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Abstractions of Constrained Linear Systems

Abstract
Simulation relations are powerful abstraction techniques in computer science that reduce the complexity of
analysis and design of labeled transition systems. In this paper, we define and characterize simulation relations
for discrete-time linear systems in the presence of state and input constraints. Given a discrete-time linear
system and the associated constraints, we consider a control-abstract embedding into a transition system. We
then establish necessary and sufficient conditions for one constrained linear system to simulate the transitions
of the other. Checking the simulation conditions is formulated as a linear programming problem which can be
efficiently solved for systems of large dimensions. We provide an example where our approach is applied to the
hybrid model of the Electronic Throttle Control (ETC) System.
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Abstractions of Constrained Linear Systems 
Herbert G. Tanner and George J. Pappas 

Department of Electrical and Systems Engineering 
University of Pennsylvania 

Philadelphia, PA 19104-6228 

Abstract-Simulation relations are powerful abstraction tech- In this paper we derive necessary and sufficient condi- 
niques in computer science that reduce the complexity of anal- 
ysis and design of labeled transition systems. In this paper, 
we define and characterize simulation relations for discrete- 
time linear systems in the presence of state and input con- 
straints. Given a discrete-time linear system and the associated 
constraints, we consider a control-abstract embedding into a 
transition system. We then establish necessary and sufficient 
conditions for one constrained linear system to simulate the 
transitions of the other. Checking the simulation conditions 
is formulated as a linear programming problem which can be 
efficiently solved for systems of large dimensions. We provide 
an example where our approach is applied to the hybrid model 
of the Electronic Throttle Control (ETC) System. 

I. INTRODUCTION 

Theoretical computer science, and, in particular, the 
areas of concurrency theory [12], and computer aided ver- 
ification [ll] have established formal notions of abstrac- 
tion and model refinement which exploit the hierarchical 
and compositional nature of large scale systems. In the 
context of hybrid systems, such notions have been re- 
cently considered by [10],[2], and [7]. In the control com- 
munity, similar ideas have been considered in the hierar- 
chical, supervisory control of discrete event systems [4], 
[21], and hybrid systems (see surveys [l] ,  [SI). 

Simulation relations of labeled transition systems pro- 
vide such a formal notion of abstraction [12]. Roughly, 
transition system T2 simulates transition system T I ,  if 
every transition taken by TI can be matched by a similar 
transition taken by T2. Simulation relations are used in 
order to establish modeling consistency between various 
levels of hierarchical systems, as transitims of the higher 
level system TI can be matched by the lower level system 
T2. 

As mentioned in [20], simulation relations have escaped 
the world of purely continuous systems. More recently, a 
notion of simulation was introduced for continuous-time 
systems [14]. Given a continuous system and quotient 
map, a formal construction was provided for extracting 
quotient systems that simulated the trajectories of the 
original system. Furthermore, linear maps that preserve 
control theoretic properties such as controllability [14], 
and stabilizability [13] were characterized. Similar re- 
sults have also been established for nonlinear systems [15]. 
Simulation relations for unconstrained discrete-time lin- 
ear systems have been established in [IS]. 

0-7803-7896-2/03/$17.00 02003 IEEE 

tions for simulation relations between discrete-time linear 
systems that are subject to state and input constraints. 
We first embed constrained linear systems into transition 
systems. Control input information is abstracted away, 
contrary to model reduction methods in which control 
inputs are preserved [3]. The simulation relations con- 
sidered in this paper can capture a t  least two important 
cases: complexity reduction and refinement. In the for- 
mer case, one is concerned with reducing the dimension- 
ality of the system to facilitate analysis. In the latter 
case, one may be interested in either refining a controller 
designed at a higher level or substituting the target sys- 
tem with a more complicated. The simulation conditions 
are expressed as a set-inclusion relationship that can be 
checked numerically using a linear programming formu- 
lation. The structure of the linear programming formu- 
lation, naturally reflect the game theoretic interpretation 
of simulation relations, a subject that has a long and rich 
history in theoretical computer science. 

The outline of this paper is as follows: In Section I1 we 
review the definition of simulation relations for transition 
systems. In Section I11 we derive necessary and sufficient 
conditions for simulation relations between constrained, 
discrete-time, linear systems. Section IV provides a com- 
putational framework for checking the simulation condi- 
tions and Section V illustrates the application of our ap- 
proach on a challenge problem, the ETC problem. The 
conclusions from this work are summarized in Section VI. 

11. SIMULATIONS OF TRANSITION SYSTEMS 

In this section we review the standard definitions of 
simulation relations for transition systems [12]. A (la- 
beled) transition system is defined as follows: 

Definition 11.1 A labeled transition system is a tuple 
T = ( Q ,  E, -) that consists of: 

A (possibly infinite) set Q of states, 
A (possibly infinite) set C of labels, 
A transition relation -C Q x C x Q, 

The transition (q1, U, q 2 )  E- is commonly denoted as 
q1 -2 42. The transition system is called finite if Q and 
C are finite, and infinite otherwise. A region is a subset 
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P C Q of the states. The a-successor of a region P is 
defined as the set that can be reached from P with one 
a-transition. More precisely, 

Post,(P) = { q  E Q I 3 p  E P with p q }  (1) 

Simulation relations between transition systems formally 
define when one transition system implements another. 

Definition 11.2 Let TI = (Q1 ,C ,  -1)  and T2 = 
( Q 2 ,  C, -2) be two transition systems over the same la- 
bel set C . The relation S C Q1 x Q2 is called a simu- 
lation relation i f  for all (q1 ,qz)  E S ,  the following prop- 
erty holds: i f  q1 5 q i ,  then there exists qh E Q 2  with 
q2 -2 qh and (q:,qh) E S .  

If such a simulation relation exists, then T2 simulates 
(or implements) T I ,  since every a-transition taken by TI 
can be matched (or implemented) by a a-transition of Tz. 
The label set C is common to both transition systems. In 
general T2 may have many more transitions, and may be 
a much more complicated system. Transition system TI 
can also serve as a more abstract description of transition 
system T2. If, in addition, Ti also simulates T2 with the 
same relation S ,  then TI and T2 are called bisimilar. 

The language of a transition system, denoted L(T),  is 
the collection of label sequences that can be generated by 
transition system T .  It is straightforward to show that if 
transition system T2 simulates T I ,  then L(T1) 5 L(T2). 
Therefore, the behavior of TI is contained in that of T2. 
Simulation relations, even though sufficient for language 
inclusion, are preferable to language inclusion since there 
are much easier to check algorithmically. 

111. SIMULATIONS OF CONSTRAINED LINEAR SYSTEMS 

We begin by embedding linear systems into a transi- 
tion system choosing one possible embedding out of a 
variety of different ones: a transition can occur whenever 
an admissible control exists, where by admissible con- 
trol we mean an input that ensures that transitions do 
not violate the state constraints. Consider discrete-time, 
constrained linear control systems: 

A : xk+l = A X k  + B U k  (2) 

with time k E N+, state xk belonging in a set X C Rn, 
control U k  belonging in a set U 2 R", and matri- 
ces A, B of appropriate dimension. From linear sys- 
tems theory [22], we know that given an initial condi- 
tion s o  at time zero, and an input sequence {ui}f:i = 
{ u o , u ~ ,  . . . ,uk-l}, then the state s i  at time k is 

k -  1 

zk = + ~ k - i - 1 ~ ~ ~  (3) 
i=O 

The embedding of discrete-time systems into transition 
systems preserves information about the state in which 
the system is a t  each single time step, abstracting away 
the particular control that was used the transition. 

Definition 111.1 The transition system TA = 
( Q ,  Cl -) generated by A consists of: 

State space Q = X & R", 
0 Unique label C = {l}, 

Transition relation -c Q x (1) x Q with 

a: L 2' w 3u E U : 5' = A X + B U A A Z + B ~  E x 
The transitions of the transition system naturally corre- 
spoiid to evolution of the discrete-time system in one time 
step. Furthermore, the transitions of Definition 111.1 are 
control abstract in the sense that the transition system 
does not care which U is responsible for the transition of 
the discrete-time system, as long as the states stays in X .  

Consider two discrete-time, state and input constrained 
linear systems: 

Ai : x k + l  = Ask + Buk, Z E x C R n , U  E U 2 Rm (4) 
A2 : z k + l  = FZk + Gvk, Z E z C R',?J E v c R" ( 5 )  

where matrices A , B , F ,  and G are of appropriate dimen- 
sion. Linear systems A1 and A2 generate various transi- 
tion systems TA, and TaZ respectively. 

The simulation relations we shall consider in this paper 
are of the form S 2 Q1 x Q 2 ,  with Q 1  = X C R" and 
Q 2  = Z 5 R' where 

(6) 
where H E R"" is an arbitrary linear map, and Y C R' 
is a set. Relation S can be thought of as a set valued map 
assigning to each x E Q 1  an affine set Ha: + Y 2 Q2. 

The structure of the relations (6) considered in this 
paper captures a t  least two important cases. In the first 
case, where Y = 0 and the map H x  is surjective, we are 
interested in simulating the transitions of A1 by a sys- 
tem A,, which should be smaller in size, thus performing 
complexity reduction. Such a case can be useful in model 
checking and verification. In the second case, where the 
map H s  is injective and Y = R ( H ) *  (the orthogonal 
complement of the range of H )  we are interested in the 
more complicated system A2 simulating the transitions 
of the simpler system A,, thus refining the transitions 
from the simpler to the more complicated model. 

Theorem 111.2 (Simulation) Consider discrete time 
systems AI  and A2 given by (4)-(5), and a relation S 
of the form ( 6 ) .  Then  TA, simulates Tal if and only i f  

("a) 

( ~ ~ 2 )  E S C Qi x Q2 W z = H z + y ,  y E Y 

( H A  - F H ) X  + H B U  - F Y  C_ GV - Y 

A X t B U c X  (7b) 
F Z t G V c Z  ( 7c) 
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Proof: By Definition 11.2 and equation (l), with 
U being a one-step transition, A2 simulates A1 with re- 
spect to the relation S i f  and only if for all (x, z )  E S it 
holds that: Vx' E Postl(x), 32' E Postl(z) : (x', z') E S. 
Given ( 6 ) ,  the above is rewritten as: V(z,z) E S,Vx' E 
Postl(x),3yl E Y : z' = Hx' + y1 E Postl(z). Defini- 
tion 111.1 provides explicit expressions for the Post1 op- 
erators TA, and TaZ. Substituting, the necessary and 
sufficient condition for simulation becomes: 

b' ( 5 , ~ )  E S,VU E U :  A X +  BU E X,3y1 E Y, 
3v E V : H(A2 + Bu) + y 1 =  F Z  + GV E 2 

Since (x, z )  E S, z can always be expressed as z = Hx+y2 
with y2 E Y ,  which makes the above equivalent to: 

V X  E X,Qy2 E Y,VU E U :  A x + B u  E X, 
391 E Y, 3v E V : H(Ax+Bu)+yl = F ( H x + ~ ~ ) + G v  E 2 

Collecting terms, and eliminating the quantifiers we have: 

( H A -  F H ) X  + HBU - F Y  2 G V - Y .  

Thus, the necessary and sufficient condition for simula- 
tion can take the form of (7a). The remaining conditions: 

AX + BU C_ X ,  F Z + G V C Z  

restrict transitions that do not lead to admissible states. 

IV. SIMULATION CHECKING ALGORITHM 

An important question that arises is how to check the 
simulation conditions of Theorem 111.2. We show that 
when the constrained sets can be expressed as polyhedra, 
checking the conditions for simulation is equivalent to 
solving a number of Linear Programming (LP) problems. 

A .  The Linear Programming Formulation 

that  the sets X ,  U ,  2, V and Y are given as: 

X ={a: E W" I C,X 5 d,}, 
2 ={z E R" 1 C,Z 3 d,}, 
Y ={y E WT I Cyy 5 d y } .  

The above constraint sets can be grouped together into 
two polyhedral regions, each characterizing each side of 
the simulation condition (7a): 

Consider the linear systems (4) and ( 5 )  and assume 

U ={U E W" I C,U 5 d,}, 
V ={U E R" I C,V 5 d,}, 

Pi k{q = (x, U ,  Y ) ~  I f i q  5 d i }  

P, k { w  = ( y , ~ ) ~  I P,w 5 d,} 
( 8 4  

(8b) 
where: 

9 kdiag {Cx, C,, Cy} , dl f(dx, d,, dy)T, 
P, kdiag {Cy, C,} , d, g(dv ,  d,)*. 

In order for transitions to remain within X and 2, con- 
ditions (7b,c) are expressed as: 

C X A x  + C,BU 5 d,, CzFy + C,GV 5 d, - C,FHX. 

By defining C1 [CxA CxB 01, C2 [C,F C,G] and 
C3 4 [C,FH 0 01, the above can be rewritten as: 

Ciq 3 d x ,  C ~ W  3 d, - C3q. (9) 

Now define the linear maps: 

Ml : Pl -+ PI; q H [ H A  - FH H B  -F]  q 
M ,  : P, 4 732; w H [-I GI w 

Clearly, the image of a polyhedron under a linear map is 
itself a polyhedron. The simulation condition (7a) then 
requires the inclusion PI C Pz. The following theorem 
offers a computational means of checking this inclusion: 

Theorem IV.l The necessary and suficient conditions 
conditions for simulation, (7), are satisfied iff each of the 
following LP problems is feasible: 

min pF(I - M:M,)s 

s.t. P,(I - M:M,)s 5 d, - P,M:Miqz 
Cz(I - M,fM,)s 3 d, - (C3 + CzM?Mi)q;. 

where p,k is  the P h  row of P,, M,' is the pseudoinverse 
of M ,  and q; = (x*,u*,y*): is the solution of 

max P;M,+Mlq, 
4 

s.t. Piq 5 dl Clq 5 dx. 

Proof: If PI and 7 3  are given as: 

Pi = {t  I Pit 5 d l }  P2 = {t I P2t 1' d z }  

then the checking condition PI C P2 is equivalent to 
verifying that p?t* 5 d i  with j ranging over the number 
of rows of P2, where t* is the solution of the LP problem: 

m,"" dt, s.t. Pit 5 dl. (10) 

The explicit description of PI and P2 requires vertex 
representation of Pl and P,, which is generally difficult. 
Thus, a problem formulation in the original space where 
Pi and P, are expressed in edge representation (sa) is 
preferable. Since M ,  is a linear surjective map, the solu- 
tions of (10) are a subset of the solutions of 

m;x p',M:Miq Ola)  

s.t. Piq 5 dl ,  Ciq 5 4. Olb) 
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where j ranges over the number of rows of P,. 
Let zj' be the solution of (11). Then, 2; is the point 

in Pl, with an image under M,-'Ml, ( M - l  denoting the 
inverse mapping), which is the "worst" among all points 
on hyperplane p7,w = c, with respect to  containment in 
P2. For that point to be contained in P2, the LP problem: 

$(MT+Mlz; + ( I  - M:Mr)s) min 
3 

s.t. 

C ~ ( M , ? M ~ Z ~ *  + ( I  - M,?MT)s) 5 d, - C~Z; 
P,(MT+Mlzj* + ( I  - M:M,)s) 5 d, 

should have a feasible solution. And since optimization 
is only with respect t o  s, the above simplifies to: 

min S &.(I ~ MT+M,)s (12a) 

s.t. P,(I - M,fM,)s 5 dl - P,M,?M~Z;, (12b) 
C2(I - M:M,)s 5 d, - (C3 + C2M,'Ml)Zj* (12c) 

Theorem IV.l reveals the game-theoretic interpretation 
of simulation condition (7a), where system A, first picks 
the worst transition by maximizing (x*, U*,  y*), which 
must then be matched by A, by choosing U*. Figures 
1-2 provide a pictorial description of the procedure fol- 
lowed in the proof of Theorem IV.l. 

The riumber of LP problems that need to be solved is 
at  most 2n, where n, is the number of faces describing 
P,. In other words, the complexity of checking (7) is pro- 
portional to the complexity of the polyhedra describing 
the admissible regions for state and input. 

V.  A CHALLENGE PROBLEM 
This approach was applied to  an instance of the Elec- 

tronic Throttle Control (ETC) problem: a throttle con- 
trols the amount of air-fuel mixture that is sent to  the 
engine of a car. The throttle is electronically controlled 
by a PWM driven motor. In the main mode of operation 
of the system, the PWM signal is produced based on the 
output of a sliding mode controller, which takes as in- 
put the accelerator pedal position after being filtered by 
a fifth order linear filter. In the closed loop system, the 
throttle is tracking the reference signal produced by the 
driver. The ETC is modeled as a hybrid system with six 
different modes, distinguishing between the cases where 
the motor is receiving an input pulse or not and in which 
direction the throttle is moving. In each mode the states 
consists of nine continuous variables expressing the cur- 
rent and voltage of the motor, the angle and rotational 
velocity of the throttle, and the five states of a filter. 

Such a system should meet certain specifications, some 
of which can be formalized in terms of overshoot, rise time 
and steady error for the throttle angle. However, verify- 
ing these properties on the original system is too compu- 
tationally expensive due to  the relatively high dimension 

Fig. 1 .  The image of 'P, is contained in 'P2.  The abstract system 
can simulate the original. 

Pf 

Fig. 2.  
system cannot simulate the original. 

The image of P, is not contained in P2. The abstract 

of the continuous state vector which inhibits reachability 
computations. Thus, the system dimension in each mode 
is reduced using the proposed methodology and verifica- 
tion can proceed using a lower dimensional system (Fig- 
ure 4). If the property is verified on the abstract system, 
then it will also hold for the original system, since by the 
definition of simulation, the abstract system includes all 
the behaviors of the original. 

The dynamics of the original system in each mode, is 
described by: 

~ [ k  + 11 = Ai~[ lc ]  + Biu[k] ( 1 3 4  
(13b) C ~ X  5 d i ,  Ciu 5 d i ,  i = 1,. . . ,6 

where Ai, i = 1 , .  . . , 6  are 9 x 9 matrices and Bj, j = 
1 , .  . . , 6  are 9 x 3 matrices. Due to  lack of space, only the 
numerical expressions for A1 and B1 are given: 

3304 

B1 = 

-2.58,10-1 2.07,10-5 0 
2.U6,1U-1 -3.67.10-4 0 
1.16.10-5 7.00.10-5 0 
3.33,10-' 1.40.10-1 0 

0 U --8.13-10-9 

0 o - -1 .44 .10-~  
0 0 -3.77.10-10 
0 0 -7.84-10-11 

- 0  o 1.00.10-3 
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7 . 0 9 . 1 0 - ~  - 7 . 3 6 . 1 0 - ~  - 5 . 7 6 . 1 0 - 5  3.88.10-4 

7 . 3 0 . 1 0 - 2  2.46-10-2 l .0Z.10-3 -4 .28 ,10-3  

1 . 0 7 . 1 0 - 4  -4.43.10-6 1.00 1 . 0 0 . 1 0 - ~  

0 
0 
0 
0 

0 o l  

max 
min 

max 
min 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

6 . 1 4 . 1 0 - l  -1 .26 .10-1  - l . 0 6 . 1 0 - 2  -4  45.10-4 -1 .50 .10-5  

X I  x2 E 3  x4 x5 Xti 

7 .4  27.3 1.82 19 7 1.57 1.57.10' 

o o 0.25  0 0 -1.57.10' 

'111 '112 '113 2 7  28 2 9  

12 -1  1.57 1.57.108 1.57.10' 1.57.10' 

12 - 1  0 - l . 5 7 , 1 0 8  -1.57.10' -1.57.10' 

The specifications that the ETC system should meet con- 
cern the steady state error of the throttle angle, 23 as well 
as the rise time and overshoot. For a hybrid system with 
continuous dynamics of that size, reachability computa- 
tion is beyond the limits of state-of-the art computational 

The abstraction map is designed to preserve the infor- 
mation that is crucial for verification (23 state), as well 
as for the discrete transitions between the modes (91, 92 
guards), while compressing the state as much as possible. 
This is done by aggregating the states that appear in the 
guards into abstract states in a way that all transitions 
can still be detected: 

tools P71, [61, [gl, P61, [191, [SI. 

r o o  1 o 0 0  o 0 0 1  

" J  1 0 0  0 = 1 8 2?0 1 0 0 0 -7:2476 -3.0175 
-1  0 1.6387 -0.0836 0 0 332.3595 6.4914 0 

The abstracted dynamics in each mode is obtained ac- 
cording to [14]: 

~ [ l c  + 11 = Fiz[lc] + Giw[lc] ( 1 4 4  

(14b) C:Z d d t ,  C ~ W  - < d L ,  i = 1,. . , , 6  

where F, = HAiH+ and Gi = [HBi HAiKer(H)] , and 
matrices Gi being replaced by the minimum set of column 
vectors that span the range of each Gi. This procedure 
yields the following abstracted dynamics for mode 1: 

10-3 - - 8 . 1 0 - 1 0 - ~ ~  --9.65.10-~O 

1.00 -1.53.10-7 -1.82.10-6 

4 . 0 5 . 1 0 - 3  -1.50.10-4 1.00 -2 .40-10-1  

- 3 . 4 3 . 1 0 - '  1 .08 .10-3  1.78.10-3 1.00 

- 2 . 1 3 . 1 0 - ' ~  -1.30.10-6 5 . 1 6 . 1 0 ~ ~  1.00 

1.00 5.16.10-4 

1 . 1 8 . 1 0 - '  -9 .93 ,10-1  -2.59.10-3 -4.49.10-'  

- 9 . 9 3 . 1 0 - '  -1 .17 .10-1  -3.05.10-4 -5.26.10-9 

........................................................... ....' 

.............................................................. 2=0 %CO 

.... 

j 
............................................................... ' 

Fig. 3. The hybrid system modeling the original ETC System. 

The switching conditions are expressed by the guards 
These are algebraic expressions of the hybrid system. 

involving the continuous states (Figure 3): 

g1 = - X I  + 1.6423 - 8.36.  1 0 - 2 ~ 4  + 0.59sign(x4) 

- 2sign(20x3 + 2 4  - 77.233 - 3 . 0 2 ~ 9  - 5) 
+ 332x7 + 6.4928 

g2 =x4 

Fig. 4. The abstract hybrid system for ETC. 

The guards for the abstract ETC system now take the 
form (Figure 4): 

$1 = z4 + 0.59 - 2sign(z3 - 5), g 2  = z4 - 2sign(z3 - 5), 
$3 = z4 - 0.59 - 2sign(z3 - 5), $4 = z2 

Theorem IV.l can be used to compute the input and 
state constraint sets for the abstract system. The lin- 
ear programming formulation indicates that the abstract 
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dynamics in mode 1 of the hybrid system (14) with in- 
put and state constraints given below can simulate the 
dynamics of mode 1 in the original hybrid system (13): 

11 Abstract State and InDut Constraints 11 

II max II 3.36  I 19.748 I 307.27 I 125.80 1 1  
U I, H 

I1 max I1 25.986 I 28.234 I 27.4551 I 5.8554.10-2 I1 
I 1  I1 I I 1 U 1 min 1 -35.858 I -33.643 1 -18.134 I -5.MM44.10-2 1 
The simulation relation between (14) and (13) implies 

a containment of trajectories: the image of all trajectories 
of (13) under the linear abstraction map H ,  is a subset of 
the trajectories that can be generated by (14). Therefore, 
if all trajectories of the abstraction (14) satisfy the specifi- 
cation, so will the trajectories of the original system (13). 
The problem then reduces to verifying the specifications 
on the lower dimensional hybrid system (14), a task that 
is within the computational capabilities of available tools. 

VI. CONCLUSIONS 
In this paper we establish necessary and sufficient con- 

ditions for simulation relations between two constrained, 
discrete-time linear systems. The simulation conditions 
derived are expressed in a set-inclusion form since con- 
straints do not allow simple algebraic descriptions. We 
provide efficient computational means of checking those 
conditions based on a linear programming formulation 
which in addition reveals the intrinsic game-theoretic na- 
ture of simulation relations. Our computational approach 
gives a tool for appropriately constraining one of the two 
systems in order to achieve the desired simulation rela- 
tion. Furthermore, the computational tool provided by 
the algorithm allows one to actually measure how close 
any two systems are to  being similar and help addressing 
issues such as robustness of simulation relations, which is 
an area for further research. 
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