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Multi-agent Flocking with Random Communication Radius

Samuel Martin, Arastoo Fazeli, Ali Jadbabaie and Antoine Girard

Abstract— In this paper, we consider a multi-agent system
consisting of mobile agents with second-order dynamics. The
communication network is determined by a metric rule based
on a random interaction range. The goal of this paper is
to determine a bound on the probability that the agents
asymptotically agree on a common velocity (i.e. a flocking
behavior is achieved). This bound should depend on practical
conditions (on the initial positions and velocities of agents) only.
For this purpose, we exhibit an i.i.d. process bounding the
original system’s dynamics. We build upon previous work on
multi-agent systems with switching communication networks.
Though conservative, our approach provide conditions that
can be verified a priori. Our result is illustrated through
simulations.

I. INTRODUCTION

Cooperative behaviors generating complex phenomena are
observed in nature [1], [2]. Multi-agent systems also find
applications in technical areas such as mobile sensor net-
works [3], cooperative robotics [4] or distributed implemen-
tation of algorithms [5]. A central question arising in the
study of multi-agent systems is whether the group will be
able to reach a consensus. Intuitively, agents are said to reach
a consensus when all individuals agree on a common value
(e.g. the heading direction of a flock of birds, the candidate
to elect for voters).

To carry out formal studies on consensus problems, one
usually assumes that the multi-agent system follows some
abstract communication protocol and then investigates condi-
tions under which a consensus will be reached. Existing
frameworks include discrete and continuous-time systems
involving or neglecting time-delays in the communication
process. The communication network between agents is
usually modeled by a graph. Its topology is either assumed
to be fixed or can switch over time. The switching topology
of the interactions is sometimes assumed to depend on the
state of the agents (e.g. the strength of the communication
can be a function of the distance between agents).

Consensus can be modeled in a deterministic fashion, ho-
wever, in many applications it seems that the topology of the
network is quite random. Recently there has been a growing
interest in studying consensus algorithms in a probabilistic
setting [6], [7], [8], [9], [10], [11], [12], where network
changes can be independent, identically distributed (i.i.d. )
over time [9], ergodic-stationary [13], or Markovian [14].
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This randomness can be due to the unpredictability of the
environment in which the communication between agents
occurs or due to the inherent probabilistic characteristic of
the communication among agents [15].

An example where stochastic consensus protocols apply
is when agents in the network communicate if they are
within some distance which is governed by some random
process. For instance in wireless networks, the log-normal
shadowing statistical model can be approximated assuming
that the range within which agents communicate is random
and uniformly distributed over some interval [16]. Therefore,
in these probabilistic cases one should investigate conditions
under which consensus will be reached with some given
probability. It would be quite useful if a lower bound for
this probability could be found as well.

Most papers have investigated sufficient conditions ensu-
ring asymptotic consensus. The assumptions made in the
models are usually rather general (see e.g. [17]). This enables
the given conditions to apply in a wide range of cases.
Conditions usually require some connectivity properties on
the expected communication network to hold over time. A
drawback in such conditions is that they often cannot be
verified a priori. In a random setting, however, sufficient
conditions could only ensure asymptotic consensus in pro-
bability.

In this paper we consider a group of agents with second
order dynamics. We extend previous work from Martin and
Girard [18] by considering the following stochastic setting :
The communication network is determined by a standard
interaction rule based on the distance between agents. The
distance within which agents communicate is bounded by
some random radius which is i.i.d. over time. The goal
of this paper is to determine practical conditions (on the
initial positions and velocities of agents) ensuring that the
agents eventually agree on a common velocity (i.e. a flocking
behavior is achieved) with some probability. These condi-
tions yield a bound on this probability of flocking which
depends on the initial configuration only. As defined, the
stochastic dynamics is state dependent and therefore not
i.i.d. . We exhibit an i.i.d. bounding process which allows
us to build upon previous work such as [19], to establish
such conditions. Though conservative, our approach provides
conditions that can be verified a priori. Moreover, it is
computationally tractable and can be fully automated. Our
result is illustrated through simulations.

Related results in the literature include [20] where the
authors assume a hierarchy in the communication network
and [21] where the authors consider additive noise to the
dynamics (which makes the asymptotic velocity alignment



impossible to achieve).

II. PROBLEM FORMULATION

In this paper, we study a discrete time, multi-agent system.
We consider a set V = {1, . . . , n} of mobile agents evolving
in a d-dimensional space. Each agent i ∈ V is characterized
by its position xi(t) ∈ Rd and its velocity vi(t) ∈ Rd.
The initial positions and velocities are given by xi(0) = x0i
and vi(0) = v0i . The agents exchange information over
a communication network. The topology of the network
depends on the relative position of agents and is therefore
subject to change. The agents use the available information
to adapt their velocity in order to achieve a flocking behavior.
Formally, the evolution of each agent i ∈ V is described by
the following discrete-time protocol :

xi(t+ 1) = xi(t) + εvi(t)

vi(t+ 1) = vi(t) + ε
∑
j∈V

aij(t)(vj(t)− vi(t)) (1)

where ε > 0 is a given parameter of the system and aij(t)
is the communication weight between i and j. The weight
aij(t) = 1 when communication between agents j and i
takes place at time t and 0 otherwise. In this paper we
focus on communication of agents defined by a metric rule
parametrized by a random interaction radius as follows :

aij(t) = 1‖xi(t)−xj(t)‖≤Rij(t) and i6=j (2)

where 1 is the indicative function, ‖.‖ denotes the Euclidean
norm 1 and Rij(t) is a positive random variable standing for
the radius within which agents i and j are able to communi-
cate at time t. We assume that Rij = Rji which makes
the communication network given by metric interactions
symmetric (i.e. if agent i receives information from agent
j, i also sends information to j). In the rest of the paper,
we shall assume that these processes are independent and
identically distributed (i.i.d. ). Rigorously, we should write
Rij(t, ω) where ω ∈ Ω, the set of probabilistic events. For
simplicity of notation, we drop ω, unless necessary. Metric
interactions are usually assumed to be a good representation
of how collective behavior takes place. Thus, most of the
literature on the subject, including [22], [23], uses them.

As defined, the system considered is a discrete-time Mar-
kov process. For a realization of the processes Rij , we say
that the agents achieve a flocking behavior if all the agents
asymptotically move with a common direction :

∀i, j ∈ V, lim
t→+∞

|vi(t)− vj(t)| = 0.

The goal of this paper is to determine a lower bound on the
probability that the flocking behavior is achieved. This bound
should be easily verifiable using only the initial positions and
velocities of agents.

III. PRELIMINARIES

In this section, we review some results from algebraic
graph theory and multi-agent systems that will be useful in
the subsequent discussion.

1. In the following, ‖.‖ will denote the usual Euclidean norm on Rd or
Rnd depending on the context.

A. Algebraic Graph Theory

Let us recall some standard results from algebraic graph
theory. More details can be found, for instance, in [24], [25].

Denote the communication weight matrix A(t) = [aij(t)].
We only consider the case where A is symmetric with entries
in {0, 1} according to the definition of the communication
weights. For the rest of the section, we drop the dependence
on time. Let D = diag(d1, d2, . . . , dn) be the degree matrix
of A where di =

∑
j∈V

aij . Let L = D − A be the

laplacian matrix of A. L is symmetric, positive-semidefinite.
Its eigenvalues are non-negative reals and its smallest one is
0 with eigenvector 1n, vector of all ones. We denote these
eigenvalues as

0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L).

The second smallest eigenvalue of L, λ2(L) is usually
referred to as the algebraic connectivity of the network. Let
ε > 0. Let W = I − εL. W is symmetric and therefore also
has real eigenvalues. We denote them as follows :

1 = λ1(W ) ≥ λ2(W ) ≥ . . . ≥ λn(W ).

Lemma 1 (Lemma 6 [26]): The eigenspectra of matrices
W and L verify for i ∈ V

λi(W ) = 1− ελi(L).

Lemma 2 (Lemma 8 [26]): Let J = 1
n1n1Tn . The spectral

radius of W − J is max(1− ελ2(L),−1 + ελn(L)).
Remark 3: In the rest of the paper, we shall assume

ε < 1
λn(L)

for all laplacian matrix considered. This is always
possible by choosing ε = 1

2(n−1) (see e.g. [24]). Under
this assumption, the spectral radius is 1 − ελ2(L). This
assumption also yields ε < 1

λ2(L)
and thus 1− ελ2(L) > 0.

To a communication weight matrix A, we associate a
graph G = (V, E) consisting of a set of nodes V =
{1, . . . , n} and a set of edges given by a relation E ⊆ V ×V
such that (i, j) ∈ E iff aij = 1. E is symmetric ((i, j) ∈ E
iff (j, i) ∈ E) and anti-reflexive (∀i ∈ V, (i, i) /∈ E). If
(i, j) ∈ E , we say that i is a neighbor of j. A path between
i and j is a sequence of nodes (i1, i2, . . . , ip) such that
i1 = i, ip = j and ∀k ∈ {1, . . . , p − 1}, (ik, ik+1) ∈ E .
We shall consider throughout this paper paths without loops,
i.e. for all k, k′ ∈ {1, . . . , p− 1} k 6= k′ implies ik 6= ik′ . A
graph is said to be connected if for every couple of nodes
(i, j) ∈ V × V such that i 6= j, there exists a path between
i and j. A graph G′ = (V, E ′) is said to be a (spanning)
subgraph of G if E ′ ⊆ E .

The following proposition shows that λ2(L) is a good
measure of the connectivity of the graph :

Lemma 4 ([24]): Let L and L′ be the laplacians matrices
associated to graphs G and G′ respectively.

– G is connected iff λ2(L) > 0.
– If G′ is a subgraph of G then λ2(L′) ≤ λ2(L).



B. Consensus over Random Networks

In this section, we apply the algebraic formalism to system
(1) to derive a useful result. This approach was for instance
used in [19] and [26].

Let x(t) = (x1(t), . . . , xn(t)) ∈ Rnd and v(t) =
(v1(t), . . . , vn(t)) ∈ Rnd be the stacked vectors of positions
and velocities, respectively. We also define the stacked vec-
tors of initial positions and velocities : x0 = (x01, . . . , x

0
n) ∈

Rnd and v0 = (v01 , . . . , v
0
n) ∈ Rnd. Let L(t) = L(t) ⊗ Id,

W(t) = W (t) ⊗ Id and J(t) = J(t) ⊗ Id where Id is the
d× d identity matrix and ⊗ denotes the Kronecker product.
Then, system (1) becomes in matrix form

x(t+ 1) = x(t) + εv(t)
v(t+ 1) = W(t)v(t) = (Ind − εL(t))v(t).

(3)

Since L(t) is symmetric and 1n is an eigenvector associated
to eigenvalue 0, the average of the velocities is preserved by
(3). It follows that if the agents achieve a flocking behavior,
the common asymptotic velocity is necessarily v∗.

For i ∈ V , let δi(t) = vi(t) − v∗, we define the velocity
disagreement vector δ(t) = (δ1(t), . . . , δn(t)). Let yi(t) =
xi(t) − εv∗t and y(t) = (y1(t), . . . , yn(t)). Denote z(t) =
y(t) − x0. We have z(0) = 0. The vector y(t) essentially
gives the relative positions of the agents, as we have

∀i, j ∈ V, xi(t)− xj(t) = yi(t)− yj(t)

whereas z(t) gives the modifications of the relative positions
since

∀i, j ∈ V, zi(t)− zj(t) = xi(t)− xj(t)− (x0i − x0j ). (4)

The dynamics of z and δ are as follows :

z(t+ 1) = z(t) + εδ(t),
δ(t+ 1) = (W(t)− J)δ(t).

(5)

Lemma 5: For all time t ∈ N,

‖δ(t+ 1)‖ ≤ (1− ελ2(L(t)))‖δ(t)‖
Proof: Using the symmetry of W(t)− I, we have

‖δ(t+ 1)‖2 = δ(t)T (W(t)− I)2δ(t) ≤ (µ(W(t)− I))2‖δ(t)‖2,

where µ(·) is the spectral radius. Since the Kronecker
product with Id preserves the spectrum, Remark 3 allows
us to prove the Lemma.

Lemma 5 gives a sufficient condition for flocking, i.e.
∞∏
t=0

(1 − ελ2(L(t))) = 0. However, this condition is not

simple to verify since L(t) is a position dependent random
matrix. This is why, in the next section, we introduce a
bounding function of ‖δ(t)‖ which is easier to deal with.

IV. PROBABILITY OF FLOCKING

A. Main result

Finding sufficient conditions for flocking requires the
choice of arbitrary bounds on the initial distances amongt
agents : For i, j ∈ V , define rij = rji ∈ R+ ∪ {+∞}
satisfying

‖xi(0)− xj(0)‖ ≤ rij .

We discuss the optimal way to choose such bounds in section
V-A. We define weights

ãij(t) = 1rij≤Rij(t), (6)

matrix Ã(t) = [ãij(t)], G̃(t) and L̃(t) the graph and
laplacian associated to matrix Ã(t). Since Rij(t) are i.i.d.
processes, so are ãij(t), Ã(t) and L̃(t). Thus, E(λ2(L̃(t)))
is independent of time. Then, let λ̃2 = E(λ2(L̃(t))). In
the rest of the paper, we will assume λ̃2 > 0. This occurs
iff G̃(t) is connected with non-zero probability (e.g. rij =
‖xi(0) − xj(0)‖ for i 6= j is a suitable choice given that
G(0) is connected with non-zero probability). Notice that,
as defined, G̃(t) is a subgraph of G(0). Thus, according
to Lemma 4, λ2(L(0)) ≥ λ2(L̃(0)). Then, if the bound
given by Lemma 5 is tight, the communication according
to topology G(0) will yield a faster velocity alignment than
G̃(0). If we can show that this remains true over time (see
Lemma 8), flocking is more likely to occur in the former
than in the later case. Bounding the flocking probability of
the group evolving according to G̃ will allow us to conclude.
We formalize this discussion in Section IV-B. The rij define
upper bounds on the initial distances between agents. Using
rij , we define ρ, the robustness of these bounds with regards
to the agents’ distances (i.e. the allowed perturbation on the
positions before reaching one of these bounds) as follows :

ρ = min
i,j∈V

rij − ‖xi(0)− xj(0)‖. (7)

The previous definitons suffice to state the main result of the
paper. This should help to see the objective of the derivations
to come.

Theorem 6: Assume that ρ > 0 and λ̃2 > 0. Moreover
suppose ‖δ(0)‖ ≤ ρλ̃2√

2
. Then the probability that flocking is

achieved is higher than

1− 1

1 + κ2
where κ =

1

νε

(
ρλ̃2√

2‖δ(0)‖
− 1

)2

,

and νε =
ε(E(λ2(L̃(t))

2)−λ̃2
2)

(2λ̃2−εE(λ2(L̃(t))2))
∈ [0, 1].

Remark 7: As given, the result allows us to obtain the pro-
bability of flocking arbitrarily close to 1 in two ways. First,
one can choose the initial disagreement vector sufficiently
small. Second, since lim

ε→0
νε = 0, assume the condition on

‖δ(0)‖ is satisfied, and then choose ε sufficiently small.
The proof of the theorem requires the introduction of a

bounding process and is therefore relocated at the end of the
next section.

B. Bounding process

We give a system of two real variables (p, q) which will
play the role of bounding process for the multi-agent system :

p(t+ 1) = p(t) + εq(t)

q(t+ 1) = (1− ελ2(L̃(t)))q(t)
(8)

with p(0) = 0 and q(0) = ‖δ(0)‖. Since λ2(L̃(t)) is
i.i.d. , the behavior of (p, q) will be easy to characterize.
Under certain conditions, we shall show that p bounds ‖z‖,



the distance modification between agents’ positions while q
serves as a bound for ‖δ‖ the distance to velocity alignment
(see equations (8) and (5)).

The definition of the robustness ρ allows to state the
following lemma :

Lemma 8: Let z(t) = y(t)−x0 for t ≥ 0 as in Section III-
B. For all t ∈ N, if

‖z(t)‖ ≤ ρ√
2

then G̃(t) is a subgraph of G(t).
Proof: Let i, j ∈ V . Using equation (4), we have

‖xi(t)− xj(t)‖ = ‖xi(t)− xj(t)− (x0i − x0j ) + (x0i − x0j )‖
≤ ‖xi(t)− xj(t)− (x0i − x0j )‖+ ‖x0i − x0j‖
≤ ‖zi(t)− zj(t)‖+ ‖x0i − x0j‖
≤
√

2‖z(t)‖+ ‖x0i − x0j‖ ≤ ρ+ ‖x0i − x0j‖ ≤ rij .

This shows that

aij(t) = 1‖xi(t)−xj(t)‖≤Rij(t) ≥ 1rij≤Rij(t) = ãij(t)

which concludes the proof.
We can now state the bounding property :
Lemma 9: We have(
∀t ∈ N, p(t) <

ρ√
2

)
⇒
(
∀t ∈ N,

{
‖δ(t)‖ ≤ q(t)
‖z(t)‖ ≤ p(t)

)
.

Proof: We show the result by induction on time.
Assume that the left-hand side of the implication is satisfied.
By definition, q(0) = ‖δ(0)‖ and p(0) = ‖z(0)‖ = 0.
Assume the result is true for some time t : ‖δ(t)‖ ≤ q(t)
and ‖z(t)‖ ≤ p(t). The inequality on the positions at time
t+ 1 comes as follows :

‖z(t+ 1)‖ = ‖z(t) + εδ(t)‖ ≤ ‖z(t)‖+ ε‖δ(t)‖
≤ p(t) + εq(t) = p(t+ 1).

For the inequality on the velocities, we have ‖z(t)‖ ≤ p(t) <
ρ/
√

2, where we used the left-hand side of the implication.
Thus, we can apply Lemma 8 along with Lemma 4 to obtain
λ2(L(t)) ≥ λ2(L̃(t)). Then, Lemma 5 gives

‖δ(t+ 1)‖ ≤ (1− ελ2(L(t)))‖δ(t)‖
≤ (1− ελ2(L̃(t)))‖δ(t)‖
≤ (1− ελ2(L̃(t)))q(t) = q(t+ 1).

This last lemma leads to the following intermediate result :
Theorem 10: Consider a given realization of processes

Rij . If for all time t, p(t) ≤ ρ√
2

then flocking is achieved,
i.e. lim

t→+∞
‖δ(t)‖ = 0.

Proof: q is non-negative and non-increasing, thus it
must converge. It is easy to see that if lim

t→∞
q(t) > 0 then p

diverges. Thus, lim
t→∞

q(t) = 0. Using Lemma 9, we have
‖δ(t)‖ ≤ q(t), thus lim

t→∞
‖δ(t)‖ = 0 which guarantees

flocking.
In order to use the previous Lemma, we need to be able

to characterize the evolution of p in function of the initial

configurations of the system. This is done in the rest of the
section.

Lemma 11: For all t ∈ N, we have{
E(q(t+ 1)) = αE(q(t)),
E(q(t+ 1)2) = βE(q(t)2)

where 
α = E(1− ελ2(L̃(t))) = 1− ελ̃2,
β = E((1− ελ2(L̃(t)))2)

= 1− 2ελ̃2 + ε2E(λ2(L̃(t))2).

(9)

Proof: By definition, L̃(t) is independent of q(t), so
we have

E(q(t+ 1)) = E
(

(1− ελ2(L̃(t)))q(t)
)

= (1− ελ̃2)E(q(t)) = αE(q(t)).

Similarly,

E(q(t+ 1)2) = E
(

(1− ελ2(L̃(t)))2q(t)2
)

= βE(q(t)2).

The bounding process is useful only if the variance of q(t)
converges to 0. This is the case under the condition assumed
in Remark 3 regarding ε :

Remark 12: Assuming ε < 1/λn(L̃(t)) for all t as in
Remark 3, both α and β lie in interval ]0, 1[.
The previous remark holds since, according to Remark 3,
1−ελ2(L̃(t)) ∈]0, 1[ for any realization of the random radius
R(t) and any choice rij . Then, the definition of α and β
allows us to conclude.

A direct corollary of Lemma 11 is the following :
Corollary 13: For all t, u ∈ N, we have E(q(t)) = αtq(0),

E(q(t)2) = βtq(0)2,
E(q(t+ u)q(t)) = αuE(q(t)2)

Proof: The first and second equations are straight-
forward. The third one is also a consequence of L̃(t) being
i.i.d. :

E(q(t+ u)q(t)) = E(

u−1∏
j=0

(1− ελ2(L̃(t+ j)))q(t)2)

= (1− εE(λ2(L̃(t)))uE(q(t)2).

Noticing that p(t) = ε

t−1∑
k=0

q(k) and with the assumption

λ̃2 > 0, the following also holds :
Lemma 14: If we assume λ̃2 > 0, we have, for all t ∈ N,{

E(p(t)) = ε q(0)1−α + o(t),

σ2(p(t)) = ε2 (β−α2)q(0)2

(1−α)2(1−β) + o(t)

where σ2(p(t)) = E(p(t)2)−E(p(t))2 and o(t) is a function
converging to 0 when time t approaches to infinity.



Proof: The first equality comes from the above remark
and the first equation in Corollary 13 :

E(p(t)) = ε

t−1∑
k=0

E(q(k)) = ε

t−1∑
k=0

αkq(0)

= ε
1− αt

1− α
q(0) = ε

q(0)

1− α
+ o(t)

where we used |α| < 1 as given in Remark 12.
For the second equality,

p(t)2 = ε2
t−1∑
k,j=0

q(k)q(j)

= ε2

t−1∑
k=0

q(k)2 + 2
∑
k<j

q(j)q(k)


= ε2

t−1∑
k=0

(
q(k)2 + 2

t−1−k∑
u=1

q(k + u)q(k)

)
.

Using the linearity of the expectation, Corollary 13 and |α| <
1, we obtain

E(p(t)2) = ε2
t−1∑
k=0

(
E(q(k)2) + 2

t−1−k∑
u=1

αuE(q(k)2)

)

= ε2
t−1∑
k=0

(
1 + 2(

1− αt−k

1− α
− 1)

)
E(q(k)2)

= ε2
t−1∑
k=0

(
1 + α

1− α
− (

2αt

1− α
α−k)

)
βkq(0)2

= ε2

(
1 + α

1− α

t−1∑
k=0

βk − 2αt

1− α

t−1∑
k=0

(
β

α
)k

)
q(0)2.

Moreover, we have

β = 1− 2ελ̃2 + ε2E(λ2(L̃(t))2) < 1− 2ελ̃2 + ελ̃2 = α.

Thus, β 6= α. Also |β| < 1, so we have

E(p(t)2) = ε2
(

1 + α

1− α
1− βt

1− β
− 2αt

1− α
1− (β/α)t

1− (β/α)

)
q(0)2

= ε2
(

1 + α

1− α
1− βt

1− β
− 2

1− α
αt − βt

1− (β/α)

)
q(0)2

= ε2
1 + α

(1− α)(1− β)
q(0)2 + o(t).

Then,

σ2(p(t)) = E(p(t)2)− E(p(t))2

= ε2
(

1 + α

(1− α)(1− β)
− 1

(1− α)2

)
q(0)2 + o(t).

Reformulating the last right-hand side leads to the expected
result.

Finally, we translate the equation from the previous lemma
in terms of the expectation and deviation of the algebraic
connectivity :

Corollary 15: For all t ∈ N, we have E(p(t)) = ‖δ(0)‖
λ̃2

+ o(t),

σ2(p(t)) = νε‖δ(0)‖2

λ̃2
2

+ o(t),

where νε ∈ [0, 1] is defined in Theorem 6.
Remark 16: Since lim

ε→0
νε = 0, the previous result shows

that one can obtain the limit variance of p(t) as small as
desired by choosing ε small enough.

Proof: Notice that the definitions of α and β give

1− α = ελ̃2, 1− β = ε(2λ̃2 − εE(λ2(L̃(t))2)),

1 + α = 2− ελ̃2, β − α2 = ε2(E(λ2(L̃(t))2)− λ̃22).

Then, the first equation is straightforward. The second is
derived as follows :

σ2(p(t)) = ε2
(β − α2)q(0)2

(1− α)2(1− β)
+ o(t)

= ε4
(E(λ2(L̃(t))2)− λ̃22)‖δ(0)‖2

ε3λ̃22(2λ̃2 − εE(λ2(L̃(t))2))
+ o(t)

=
νε‖δ(0)‖2

λ̃22
+ o(t).

The fact that νε ≥ 0 can be deduced from σ2(p(t) ≥ 0. The
inequality νε ≤ 1 comes from Remark 3 : 0 < ε < 1

λ2(L̃(t))

for any realization of the random radius R(t) and choice rij .
Thus, ελ2(L̃(t))2 < λ2(L̃(t)) which gives

εE(λ2(L̃(t))2) = E(ελ2(L̃(t))2) < E(λ2(L̃(t))) = λ̃2.

Thus, λ̃2 < 2λ̃2 − εE(λ2(L̃(t))2) and

νε < ε
(E(λ2(L̃(t))2)− λ̃22)

λ̃2
≤ εE(λ2(L̃(t))2)

λ̃2
< 1.

We can now give the proof of the central theorem of this
paper.

Proof: [Proof of Theorem 6] Theorem 10 shows the
probability that flocking occurs is higher than the probability
that for all time t, p(t) ≤ ρ√

2
. Denote At = {ω ∈ Ω|p(t) ≤

ρ√
2
}. Since p is increasing, (At) is a decreasing sequence of

events and we have

P(∀t, p(t) ≤ ρ√
2

) = P(∩t≥0At)

= lim
t→+∞

P(At) = lim
t→+∞

P(p(t) ≤ ρ√
2

)

= 1− lim
t→+∞

P(p(t) >
ρ√
2

).

The bound on the probability of flocking comes from the
one sided Chebyshev’s inequality :

P(p(t) >
ρ√
2

) ≤ 1

1 + k(t)

where k(t) =

(
ρ√
2
−E(p(t))

)2

σ2(p(t)) . We are only interested in the
limit when t diverges to infinity. We use Corollary 15 to



derive a lower bound on the limit of k(t) :(
ρ√
2
− lim
t→∞

E(p(t))
)2

lim
t→∞

σ2(p(t))
≥ 1

νε

(
ρλ̃2√

2‖δ(0)‖
− 1

)2

.

V. APPLICATION TO WIRELESS NETWORKS

Until now, we have not assumed any constraint on the
communication radiuses Rij(t) besides being non-negative
i.i.d. random variables satisfying the constraint Rij(t) =
Rji(t). In the present section, we apply our result to the
case where Rij(t) = min(Ri(t), Rj(t)) where Ri(t) follows
a uniform distribution over the interval [0, Rmax] where
Rmax > 0 is some maximum communication range. Ri(t)
represents the sensing radius of agent i at time t. Taking
Rij(t) = min(Ri(t), Rj(t)) means that two agents interact if
and only if both agents can sense the other. It has been shown
in [16] that the uniform distribution is a good approximation
of the log-normal shadowing statistical model for wireless
networks and is, as such, of practical relevance.

A. Choice of rij

The choice of rij is important since it determines both
λ2(L̃(t)) (equation (6)) and ρ (equation (7)). Precisely, ρ
increases with rij starting at 0 when rij = ‖x0i − x0j‖ for
all i, j ∈ V whereas λ2(L̃(t)) decreases when rij increases.
According to Theorem 6, the best bound is achieved when the
product ρλ̃2 is highest. The next lemma shows that λ2(L̃(t))
can be expressed in term of the robustness ρ only. The idea
is to use the fact that G̃ increases when rij and, as a result, ρ
decrease, so that the highest λ2(L) is found for the smallest
rij values and, as a result, for smallest ρ :

Lemma 17: Assume that ρ is fixed. Then the choice of
rij maximizing product ρλ2(L̃(t)) is

r∗ij , ρ+ ‖x0i − x0j‖.
Proof: Choose some rij satisfying ρ = mini,j∈V rij −

‖x0i − x0j‖. According to the definition, the robustness asso-
ciated with r∗ij is also ρ : ρ = mini,j∈V r

∗
ij−‖x0i−x0j‖. Then,

denote λ∗2(t) the algebraic connectivity corresponding to the
choice r∗ij . Since both choices lead to the same robustness,
it remains to show that the later choice leads to a higher
algebraic connectivity. Let i, j in V and t ∈ N. Then, we
have

ãij(t) = 1rij≤Rij(t) ≤ 1ρ+‖x0i−x0j‖≤Rij(t)
= 1r∗ij≤Rij(t) = a∗ij(t).

Thus, G̃(t) is a subgraph of G∗(t). Using Lemma 4, we
obtain λ2(L̃(t)) ≤ λ∗2(t)

From now on, we shall assume that the vicinity rij is
chosen as given in Lemma 17, thus we drop the ∗ notation.
Since rij is now a function of ρ, so is λ̃2. One can show
that λ̃2 is a polynomial function of ρ. We do not explicit this
fact because of space limitation.

B. Simulations

In this section we use a simple 6-agent system to illustrate
our theoretical result. Agents initially divide in two groups
with velocities bearing opposite y-coordinates. The initial
positions induce a connected communication network with
positive probability. We wonder with which probability the
group will overcome the initial conflict and eventually stay
together achieving a flocking behavior. According to Theo-
rem 6, our bound on the probability of flocking depends
on the ratio λ̃2ρ

‖δ(0)‖ . The numerator is completely determined
by the agents’ positions (vector x0) while the denominator
is a function of the initial velocities (vector v0). In order
to explore the different outcomes of the system, we fix
the initial positions and vary the initial velocities. We set
a reference vector of initial velocity disagreement d =
1√
6
(1, 1, 1,−1,−1,−1)T so that ‖d‖ = 1. We choose the

y-coordinate of the initial velocity vector v0y = γd where
γ is the parameter we use to tune the system. We take
the x-coordinate v0x = c1 where c > 0 is an arbitrary
constant which does not influence the flocking outcome of
the dynamics and serves only for visualization purposes. We
have ‖δ(0)‖ = ‖(I−J)v0‖ = ‖γd‖ = γ so γ represents the
amplitude of the initial velocity disagreement.

Since x0 is fixed, we can determine the optimal product
E(λ2(L̃))ρ for ρ ∈ [0, Rmax]. For the numerical simulation,
we use Rmax = 15. The optimization gives ρopt = 1.9 and
E(λ2(ρopt))ρopt = 0.76. We choose the time step ε = 0.2
as suggested in Remark 3 which gives a value νε = 0.37.

To illustrate the results, we ran some simulations. First,
we chose ‖δ(0)‖ = 0.9ρλ̃2√

2
which leads to a lower bound on

the probability of flocking of 0.6. Then, we chose ‖δ(0)‖ =

15ρλ̃2√
2

for which Theorem 6 does not provide any infor-
mation regarding the asymptotic behavior. Figure 1 presents
snapshots of the evolution of the system for a realization of
the random process for the two different choices of ‖δ(0)‖
exhibiting different outcome. In the first case, the group
asymptotically converges to flocking despite that the graph
does not remain connected at all times. The second part of the
figure presents a case where the initial velocity disagreement
is too high and the two subgroups split apart, never reaching
the flocking behavior.

VI. CONCLUSION

In this paper, we have considered a multi-agent system
consisting of mobile agents with second-order dynamics and
where the communication network is determined by a metric
rule depending on a random interaction range. Our approach
extends earlier work from Martin and Girard [18] to the
stochastic setting. It links algebraic connectivity of the sto-
chastic communication network to the speed of convergence
towards consensus. We have established a lower bound on
the probability of velocity alignment depending on the initial
positions and velocities of the agents. Our main contribution
has been to propose a suitable i.i.d. bounding process to the
original system. Our main result states that the probability
of flocking can be made higher than any constant arbitrarily
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Fig. 1. The upper part of the figure presents an instantiation of the dynamics
for ‖δ(0)‖ = 0.9 ρλ̃2√

2
. The lower part is an instantiation when ‖δ(0)‖ =

15 ρλ̃2√
2

. The figure shows the trajectories of the 6 agents and their positions,
velocities and connexions for 5 specific times. The six extreme left red dots
are the initial agents’positions. The blue arrows represent the velocities (their
amplitude has been increased 2 times for visualization purposes). The black
lines between dots represents communication link.

close to 1 by choosing a velocity disagreement among agents
smaller than a threshold (formed with the robustness and the
expected algebraic connectivity of the graph of the bounding
process). The main interest of this approach is the possibility
of ensuring flocking a priori. The condition can be easily
verified through rapid computation.

For future work, we plan to improve the tightness of the
bound by taking into account two facts : we will relate
velocities with positions because two agents with opposite
velocities have more chance to agree on their velocities if
they point toward each other, than if they point away from
each other. Also, a subgroup of agents with high connectivity
is intuitively more inclined to agree on their velocities than
a subgroup of low connectivity. Thus, agents belonging to
a highly connected local neighborhood should be allowed
higher initial velocities.

REFERENCES

[1] Larissa Conradt and Timothy J. Roper, “Consensus decision making in
animals”, Trends in Ecology & Evolution, vol. 20, no. 8, pp. 449–456,
2005.

[2] Iain D. Couzin and Jens Krause, “Self-organization and collective
behavior in vertebrates”, Advances in the Study of Behavior, vol.
Volume 32, pp. 1–75, 2003.

[3] Thomas B. Curtin and James G. Bellingham, “Progress toward
autonomous ocean sampling networks”, Deep Sea Research Part II :
Topical Studies in Oceanography, vol. 56, no. 3-5, pp. 62 – 67, 2009,

AOSN II : The Science and Technology of an Autonomous Ocean
Sampling Network.

[4] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks”, Robotics and Automation, IEEE
Transactions on, vol. 20, no. 2, pp. 243–255, April 2004.

[5] J. N. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchro-
nous deterministic and stochastic gradient optimization algorithms”,
IEEE Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,
1986.

[6] Y. Hatano and M. Mesbahi, “Agreement over random networks”, IEEE
Transactions on Automatic Control, vol. 50, no. 11, pp. 1867–1872,
2005.

[7] C.W. Wu, “Synchronization and convergence of linear dynamics in
random directed networks”, IEEE Transactions on Automatic Control,
vol. 51, no. 7, pp. 1207–1210, 2006.

[8] M. Porfiri and D.J. Stilwell, “Consensus seeking over random
weighted directed graphs”, IEEE Transactions on Automatic Control,
vol. 52, no. 9, pp. 1767–1773, 2007.

[9] A. Tahbaz-Salehi and A. Jadbabaie, “On consensus over random
networks”, IEEE Transactions on Automatic Control, vol. 53, no.
3, pp. 791–795, 2008.

[10] G. Picci and T. Taylor, “Almost sure convergence of random gossip
algorithms”, in IEEE Conf. on Decision and Control, 2007, pp. 282–
287.

[11] D. Acemoglu, A. Ozdaglar, and A. ParandehGheibi, “Spread of (mis)
information in social networks”, Games and Economic Behavior,
2010.

[12] B. Touri and A. Nedich, “On ergodicity, infinite flow and consensus
in random models”, IEEE Transactions on Automatic Control, , no.
99, pp. 1–1, 2010.

[13] A. Tahbaz-Salehi and A. Jadbabaie, “Consensus over ergodic statio-
nary graph processes”, IEEE Transactions on Automatic Control, vol.
55, no. 1, pp. 225–230, 2010.

[14] M. Ion and B. John, “Convergence results for the linear consensus
problem under Markovian random graphs”, Institute for Systems
Research Technical Reports, 2009.

[15] F. Fagnani and S. Zampieri, “Randomized consensus algorithms
over large scale networks”, in Information Theory and Applications
Workshop, 2007, 2007, pp. 150–159.

[16] Sergio Bermudez and Stephen B. Wicker, “Connectivity of finite
wireless networks with random communication range nodes”, in ICC,
2009, pp. 1–5.

[17] L. Moreau, “Stability of multiagent systems with time-dependent
communication links”, IEEE Transactions on Automatic Control, vol.
50, no. 2, pp. 169–182, Feb. 2005.

[18] S. Martin and A. Girard, “Sufficient conditions for flocking via graph
robustness analysis”, in Decision and Control (CDC), 2010 49th IEEE
Conference on, dec. 2010, pp. 6293 –6298.

[19] Alireza Tahbaz-Salehi and Ali Jadbabaie, “On consensus over random
networks”, in IEEE Conference Decision and Control, 2006.

[20] Federico Dalmao and Ernesto Mordecki, “Cucker-Smale flocking
under hierarchical leadership and random interactions.”, SIAM J. Appl.
Math., vol. 71, no. 4, pp. 1307–1316, 2011.

[21] F. Cucker and E. Mordecki, “Flocking in noisy environments”, Journal
de Mathématiques Pures et Appliqués, vol. 89, no. 3, pp. 278–296,
Mar. 2008.

[22] Craig W. Reynolds, “Flocks, herds, and schools : A distributed
behavioral model”, Computer Graphics, vol. 21, no. 4, pp. 25–34,
1987.

[23] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer
Shochet, “Novel type of phase transition in a system of self-driven
particles”, Phys. Rev. Lett., vol. 75, no. 6, pp. 1226–1229, Aug 1995.

[24] Chris Godsil and Gordon Royle, Algebraic Graph Theory, Springer,
April 2001.

[25] Russell Merris, “Laplacian matrices of graphs : a survey”, Linear
Algebra and its Applications, vol. 197-198, pp. 143 – 176, 1994.

[26] Soummya Kar and José M. F. Moura, “Sensor networks with random
links : Topology design for distributed consensus”, CoRR, vol.
abs/0704.0954, 2007.


	University of Pennsylvania
	ScholarlyCommons
	6-2012

	Multi-agent Flocking With Random Communication Radius
	Samuel Martin
	Arastoo Fazeli
	Ali Jadbabaie
	Antoine Girard
	Recommended Citation

	Multi-agent Flocking With Random Communication Radius
	Abstract
	Keywords
	Disciplines
	Comments


	tmp.1357706370.pdf.K_KtH

