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Density Functions for Navigation-Function-Based Systems

Abstract
In this paper, we present a scheme for constructing density functions for systems that are almost globally
asymptotically stable (i.e., systems for which all trajectories converge to an equilibrium except for a set of
measure zero) using navigation functions (NFs). Although recently proven converse theorems guarantee the
existence of density functions for such systems, such results are only existential and the construction of a
density function for almost globally asymptotically stable systems remains a challenging task. We show that
for a specific class of dynamical systems that are defined based on an NF, a density function can be easily
derived from the system’s underlying NF.
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Density Functions for Navigation-Function-Based Systems

Savvas G. Loizou, Member, IEEE,
and Ali Jadbabaie, Senior Member, IEEE

Abstract—In this paper, we present a scheme for constructing density
functions for systems that are almost globally asymptotically stable (i.e.,
systems for which all trajectories converge to an equilibrium except for a
set of measure zero) using navigation functions (NFs). Although recently-
proven converse theorems guarantee the existence of density functions for
such systems, such results are only existential and the construction of a
density function for almost globally asymptotically stable systems remains
a challenging task. We show that for a specific class of dynamical systems
that are defined based on an NF, a density function can be easily derived
from the system’s underlying NF.

Index Terms—Almost gas systems, density functions, dual Lyapunov
techniques, navigation functions (NFs).

I. INTRODUCTION

For more than a century, Lyapunov’s method has been the major tool
used in stability analysis of dynamical systems. Recently, however, a
new scheme was proposed by Rantzer [1], which can be thought of
as a “dual” to Lyapunov’s method. Instead of checking for a positive
definite "energy-like” function whose directional derivative along the
trajectories of the dynamical system is negative definite, in Rantzer’s
approach, one searches for a positive “density function” such that the
divergence of the vector field× the density function is positive, almost
everywhere. This scalar function has a physical interpretation as the
stationary density of a substance that is generated in all points of the
state space and flows along the system trajectories. With the stationary
density bounded everywhere except at a singularity at the equilibrium,
the attractivity of this equilibrium is guaranteed for almost all initial
conditions. This is, of course, a weaker result than global asymptotic
stability. However, it is a powerful tool for controller synthesis as well
as controller composition. This is due to the fact that the synthesis con-
dition for the almost global stability criterion is convex [2]. As a result
(at least in the case of polynomial vector fields), convex optimization
can be used to search for density functions and the controller simul-
taneously. Furthermore, the convexity argument allows us to compose
different controllers and be able to find a density for the composed
system. This implies that once we have constructed controllers achiev-
ing certain behaviors for our system and we have density functions for
those controllers, we can do a parallel composition of behaviors by us-
ing a convex combination of the controllers, appropriately weighted by
their density function rates [3]. This property can be very useful, e.g., in
tasks like multiagent navigation with connectivity constraints, modular
composition of complex navigation tasks from simple primitives, and
generally navigation tasks that require secondary motion tasks to be
run in parallel.

Since the pioneering work of Rantzer, several authors have been able
to prove different results analogous to the ones available for asymptotic
stability. For example, Rantzer has shown in [2] that given a Lyapunov
function which proves global asymptotic stability, one can construct
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a density function by using the powers of the reciprocal of the Lya-
punov function. Also, Monzón [4] and Rantzer [2] have been able to
prove converse theorems for almost global stability, similar to converse
theorems that guarantee existence of a Lyapunov function for asymp-
totically stable systems. In [2], Rantzer has proven that existence of
density functions is a necessary and sufficient condition for systems
that are almost globally stable. Unfortunately, similar to the converse
Lyapunov theorems, such results are only existential and cannot be
used to construct density functions. Some remarks on the structure of
density function candidates are discussed in [5], where it is pointed
out that the C1 continuity requirements on the density functions by
converse theorems pose strong constraints in the case of systems with
negative divergence in the vicinity of their saddle points.

The purpose of this paper is to show that in certain special cases,
such construction is indeed possible. Specifically, we show that for
navigation vector fields (NVFs) derived by appropriately transforming
the vector field generated by a Rimon–Koditschek navigation function
(NF) [6], one can readily construct a density function using the NF.

NFs have been proven extremely useful for rigorously constructing
paths that navigate a kinematic robot in a spherical workspace while
avoiding spherical obstacles. The construction procedure utilizes Morse
theory [7] to construct an artificial potential function, which is zero at
the goal state and uniformly maximal at the boundary of the workspace
and obstacles. Furthermore, all the critical points of this potential are
designed to be saddle points except for the goal state, where the critical
point is stable. By constructing a gradient flow based on this potential,
it is possible to guarantee that, for almost all initial conditions, the
trajectories converge to the goal state while avoiding obstacles.

One can immediately notice parallels between the density function
and an NF. This similarity leads us to ask whether it is possible to
construct a density function from an NF. We will show that the answer
to this question is indeed positive.

The rest of the paper is organized as follows: In Section II, we present
some preliminary definitions. Section III presents a review of NFs while
Section IV reviews some results on dual Lyapunov Techniques. Our
main result is presented in Section V. A simple example is presented
in Section VI and the paper concludes with Section VII.

II. PRELIMINARIES

A. Definitions

Let V : M → R be a smooth function and M ⊂ R
n a smooth man-

ifold with boundary. A point p ∈ M is called a critical point of V if
∇V (p) = 0, where

∇V
�
=

[
∂V

∂x1
. . .

∂V

∂xn

]T

is the gradient of V . The divergence of V is defined as

div(V ) ≡ ∇ · V �
=

∂V

∂x1
+ · · ·+ ∂V

∂xn

.

A critical point p is called nondegenerate iff the matrix HV (p)
�
=

[∂2V /∂xi∂xj ] is nonsingular. The matrix HV (·) is called the Hessian
of V where (x1 , . . . , xn ) is a coordinate system. HV (·) is well known
to be symmetric and the nondegeneracy of p does not depend on the
chosen coordinate system [7]. A smooth function V is called a Morse
function if all its critical points are nondegenerate. Function V is called
polar if it has a unique minimum in M and admissible if it attains the
unit value uniformly across the boundary of M , that is ∂M = ϕ−1 (1).
The boundary of M is denoted by ∂M . The interior ofM is denoted by
◦
M. Let the function f (x) = [f1 (x), . . . fn (x)] denote a vector field.

0018-9286/$25.00 © 2008 IEEE
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The matrix Jf (x) whose ijth element is

[Jf (x)]ij =
∂fi

∂xj
(x)

is called the Jacobian of the vector field f at x. Given any x0 ∈ R
n ,

we denote by φt (x0 ), for t ≥ 0, the solution of ẋ(t) = f (x(t)) with
x(0) = x0 . We denote with Cn (A, B) the set of Cn continuous func-
tions mapping elements of A to elements of B.

III. NAVIGATION FUNCTIONS

NFs [6] are a special category of potential functions. Their negated
gradient vector field is attractive toward the goal configuration and
repulsive with respect to obstacles. Consider a system described by
a kinematic model as q̇ = u. The basic idea behind NFs is to use a
control law of the form u = −∇ϕ(q), where ϕ(q) is an NF, to drive
the system to its desired configuration.

It has been shown (Koditschek and Rimon [6]) that strict global
navigation (i.e., with a globally attracting equilibrium state) is not
possible and a smooth vector field on any sphere world, which has a
unique attractor, must have at least as many saddles as obstacles. A
sphere world is a compact connected subset of En whose boundary is
formed from the disjoint union of a finite number of (n − 1) spheres.
Furthermore, the same authors [6] show that navigation properties
are invariant under diffeomorphisms; hence, any world that can be
diffeomorphically transformed to a sphere world can accept an NF [8]–
[10]. Recent extensions of NFs to the multiple-disk-shaped robots case
have been independently proposed by the first author [11] and by the
authors in [12].

Formally, an NF is defined as follows:
Definition 1: [6] Let F ⊂ En be a compact connected analytic

manifold with boundary. A map ϕ : F → [0, 1], is an NF if it is:
1) analytic on F ;
2) polar on F , with minimum at qd ∈

◦
F ;

3) Morse on F ;
4) admissible on F .
The intuition behind property 1 of Definition 1 is that it is preferable

to have an analytic form of the gradient of the vector field to encode
actuator commands instead of “patching together” closed-form expres-
sions on different portions of space, in order to avoid branching and
looping in the control algorithm.

By using smooth vector fields, one cannot do better than almost
global navigation [6]. As a result of using a polar function on a compact
connected manifold with boundary, all initial conditions will either be
brought to a saddle point or to the unique minimum: qd .

The requirement in Definition 1 that an NF be a Morse function,
establishes that the initial conditions that bring the system to saddle
points are sets of measure zero [7]. In view of this property, all initial
conditions other than sets of measure zero are brought to qd .

The last property of Definition 1 guarantees that the resulting vector
field is transverse to the boundary of F , which establishes that the
generated trajectories are collision-free.

IV. DUAL LYAPUNOV TECHNIQUES

The dual Lyapunov criterion for convergence introduced by Rantzer,
can be summarized in the following theorem:

Theorem 1: [1] Given the equation ẋ = f (x(t)), where f ∈
C1(Rn , Rn ) and f (0) = 0, suppose there exists a nonnegative
ρ ∈ C1(Rn \ {0} , R) such that ρ(x)f (x)/ |x| is integrable on
{x ∈ R

n : |x| ≥ 1} and [∇ · (fρ)] (x) > 0 for almost all x. Then, for
almost all initial states x(0), the trajectory x(t) exists for t ≥ 0 and

tends to zero as t →∞. Moreover, if the equilibrium x = 0 is stable,
then the conclusion remains valid even if ρ takes negative values.

The converse result regarding the necessary and sufficient conditions
for almost global stability of nonlinear systems, is stated next.

Theorem 2: [2] Given f ∈ C2(Rn , Rn )), suppose that the system
ẋ = f (x) has a stable equilibrium in x = 0 and no solutions with finite
escape time. Then, the following two conditions are equivalent:

1) For almost all initial states x(0), the solution x(t) tends to zero
as t →∞.

2) There exists a nonnegative ρ ∈ C1(Rn \ {0} , R), which is
integrable outside a neighborhood of zero and such that
[∇ · (fρ)] (x) > 0 for almost all x.

V. NAVIGATION VECTOR FIELDS

We define an NVF as a vector field that has navigation-like proper-
ties. These properties are captured in the following definition:

Definition 2: LetF ⊂ En be a compact connected analytic manifold
with boundary. The smooth manifold map f : F → TF is an NVF if:

1) the origin of system ẋ = f is almost GAS;
2) f is transverse across ∂F .
The aforesaid definition is motivated by the properties of NFs. Ob-

viously −∇ϕ is an NVF since it satisfies both requirements. Clearly,
the first requirement establishes the almost everywhere convergence
of the system ẋ = f while the second property (transversality) estab-
lishes that the vector field is perpendicular on ∂F guaranteeing that
any trajectory will be safely brought to the origin without collisions.
Our next step is to propose a construction of such a vector field that we
will call a “canonical” NVF.

A. Construction

Let λm in , i (xs,i ) be the minimum eigenvalue of Hϕ (xs,i ) at the
saddle point xs,i . The corresponding unit eigenvector is ui . Let di (x) =
‖x− xs,i‖2 be the squared metric distance of point x from the saddle
point i for i ∈ {1 . . . ns} where ns is the number of saddle points. Let
I denote the n × n identity matrix and n the workspace dimension.
We can now define the matrix Ui = uiu

T
i + εI for i ∈ {1 . . . ns},

where 0 < ε ≤ 1. Since the matrix uiu
T
i is positive semidefinite, the

matrix Ui will be positive definite for any positive ε. Define Un s +1 =
Un s +2 = I. A metric of the distance from the destination configuration
can be encoded by using the NF, so we can define dn s +1 = ϕ, and
since the NF ϕ(∂F) = 1, we can encode a metric of the distance
from the workspace boundary by denoting dn s +2 = 1 − ϕ. Define
d̄j =

∏n s +2
i=1 i �= j

di . Then Dϕ is defined as

Dϕ = µ

n s +2∑
i=1

d̄i

d̄i + di

Ui (1)

where µ is a positive constant. The function d̄i /d̄i + di is an analytic
switch that takes values between zero and 1. The properties of the
matrix Dϕ are provided in the following:

Lemma 1: The matrix Dϕ (x) defined in (1) has the following
properties

1) a) Dϕ (xs,i ) = µUs,i , b) Dϕ (∂F) = µI , c) Dϕ (0) = µI ;
2) a) (∂/∂x)Dϕ (xs,i ) = 0, b) (∂/∂x)Dϕ (0) = 0;
3) Dϕ > 0;
4) qT Dϕ q ≤ 2(ns + 2)µ ‖q‖2 , ∀q ∈ R

n .
Proof: Property 1: a) By direct computation, we have that, at the

saddle point i, di (xs,i ) = 0, d̄i �= 0, d̄j = 0 for j �= i. Hence,
Dϕ (xs,i ) = µUs,i ;

b) At the workspace boundary, it holds that ϕ(∂F) = 1. Hence,
dn s +2 = 0, dn s +2 �= 0 and dj = 0, j �= ns + 2 and Dϕ (∂F) = µI ;
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c) At the origin ϕ = 0. Hence, dn s +1 = 0, dn s +1 �= 0 and dj = 0,
j �= ns + 1; therefore, Dϕ (0) = µI .

Property 2: a, b) For this property, observe that d′i (xs,i ) = 0 for i ∈
{1 . . . ns} where f ′(x) = ∂ f (x )

∂ x
and d′n s +1 (0) = 0 since∇ϕ(0) = 0.

Also, note that
∂

∂x

d̄i

d̄i + di

=
d̄′i di − d̄i d

′
i

(d̄i + di )2
.

Hence, at xs,i and at 0, it will hold that di = d′i = 0 and d̄j = d̄′j = 0
for j �= i since they will either contain di or d′i ; therefore, Dϕ = 0 at
those locations.

Property 3: Since the matrix uiu
T
i is a matrix with one eigenvalue

equal to unity and the rest eigenvalues zero, it follows that the matrix
Ui = uiu

T
i + εI is positive definite for ε > 0. Since the matrix Dϕ is

the sum of positive definite matrices multiplied by positive scalars, it
will still be positive definite.

Property 4: First, observe that

0 ≤ d̄i

d̄i + di

≤ 1.

Multiplying Dϕ left and right with the unit vectors q̂, we get

q̂T Dϕ q̂ = µ

n s +2∑
i=1

d̄i

d̄i + di

q̂T Ui q̂ ≤ µ

n s +2∑
i=1

q̂T Ui q̂

≤ µ

n s +2∑
i=1

(1 + ε) ≤ 2(ns + 2)µ.

Multiplying both sides by ‖q‖2 , we get the result

qT Dϕ q ≤ 2(ns + 2)µ ‖q‖2 , ∀q ∈ R
n .

The main feature of the matrix Dϕ is that it allows for local modifica-
tions of the vector field in the vicinity of the saddle points. Without loss
of generality, we assume in the following analysis that the destination
configuration of the NF is the origin.

B. Main Result

The following is the main result of this paper
Proposition 1: Consider the system

ẋ = −Dϕ∇ϕ (2)

with Dϕ (x) constructed according to (1). Then, there exists an a0 > 0
and an ε0 > 0 such that the function ρ = ϕ−a is a density function for
system (2) for any a ≥ a0 and 0 < ε ≤ ε0 .

Proof: Our analysis will be performed for the 2-D case, but the
results can be readily extended to higher dimensions. The first ob-
servation is that the proposed density function is integrable outside a
neighborhood of zero. This can be inferred by the fact that ϕ(q) is
analytic and bounded away from zero for q ∈ F − B(0). By construc-
tion, ρ is positive definite. Setting f = −Dϕ∇ϕ from the divergence
criterion, we get

∇ · (ρf ) = ∇ρf + ρ∇ · (f ).

We have that
∇ρ = − a

ϕa+1 ∇ϕ.

Hence

∇ · (ρf ) =
1

ϕa+1

(
a∇T ϕDϕ∇ϕ − ϕ∇ · (Dϕ∇ϕ)

)
. (3)

Expanding the term∇ · (Dϕ∇ϕ) we get

∇ · (Dϕ∇ϕ) = ∇ ·
([

d11ϕx + d12ϕy

d21ϕx + d22ϕy

])
where the notations fx and fxx denote the first and second derivatives
of f with respect to x and dij is the ijth element of Dϕ . For an NF,
all critical points, except the origin, are saddle points [6]. At a saddle
point xs,i , we have that∇ϕ(xs,i ) = 0; therefore, the terms that contain
first-order derivatives of ϕ are canceled. Also

ϕxx + ϕy y = λm in + λm ax

since the trace of the Hessian is invariant. Thus, we have the following

∇ ·
([

d11ϕx + d12ϕy

d21ϕx + d22ϕy

])
=d11ϕxx +d12ϕy x + d21ϕxy + d22ϕy y .

Note that by Lemma 1, Property 1a), we have that, at the saddle point

Dϕ (xs,i ) = µuiu
T
i + εµI.

Hence, d11 = µ(ux
i )2 + εµ, d21 = d12 = µ(ux

i )(uy
i ), and d22 =

µ(uy
i )2 + εµ where ux

i and uy
i are x and y components of the vec-

tor ui . Hence, ∇ · (Dϕ∇ϕ) (xs,i ) can be written as

∇ · (Dϕ∇ϕ) (xs,i ) = µuT
i Hϕ (xs,i )ui + εµ(λm in , i + λm ax , i ).

Since by construction ui is the eigenvector corresponding to the min-
imum eigenvalue of Hϕ (xs,i ), the quadratic form uT

i Hϕ (xs,i )ui =
λm in , i ; hence, we get

∇ · (Dϕ∇ϕ) (xs,i ) = µλm in , i + εµ(λm in , i + λm ax , i ).

Since xs,i is a saddle point, the minimum eigenvalue λm in , i of the
Hessian is necessarily negative (existence of unstable submanifold).
By setting

ε <

∣∣∣∣ λm in , i

λm in , i + λm ax , i

∣∣∣∣ �= ε0 , i

and in combination with (3), exactly on the saddle points

∇ · (ρf )(xs,i ) = −µλm in ,i

(
1 ± ε

ε0 , i

)
> 0.

Close to the destination configuration, both∇ϕ(0) = 0 and ϕ(0) =
0; therefore, we need to analyze both terms of (3) to understand its
behavior. Noting that (see [6], Proof of Proposition 3.2) Hϕ (0) =
2β−1/k (0)I and from Lemma 1, property 1, we have that Dϕ (0) = µI ,
and from property 2, that

∂

∂x
Dϕ (0) = 0

the Taylor expansions of ϕ and Dϕ around the origin are as follows

ϕ(x) = β−1/k (0) ‖x‖2 + O
(
‖x‖3)Dϕ (x) = µI + O

(
‖x‖2) .

For the term ∇T ϕDϕ∇ϕ, we obtain

∇T ϕDϕ∇ϕ = 4µβ−2/k ‖x‖2 + O(‖x‖3 )

and for the term ϕ∇ · (Dϕ∇ϕ), we obtain

ϕ∇ · (Dϕ∇ϕ) = 4µβ−2/k ‖x‖2 + O(‖x‖3 ).

From (3), we get that

ϕa+1∇ · (ρf ) = (a − 1) 4µβ−2/k ‖x‖2 + O(‖x‖3 ).
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So, choosing a > 1 will render ∇ · (ρf ) > 0 in a neighborhood of
zero.

We have until now established the positivity of (3) in the vicinity
of critical points. To establish the global positivity of (3), since Dϕ is
positive definite (property 3 in Lemma 1), we require that

a >
maxx∈Fϕ∇ · (Dϕ∇ϕ)

minx∈{F−Bε (C)} {∇T ϕDϕ∇ϕ‖
�
= a1 .

Since the workspace is bounded and the functions Dϕ , ϕ are smooth,
existence of a finite a1 is guaranteed. Let ε1 = mini∈{1 , . . .n s }ε0 , i . The
positivity of the divergence criterion of Theorem 1 is satisfied by
choosing a0 = max {1, a1} and ε0 = min {1, ε1}, and the result is
proven. �

We can now state some properties of the proposed vector field.
Proposition 2: The vector field f = −Dϕ∇ϕ defined in Proposition

1 with 0 < ε < ε0 , where ε0 is defined in the proof of Proposition 1,
is an NVF.

Proof: By Proposition 1, choosing an a ≥ a0 , the function ρ = ϕ−a

is a density function for (2).
Applying the dual criterion (Theorem 1) establishes the almost GAS

property of ẋ = f .
For the transversality property we have that by property 1 of

Lemma 1, it holds that Dϕ (∂F) = µI . Hence, (2) becomes ẋ =
−µ∇ϕ since µ > 0 and by property 4 of Definition 1 we have that
the vector field on the workspace boundary is transverse. �

Some additional properties of the vector field−Dϕ∇ϕ are provided
by the following.

Corollary 1: The NVF established in Proposition 2 assuming appro-
priate choice of parameters, vanishes only at the critical points of ϕ
while its Jacobian is nondegenerate over the critical set of ϕ

Proof: Since by Property 3 of Lemma 1, Dϕ > 0, the vector field
vanishes only when ∇ϕ = 0, which is true only at the set of critical
points of ϕ. We have that

Dϕ∇ϕ =

[
d11ϕx + d12ϕy

d21ϕx + d22ϕy

]
.

Taking the Jacobian at a critical point, since ϕx = ϕy = 0, we have
that

∂

∂x
(Dϕ∇ϕ) =

[
d11ϕxx + d12ϕxy d11ϕxy + d12ϕy y

d21ϕxx + d22ϕy x d21ϕxy + d22ϕy y

]
= Dϕ Hϕ .

We know by the Morse property of ϕ that det(Hϕ ) �= 0 at every
critical point. By using the relation det(AB) = det(A)det(B) we
only need to prove that det(Dϕ ) �= 0 at the critical points. From
Property 3 of Lemma 1, Dϕ > 0, so the determinant is always positive
and the Jacobian is nondegenerate at the critical points. �

Due to the similarities of −Dϕ∇ϕ with ∇ϕ and the capability
of −Dϕ∇ϕ to maintain the (Morse) index of the initial vector field
while enforcing a positive definite Jacobian at the vicinity of the saddle
points, we will call the vector field −Dϕ∇ϕ a “canonical” NVF and
the system that this vector field is applied to a “canonical” navigation
system.

A comparison of the convergence properties of canonical navigation
systems with NF-based systems is provided by the following result that
will allow us to reason about the NF-based system by examining the
canonical system.

Proposition 3: Consider the system

ẋ = −K∇ϕ (4)

where Ka positive gain. Then, there exists a 0 < µ ≤ µ0 such that for
almost all the same initial conditions x(4) (0) = x(2) (0), the trajectories
of (4) are bounded by the trajectories of (2) as follows: ϕ(x(4) (t)) ≤
ϕ(x(2) (t)), ∀t ≥ 0. Moreover, there exists a spherical neighborhood
B(0) around the origin for which, for all x(4) (0) = x(2) (0) ∈ B(0), it
holds that ∥∥x(4) (t)

∥∥ ≤ ∥∥x(2) (t)
∥∥ ∀t ≥ 0.

Proof: Taking the time derivative of ϕ across the trajectories of
system (4), we get:

ϕ̇(4) = −K
∥∥∇ϕ(4)

∥∥2
. (5)

The time derivative of ϕ across the trajectories of (2) is ϕ̇(2) =
−∇ϕT Dϕ∇ϕ ≥ −2(ns + 2)µ ‖∇ϕ‖2 by use of Property 4 of
Lemma 1. Setting µ = µ1

K
2(n s +2) with 0 < µ1 < 1, we get

ϕ̇(2) > −µ1K
∥∥∇ϕ(2)

∥∥2
. (6)

To prove the first part of the Proposition, we need to establish
that ϕ̇(4) (x(4) (t)) ≤ ϕ̇(2) (x(2) (t)) for all t ≥ 0 given that x(4) (0) =
x(2) (0). By (5) and (6), we have for t = 0 that

ϕ̇(2) (x(2) (0)) > −µ1 ϕ̇(4) (x(4) (0)). (7)

By smoothness arguments, there exists a neighborhood of Bε (x(2) (0))
around x(2) (0) such that the inequality (7) still holds as long as the
initial conditions are not exactly on the saddle point. So, in this neigh-
borhood, we have that ϕ(x(4) (t)) ≤ ϕ(x(2) (t)), t ∈ [0, δ(ε)] for some
increasing function δ(·). By the selection of µ1 , we have that

‖Dϕ∇ϕ‖ ≤ K ‖∇ϕ‖ .

Hence, we can assert that x(4) will exit Bε (x(2) (0)) first. Let

gm ax (a) = max
x∈ϕ−1 (a )

‖∇ϕ(x)‖

and
gm in (a) = min

x∈{ϕ−1 (a )−Bε (S)}
‖∇ϕ(x)‖

where S is the set of saddle points. Since the reachable set of initial
conditions, excluding the setBε (x(2) (0)) is bounded away from saddle
points, gm in is nonzero. Since the workspace is bounded, and ϕ is
smooth, the maximum value of ∇ϕ is finite. Hence, function r(a) =
(gm in (a)/gm ax (a)) is well defined everywhere, except at a = 0, where
the limit exists and is

lim
x→0

r(x) =
λm in (0)
λm ax (0)

where λm in and λm ax are the minimum and maximum eigenvalues of
the Hessian of ϕ. This can be verified by considering that the origin
is a nondegenerate critical point, hence a quadratic one for appropriate
coordinates near the origin ϕ(x) = λm inx2

1 + λm axx2
2 . By setting

µ1 ≤ min
a∈(0 ,1]

r(a)
�
= µ2

we have that whenever ϕ(x(4) (t)) = ϕ(x(2) (t)), system (4) will have
a higher velocity than system (2). Hence, ϕ̇(x(4) (t)) < ϕ̇(x(2) (t)).
This means that as long as at some t it is true that ϕ(x(4) (t)) <
ϕ(x(2) (t)), then it be true for all t′ ≥ t. However, since x(4) will exit
first Bε (x(4) (0)), we have that

ϕ
(
x(4) (t)

)
≤ ϕ
(
x(2) (t)

)
∀t ≥ 0.
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Fig. 1. (a) Vector field (normalized) near the saddle point for an original Rimon–Koditschek. (b) A canonical vector field. (c) Trajectories corresponding to the
same initial conditions for a system under the influence of an original Rimon–Koditschek vector field [system (8)]. (d) A canonical vector field (system (9)).

Now let ρm ax be the maximum radius of a disk centered at the
origin that has no intersections with obstacles. Then, this circle contains
no saddle points, since saddles occur between workspace boundary
and obstacles. Alternatively, the radius ρm ax can be fixed so that the
circle is bounded away from saddle points and obstacles. Moreover, we
constrain ρm ax even more such that the Hessian of ϕ in the disk defined
by ρm ax is everywhere positive definite and its minimum eigenvalue is
greater than λ0 > 0. Now since the Hessian is positive definite, the level
sets of ϕ inside the circle are convex. Moreover, the nonzero minimum
eigenvalue establishes that intersections of level sets of ϕ with circles
centered at the origin will be performed at obtuse angles. Hence, the unit
vector of the gradient−∇̂ϕ will have a positive projection on the inside
pointing unit vector that is perpendicular to the circle’s circumference.
Denote the value of this projection by p(x). For ρ ≤ ρm ax , define

g′m ax (ρ) = max
‖x‖= ρ

‖∇ϕ(x)‖ and g′m in (ρ) = min
‖x‖= ρ

‖p(x)∇ϕ(x)‖ .

Obviously g′m ax (ρ) and g′m in (ρ) are nonzero except at the origin and
are bounded due to smoothness and compactness arguments. Hence,
the function

r′(ρ) =
g′m in (ρ)
g′m ax (ρ)

is well defined, finite, and nonzero everywhere, except at a = 0, where
the limit exists and is

lim
x→0

r′(x) =
λm in (0)
λm ax (0)

.

By setting

µ1 ≤ min
ρ∈(0 ,ρm a x ]

r′(ρ)
�
= µ3

we have that whenever ‖x(4) (t)‖ = ‖x(2) (t)‖, system (4) will have a
velocity whose projection on the perpendicular of the circle’s circum-
ference will be higher than the velocity of system (2). This means that
as long as at some t it is true that ‖x(4) (t))‖ ≤ ‖(x(2) (t))‖, then it will
be true for all t′ ≥ t. However, since the initial conditions are the same,
we have that

‖x(4) (t)‖ ≤ ‖x(2) (t)‖ ∀t ≥ 0.

Choosing

µ0 =
K

2(ns + 2)
min {1, µ2 , µ3}

completes the proof. �

VI. EXAMPLE

To demonstrate the navigation properties of the canonical navigation
field, we present in this section a simple example for navigation in a
spherical world with one obstacle.

The workspace is centered at the origin which is the destination
configuration and its radius rw = 1, while the obstacle is centered at
xo = ( 1

2 , 0) and its radius is ro = 1
6 units [see Fig. 1(c)]. A Rimon–

Koditschek NF ϕ is constructed on this workspace with tuning param-
eter k = 5. The NF is given by

ϕ(x) =
‖x‖2(

‖x‖2k +
(
r2

w − ‖x‖
2) (‖x− xT

o ‖
2 − r2

o

))1/k
.

The unique saddle point is located at xs ≈ (0.74, 0.0). The Hessian at
xs is evaluated as

Hϕ (xs ) ≈
[

8.51 0.0
0.0 −1.98

]
.

Its eigenvalues are λm in ,1 (xs ) ≈ −1.98 with corresponding eigenvec-
tor u1 = (0, 1) and λ2 (xs ) ≈ 8.51 with corresponding eigenvector
v2 = (1, 0). Following the construction process in Section V-A, we
create the matrix Dϕ from (1) with ε = 0.1 and µ = 1.

The vector field corresponding to the Rimon–Koditschek NF for the
system

ẋ = −∇ϕ(x) (8)

in the saddle point neighborhood, is depicted in Fig. 1(a). The vector
field corresponding to the canonical navigation field for the system

ẋ = −Dϕ (x)∇ϕ(x) (9)

is depicted in Fig. 1(b). As can be seen in the modified vector field in
Fig. 1(b), the vectors belonging to the subspace corresponding to the
negative eigenvalue at the saddle point have an increased magnitude.
This is due to the effect of the Dϕ operator that tends to exaggerate
the vectors lying in that subspace, forcing the divergence of −Dϕ∇ϕ
to attain positive values in the neighborhood of the saddle point, as
expected by our analysis in the previous section.

Fig. 1(c) depicts the trajectories of the system (8) based on the
Rimon–Koditschek NVF, while in Fig. 1(d), we can see the trajectories
of the system (9) which is under the influence of the canonical NVF.
The initial conditions are the same for both trajectory sets. Observe that
the canonical NVF enjoys the same navigation properties as the original
(i.e., safety and convergence), while the net effect of the Dϕ operator
is to locally enhance (at the saddle point neighborhood) the vector
field in the submanifold defined by the eigendirection of the negative
eigenvalue at the saddle point, making the system depart faster from
the stable submanifold.
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VII. CONCLUSION

We have derived a density function for an NF-based system. The
function is derived for a transformed, smooth vector field that enjoys
the navigation properties of the original NF vector field. Under some
assumptions, the convergence results derived on the transformed vector
field are propagated to the original. This result will enable exploitation
of several features of dual Lyapunov techniques to robotic navigation.
Initial results from applying this approach to robotic navigation are
reported in [13]. Further research includes finding density functions
that are directly applicable to the primary navigation system.
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Output Feedback Control of Bilinear Systems
via a Bilinear LTR Observer

Min-Shin Chen
and Chi-Che Chen

Abstract—In the literature, most observer-based output feedback con-
trols for bilinear systems are only applicable to open-loop (neutrally) stable
systems. This paper proposes a new observer-based output feedback con-
trol that can be applied to open-loop unstable systems. The key component
of the new control is an exponentially stable bilinear loop transfer recovery
(LTR) observer that derives from the linear LTR observer.

Index Terms—Bilinear observer, bilinear system, dyadic bilinear system,
loop transfer recovery (LTR) observer, output feedback control.

I. INTRODUCTION

Bilinear systems exist in many physical phenomena that are of con-
siderable interest to human activities [1], [2]. Recent applications of
bilinear system control include heating, air conditioning control [3],
power converter control [4], electromagnetic actuator control [5], and
quantum system control using finite-dimensional bilinear models [6] or
infinite-dimensional bilinear models [7], [8]. Even though a variety of
control designs have been developed for bilinear systems, most of them
are based on state feedback [9]–[15]. If only part of the state variables
are accessible for measurement, one has to resort to output feedback
control. Unfortunately, most output feedback controls in the literature
require that the open-loop bilinear system be stable [16], neutrally sta-
ble [17] or dissipative [18]. The reason for requiring this open-loop
stable condition is that they all assume the stabilizing control signal
be of small magnitude so that their bilinear observer designs can be
successful. There are a few bilinear observer designs proposed in the
literature for the open-loop unstable bilinear system without impos-
ing the small control condition. For example, an open-loop dead-beat
observer for state estimation of open-loop unstable bilinear systems
is suggested in [19], but the system must satisfy the existence con-
dition of a control Lyapunov function [20]. In [21] and [22], bilinear
observers can be constructed with the state estimation error converg-
ing independent of the control input under a set of system matrix
equalities.

This paper proposes a new output feedback control for unstable
bilinear systems. The key element is a bilinear loop transfer recov-
ery (LTR) observer that derives from the linear LTR observer [23].
The new bilinear LTR observer is exponentially stable without impos-
ing the small control condition, the existence of a control Lyapunov
function, or extra matrix equalities on the system matrices. Hence,
it relaxes the stringent conditions imposed by previous bilinear ob-
server designs. Then, by combining this new bilinear LTR observer
with the state feedback division control in [15], one obtains a stabiliz-
ing output feedback control for bilinear systems that may be open-loop
unstable.

The remainder of this paper is arranged as follows. Section II intro-
duces the new bilinear LTR observer. Section III presents the observer-
based output feedback control, and its stability analysis. Section IV
concludes the paper.
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