this results in the robots first picking available items until
either all robots are carrying something or there are no more
items, and only then the robots deposit the items.

Figure 3 depicts part of a simulation run that corresponds
to Example 1 and illustrates both the continuous execution
of the automaton segment shown in Fig. 2 and the fact that
using the same automaton, the behavior of the system varies
significantly based on what is happening in the environment.

IV. ATOMIC CONTROLLERS

This section addresses the synthesis of atomic, multi-robot
controllers that drive robots from one location to another

xi-xj

ji,

min
δ

yi-yj

(a) Collision only

ji,

min
δ

xi-xj

yi-yj
ji,

max
δ

(b) Collision with communication

Fig. 4: Proximity Constraints

while guaranteeing safety (collision avoidance) and other
specified inter-robot constraints. The controller is based on
the centralized version of [1] and the work in [7].

Consider the team of n robots VA with dynamics (1) in
some location L={r1 r2 . . . rn}, where ri denotes the room
where robot ai is located in the workspace. One robot, the
active robot, must transition to a new room without collisions
or without any other robots transitioning to a new room (the
reason for this will become clear in Section IV-A).

Definition 4.1: The configuration space Ci of a robot ai

is the set of all transformations of ai. The free space Cfree
i

of ai is the set of all transformations of ai which do not
intersect with obstacles in the configuration space. Cfree

i is
decomposed into pi rooms with matching facets.

Definition 4.2: The team configuration space is the Carte-
sian product of the configuration spaces of each robot,

Call = Cfree
1 × Cfree

2 × · · · × Cfree
n

x = [x1, . . . , xn] ∈ Call.
(2)

Thus the configuration of all n robots is described by
a single point in Call. Call has dimension d and contains∏n

i=1 pi polytopes. We henceforth restrict the discussion to
two dimensional workspaces which are identical for each
robot; however, it is easily extended to higher dimensional
systems and different workspaces for different robots. Thus
all robots share the same configuration space, Ci = Cj ,
Cfree

i = Cfree
j , pi = pj , di = 2,∀i, j ∈ {1, · · · , n}.

We specify proximity constraints to ensure robot safety.
We require each pair (ai, aj) to maintain nonzero minimum
distance |xi − xj |∞ ≥ δi,j

min. We write this constraint
λ(xi, xj) ≥ 0 ∀i 6= j. (3)

This constraint corresponds to an infinite square annulus
in the relative space of two agents (Fig. 4a). In our example,
we assume the communication range is at least as large
as the workspace. If the robots’ communication range is
smaller than the workspace, then pairs of agents (ai, aj) must
maintain maximum distance |xi − xj |∞ ≤ δi,j

max (Fig. 4b).
Definition 4.3: The task configuration space CT is the set

CT = Call ∩ L, (4)

L ≡{x|x ∈ Call, λ(xi, xj) ≥ 0 ∀(ai, aj), i 6= j}. (5)

CT is a space composed of polytopes in which the agents
cannot collide.

A. Feedback Controllers on CT

We now consider a subproblem of Problem 2.1.
Problem 4.4: For any initial configuration x0 ∈ L0 ⊂ CT ,

consider the system (1) on Rd, where d =
∑n

i=1 di, with goal
configuration xg ∈ Lg ⊂ CT . Find a piecewise affine input
function u : [0, T0] → U for any x0 ∈ L0 such that

1) ∀t∈ [0, T0], x∈L0∪Lg , x(T0) arbitrarily close to xg ,

775

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 28, 2009 at 11:28 from IEEE Xplore. Restrictions apply.

P1 P2

P3

P4P5

P6

S
1_1_1

P7 P8

P9

P10P11

S
1_1_2

P12 P13

P14

P15P16

S
1_2_2

P17

P18 P19

P20P21

S
2_2_2

Fig. 5: A partial view of a polytope graph for three robots.

2) ẋi = ui,
3) x(t) ∈ L, ∀t ∈ [0, T0].
There are two stages in solving Problem 4.4. First, we

pursue a hierarchical discrete representation of the team con-
figuration space and find paths in this discrete representation.
Second, we translate these paths into feedback controllers.

In the first stage, we associate each polytope with a room
combination, Srm ··· rp

= {P i|x∈ P i ⇒ x1 ∈ rm, · · · , xn ∈
rp}, where P i is the i-th polytope in CT . Then we define an
adjacency graph on the set of all polytopes.

Definition 4.5: The polytope graph GP = (VP , EP) on
the polytopes in CT is the pair of sets VP = {c1, · · · , cn},
where ci is the centroid of the i-th polytope P i, and EP , the
set of all pairs of polytopes which share a (matching) facet.

A sample polytope graph is shown in Fig. 5. GP is used
in the creation of the automaton; thus, the automaton cannot
give instructions that violate the collision constraints (and
communication constraints, if included).

For all transitions from one room combination to another,
we determine a discrete path from each polytope in the
original room combination to the next room combination.
For example, referring to Fig. 5, the paths from S2 2 2 to
S1 2 2 may be P 19→ P 18→P 14 and P 21→P 20→P 18→P 14.
If the active robot must stay in a room (to pick up/deposit) we
determine a discrete path from each polytope in the current
room combination to a goal position. Inactive robots stay
in their current rooms and go to a goal position, (the goal
position is described for every robot). We are not concerned
with whether the inactive robots reach their goal position.

Theorem 4.6 (Necessary condition): Problem 4.4 has a
solution only if the polytope graph, GP is connected.
Proof: see [1].

We use an algorithm such as Dijkstra to choose a path
which minimizes the number of polytopes visited, which
minimizes the number of transitions between polytopes.

Once the paths are identified, we synthesize feedback
controllers to solve Problem 4.4. The synthesis procedure
is developed in [7] for determining an affine state feedback
law that satisfies a set of inequalities on a polytope. This
results in controllers that drive an affine system from any
initial condition in a polytope through a desired exit facet.
Because the atomic controllers direct states to a facet, not
an edge, only one robot will cross a room threshold at any
time. Thus, we restrict the automaton to commands which
result in room change for only one robot, limiting the path
on the polytope graph to the polytopes in the initial and final
room combination. Once in the polytope containing the goal
configuration we steer states to the goal configuration. This
procedure, which is solved on a triangulation of the polytope,
is discussed in detail in [1] (for centralized control, ignore
constraints on the feedback matrix in [1] Problem 3.4).

Although the feedback controller synthesis is for point
robots and requires heavy computation, it has many ben-
efits. First, by using feedback linearization, slow-moving
nonholonomic robot models can be effectively abstracted to

Initial

(a)

Goal

(b)

Initial

(c)

Goal

(d)

Fig. 6: Panels (a) and (b): excessive minimum distance
constraints, represented by boxes around the robots cause
deadlock. Panels (c) and (d): resolution of the deadlock by
reducing the constraints.

point robots. Additionally, a solution is guaranteed for fully
actuated systems, if the polytope graph GP is connected.
Only a small number of cases result in a polytope graph
that is not connected. This can sometimes be alleviated by
reducing the minimum distance between robots as in Fig. 6.
Finally, the solution is entirely automatic; once the number of
robots, workspace, and proximity constraints are described,
no other user input is required to solve the low-level problem.

In summary, the algorithm for controller synthesis or the
solution to Problem 4.4 involves the following four steps:

Algorithm 4.7:
1) Construct task configuration space CT (Definition 4.3).
2) On each polytope P i, solve for a linear feedback

controller as in [7] which drives any state in P i to the
exit facet it shares with each adjacent polytope P j .

3) On each polytope P i, solve for a linear feedback
controller as in [1] which drives every state inside P i

to the goal configuration in P i.
4) Find paths on GP for each possible transition from

one room combination L0 to another Lg and combine
the controllers which correspond to that path.

V. SIMULATIONS

In this section we show a MATLAB simulation and demon-
strate how different tasks can easily be accommodated using
the same atomic controllers but a different automaton. The
atomic controllers were designed in MATLAB using the
Multi-Parametric Toolbox for polytope computations [11].
The automata were synthesized using a prototype of the
JTLV system [15].

Figure 7 depicts a sample simulation of Example 1. In this
scenario, there is always something to pick up (denoted as
a purple X) in both locations. a1 (blue square), a2 (green
triangle), and a3 (magenta circle) start in Regions 1, 3, and
5 respectively. First a3 goes to Room 7 and picks up an
object (a), then a2 picks up in Room 7 (b) then a1 picks
up in Room 6. Note that, as required, there is at most one
robot in Rooms 6 and 7 at any given time. Also, as discussed
in Section IV for every discrete transition in the automaton,
only one robot is changing the region it is in.

Once all robots have identified their carried item (b,c) they
drop it off appropriately. a3 drops off the paper item (d), a1

(a2) drops off a glass (metal) item (e). Since there are more
items to pick up, the robots move towards the pickup rooms
and a3 picks up more paper in Room 7 (f).

Adding robot motion constraints can be done in two
ways. One is to explicitly state such constraints in the user
specifications. The other is to remove nodes and transitions
from the discrete representation of CT .

776

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 28, 2009 at 11:28 from IEEE Xplore. Restrictions apply.

(a) a3 picks up in Room 7 (b) a2 picks up in Room 7

(c) a1 picks up in Room 6 (d) a3 drops off a paper object

(e) a1 and a2 drop off a glass
and a metal object respectively

(f) a3 picks up in Room 7
again

Fig. 7: Simulation of Example 1

Example 2: Add a “baby sister” constraint to Example 1
requiring robot a2 to always follow robot a1, i.e. they must
always be either in the same or adjacent rooms.
Adding this constraint to Example 1 reduces the number
of atomic controllers from 944 to 256 and the resulting
automaton contains 6,874 states.

Sensor inputs as well as system outputs can be added in a
very flexible way as long as the added specification does not
create a logical contradiction with the previously specified
task or results in an infeasible motion request.

Example 3: For safety, we forbid a3 to enter Room 6 if
a child is present. To encode this, we add to Example 2 a
sensor input kidIn6 indicating a child is in Room 6. Then
the a3 equivalent of S13 becomes “if you are not activating
a3Carry then if you are sensing pu6 and not kidIn6 then
go to X X 6 and if you are sensing pu7 then go to X X 7”
and the constraint “if you are sensing kidIn6 then always
not X X 6” is added. The automaton contains 16,724 states.

VI. DISCUSSION AND FUTURE DIRECTIONS

We have presented a method of designing provably-correct
control schemes for robot teams that achieve complex high-
level tasks which are described in Structured English while
providing low-level guarantees of collision and deadlock
avoidance. The method involves creating a discrete automa-
ton satisfying the task and a set of low-level controllers which
can continuously implement every possible transition in the
automaton. We showed the application of this method in a
simulation involving three robots in ten rooms.

Given a workspace decomposition and the robots’ capabil-
ities, the method is entirely automatic and “recyclable” with
minimal additional computation. Furthermore, as demon-
strated in Section V, changing the specification and adding

more sensor information or different robot actions is quick
and easy. These advantages result in an extremely flexible
system which allow non-experts to design complex systems
that perform a large variety of interesting tasks.

Although this method requires an initial preprocessing
stage to create the low-level controllers (which can be
computationally expensive) the method requires only up-
front user input (the space, number of robots, proximity con-
straints and the high-level specification) and no hand-tuning.
Furthermore, the controllers are reused to accommodate a
wide variety of high-level tasks.

The price for having a flexible, reusable system is that it is
often sub-optimal. Here we allow at most one robot to change
rooms at any given time which results in robots waiting
their turn instead of moving concurrently. By incorporating a
measure of cost into the automaton creation and examining
the possibility of several robots changing rooms during a
short interval of time (requiring them to change rooms at
the exact same time is not a realistic solution) we can ease
this limitation. This is a future research direction. Other
directions include exploring the use of other controllers to
solve the low-level problem and developing different sets of
atomic controllers for other domains such as manipulation,
assembly and computer graphics.

REFERENCES

[1] N. Ayanian and V. Kumar. Decentralized feedback controllers for
multi-agent teams in environments with obstacles. In IEEE Interna-
tional Conference on Robotics and Automation, Pasadena, CA, 2008.

[2] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas. Symbolic planning and control of robot motion: State of
the art and grand challenges. Robotics and Automation Magazine,
14(1):61–70, 2007.

[3] C. Belta and L. Habets. Constructing decidable hybrid systems with
velocity bounds. In IEEE Conf. Dec. and Control, Bahamas, 2004.

[4] J. F. Canny. The Complexity of Robot Motion Planning. PhD thesis,
MIT, Department of Electrical Engineering and Computer Science,
Cambridge, MA, 1987.

[5] D. C. Conner, A. A. Rizzi, and H. Choset. Composition of local
potential functions for global robot control and navigation. In
IEEE/RSJ Int’l. Conf. on Intel. Robots and Sys., Las Vegas, Oct. 2003.

[6] E. A. Emerson. Temporal and modal logic. In Handbook of theoretical
computer science (vol. B): formal models and semantics, pages 995–
1072. MIT Press, Cambridge, MA, USA, 1990.

[7] L. Habets and J. van Schuppen. A control problem for affine dynamical
systems on a full-dimensional polytope. Automatica, 40(1), 2004.

[8] H. Kress-Gazit, D. C. Conner, H. Choset, A. A. Rizzi, and G. J.
Pappas. Courteous cars: Decentralized multi-agent traffic coordination.
Robotics and Automation Magazine, March 2008.

[9] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. From structured
english to robot motion. In IEEE/RSJ Int’l. Conf. on Intelligent Robots
and Systems, San Diego, CA, October 2007.

[10] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s waldo?
sensor-based temporal logic motion planning. In IEEE International
Conference on Robotics and Automation, pages 3116–3121, 2007.

[11] M. Kvasnica, P. Grieder, and M. Baoti. Multi-parametric toolbox
(mpt), http://control.ee.ethz.ch/ mpt/ 2004.

[12] S. Lindemann and S. Lavalle. Computing smooth feedback plans
over cylindrical algebraic decompositions. In Robotics: Science and
Systems, Philadelphia, Pennsylvania, August 2006. MIT Press.

[13] S. G. Loizou and K. J. Kyriakopoulos. Closed loop navigation
for multiple holonomic vehicles. In Intl. Conf. on Robotics and
Automation, Lausanne, Switzerland, October 2002.

[14] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reactive(1) Designs.
In VMCAI, pages 364–380, Charleston, SC, Jenuary 2006.

[15] Y. Sa’ar. Java temporal logic verifier, http://jtlv.sourceforge.net 2008.
[16] H. Tanner, S. Loizou, and K. Kyriakopoulos. Nonholonomic navi-

gation and control of cooperating mobile manipulators. IEEE Trans.
Robotics and Automation, 19(1), February 2003.

[17] M. M. Zavlanos and G. J. Pappas. Dynamic assignment in distributed
motion planning with local coordination. IEEE Transactions on
Robotics, 24(1):232–242, February 2008.

777

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 28, 2009 at 11:28 from IEEE Xplore. Restrictions apply.

	University of Pennsylvania
	ScholarlyCommons
	8-23-2008

	Recycling controllers
	Hadas Kress-Gazit
	Nora Ayanian
	George J. Pappas
	Vijay Kumar
	Recommended Citation

	Recycling controllers
	Abstract
	Keywords
	Comments

	Recycling Controllers

