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Targeted Marketing and Seeding Products with Positive Externality

Abstract
We study a strategic model of marketing in social networks in which two firms compete for the spread of their
products. Firms initially determine the production cost of their product, which results in the payoff of the
product for consumers, and the number and the location of the consumers in a network who receive the
product as a free offer. Consumers play a local coordination game over a fixed network which determines the
dynamics of the spreading of products. Assuming myopic best response dynamics, consumers choose a
product based on the payoff received by actions of their neighbors. This local update dynamics results in a
game-theoretic diffusion process in the network. Utilizing earlier results in the literature, we derive a lower
and an upper bound on the proportion of product adoptions which not only depend on the number of initial
seeds but also incorporate their locations as well. Using these bounds, we then study which consumers should
be chosen initially in a network in order to maximize product adoptions for firms. We show consumers should
be seeded based on their eigenvector centrality in the network. We then consider a game between two firms
aiming to optimize their products adoptions while considering their fixed budgets. We describe the Nash
equilibrium of the game between firms in star and k-regular networks and compare the equilibrium with our
previous results.
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Targeted Marketing and Seeding Products with Positive Externality

Arastoo Fazeli† Ali Jadbabaie†

Abstract— We study a strategic model of marketing in social
networks in which two firms compete for the spread of their
products. Firms initially determine the production cost of
their product, which results in the payoff of the product for
consumers, and the number and the location of the consumers
in a network who receive the product as a free offer. Consumers
play a local coordination game over a fixed network which de-
termines the dynamics of the spreading of products. Assuming
myopic best response dynamics, consumers choose a product
based on the payoff received by actions of their neighbors.
This local update dynamics results in a game-theoretic diffusion
process in the network. Utilizing earlier results in the literature,
we derive a lower and an upper bound on the proportion
of product adoptions which not only depend on the number
of initial seeds but also incorporate their locations as well.
Using these bounds, we then study which consumers should
be chosen initially in a network in order to maximize product
adoptions for firms. We show consumers should be seeded
based on their eigenvector centrality in the network. We then
consider a game between two firms aiming to optimize their
products adoptions while considering their fixed budgets. We
describe the Nash equilibrium of the game between firms in
star and k-regular networks and compare the equilibrium with
our previous results.

I. INTRODUCTION

Many recent studies have investigated the role of social
networks in individual purchasing decisions [1]–[3]. As a
result, marketing firms have become more interested in ex-
ploiting research on social networks in order to promote their
products and spread their innovation and technologies. In
particular, assuming the relationship between people in social
networks and their rational choices, firms are interested to
utilize the dynamics of adoptions in order to optimize their
business decisions in a competitive market and achieve a
higher profit.

Many products and services have positive network exter-
nality meaning that decision of an individual in adopting
to a product or technology has a positive impact on her
peers’ decisions. There are many examples for such products
or services. New technologies and innovations (e.g., cell
phones), network goods and services (e.g., fax machines,
email accounts), online games (e.g., Warcraft), social net-
work web sites (e.g., Facebook, Twitter) and online dating
services (e.g., OkCupid) are among examples in which
people have a higher profit in adopting to a common strategy.
Firms might be interested to exploit this positive externality
effect of their products and services and the relationship

†Department of Electrical and Systems Engineering and GRASP Lab-
oratory at University of Pennsylvania. arastoo@seas.upenn.edu
and jadbabai@seas.upenn.edu. This research was supported by
ONR MURI HUNT, ONR MURI N000140810747 and AFOSR Complex
Networks Program.

among people in order to achieve a higher profit. Therefore,
it is desirable for firms to design their products intelligently
and target a specific set of people in social networks in order
to maximize the spread of their products and achieve a larger
share of the market.

The problem of influence and spreading in networks has
been extensively studied in the past few years [4]–[10]. Espe-
cially, diffusion of new behaviors and strategies through local
coordination games has been an active field of research [11]–
[18]. Inspired by the work of Kearns and Goyal in [19] and
Montanari and Saberi in [17], we study strategic competition
between two firms which simultaneously allocate their fixed
budgets to a set of costumers embedded in a social network.
The payoff of firms is the expected fraction of people
adopting their products. This adoption is determined through
a game-theoretic diffusion process among costumers in the
network. Therefore, firms shall provide enough incentives for
consumption and spread of their product by the payoff that
people receive by consuming it. To this end and considering
their budgets, firms should strategically design their products
and know how many and who they should free offer their
products to in order to initially seed the network and promote
their products.

Recently, a game theoretic model of competitive contagion
and product adoption is proposed in [20]. In this model
two firms initially decide on the production cost of their
products (which results in the quality of their products and
incentive for people to consume them) and the number of
consumers they initially free offer their products to. Then
neighboring consumers play a local coordination game which
determines the dynamics of the spreading. By analyzing
this local coordination game and utilizing earlier results in
the literature, a lower and an upper bound are found for
the number of consumers adopting each product at each
time. These bounds depend on the payoff of products for
consumers and the number of initial seeds of the network,
however, they do not incorporate the location of initial seeds.
It is desirable for firms to have targeted marketing strategies
in which they decide on not only how many people, but also
who they offer the products to. Therefore, in this paper we
derive new bounds for the spread of products which depend
on the location of initial seeds. These bounds are tighter than
bounds in [20] in which only the size of the initial adoptions
matters. This is due to the fact that new bounds incorporate
the extra information about the location of initial seeds as
well.

Utilizing new bounds, we study an optimization problem
in which firms try to maximize the lower bound of their
products adoptions, while considering their fixed budget.



We first find initial seeds vectors which maximize lower
bounds of firms. This answers to the question of who is more
important in a network to be offered a free product. Using
optimal initial seeds vectors, we define a game between firms
where their objective is to maximize the lower bound of
their products adoptions and their strategy is their production
costs. While this game seems to be intractable in a general
network, we characterize the Nash equilibrium of the game
in star and k-regular networks and study the tradeoff between
investing more money on improving the quality of a product
versus seeding it with more people in a network.

The rest of this paper is organized as follows: In section II,
we introduce our model and dynamics updates for consumers
playing a local coordination game and find a lower and
an upper bound on the spread of products in a network.
In section III, we study the product adoptions optimization
problem and analyze the game played between firms in star
and k-regular networks. Finally, in section IV, we conclude
the paper.

II. THE SPREAD DYNAMICS

The model considered is based on a game theoretic dif-
fusion model proposed in [21]. The spread dynamics is the
same as the one discussed in [20]. There are n consumers
V = {1, . . . , n} in a social network. The relationship
among consumers is represented by an undirected graph
G = (V,E). Consumers i, j ∈ V are neighbors if (i, j) ∈ E.
The adjacency matrix of the graph G is denoted by A where
aij = 1 if (i, j) ∈ E and aij = 0 otherwise. We assume
aii = 0 meaning there is no self loop. We denote the degree
of node i by di and the diagonal matrix of degrees of the
graph G by D = diag(~d). The i-th largest eigenvalue of
the row stochastic matrix D−1A is represented by λi. We
also assume that there are two competing firms a and b
producing products a and b. These two firms initially offer
their products to a set of consumers in the network. Let the
binary variable xi(t) denotes the choice of consumer i at
time t. We assume xi(t) = 0 if consumer i chooses the
product a and xi(t) = 1 if consumer i chooses the product
b. Therefore, the state of consumers at time t is represented
by a vector ~x(t). Denote by ~Sa the vector of initial seeds of
firm a for which the i-th element is equal to 1 if product a
is initially offered to consumer i . The vector ~Sb is defined
similarly. Denote the norm of these vectors by Sa = ‖~Sa‖1
and Sb = ‖~Sb‖1. Initially all consumers are seeded either by
firm a or firm b, therefore, ~Sa + ~Sb = ~1. The two products
have some payoffs for neighboring consumers depending
on their states. If two neighbors in the graph choose the
product a they receive a payoff of pa, if they both choose
the product b they receive a payoff of pb and they receive
zero if they choose different products. Therefore, the payoff
of the interaction between consumer i and consumer j can
be displayed as the following local coordination game:

xj = 0 xj = 1
xi = 0 pa 0
xi = 1 0 pb

Thus, the total payoff of a consumer is simply the sum of her
payoffs obtained from her interactions with her neighbors

ui(xi) =
∑
j∈Ni

ui(xi, xj),

where Ni is the set of neighbors of consumer i. We as-
sume consumers repeatedly apply myopic best response.
This means that each consumer considering her neighbors,
chooses a product that gives her the most payoff. For exam-
ple, consumer i already adopted to the product a switches
to the product b if enough of her neighbors have already
adopted to the product b. For consumer i already adopted to
the product a, the payoff of choosing the product a and b
can be written as

ui(xi = 0) = pa
∑
j∈Ni

(1− xj) for product a,

ui(xi = 1) = pb
∑
j∈Ni

xj for product b.

Consumer i will switch to the product b if we have ui(xi =
0) < ui(xi = 1) that is∑

j∈Ni xj

di
>

pa
pa + pb

, (1)

similarly, consumer i already adopted to the product b will
switch to the product a if we have ui(xi = 1) < ui(xi = 0)
that is ∑

j∈Ni(1− xj)
di

>
pb

pa + pb
. (2)

We can define the right hand side of equations (1) and (2)
as

ra :=
pb

pa + pb
rb :=

pa
pa + pb

. (3)

Note that ra and rb in (3) are the degree of risk dominance of
actions a and b respectively. This means that if for consumer
i already adopted to the product a, the fraction of her
neighbors adopting to the product b is greater than rb, then
consumer i’s best response is to switch to the product b. We
can explain ra similarly. This myopic best response dynamics
yields to a continuous time stochastic process ~x(t) in which
each consumer i updates her state upon arrival of a Poisson
clock of rate one and switches to the state that gives her the
most payoff from interaction with her neighbors. Note that
although the rules of updates are deterministic, this process
is stochastic due to the randomness in arrival of a random
Poisson clock. Employing the results of [20], the lower and
upper bounds of the process ~x(t) with myopic best response
dynamics can be shown to be

1−
√
Sa
n

exp(
t

ra
) ≤

∑n
i=1 E(xi(t))

n
≤
√
Sb
n

exp(
t

rb
). (4)

As it can be seen, these bounds depend on the numbers of
initial seeds and degrees of risk dominance of actions. In
this section we find tighter bounds for the process which
not only take into account the size of initial seeds but also
incorporate their locations. Later in this paper we use these
bounds in order to show how initial seeds vectors should be



chosen and demonstrate the trade off between initial seeds
and production costs in Nash equilibrium.

Theorem 1: Consider the continuous time process ~x(t)
with a random Poisson clock of rate one and the initial
condition ~x(0) and dynamics

xi(t) : 0→ 1 if
n∑
j=1

aijxj > rbdi,

xi(t) : 1→ 0 if
n∑
j=1

aij(1− xj) > radi.

For this process we have

1−
~1T exp((D

−1A
ra

)t)~Sa

n
≤
∑n
i=1 E(xi(t))

n

≤
~1T exp((D

−1A
rb

)t)~Sb

n
.

(5)

Proof: Here we use an approach similar to the one
used in [22] and [23]. Consider the continuous time Markov
process ~̃x(t) with the same initial condition, i.e. ~x(0) = ~̃x(0),
and

x̃i(t) : 0→ 1 at rate 1(

n∑
j=1

aij x̃j(t) > rbdi).

Since x̃i(t) does not go from one to zero, we can see that
E(~x(t)) ≤ E(~̃x(t)) for all t ≥ 0. Now define the Markov
process ~y(t) with ~x(0) = ~y(0)

yi(t) : k → k + 1 at rate

∑n
j=1 aijyj(t)

rbdi
.

Since 1(
∑n
j=1 aijyj(t) > rbdi) <

∑n
j=1 aijyj(t)

rbdi
, standard

coupling arguments implies E(~̃x(t)) ≤ E(~y(t)). Now since
E(~x(t)) ≤ E(~̃x(t)) we get E(~x(t)) ≤ E(~y(t)). Notice that
the process E(yi(t)) takes value in R. For this process we
get the following differential equation

d

dt
E(~y(t)) = (

D−1A

rb
)E(~y(t)).

Computing the solution, we have

E(~y(t)) = exp((
D−1A

rb
)t)~y(0).

Hence, the expected fraction of adoptions to the product b is
bounded by∑n

i=1 E(xi(t))

n
≤
~1T exp((D

−1A
rb

)t)~x(0)

n
. (6)

Similarly, for the process ~z(t) = ~1− ~x(t) we have∑n
i=1 E(zi(t))

n
≤
~1T exp((D

−1A
ra

)t)~z(0)

n
.

Therefore,

1−
~1T exp((D

−1A
ra

)t)(~1− ~x(0))

n
≤
∑n
i=1 E(xi(t))

n
. (7)

Equation (6) and (7) and the fact that ~Sb = ~x(0) and ~Sa =
~1− ~x(0) implies

1−
~1T exp((D

−1A
ra

)t)~Sa

n
≤
∑n
i=1 E(xi(t))

n

≤
~1T exp((D

−1A
rb

)t)~Sb

n
.

Note that if ~Sa = ~0, then the lower bound in (5) becomes
one, which implies all consumers adopt to product b for all
time. This makes sense since there is no consumer initially
with product a to spread it in the network. Similarly, if
~Sb = ~0, then the upper bound in (5) becomes zero, which
implies no consumers adopts to product b at any time. This
is also reasonable since there is no consumer initially with
product b to spread it in the network. The other important
point about bounds in (5) is that these bounds become loose
when t goes to infinity. However, it is already known that
all consumers adopt either product a or b in steady state
depending on which one has a higher payoff. Therefore, only
transeint behaviour of the dynamics for a fixed time horizon
is interesting. Equation (5) also implies

1−
~1T exp((D

−1A
rb

)t)~Sb

n
≤
∑n
i=1(1− E(xi(t)))

n

≤
~1T exp((D

−1A
ra

)t)~Sa

n
.

Note that a major difference between bounds (4) and (5) is
that in (5) the position of the initial seeds plays a role while
in (4) only aggregate number of initial seeds matters.
In the next section we discuss how firms can exploit these
bounds in order to maximize the spread of their products in
the network and also discuss the trade off between initial
seeds and production cost in the Nash equilibrium of the
game played between two firms.

III. OPTIMIZING PRODUCT ADOPTION USING BOUNDS

As we mentioned in section II, firms initially offer their
products to a subset of consumers. This can be viewed as an
initial free offer to seed the network and promote each firm’s
product. We assume producing and offering each unit of
product a and b costs ca and cb for firms a and b respectively.
We also assume that the payoff of products for consumers
in the social network is an increasing function of the firm’s
cost, i.e. p = p(c). The rationale here is that in order to
produce higher quality products for consumers in a social
network, firms would have to spend more money on their
products. In this section we study firms optimization problem
in which they maximize the lower bound of their product
adoptions (as it was found in section II) with respect to their
decision variable which is their per unit production cost.
Since the decision of each firm affects the lower bounds
of the other firm, this optimization problem defines a game.
Analyzing this game, we show that always there exists a
Nash equilibrium in which the trade off between initial seeds
and the production cost (and as a result quality of products)



can be found. We also show how to find the most important
nodes in the network to be seeded by firms. To this end, we
study the optimization problem of firms in two settings. First,
when only aggregate number of initial seeds is considered
and bounds in (4) is used. Second, when the location of
initial seeds also matters and bounds in (5) is employed.

A. Number of Initial Seeds

As it is shown in [20] when only aggregate number of
initial seeds is considered firms solve the following optimiza-
tion problem to maximize the lower bound of their product
adoptions

max
cmina ≤ca≤cmaxa

Ua = 1−
√
Sb
n

exp(
t

rb
)

Subject to Saca = Ka,

max
cminb ≤cb≤cmaxb

Ub = 1−
√
Sa
n

exp(
t

ra
)

Subject to Sbcb = Kb,

(8)

where Ka and Kb are the total budgets of firms a and b
to initially seed the network and ca and cb are optimization
variables. Assuming firms have payoff functions in the form
of pa(ca) = dac

αa and pb(cb) = dbc
αb
b ,where da, db, αa and

αb are some constants, the utility functions of firms in the
optimization problem (8) depend on both firms production
costs. Therefore, we have a game in which strategies of
firms is represented by ca and cb. Note that using the budget
constraints we can see that Sa = Ka

ca
and Sb = Kb

cb
, hence,

Sa and Sb are dependent variables. It is shown in [20] that if
there exists a Nash equilibrium in the game played between
firms, which does not happen in boundaries of the feasible
set, then we have

c2αb−1b

c2αa−1a

= (
Ka

Kb
)(
αb
αa

)(
da
db

)2,

also when firms have the same constants of α and d in their
payoff functions we obtain

c∗b
c∗a

= (
Ka

Kb
)

1
2α−1 ,

S∗b
S∗a

= (
Kb

Ka
)

2α
2α−1 . (9)

Equation (9) implies that If α > 1
2 then in Nash equilibrium

firms with bigger budget seed a large number of people
while lowering their investment on their product. However,
if α < 1

2 , firms with bigger budget improve the quality of
their product rather than seeding it in a large number. This
clarifies the trade off between production cost of a product
and the number of initial seeds. The extent to which this
trade off is depends on the relative total budget of firms and
the exponent of production cost in product functions. This
exponent indicates how sensitive the quality of the product
is with respect to the cost of its production. Also, note that
(9) is a necessary condition for a Nash equilibrium if it does
not happen in boundaries. However, it does not guarantee
the existence of a Nash equilibrium or its uniqueness. The
next lemmas provide sufficient conditions for the existence
and uniqueness of a Nash equilibrium in pure strategy.

Lemma 1: A Nash equilibrium exists in game ΓN =
[I, {Si}, {ui(.)}] if for all i = 1, . . . , I:
i) Si is a nonempty, convex, and compact subset of some
Euclidean space RM .
ii) ui(s1, . . . , sl) is continues in (s1, . . . , sl) and quasicon-
cave in si.

Proof: Proof can be found in [24].
Lemma 2: Assume for all i ∈ I the strategy sets Si are

given by
Si = {xi ∈ Rmi |hi(xi) ≥ 0},

where hi : Rmi 7→ R is a concave function, and there exists
some x̃i ∈ Rmi such that hi(x̃i) > 0. Assume also that the
payoff functions (u1, . . . , ul) are diagonally strictly concave
for all x ∈ S, i.e. the symmetric matrix U(x) + UT (x) is
negative definite where

U(x) =


∂2u1(x)
∂x2

1

∂2u1(x)
∂x1∂x2

· · ·
∂2u2(x)
∂x2∂x1

. . .
...

... · · · ∂2uI(x)
∂x2
I

 .

Then the game has a unique pure strategy Nash equilibrium.
Proof: Proof can be found in [24].

Using lemma 1 and 2, in the next theorem we show that a
unique Nash equilibrium always exists in the game defined
by the optimization problems in (8).

Theorem 2: If 0 < cmina , cminb and p = dcα the game in
(8) always has a unique Nash equilibrium in pure strategy.

Proof: We prove in two steps:
a) Existence: First note that strategy space in R2 is nonempty,
convex, closed and bounded (and therefore compact) so it
satisfies the requirement of lemma 1. Now we show that
utility functions in (8) are concave and therefore quasicon-
cave. For this purpose, we show that Ũa = log(1 − Ua) is
convex (this guarantees 1 − Ua is convex and therefore Ua
is concave). We have

Ũa = log(1− Ua) =
1

2
log(

Sb
n

) +
t

rb
.

Taking derivative with respect to ca and using the definition
of rb in (3) we get

∂2Ũa
∂c2a

=
tαa(αa + 1)dbc

αb
b

dac
αa+2
a

> 0.

Therefore, Ũa is convex. The same argument applies to Ũb.
Also, Ũa and Ũb are both continues in ca and cb. As a
result, the existence of a Nash equilibrium in pure strategy
is guaranteed.
b) Uniqueness: For the uniqueness analysis of the Nash
equilibrium in (8) first note that since ca ∈ [cmina , cmaxa ] any
positive and concave function ha in this interval satisfies the
requirement of lemma 2. Now consider the game

min
cmina ≤ca≤cmaxa

Ũa = log(1− Ua) =
1

2
log(

Sb
n

) +
t

rb
,

min
cminb ≤cb≤cmaxb

Ũb = log(1− Ub) =
1

2
log(

Sa
n

) +
t

ra
.

(10)



Since log is a monotone function, the uniqueness of the
Nash equilibrium in both games of (8) and (10) is equivalent
(except that the matrix Ũ should be positive definite instead
of negative definite, because we have minimization in (10)
instead of maximization in (8)). For convenience we analyze
the game in (10). For the matrix Ũ we have

Ũ =

 tαa(αa+1)dbc
αb
b

dac
αa+2
a

− tαaαbdbc
αb−1

b

dac
αa+1
a

− tαbαadac
αa−1
a

dbc
αb+1

b

tαb(αb+1)dac
αa
a

dbc
αb+2

b

 .

In order to determine if Ũ is positive definite, we study
whether its leading principal minors are all positive or not.
We have ∂2Ũa

∂c2a
> 0. We also have det(Ũ) > 0, therefore,

Ũ is positive definite. This implies ŨT is positive definite
as well, and as a result Ũ + ŨT is positive definite and
diagonally strictly convex. Therefore, the game in (10) has
a unique Nash equilibrium.

B. Seeding As a Function of Nodes

In this subsection, we consider the firms optimization
problems where not only the size but also the location of
initial seeds plays a role and firms maximize their lower
bounds as defined in (5). This bound is tighter compared
the bound in (4) since the information about the location of
initial seeds is incorporated as well. Using the bounds in (5),
we study how the initial seeds vector ~Sa and ~Sb should be
chosen for a certain network. Afterwards, we study the trade
off between initial seeds and production cost for star and
regular networks.
To this end, we fix ca and cb and see how firms maximize
the lower bounds of their utility functions with respect to
initial seeds vectors:

max
~Sa

Ua = 1−
~1T exp((D

−1A
rb

)t)~Sb

n

Subject to ca~1
T ~Sa = Ka,

max
~Sa

Ub = 1−
~1T exp((D

−1A
ra

)t)~Sa

n

Subject to cb~1
T ~Sb = Kb.

Since ~Sa + ~Sb = ~1, the above maximization problem is
equivalent to

max
~Sa

Ua = ~1T exp((
D−1A

rb
)t)~Sa

Subject to ~1T ~Sa ≤
Ka

ca
,

max
~Sb

Ub = ~1T exp((
D−1A

ra
)t)~Sb

Subject to ~1T ~Sb ≤
Kb

cb
.

This is a standard integer programming problem with the
solution

~Sia(0) =

{
1, [Kaca ] largest elements of ~1T exp((D

−1A
rb

)t)

0, Otherwise,

~Sib(0) =

{
1, [Kbcb ] largest elements of ~1T exp((D

−1A
ra

)t)

0, Otherwise.
(11)

In the next theorem we see how the initial seed selection can
depend on centrality of nodes in the network.

Theorem 3: If λ2(D−1A) � λ1(D−1A) and t large
enough, then nodes with highest elements in the eigenvector
corresponding to λ1 are seeded by firms.

Proof: If we use eigenvector decomposition, we will
have

~1T exp((
D−1A

ra
)t) =

n∑
k=1

exp(
λkt

ra
)(~1T~uk)~uTk .

If λ2 � λ1, then by Perron-Frobenius theorem we have

~1T exp((
D−1A

ra
)t) ' exp(

λ1t

ra
)(~1T~u1)~uT1 ,

~1T exp((
D−1A

rb
)t) ' exp(

λ1t

rb
)(~1T~u1)~uT1 .

Therefore, as we can see nodes with the largest elements
in ~u1 (which is the eigenvector centrality of nodes in the
network) are chosen by both firms a and b.
Note that if both firms a and b choose to seed a specific
node, the node is seeded randomly with some probabilities
of qa and qb respectively (qa+qb=1). Using the initial seeds
vectors in (11), the Nash equilibrium is the fixed point of
the following optimization problem.

max
cmina ≤ca≤cmaxa

Ua = 1−
~1T exp((D

−1A
rb

)t)~Sb

n

Subject to ca~1
T ~Sa = Ka,

max
cminb ≤cb≤cmaxb

Ub = 1−
~1T exp((D

−1A
ra

)t)~Sa

n

Subject to cb~1
T ~Sb = Kb.

(12)

In the next theorem we show that a Nash equilibrium always
exists in this game.

Theorem 4: If 0 < cmina , cminb and p = dcα the game in
(12) always has a Nash equilibrium in pure strategy.

Proof: In order to show the existence of a Nash
equilibrium we use lemma 1. The requirement i of lemma
1 can be shown as in the proof of theorem 2, so we only
need to check quasiconcavity of utility functions. It is easy
to show that ∂2 exp((D

−1A
rb

)t)/∂c2a is a non-negative matrix
and as a result ∂2Ua

∂c2a
< 0. Therefore, Ua is concave and so

is quasiconcave. Ua is continuous in ca as well. The same
argument applies to Ub. Therefore, requirement ii of lemma
1 is also satisfied and the game in (12) always has a Nash
equilibrium.



Here as opposed to aggregate initial seed game it is not
easy to find a closed form solution for the Nash equilibrium.
However, in some special cases the Nash equilibrium can be
found. To this end, we study the Nash equilibrium in star
networks and k-regular networks.

1) Star Network: For a star network, the normalized
adjacency matrix is in the form of

D−1A =

(
0

~1Tn−1

n−1
~1n−1 0(n−1)∗(n−1)

)
.

Also, it is easy to show that (D−1A)2k = (D−1A)2 and
(D−1A)2k−1 = D−1A for all integer k. Using Taylor series,
it can be shown that ~1T exp((D

−1A
rb

)t) is equal to

(
cosh( t

rb
) + (n− 1) sinh( t

rb
), (cosh( t

rb
) +

sinh( t
rb

)

n−1
)~1Tn−1

)
.

Similar equations can be written for firm b. Therefore, both
firms a and b choose the central node of star and Sa − 1
and Sb − 1 nodes with degree 1. If the size of the network
is large enough, after simplification the utility functions in
(12) become

Ua ' 1− qa sinh(
t

rb
)− (

Sb
n

) cosh(
t

rb
),

Ub ' 1− qb sinh(
t

ra
)− (

Sa
n

) cosh(
t

ra
).

(13)

Also, when t is small enough, sinh( trb ) ' 0 bounds become

Ua ' 1− (
Sb
n

) cosh(
t

rb
),

Ub ' 1− (
Sa
n

) cosh(
t

ra
).

(14)

Since Sb
n <

√
Sa
n and cosh( trb ) < exp( trb ) bounds in (14)

are better than bounds in (4). This is due to knowing the
network structure and employing the position of initial seeds.
In order to find the Nash equilibrium, the derivative of each
utility function in (13) should be taken and be set to zero.
If we assume p = dcα and t small enough, then after
simplification in Nash equilibrium we will have

c2αb−1b

c2αa−1a

= (
Ka

Kb
)(
qb
qa

)(
αb
αa

)(
da
db

)2.

Also when firms have the same constants of α and d in their
payoff functions we obtain

c∗b
c∗a

= (
qbKa

qaKb
)

1
2α−1 ,

S∗b
S∗a

= (
qaKb

qbKa
)

2α
2α−1 ,

which is very similar to the Nash equilibrium in (9). The
reason is that if t is small enough, it is too soon for positions
of initial seeds to play a role, therefore, only size of the initial
seeds matters and we get the same solution as in the scalar
initial seeds case in (9).

2) k-Regular Network: In this subsection we study the
Nash equilibrium in a k-regular network in which each node
has exactly k neighbors. For a k-regular network, we have
~1TD−1A = ~1T . Therefore,

~1T exp((
D−1A

rb
)t) = exp(

t

rb
)~1T .

Hence, as expected, all nodes have the same value for firms
and it does not matter which node is selected. Therefore, the
optimization problem in (12) becomes

max
cmina ≤ca≤cmaxa

Ua = 1− (
Sb
n

) exp(
t

rb
)

Subject to caSa = Ka,

max
cminb ≤cb≤cmaxb

Ub = 1− (
Sa
n

) exp(
t

ra
)

Subject to cbSb = Kb.

(15)

Since Sb
n <

√
Sa
n bounds in (15) are also better than bounds

in (4). It can be seen that this problem has exactly the same
answer as in (8) in which only the aggregate number of initial
seeds matters. This is not surprising because in a k-regular
network nodes have no preference in position.

IV. CONCLUSION

In this paper we studied a strategic model of marketing in
social networks. This model studies two firms competing to
maximize the adoptions of their products in a social network.
Considering their fixed budgets, firms initially decide on their
production cost and also how many and who they free offer
their products to. The dynamics of the spread is determined
by a local coordination game among consumers in which
consumers act myopic rationally to maximize their profits.
We found lower and upper bounds on the proportion of
products adoptions which depend on the payoff of products
offered by firms, the initial number and also the locations
of adoptions. We showed that the optimal locations of
initial seeds is chosen by firms based on nodes eigenvector
centrality. Given optimal initial seeds vectors, we studied the
game between firms in which they try to maximize the lower
bounds of their product adoptions. We analyzed the Nash
equilibrium of this game for star and k-regular networks and
compared the Nash equilibrium with the one found in the
scalar initial seeds setting.
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