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Game Theoretic Analysis of a Strategic Model of Competitive Contagion
and Product Adoption in Social Networks

Abstract
In this paper we propose and study a strategic model of marketing and product adoption in social networks.
Two firms compete for the spread of their products in a social network. Considering their fixed budgets, they
initially determine the payoff of their products and the number of their initial seeds in a network. Afterwards,
neighboring agents play a local coordination game over a fixed network which determines the dynamics of the
spreading. Assuming myopic best response dynamics, agents choose a product based on the payoff received by
actions of their neighbors. This local update dynamics results in a game-theoretic diffusion process in the
network. Utilizing earlier results in the literature, we find a lower and an upper bound on the proportion of
product adoptions. We derive an explicit characterization of these bounds based on the payoff of products
offered by firms, the initial number of adoptions and the underlying structure of the network. We then
consider a case in which after switching to the new product, agents might later switch back to the old product
with some fixed rate. We show that depending on the rate of switching back to the old product, the new
product might always die out in the network eventually. Finally, we consider a game between two firms aiming
to optimize their products adoptions while considering their fixed budgets. We describe the Nash equilibrium
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Game Theoretic Analysis of a Strategic Model of Competitive
Contagion and Product Adoption in Social Networks

Arastoo Fazeli† Ali Jadbabaie†

Abstract— In this paper we propose and study a strategic
model of marketing and product adoption in social networks.
Two firms compete for the spread of their products in a
social network. Considering their fixed budgets, they initially
determine the payoff of their products and the number of their
initial seeds in a network. Afterwards, neighboring agents play a
local coordination game over a fixed network which determines
the dynamics of the spreading. Assuming myopic best response
dynamics, agents choose a product based on the payoff received
by actions of their neighbors. This local update dynamics results
in a game-theoretic diffusion process in the network. Utilizing
earlier results in the literature, we find a lower and an upper
bound on the proportion of product adoptions. We derive an
explicit characterization of these bounds based on the payoff of
products offered by firms, the initial number of adoptions and
the underlying structure of the network. We then consider a
case in which after switching to the new product, agents might
later switch back to the old product with some fixed rate. We
show that depending on the rate of switching back to the old
product, the new product might always die out in the network
eventually. Finally, we consider a game between two firms
aiming to optimize their products adoptions while considering
their fixed budgets. We describe the Nash equilibrium of this
game and show how the optimal payoffs offered by firms and
the initial number of seeds depend on the relative budgets of
firms.

I. INTRODUCTION

Recently, there has been a wide range of studies on the
role of social networks in shaping individual choices in
purchasing new products in networks [1]–[3]. More data
from online social networks and advances in information
technologies have drawn the attention of firms to exploit this
information for their marketing goals. Firms have become
interested in models of influence spread in social networks
for the promotion of their products and diffusion of their
innovations and technologies. The question that arises natu-
rally is how they can use the information about the dynamics
of the spread in order to improve their marketing strategies
and maximize their profits.

A main feature of product adoption mechanisms is what is
often called local coordination effects. This means that when
an individual’s behavior in adopting a product or a service
is a result of her strategic interactions with other people,
adopting a common product has a higher payoff. There are
diverse sets of examples for such products or services. New
technologies and innovations (e.g., cell phones), network
goods and services (e.g., fax machines, email accounts),
new choices (e.g., choice of languages, TV channels to

†Department of Electrical and Systems Engineering and GRASP Lab-
oratory at University of Pennsylvania. arastoo@seas.upenn.edu
and jadbabai@seas.upenn.edu. This research was supported by
ONR MURI HUNT, ONR MURI N000140810747 and AFOSR Complex
Networks Program.

watch), online games (e.g., Warcraft), social network web
sites (e.g., Facebook, Twitter) and online dating services
(e.g., OkCupid) are among many examples in which adoption
to a common strategy is more preferable for people. In
all these examples, firms might be interested to take the
advantage of the social network among people and the local
coordination effect of their products and services to trigger
a large number of adoptions of their products. Therefore, it
might be important for firms to know how to shape their
strategies in designing their products and offering them to
a set of people in social networks in order to promote their
products intelligently and eventually achieving a larger share
of the market.

Inspired by the work of Kearns and Goyal in [4], we
study strategic competition between two firms which simul-
taneously allocate their fixed budgets to a set of costumers
embedded in a social network. The payoff of firms is the
expected number of people adopting their products. This
adoption is determined through a game-theoretic diffusion
process among costumers in the network. Therefore, a firm
shall provide enough incentives for consumption and spread
of her product by the payoff that people receive by consum-
ing them. For this purpose and considering their budgets,
firms should strategically design their products and know
how to initially seed networks.

We propose a game theoretic model of competitive conta-
gion. Two firms initially decide on the amount of investment
on their products (which results in the quality of their
products and incentive for people to consume them) and
the number of agents they initially free offer their products
to. Then neighboring agents play a local coordination game
which determines the dynamics of the spreading. Assuming a
myopic best response dynamics, agents switch between two
different products based on the payoff they receive from their
neighbors. This local update dynamics results in a game-
theoretic diffusion process in the network. Utilizing earlier
results in [5] and [6], we find a lower and an upper bound
on the number of agents adopting each product at each time.
We show that these bounds depend on the payoff of products
for agents, initial seeds of the network, and the spectral
radius and minimum degree of the adjacency graph. We
also consider a case in which agents switch from an old
product to a new one based on their myopic best responses,
however, they switch back to the old product with some
fixed rate. It is shown if the risk dominance of the new
product is more than some threshold, the new product will
always die out eventually. We then consider a game between
firms trying to maximize the lower bound of their products
adoptions, while considering their fixed budget. We show that
in the Nash equilibrium, the ratio of initial investments of



firms for producing each unit of products is independent of
the network structure and is inversely proportional to their
relative budgets. We also show that the ratio of the initial
seeds is proportional to the ratio of their budgets.

It is worthwhile to note that the problem of influence and
spreading in networks has been extensively studied in the
past few years [7]–[13]. Also, diffusion of new behaviors
and strategies through local coordination games has been an
active field of research [14]–[21]. The main contribution of
our work, however, is to explicitly study the tradeoff between
investing more money on improving the quality of a product
versus seeding it with more people in a social network. The
second major contribution of our work is the introduction
of the local coordination game dynamics for the problem of
competitive contagion in networks. Contrary to the stochastic
contagion model in [4], in our model individuals make ra-
tional (albeit myopic) choices when adopting a new product.
Our results on decay of adoption of one product is also
similar to the one obtained in [22] in which the contagion
of an action depends on the connectivity distributions of
a random network. Our strategic model also bears some
similarities to the epidemic model studied in [5], [23].

The rest of this paper is organized as follows: In section II,
we introduce our model and dynamics updates for agents
playing a local coordination game and find a lower and an
upper bound on the spread of products in a network. Then,
we consider the case in which agents switch back to the old
product with some rate. In section III, we study the game
played between firms. Finally, in section IV, we conclude
the paper.

II. THE SPREAD DYNAMICS

The model considered is based on a game theoretic dif-
fusion model proposed in [24]. There are n agents V =
{1, . . . , n} in a social network. The relationship among
agents is represented by an undirected graph G = (V,E).
Agents i, j ∈ V are neighbors if (i, j) ∈ E. The adjacency
matrix of the graph G is denoted by A where aij = 1 if
(i, j) ∈ E and aij = 0 otherwise. We assume aii = 0
meaning there is no self loop. We denote the minimum
degree of the graph G by dmin. We assume the graph G
is connected, therefore, dmin ≥ 1. The spectral radius of G,
is represented by ρ(G), i.e. its largest eigenvalue λ1 (since
graph G is symmetric). We also assume that there are two
competing firms a and b producing products a and b. These
two firms initially offer their products to a set of agents
in the network. Let the binary variable xi(t) denotes the
choice of agent i at time t. We assume xi(t) = 0 if agent
i chooses the product a and xi(t) = 1 if agent i chooses
the product b. Therefore, the state of agents at time t is
represented by a vector ~x(t). Denote by s0 = {i : xi(0) = 0}
the set of agents who initially are offered the product a and
similarly by s1 = {i : xi(0) = 1} those who initially are
offered the product b. Denote by Sa and Sb the cardinality
of these sets respectively. These products have some payoffs
for neighboring agents depending on their states. If two
neighbors in the graph choose the product a they receive a
payoff of pa, if they both choose the product b they receive
a payoff of pb and they receive zero if they choose different

products. Therefore, the payoff of the interaction between
agent i and agent j can be displayed as the following local
coordination game.

xj = 0 xj = 1
xi = 0 pa 0
xi = 1 0 pb

Thus, the total payoff of an agent is simply the sum of her
payoffs obtained from her interactions with her neighbors

ui(xi) =
∑
j∈Ni

ui(xi, xj),

whereNi is the set of neighbors of agent i. We assume agents
repeatedly apply myopic best response. This means that each
agent considering her neighbors, chooses a product that gives
her the most payoff. For example, agent i already adopted
to the product a switches to the product b if enough of her
neighbors have already adopted to the product b. For agent
i already adopted to the product a, the payoff of choosing
the product a and b can be written as

ui(xi = 0) = pa
∑
j∈Ni

(1− xj) for product a,

ui(xi = 1) = pb
∑
j∈Ni

xj for product b.

Agent i will switch to the product b if we have ui(xi = 0) <
ui(xi = 1) that is ∑

j∈Ni xj

di
>

pa
pa + pb

, (1)

where di is the number of neighbors of agent i or the
cardinality of Ni. Similarly, agent i already adopted to the
product b will switch to the product a if we have ui(xi =
1) < ui(xi = 0) that is∑

j∈Ni(1− xj)
di

>
pb

pa + pb
. (2)

We can define the right hand side of equations (1) and (2)
as

ra :=
pb

pa + pb
rb :=

pa
pa + pb

. (3)

Note that ra and rb in (3) are the degree of risk dominance
of actions a and b respectively. This means that if for agent
i already adopted to the product a, the fraction of her
neighbors adopting to the product b is greater than rb, then
agent i’s best response is to switch to the product b. We can
explain ra similarly. This myopic best response dynamics
yields to a continuous time stochastic process ~x(t) in which
each agent i updates her state upon arrival of a Poisson
clock of rate one and switches to the state that gives her the
most payoff from interaction with her neighbors. Note that
although the rules of updates are deterministic, this process
is stochastic due to the randomness in arrival of a random
Poisson clock. The result for the bounds of the process ~x(t)
with myopic best response dynamics is described in the
following lemma.



Lemma 1: Consider the continuous time process ~x(t) with
a random Poisson clock of rate one and the initial condition
~x(0) and dynamics

xi(t) : 0→ 1 if
n∑
j=1

aijxj > rbdi,

xi(t) : 1→ 0 if
n∑
j=1

aij(1− xj) > radi.

For this process we have

1− (

√
Sa
n
) exp((

λ1(G)

radmin
)t) ≤

∑n
i=1 E(xi(t))

n

≤ (

√
Sb
n
) exp((

λ1(G)

rbdmin
)t),

where Sa = ‖{i : xi(0) = 0}‖ and Sb = ‖{i : xi(0) = 1}‖
and ra and rb are defined in (3).

Proof: Here we use an approach similar to the one used
in [5] and [6]. Consider the continuous time Markov process
~̃x(t) with the same initial condition, i.e. ~x(0) = ~̃x(0), and

x̃i(t) : 0→ 1 at rate 1(

n∑
j=1

aij x̃j(t) > rbdi).

The above expression can be interpreted as

P(x̃i(t+ h) = 1|x̃i(t) = 0) = 1(

n∑
j=1

aij x̃j(t) > rbdi)h.

Since x̃i(t) does not go from one to zero, we can see that
E(xi(t)) ≤ E(x̃i(t)) for all t ≥ 0. Since the random process
x̃i(t) only takes values of one and zero with some rate,
its expected value is the rate of x̃i(t) = 1. Therefore, the
expected value of the random process x̃i(t) is

E(x̃i(t+ h)) = 1(

n∑
j=1

aij x̃j(t) > rbdi)h.

Now define the Markov process ~y(t) with ~x(0) = ~y(0)

yi(t) : k → k + 1 at rate

∑n
j=1 aijyj(t)

rbdmin
.

This means that

P(yi(t+ h) = k + 1|yi(t) = k) =

∑n
j=1 aijyj(t)

rbdmin
h,

and as a result

E(yi(t+ h))− E(yi(t)) =
∑n
j=1 aijyj(t)

rbdmin
h.

Since 1(
∑n
j=1 aijyj(t) > rbdi) <

∑n
j=1 aijyj(t)

rbdmin
, standard

coupling arguments implies E(x̃i(t)) ≤ E(yi(t)). Now since
E(xi(t)) ≤ E(x̃i(t)) we can get E(xi(t)) ≤ E(yi(t)) and
as a result

∑n
i=1 E(xi(t)) ≤

∑n
i=1 E(yi(t)). Notice that the

process E(yi(t)) takes value in R. Therefore, we finally get
the following differential equation for E(yi(t))

d

dt
E(~y(t)) = (

A

rbdmin
)E(~y(t)).

Computing the solution, we have

E(~y(t)) = exp((
A

rbdmin
)E(~y(0)).

Since A is symmetric, exp(( A
rbdmin

)t) is also symmetric and
its largest eigenvalue is equal to exp(( λ1(G)

rbdmin
)t). Therefore,

‖E(~y(t))‖2 ≤ exp((
λ1(G)

rbdmin
)t)‖E(~y(0))‖2.

Employing Cauchy-Schwarz inequality we get
n∑
i=1

E(yi(t)) ≤ ‖E(~y(t))‖2‖1n‖2 = ‖E(~y(t))‖2
√
n.

Simplifying further, we obtain
n∑
i=1

E(xi(t)) ≤
n∑
i=1

E(yi(t))

≤
√
n exp((

λ1(G)

rbdmin
)t)‖(~y(0))‖2.

Note that ~x(0) = ~y(0) and x2i (0) = xi(0) since xi ∈ {0, 1}.
Therefore, we get

n∑
i=1

E(xi(t)) ≤
√
n exp((

λ1(G)

rbdmin
)t)

√√√√ n∑
i=1

xi(0).

Hence, the expected number of adoptions to the product a
is bounded by∑n

i=1 E(xi(t))
n

≤ (

√
Sb
n
) exp((

λ1(G)

rbdmin
)t), (4)

where we used the definition of Sb = ‖{i : xi(0) = 1}‖.
Now consider the continuous time stochastic process ~z(t)
with ~z(0) = ~x(0) and transition rate

zi(t) : k → k − 1 at rate

∑n
j=1 aij(1− zj(t))

radmin
.

Since this process is only decreasing and 1(
∑n
j=1 aij(1 −

zj(t)) > radi) <
∑n
j=1 aij(1−zj(t))

radmin
, similar to what we did

for the process ~y(t) and using coupling arguments, it follows
that

∑n
i=1 E(zi(t)) ≤

∑n
i=1 E(xi(t)). From the transition

rates for process ~z(t) we get

d

dt
E(~z(t)) = −( A

radmin
)E(~1− ~z(t)).

Therefore,
d

dt
E(~1− ~z(t)) = (

A

radmin
)E(~1− ~z(t)).

Define process ~w(t) = ~1 − ~z(t). The dynamics can now be
written as

d

dt
E(~w(t)) = (

A

radmin
)E(~w(t)).

Using the same arguments that we did for the process ~y(t),
we get the following solution

E(~w(t)) = exp((
A

radmin
)E(~w(0)).



The above equation results in the following bound∑n
i=1 E(wi(t))

n
≤ (

√∑n
i=1 wi(0)

n
) exp((

λ1(G)

radmin
)t).

Note that ~w(0) = ~1− ~z(0) = ~1− ~x(0). Therefore, using the
definition of Sa = ‖{i : xi(0) = 0}‖ we get∑n

i=1 E(wi(t))
n

≤ (

√
Sa
n
) exp((

λ1(G)

radmin
)t).

Now since ~w(t) = ~1 − ~z(t) and E(~z(t)) ≤ E(~x(t)), using
the above equation we obtain

1− (

√
Sa
n
) exp((

λ1(G)

radmin
)t) ≤

∑n
i=1 E(xi(t))

n
. (5)

Equation (4) and (5) implies

1− (

√
Sa
n
) exp((

λ1(G)

radmin
)t) ≤

∑n
i=1 E(xi(t))

n

≤ (

√
Sb
n
) exp((

λ1(G)

rbdmin
)t).

(6)

The above result states that the expected value of the fraction
of agents adopting the product b increases (decreases) at most
(at least) exponentially in time. Note that as time goes to
infinity, these bounds become loose, however, we study the
problem in a fixed time horizon T where we can still exploit
these bounds. Also, notice that when Sb = 0, the upper
bound in (6) becomes zero meaning that the fraction always
remains zero. This makes sense because when Sb = 0, there
is no agent with action xi = 1 to spread it in the network.
Similarly, when Sa = 0, the lower bound in (6) becomes
one meaning that the fraction always remains one. This is
also due to the fact that when Sa = 0, there is no agent with
action xi = 0 to spread it in the network. Equation (6) also
implies

1− (

√
Sb
n
) exp((

λ1(G)

rbdmin
)t) ≤

∑n
i=1(1− E(xi(t)))

n

≤ (

√
Sa
n
) exp((

λ1(G)

radmin
)t).

Therefore, the expected value of the fraction of agents
adopting the product a also increases (decreases) at most
(at least) exponentially in time. Now we consider a case in
which employing myopic best responses, agents switch from
the product a to the product b, however, they switch back to
the old product with some fixed rate β. This could be due to
the realized inferiority of the new product b compared to the
old product a. In the following lemma we study a condition
under which the new product will eventually die out.

Lemma 2: Consider the continuous stochastic process
~x(t) in which each agent with state xi(t) = 0 updates her
state upon arrival of a Poisson clock of rate one and switches
to state xi(t) = 1 if ui(xi = 0) < ui(xi = 1) and holds on
to state xi(t) = 0 otherwise. However, each agent with state
xi(t) = 1 switches to state xi = 0 with some fixed rate β.

If λ1(G)
rbdmin

< β, then for any initial condition x(0) we will
have

lim
t→∞

P(
n∑
i=1

xi(t) > 0) = 0.

Proof: Define the continuous time stochastic process
~v(t) with ~v(0) = ~x(0) and transition rate

vi(t) : 0→ 1 at rate

∑n
j=1 aijvj(t)

rbdmin
,

vi(t) : 1→ 0 at rate βvi(t).

For this process using similar approach we did earlier we
can get

d

dt
E(~v(t)) = (

A

rbdmin
− βI)E(~v(t)),

where I is the identity matrix. Therefore, similar to before
we will have

n∑
i=1

E(xi(t)) ≤
n∑
i=1

E(vi(t))

≤
√
n exp((

λ1(G)

rbdmin
− β)t)‖(~v(0))‖2.

Since ‖(~v(0))‖2 ≤
√
n, we have∑n

i=1 E(vi(t))
n

≤ exp((
λ1(G)

rbdmin
− β)t). (7)

Note that E(~x(t)) ≤ E(~v(t)) implies that

P(
n∑
i=1

xi(t) = 0) ≥ P(
n∑
i=1

vi(t) = 0).

Therefore,

P(
n∑
i=1

xi(t) > 0) = 1− P(
n∑
i=1

xi(t) = 0)

< 1− P(
n∑
i=1

vi(t) = 0) = P(
n∑
i=1

vi(t) > 0).

(8)

Moreover, we have

P(
n∑
i=1

vi(t) > 0) ≤
n∑
i=1

E(vi(t)).

The above inequality together with (7) and (8) implies

P(
n∑
i=1

xi(t) > 0) ≤ n exp(( λ1(G)
rbdmin

− β)t).

Therefore, if
λ1(G)

rbdmin
< β, (9)

we have

lim
t→∞

P(
n∑
i=1

xi(t) > 0) = 0.

The above result implies that if λ1(G)
rbdmin

< β the new product
b dies out eventually and cannot propagate in the network.
Note that if we interpret β as the rate of an infected node
being cured, this condition would become similar to the



condition for an epidemic to die out eventually. Using the
definition of rb in (3), the condition in equation (9) for the
new product to die out can also be written as

rb >
λ1(G)

βdmin
.

The above result implies that if the degree of risk dominance
of the new product b is greater than some threshold, then the
product dies out eventually in the network. In other words,
if the fraction of an agent’s neighbors required to choose
product b in order to make product b preferred over the
product a is above some threshold, then the product b cannot
spread in the network. Also, from equation (9) we can get

pb
pa

<
βdmin
λ1(G)

− 1. (10)

The interpretation of the above condition is that if the relative
payoff of the new product b compared to the old product
a is less than some threshold then the new product dies
out eventually. This condition also implies that a necessary
condition for the new product to die out is that the rate of
switching back to the old product is greater than λ1(G)

dmin
.

In the next section we discuss how firms can exploit this
information in order to maximize the spread of their products
and also find the Nash equilibrium of the game played
between two firms.

III. NASH EQUILIBRIUM ANALYSIS

In this section we study how firms can maximize the
spread of their products and also describe the Nash equi-
librium of the game played between two firms. As we
mentioned earlier, the goal of these two competing firms
is to maximize the spread of their products in the network.
However, they will have to consider their budget as well.
As we mentioned in section II, initially they offer their
products to a subset of agents. This can be viewed as an
initial free offer to seed the network and promote their
products. We assume offering each unit of product a and
b costs ca and cb for firms a and b respectively. We also
assume that the payoff of products for agents in the social
network is a function of the costs of firms. This is a standard
assumption, as in order to produce higher quality products for
agents in a social network, firms would have to spend more
money on their products. Therefore, we assume payoffs are
implicit functions of costs or in other words pa = pa(ca)
and pb = pb(cb). Considering a fixed finite time horizon,
each firm tries to maximize the lower bound of her product
adoptions. Hence, firms solve the following optimization
problems

max
ca≥0

Ua(pa(ca), pb(cb)) = 1− (

√
Sb
n
) exp((

λ1(G)

rbdmin
)t)

Subject to Saca = Ka,

max
cb≥0

Ub(pa(ca), pb(cb)) = 1− (

√
Sa
n
) exp((

λ1(G)

radmin
)t)

Subject to Sbcb = Kb,
(11)

where Ka and Kb are the total budgets of firms a and b
to initially seed the network. Here for firm a (or b), one of

variables ca or Sa is the independent variable and the other
one is determined by that in a way that Saca = Ka. In the
following theorem we describe the Nash equilibrium of the
game played between firms.

Theorem 1: Consider firms a and b with utility functions
Ua and Ub as described in (11). If for payoff of products we
assume Cobb-Douglas function, i.e. p(c) = dlβcα, then in
the Nash equilibrium of the game between firms we have

c2αb−1b

c2αa−1a

= (
Ka

Kb
)(
αb
αa

)(
da
db

)2(
lβaa

lβbb
)2,

also when firms have the same constants in their payoff
functions we obtain

c∗b
c∗a

= (
Ka

Kb
)

1
2α−1 ,

S∗b
S∗a

= (
Kb

Ka
)

2α
2α−1 .

Proof: First note that in Cobb-Douglas production
function, c is the capital input (cost of the firm for producing
each unit of the product) l is the labor input, d is total factor
productivity and α and β are the output elasticities of labor
and capital respectively which are determined by available
technology. Here, we assume the payoff is a function of the
cost only, i.e. p = p(c), meaning that other parameters are
fixed. Now notice that optimization problems in (11) can be
written as

min
ca≥0

Ua(pa(ca), pb(cb)) = (

√
Sb
n
) exp((

λ1(G)

rbdmin
)t)

Subject to Saca = Ka,

min
cb≥0

Ub(pa(ca), pb(cb)) = (

√
Sa
n
) exp((

λ1(G)

radmin
)t)

Subject to Sbcb = Kb.

Instead of minimizing Ua and Ub, since the logarithm func-
tion is monotone, we can minimize log(Ua) and log(Ub).
Using the fact that Sa = Ka

ca
, Sb = Kb

cb
, n = Sa + Sb and

using the definition of ra and rb in (3), after simplification
we get

log(Ua) = (
1

2
) log(

Kb
cb

Ka
ca

+ Kb
cb

) + (
λ1(G)t

dmin
)(
pa + pb
pa

),

log(Ub) = (
1

2
) log(

Ka
ca

Ka
ca

+ Kb
cb

) + (
λ1(G)t

dmin
)(
pa + pb
pb

).

In order to find the best response of firms a and b, i.e. the
optimal cost of a firm conditioned on the cost of the other
firm, we should take the derivative of log(Ua) and log(Ua)
with respect to ca and cb and set them to zero. After doing
this step and simplification we obtain

Kacb
2ca(Kacb +Kbca)

=
αadbl

βb
b c

αb
b t

dal
βa
a cαa+1

a

,

Kbca
2cb(Kacb +Kbca)

=
αbdal

βa
a cαaa t

dbl
βb
b c

αb+1
b

.

(12)

Dividing two equations in (12) by each other and after further
simplification we have

c2αb−1b

c2αa−1a

= (
Ka

Kb
)(
αb
αa

)(
da
db

)2(
lβaa

lβbb
)2.



Here we can see that in the Nash equilibrium, firms with
more budget, labor input and total factor productivity invest
less capital on their product. However, firms with more
output elasticity of capital spend more money on their
production. If we assume firms have the same labor and the
same constants in their payoff functions we obtain

c∗b
c∗a

= (
Ka

Kb
)

1
2α−1 , (13)

and for initial seeds we get

S∗b
S∗a

= (
Kb

Ka
)

2α
2α−1 .

If we also assume α = 1, i.e. payoff is a linear function of
the cost, we will have

c∗b
c∗a

=
Ka

Kb
,

S∗b
S∗a

= (
Kb

Ka
)2.

As we can see the strategy of firms for spending their budget
is independent of the time horizon that their optimization is
defined. Also it is worth mentioning that relative initial seeds
and initial investments of firms only depend on the relative
budget of firms and is independent of the network structure.
This result describes the tradeoff between investment on
improving the quality of a product versus the initial seed of
a product in a social network. The above analysis provides
a crucial insight for firms marketing strategy on how firms
should allocate their fixed budget in order to maximize the
adoption of their products. The interpretation of this result
for new marketers is that if they have a bigger budget than an
incumbent firm, they should seed a larger number of people
while lowering their investment on their product and as a
result the quality of their product. On the other hand, if they
have a small budget compared to an incumbent firm, they
will be better off focusing on the quality of their product
rather than seeding it on a large portion of the network. The
relative importance of the initial investment compared to the
initial seed depends on parameters of a firm’s production
function.

IV. CONCLUSION

In this paper we proposed and studied a strategic model of
product adoption in a social network. In this model, two firms
compete for maximizing the adoptions of their products in a
social network. Considering their fixed budgets, they initially
decide on the capital they invest on their products and also
the number of people they free offer their products to. The
dynamics of the spread is determined by a local coordination
game among agents in which agents act myopic rationally
to maximize their profits. We found a lower and an upper
bound on the proportion of products adoptions based on the
payoff of products offered by firms, the initial number of
adoptions and the underlying structure of the network. We
also proposed conditions on how a new product might die out
in a network eventually. Finally, we characterized the Nash
equilibrium of the game between firms. We showed that in
the Nash equilibrium the ratio of capital inputs of firms and
initial seeds is independent of the network structure and is
only a function of their relative budgets. We also showed that

firms with bigger budget than an incumbent firm should seed
a large number of people while lowering their investment on
their products. On the other hand, when they have a small
budget compared to an incumbent firm, they are better off
focusing on the quality of their product rather than seeding
it on a large portion of the network. As a future direction,
we plan to look at the case where the choice of seeding can
be different based on the location of each agent and analyze
the equilibrium in that setting.
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