
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

March 2008

Courteous Cars: Decentralized Multiagent Traffic
Coordination
Hadas Kress-Gazit
University of Pennsylvania

David C. Connor
TORC Technologies

Howie Choset
Carnegie Mellon University

Alfred A. Rizzi
Boston Dynamics

George J. Pappas
University of Pennsylvania, pappasg@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Reprinted from IEEE Robotics and Automation Magazine, March 2008, pages 30-38.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/353
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Hadas Kress-Gazit, David C. Connor, Howie Choset, Alfred A. Rizzi, and George J. Pappas, "Courteous Cars: Decentralized
Multiagent Traffic Coordination", . March 2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers/353
mailto:repository@pobox.upenn.edu


Courteous Cars: Decentralized Multiagent Traffic Coordination

Abstract
A major goal in robotics is to develop machines that perform useful tasks with minimal supervision. Instead of
requiring each small detail to be specified, we would like to describe the task at a high level and have the
system autonomously execute in a manner that satisfies that desired task. While the single robot case is
difficult enough, moving to a multirobot behavior adds another layer of challenges. Having every robot
achieve its specific goals while contributing to a global coordinated task requires each robot to react to
information about other robots, for example, to avoid collisions. Furthermore, each robot must incorporate
new information into its decision framework to react to environmental changes induced by other robots since
this knowledge may effect its behavior.
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Courteous Cars
Decentralized Multiagent Traffic Coordination

BY HADAS KRESS-GAZIT, DAVID C. CONNER,

HOWIE CHOSET, ALFRED A. RIZZI,

AND GEORGE J. PAPPAS

A
major goal in robotics is to develop machines that

perform useful tasks with minimal supervision.
Instead of requiring each small detail to be speci-
fied, we would like to describe the task at a high
level and have the system autonomously execute

in a manner that satisfies that desired task. While the single-
robot case is difficult enough, moving to a multirobot behavior
adds another layer of challenges. Having every robot achieve
its specific goals while contributing to a global coordinated
task requires each robot to react to information about other
robots, for example, to avoid collisions. Furthermore, each
robot must incorporate new information into its decision
framework to react to environmental changes induced by
other robots since this knowledge may effect its behavior.

This article uses the approach presented in [1], in which
low-level continuous feedback control policies are combined
with a formally correct discrete automaton, thus satisfying a
specified high-level behavior for any initial state in the
domain of the low-level policies. This allows the approach to
be applied to systems that react to changing dynamic envi-
ronments and that may have complex nonlinear constraints,
such as nonholonomic constraints, input bounds, and
obstacles or body shape. Furthermore, given a collection of
local feedback control policies, the approach is fully automatic
and correct by construction.

Multirobot high-level behavior is captured naturally in a
decentralized manner in this approach. By allowing each robot’s
automaton to depend on information gathered locally from
other robots and the environment, each robot can react during
the execution to the other robots’ behaviors. The approach [1]
also supports creating a single centralized controller for the
group of robots. However, such a controller would encode
global knowledge of all robots’ state and therefore will not scale
well. Furthermore, agent synchronization issues might emerge.
By choosing the decentralized approach, the controller remains
tractable and the agent’s behavior only depends on local events.
Although the decentralized approach has some limitations too,
it seems more suited for multirobot behaviors.

The approach combines the strengths of control theoretic
and computer science approaches. Control theoretic approaches
offer provable guarantees over local domains; unfortunately, the

control design requires a low-level specification of the task. In
the presence of obstacles, designing a global control policy
becomes unreasonably difficult. In contrast, discrete planning
advances from computer science offer the ability to specify more
general behaviors and generate verifiable solutions at the dis-
crete level but lack the continuous guarantees and robustness
offered by feedback.

By using a collection of local feedback control policies that
offer continuous guarantees and composing them in a formal
manner using discrete automata, the approach automatically
creates a hybrid feedback control policy that satisfies a given
high-level specification without ever planning a specific
configuration space path. To be more specific, given the
robot’s workspace, its limitations, its sensors (i.e., the local
information it can get from the environment and the other
robots), and the high-level specifications it should satisfy, theDigital Object Identifier 10.1109/M-RA.2007.914921



approach first populates the configuration space with local
continuous feedback control policies. These policies drive the
robot in paths that are guaranteed to stay in the appropriate
lane while avoiding collisions with static obstacles. Further-
more, these policies induce a discrete graph, i.e., if policy UA

drives the robot to the domain of policy UB, there is a discrete
transition from policy UA to UB. Using this discrete graph, the
approach automatically synthesizes a discrete automaton that
satisfies the high-level specifications.

These high-level specifications are given in a subset of linear
temporal logic (LTL). Loosely speaking, temporal logic extends
propositional logic (AND, OR, NOT) by adding temporal
connectives (ALWAYS, EVENTUALLY, . . . ), thus enabling
one to reason about propositions that can change truth value
with time. The specifications that are considered in this article
usually depend on the local input from the environment and
from the other robots that are part of the environment from
one robot’s perspective. Finally, the system continuously exe-
cutes the automaton based on the state of the environment and
the vehicle by activating the continuous policies. Given proper
sensor function, this execution guarantees that the robot will
satisfy its intended behavior using a decentralized approach.

As a demonstration of the general approach, this article
presents a familiar example: conventional Ackermann-steered
vehicles operating in an urban environment. Figure 1 shows
the environment and a simulation snapshot with eight currently
active vehicles. The vehicles in this simulation execute one of
two automata. The first automaton satisfies the high-level
specification ‘‘drive around until you find a free parking space
and then park.’’ The second automaton satisfies the specifica-
tion ‘‘Leave the block, obeying traffic rules, through Exiti,’’
where i is given as input. This article discusses the design and
deployment of the local feedback policies, the automatic gener-
ation of automata that satisfy high-level specifications, and the
continuous execution.

The approach to composing low-level policies is based on
our earlier work using sequential composition [2], [3].
Sequential composition depends on well-defined policy do-
mains and well-defined goal sets to enable tests that the goal set
of one policy is contained in the domain of another. For ideal-
ized (point) systems, several techniques are available for gener-
ating suitable policies [4]–[8]. Our recent work extends these
ideas to a more complex system model with Ackermann steer-
ing, input bounds, and the shape of the vehicle [1].

Building on the sequential composition idea [2], a recent
work has shown how to compose local controllers in ways
that satisfy temporal specifications given in temporal logic [9]
rather than final goals. In [10]–[12], powerful model check-
ing tools were used to find the sequence in which the con-
trollers must be activated for the system to satisfy a high-level
temporal behavior. Although these approaches can capture
many interesting behaviors, their fundamental disadvantage is
that they are open-loop solutions. They find sequences of
policies to be invoked rather than an automaton and there-
fore cannot satisfy reactive behaviors that depend on the local
state of the environment, as determined at run time, or han-
dle uncertain initial conditions.

This work builds on the approach taken in [13], which is
based on an automaton synthesis algorithm introduced in [14].
By creating automata rather than specifying sequences of poli-
cies, the robot can satisfy behaviors that depend on local infor-
mation gathered during run time.

Local Continuous Feedback Control Policies
Local continuous feedback control policies form the founda-
tion of the control framework; the policies are designed to
provide guaranteed performance over a limited domain. Using
continuous feedback provides robustness to noise, modeling
uncertainty, and disturbances. This section presents the system
model used in the control design, the formulation of the local
policies, and the method of deployment.

System Modeling
Although this approach can be applied to different robot
models, this article focuses on the control of a rear-wheel
drive car-like vehicle with Ackermann steering. The vehicle,
which is shown schematically in Figure 2, is sized based on a
standard minivan.

The vehicle pose, g, is represented as g ¼ fx, y, hg, where
ðx, yÞ is the location of the midpoint of the rear axle with respect
to a global coordinate frame and h is the orientation of the body
with respect to the global x-axis. The angle of the steering
wheel is / 2 I ¼ (� /max, /max), a bounded interval.

Figure 1. The environment has 40 parking spaces arranged
around the middle city block. For any vehicle, the high-level
specification encodes either ‘‘drive around until you find a free
parking space and then park’’ or ‘‘leave your parking space
and exit the block.’’
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The nonholonomic constraints inherent in the rolling con-
tacts uniquely specify the equations of motion via a nonlinear
relationship between the input velocities and the body pose
velocity. Let the system inputs be u ¼ fv, xg 2 U, where U is
a bounded subset of R2, v is the forward velocity, and x is the
rate of steering. The complete equations of motion are

_x

_y
_h
_/

2
6664

3
7775 ¼

cos h 0

sin h 0
1
L tan / 0

0 1

2
6664

3
7775

v

x

� �
¼

A( g, /)

0 1

� �
u: (1)

More compactly, the body pose velocity is _g ¼ A( g, /)u,
where A( g, /) encodes the nonholonomic constraints.

In addition to nonholonomic constraints, the system evolu-
tion is subject to configuration constraints. The body pose is
restricted by the obstacles in the environment. The pose is
further constrained by local conventions of the road, such as
driving in the right lane. There is an absolute mechanical limi-
tation of�/max. For safety and performance reasons, we allow
further steering angle constraints at higher speeds. The system
inputs are constrained based on speed limits in the environ-
ment and system capabilities.

Local Policy Development
The hybrid control framework uses local feedback control poli-
cies to guarantee behavior over a local domain. These local pol-
icies are then composed in a manner that allows reasoning on a
discrete graph to determine the appropriate policy ordering
that induces the desired global behavior. For the policies to be
composable in the hybrid control framework, the individual
policies must satisfy several requirements: 1) domains lie com-
pletely in the free configuration space of the system, 2) under
influence of a given policy, the system trajectory must not
depart the domain except via a specified goal set, 3) the system
must reach the designated goal set in finite time, and 4) the pol-
icies must have efficient tests for domain inclusion given a
known configuration [3], i.e., it is easy to check whether the

vehicle is in the domain of a certain policy. This article focuses
on one design approach that satisfies these properties.

The navigation tasks are defined by vehicle poses that must
be reached or avoided; therefore, this article defines cells in the
vehicle pose space. Each cell has a designated region of pose
space that serves as the goal set. Over each cell, we define a
scalar field that specifies the desired steering angle, /des, such
that steering as specified induces motion that leads to the goal
set. Taking the steering angle derivative with respect to body
pose gives a reference steering vector field over the cell. This
leads to a relatively simple constrained optimization problem
over the bounded input space. The resulting policies are able
to satisfy the four requirements given earlier.

The approach to defining the cell boundary and desired
steering angle is based on a variable structure control approach
[15]. The cells are parameterized by a local path segment in the
workspace plane [Figure 3(a)]. The workspace path is lifted to
a curve in body pose space by considering the path tangent
vector orientation as the desired heading. One end of the path
serves as the center of the goal set. This work uses line segments
and circular arcs for the path segments. Other path shapes are
possible at a cost of more complex derivative calculations [16].

To perform the control calculations, the body pose is trans-
formed to a local coordinate frame assigned to the closest point
on the path to current pose. The policy defines a boundary in
the local frames along the path. Figure 3(b) shows the cell
boundary defined by the local frame boundaries along the path;
the interior of this tube defines the cell. The size of the tube can
be specified subject to constraints induced by the path radius of
curvature and the vehicle steering bounds. The cell can be tested
for collision with an obstacle using the technique outlined in [3].

We define a surface in the local frame to serve as a sliding
surface for purposes of defining a desired steering angle [15].
To generate a continuous steering command, the sliding sur-
face is defined as a continuous function with a continuous
bounded derivative; a blending zone is defined around the
sliding surface. Outside the blending zone, the desired steering
is set to a steering limit, /lim, where j/limj � /max. The sign of
/lim depends on the current direction of travel (forward or
reverse) and whether the current body pose in local

x

y

∼

(a) (b)

∼

Figure 3. Control policy based on [15]: (a) workspace path
with local frame defined and (b) the cell boundary forms a
tube around the path in pose space. The sliding surface is
shown in the cell interior.

L

(x, y )
θ

φ

Figure 2. Car-like system with Ackermann steering. The inputs
are forward velocity and steering angle velocity.
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coordinates is above or below the sliding surface. (For policies
that move the system in reverse, the positive or negative signs
are swapped.) Inside the blending zone, let

/des ¼ g/lim þ (1� g)/ref , (2)

where g 2 ½0, 1� is a continuous blending function based on
distance from the sliding surface and /ref is the steering com-
mand that would cause the system to follow the sliding surface.
Thus, (2) defines a mapping from the body pose space to the
desired steering angle for any point in the cell. The sliding sur-
face is designed such that steering according to /des will cause
the system to move toward the sliding surface and then along
the sliding surface toward the specified curve in the desired
direction of travel. At the boundary of the cell, the desired
steering must generate a velocity that is inward pointing,
which constrains the size and shape of a valid cell.

For a closed-loop policy design, the system must steer fast
enough so that the steering angle converges to the desired steering
angle faster than the desired steering angle is changing. This indu-
ces an additional constraint on the input (velocity and rate of steer-
ing) space. Given this constraint, a simple constrained optimization
is used to find a valid input. Each policy is verified to ensure that a
valid input exists over its entire domain during specification.

The vehicle closed-loop dynamics over the cell induce a
family of integral curves that converge to the curve specifying
the policy. To guarantee that an integral curve never exits the
cell during execution, we impose one additional constraint.
Define the steering margin, /margin, as the magnitude of the
angle between the desired steering along the cell boundary and
the steering angle that would allow the system to depart the
cell. During deployment, the policies must be specified with a
positive steering margin. To use the control policy, we require
that j/des � /j\/margin. Initially, if j/des � /j � /margin, the
system halts and steers toward the desired steering angle until
j/des � /j � /margin. Invoking the policies this way guarantees
that the system never departs the cell, except via the designated
goal set; i.e., the policy is conditionally positive invariant [3].
As the vehicle never stops once the steering policy becomes
active, the system reaches the designated goal in finite time.

Local Policy Deployment
To set up the basic scenario, we define the urban parking envi-
ronment, shown in Figure 1, based on a green practices guideline
for narrower streets [18]. The regularity of the environment
allows an automated approach to policy deployment.

First, we specify a cache of local policies using the generic
policy described earlier. The cache uses a total of 16 policies:
one policy for normal traffic flow, four policies associated with
left and right turns at the intersections, six policies associated
with parking, and five associated with leaving a parking space.
Ten of the policies move the vehicle forward, and six move the
vehicle in reverse. Each policy in the cache is defined relative to
a common reference point. At this point, the specification of
the free parameters for each policy in the cache is a trial-and-
error process that requires knowledge of the environment, the
desired behaviors, and some engineering intuition. During

specification of the policies, we verify that the convergence and
invariance properties are satisfied and that the policies are free of
obstacle collision based on the road layout.

Policies from the cache are then instantiated at grid points
defined throughout the roadways. This is done offline based on
knowledge of the local roadways. The instantiation process
selects a subset of the policies in the cache based on the grid
point location. Given the cache and specified grid points, the
instantiation process is automated. Normally, the test for obsta-
cle collision would be conducted as the policies are instantiated,
but the regularity of the roadway renders this unnecessary. For
intersections, the four turning policies are deployed for each
travel direction along with the basic traffic flow policy. For the
straight traffic lanes, the grid points lie in the middle of the traf-
fic lanes aligned with the front of the parking space markers;
the orientation is defined by the traffic flow. The basic traffic
flow policy is always deployed at these grid points.

If a potential parking space is adjacent to the grid point, a special
parking policy is instantiated. Although considered a single policy
by the automaton synthesis, each parking policy is actually com-
posed of several policies from the cache. The parking component
policies are only instantiated when the parking behavior is invoked
for the first time by the global parking automaton (see ‘‘Automa-
tion Synthesis’’ section). Figure 4 shows an example parking
maneuver induced by the composition of the local feedback con-
trol policies. The same applies for special leaving policies that are a
composition of several policies causing the vehicle to leave a park-
ing space. For the region defined in Figure 1, there are initially a
total of 306 policies, including 40 parking policies associated with
the 40 possible parking spaces. Five policies are instantiated for each
parking behavior invoked, and five policies instantiated for leaving
a parking space. These are added on an as-needed basis; the appro-
priate nodes are appended to the automaton.

As part of the instantiation process, we test for goal set
inclusion pairwise between policies. The policies in the cache
are specially defined so that policies instantiated at neighboring
grid points prepare one another appropriately. If the goal set of
one policy is contained in the domain of a second, the first is
said to prepare the second [2]. This pairwise test defines the

Figure 4. Parking behavior induced by the composition of
local policies. The feedback control policies guarantee the
safety of the maneuver.
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prepares graph, which encodes the discrete transition relation
between policies. This graph forms the foundation of the
automaton synthesis approach described in the next section.
The policy specification, instantiation, and prepares testing is
done offline prior to the system generating the automaton.

Automaton Synthesis
This section describes the method used to create the automata
that governs the local policies’ switching strategy. These autom-
ata are guaranteed to produce paths that satisfy a given specifica-
tion in different dynamic environments, if such paths exist.

Synthesis Algorithm
We are given a set of binary inputs (e.g., a binary input that is
true when the closest parking spot is empty and false otherwise,
a local hazard detected), a set of binary outputs (e.g., whether
or not to activate policy Ui, signal left (right) turn, parking here,
leaving adjacent spot), and a desired relationship between
inputs and outputs (e.g., ‘‘if you sense an empty parking space,
invoke a parking policy’’). The realization or synthesis problem
consists of constructing a system that controls the outputs such
that all of its behaviors satisfy the given relationship or deter-
mine that such a system does not exist.

The relationship is given as an LTL with a specific structure
[9], and the system is built using the algorithm introduced in
[14]. There, the synthesis process is viewed as a game played
between the system, i.e., the robot, which controls the out-
puts, and the environment, which controls the inputs. The
two players have initial conditions and a transition relation
defining the moves they can make. The winning condition for
the game is given as a Generalized Reactivity (1) (a fragment
of LTL) formula r. The way the game is played is that at each
step, first the environment makes a transition according to its
transition relation, and then the system makes its own transi-
tion (constraints on the system transitions include obeying the
prepares graph). If the system can satisfy r no matter what the
environment does, we say that the system is winning and we
can extract an automaton. However, if the environment can
falsify r, we say that the environment is winning and the
desired behavior is unrealizable, which means that there is no
automaton that can satisfy the requirements.

The synthesis algorithm [14] takes the initial conditions,
transition relations, and winning condition, and then checks
whether the specification is realizable. If it is, the algorithm
extracts a possible, but not necessarily unique, automaton that
implements a strategy that the system should follow to satisfy
the desired behavior.

Writing Logic Formulas
Informally, LTL formulas are built using a set of boolean prop-
ositions, the regular boolean connectives not (:), and (^), or
(_), implies ()), if and only if (,), and temporal connectives.
The temporal connectives include next (s), always (h) and
eventually (}). These formulas are interpreted over infinite
sequences of truth assignments to the propositions. For exam-
ple, the formula�ðpÞ is true if in the next position p is true.
The formula h ðqÞ is true if q is true in every position in the

sequence. The formula h}ðrÞ is true if always eventually r is
true, i.e., if r is true infinitely often.

The input to the algorithm is an LTL formula

u ¼ (ue ) us):

ue is an assumption about the inputs and thus about the behav-
ior of the environment, and us represents the desired behavior
of the system. More specifically,

ue ¼ ue
i ^ ue

t ^ ue
g; us ¼ us

i ^ us
t ^ us

g:

ue
i and us

i describe the initial condition of the environment
and the system. ue

t represents the assumptions on the environ-
ment by constraining the next possible input values based on the
current input and output values. us

t constrains the moves the
system can make, and ue

g and us
g represent the assumed goals of

the environment and the desired goals of the system, respec-
tively. For a detailed description of these formulas, see [13].

Translating this formula to a game, the initial condition is
ue

i ^ us
i , the transition relations for the players are ue

t and us
t,

and the winning condition is r ¼ (ue
g ) us

g). Note that there
are two ways for the system to win. It wins if either us

g is satisfied,
i.e., the system reaches its goals, or ue

g is falsified. The latter case
implies that if the environment does not satisfy its goals (either a
faulty environment or the system interfered), then a correct
behavior of the system is no longer guaranteed. Furthermore, if
during an execution of the automaton, the environment violates
its own transition relation, the automaton is no longer valid.

In the following sections, we explain in detail how to encode
the specifications. ‘‘Adhering to Traffic Laws’’ section first describes
an LTL formula that encodes appropriate behavior in traffic, i.e.,
the reaction to hazardous conditions and the activation of the turn
signals. This LTL formula captures the multirobot aspect of the
behavior. ‘‘Parking’’ and ‘‘Leaving’’ sections then add the more
specialized behavior for the parking and leaving tasks, respectively.

Adhering to Traffic Laws
Socially acceptable driving behavior includes stopping at stop
lights, driving in the designated lane, keeping a safe distance
from vehicles ahead, and using the left and right turn signals. To
encode such behavior, we define one input, hazard, which
becomes true whenever the car must stop. Such an input may
be the result of a proximity sensor in the case of keeping a safe
distance from another vehicle or of a vision system recognizing
a red light at the intersection or another vehicle signaling that it
is about to make a turn. The hazard is also used to cause a vehi-
cle intending to park to wait on a vehicle that is ready to leave
an occupied parking space. Although in some cases, the more
natural reaction to such conditions is to slow down rather than
stop, here we take the more conservative approach for simplic-
ity. The local feedback control policies serve as outputs. Addi-
tional output propositions are signalL and signalR, which
indicate whether the left (right) turn signal should be activated,
and the proposition ‘‘stop,’’ which indicates whether the vehicle
should stop. These outputs are detectable by other robots. The
formula encoding this behavior is given in the following list.
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1) Assumptions on the environment: Initially, there is no
need to stop; therefore, ue

i ¼ :hazard. We do not
impose any further restrictions on the behavior of the
hazard input; thus, it can become true or false at any
time. To keep the structure of the formula, we encode
both ue

t and ue
g as the trivial formula true

ue
t ^ ue

g ¼ h (TRUE) ^h}(TRUE),

which means that these formulas are always satisfied.
2) Constraints on the behavior of the vehicle (system): Initially,

the vehicle must be in the domain of an initial policy,
no turn signal is on (we assume the vehicle starts by
driving straight

us
i ¼ _i2InitialPolicyUi ^ : SignalL ^ : SignalR ^ : stop,

which will be changed in the ‘‘Leaving’’ section), and the
vehicle is not required to stop. The vehicle can only
transition from one policy to the next based on the pre-
pares graph from the ‘‘Local Policy Deployment’’ section
(first line of us

t below). It must turn the left turn signal
only if it is turning left and the same for the right turn
signal (second and third line). It must stop if and only if
the hazard signal is true (last line).

us
t ¼

^ih (Ui ) (� Ui _j2SuccessorsOf Policyi
�Uj))

^h (( _j2LeftTurnPolicies�Uj),� signalL)

^h (( _j2RightTurnPolicies�Uj),� signalR)

^h (� hazard,� stop):

8>>><
>>>:

Finally, since we are only concerned with obeying traffic
laws and we do not require the vehicle to go anywhere,
we simply write us

g ¼ h}(TRUE):

Parking
In this scenario, a vehicle is searching for an empty parking
space and parks once it finds one. Starting from the formula in
the ‘‘Adhering to Traffic Laws’’ section, we define another
input, park, which becomes true when an empty parking space
is found.

1) Assumptions on the environment: We add these subformu-
las to ue of the ‘‘Adhering to Traffic Laws’’ section:
Initially there is no parking near the vehicle; therefore,
we add : park to ue

i . We can only determine whether
there is a free parking space if we are in a policy next
to it, i.e., park cannot become true if the vehicle is not
next to a parking space or in one (first subformula).
Also, for implementation reasons, we assume that the
input park remains true after parking (second subfor-
mula). These subformulas are added to ue

t

h (½(:( _i2ParkPolicy Ui)) ^ (:( _j2PreparesParkPolicy Uj))�
) :� parkÞ
^
h ððpark ^ ð_i2ParkPolicyUiÞÞ ) � parkÞ:

8>>><
>>>:

We have no assumptions on the infinite behavior of the
environment (we do not assume that there is an empty
parking spot); therefore, the goal component remains set
to true.

2) Constraints on the behavior of the vehicle (system): Here, we
add the parking requirement to us

t, which state that the
vehicle cannot park if there is no parking space avail-
able, indicated by the park input (first line). If there is
an empty parking space, it must park (second line).

^i2ParkPolicyh (:� park) :� Ui)
^h (� park) ð_i2ParkPolicy� Ui)):

�

Finally, we replace us
g by adding a list of policies the

vehicle must visit infinitely often if it has not parked yet.
These policies define the area in which the vehicle will
look for an available parking space.

us
g ¼ ^i2VisitPolicy h}ðUi _ park _ stopÞ:

Note that the goal condition is true if either the vehicle
visits these policies infinitely often (when there is no
parking space available) or it has parked or it has stopped
(because of an accident ahead of it or a broken stop light).

Leaving
In this scenario, a vehicle is leaving its parking space and exiting
the block via some specified exit. As before, starting from the
formula in the ‘‘Adhering to Traffic Laws’’ section, we define as
additional inputs Exit Ui for i 2 ExitPolicies. These are inputs
that are constant and define which exit the vehicle should use
(the proposition that is true), thus two vehicle leaving may use
the same generated automaton with different inputs.

1) Assumptions on the environment: We add these subfor-
mulas to ue. Initially only one Exit Ui is true. This is
added to ue

i

_i2ExitPolicies (Exit Ui ^j2ExitPolicies, j 6¼i :Exit Uj):

We require the input to be constant, which means that
they cannot change. Therefore, we add to ue

t

_i2ExitPolicies (Exit Ui ,�Exit Ui):

We have no assumptions on the infinite behavior of the
environment; therefore, the goal component remains set
to true.

2) Constraints on the behavior of the vehicle (system): Initially,
the car is leaving a parking space, hence it must turn
on the left turn signal. We modify us

i to be
us

i ¼ _i2InitialPolicyUi ^ SignalL ^ :SignalR ^ :stop:

We do not add any further subformulas to us
t of the

‘‘Adhering to Traffic Laws’’ section. As for us
g, we replace

it with the requirement that the vehicle must go to the
designated exit policy if it has not stopped.

us
g ¼ ^i2ExitPoliciesh}ððUi , ExitUiÞ _ stopÞ:
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Continuous Execution of Discrete Automata
The synthesis algorithm generates an automaton that governs
the execution of the local policies; however, the continuous
evolution of the system induced by the local policies governs
the state transitions within the automaton. In this section, we
discuss the implementation of the policy switching strategy.

Execution
A continuous execution of the synthesized automaton begins in
an initial state q0 that is determined by linearly searching the
automaton for a valid state according to the initial body pose of
the vehicle. From state qi at each time step, the values of the
binary inputs are evaluated. (We assume the time step is short
compared with the time constant of the closed-loop dynamics.)
On the basis of these inputs, all possible successor states are deter-
mined. If the vehicle is in the domain of policy Ul, which is active
in a successor state qj , the transition is made. Otherwise, if the
vehicle is still in the domain of Uk, which is active in state qi, the
execution remains in this state. The only case in which the vehi-
cle is not in the domain of Uk, or in any successor Ul, is if the
environment behaved badly. It either violated its assumptions,
thus rendering the automaton invalid, or it caused the vehicle to
violate the prepares graph (e.g., a truck running into the vehicle).
In the event that a valid transition does not exist, the automaton
executive can raise an error flag, thereby halting the vehicle and
requesting a new plan. This continuous execution is equivalent
to the discrete execution of the automaton [10], [12].

Guarantees of Correctness
We have several guarantees of correctness for our system, starting
from the high-level specifications and going down to the low-
level controls. First, given the high-level specification encoded
as an LTL formula, the synthesis algorithm reports whether the
specification is realizable or not. If an inconsistent specification
is given, such as, ‘‘always keep moving and if you see a stop light
stop,’’ the algorithm will return that there is no such system. Fur-
thermore, if a specification requires an infeasible move in the
prepares graph, such as ‘‘always avoid the left north or south road
and eventually loop around all the parking spaces,’’ the algorithm
will report that such a system does not exist.

Second, given a realizable specification, the algorithm is
guaranteed to produce an automaton such that all its executions
satisfy the desired behavior if the environment behaves as
assumed. The construction of the automaton is done using ue

t ,
which encodes admissible environment behaviors; if the envi-
ronment violates these assumptions, the automaton is no longer
correct. The automaton state transitions are guaranteed to obey
the prepares graph by the low-level control policy deployment
unless subject to a catastrophic disturbance (e.g., an out of con-
trol truck). Modulo a disconnect between ue

t and the environ-
ment, or a catastrophic disturbance to the continuous dynamics,
our approach leads to a correct continuous execution of the
automaton that satisfies the original high-level desired behavior.

Sensors, or more specifically, the binary inputs used by the
automaton, are of great importance in this framework. First, as
mentioned earlier, they must satisfy the assumptions made
about them in the LTL formula; otherwise, the automaton will

not be correct. Second, even if they do satisfy these assump-
tions, they may still cause correct yet unintended behavior. For
example, if the proximity sensor set the hazard input to true
whenever another vehicle was in a certain radius, even if that
vehicle was behind in a forward driving lane, both vehicles
may get deadlocked, i.e., both would stop forever. Although
this behavior satisfies the original specification, it does not fol-
low the spirit of finding a parking space. (This is a classical
problem in concurrent systems. There, fairness assumptions
are imposed on the inputs to ensure that the system will not
deadlock.) On the other hand, both cars stopping might be a
desired behavior when an accident occurred; therefore, we
would not want to forbid it in the specifications. Such unin-
tended behavior would not be present in a centralized
approach where the controller has full knowledge and not just
local information as is the case here. However, with careful
design of the inputs, such behaviors can be avoided.

Results
The approach is verified in a simulation executed using MAT-
LAB. First, the workspace is laid out, and a cache of policies is
specified. Second, the policies are automatically instantiated in
the configuration space of the vehicle, and the prepares graph
is defined. Next, the LTL formulas are written. Each LTL
formula is then given to the automatic synthesis algorithm
implemented by Piterman et al. [14] on top of the temporal
logic verifier system [17]. At this point, the resulting automa-
ton is used to govern the execution of the local policies, based
on the local behavior of the environment. The vehicles are able
to react in real time to disturbances via the local continuous
feedback and environmental changes sensed locally due to the
automaton.

In such an execution, we must simulate the sensors that
govern the behavior of the park and hazard inputs. The park
input is set to true whenever there is a free parking space near
by. The hazard input that enables the traffic law abiding behav-
ior and thus the multirobot task should be set to true whenever
the car must stop. Here, we simulate a proximity sensor with
added logic that sets hazard to true whenever the car is too
close to a car ahead of it (keeping safe distance), whenever a car
ahead is backing up to park (being polite), whenever the car is
leaving a parking space and another car passes by, and when-
ever another car is leaving a parking space which the car will
park in next. We also simulate a vision system that detects
whether the stoplight is red.

In the following example, the workspace is the one shown
in Figure 1, with the 306 policies instantiated as described in
the ‘‘Local Policy Deployment’’ section. In the parking LTL
formula, the visit policies correspond to the eight lanes around
the parking spaces (four going clockwise and four going
counter clockwise), and the initial policies correspond to the
ten entry points to the workspace. Likewise, in the leaving
automaton, the 40 parking spaces are the possible initial poli-
cies, and the ten exit points are the possible goals. Initially, 35
of the 40 parking spaces were randomly specified as occupied.

In this simulation, eight cars enter the block at different
times and from different entry points, looking for a parking
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space. During the execution, an additional three cars leave their
parking spaces and exit the workspace. Figure 5 shows a general
snapshot of the simulation. At this point in time, seven cars are
moving in the workspace. Cars that are marked with red ellipses
are the cars whose hazard input is true; therefore, they have
stopped. All stopped cars in this figure are obeying stoplights.

Figure 6 shows several close-up looks at different traffic
behaviors encountered during the simulation. In Figure 6(a),
the blue car that is leaving the parking space has stopped, indi-
cated by a red ellipse, to let the brown car drive by. This hazard
was invoked based on a proximity sensor. In Figure 6(b), red
car is parking while the blue car waits for it to finish before
passing. In Figure 6(c), the orange car is stopping to allow the
gray car to complete a left turn. The white car on the left is
leaving the parking space that later will be occupied by the
brown car. Figure 6(d) shows two cars stopping before a stop-
light. While the white car stopped based on the stoplight, the
black car behind stopped based on the proximity to the car
ahead of it. Figure 6(e) and (f ) is the two snapshots of two cars
parking simultaneously in opposite lanes. The car that started
the parking maneuver later (bottom lane) pauses to allow the
other car to park safely.

The video of this simulation can be viewed at [19].

Conclusions and Future Work
In this article, we have demonstrated, through the parking and
leaving example, how high-level specifications containing
multiple temporally dependent goals can be given to a team of
realistic robots, which in turn automatically satisfy them. By
switching between low-level feedback control policies and
moving in a well-behaved environment, the correctness of
each robot’s behavior is guaranteed by the automaton. The

system satisfies the high-level specification without needing to
plan the low-level motions in configuration space.

Sensor inputs play a crucial role in this framework, as
explained in the ‘‘Continuous Execution of Discrete Autom-
ata’’ section. A hazard input becoming true at the wrong time
may lead to deadlock. Deciding when and how long to stop is
a hard problem even for humans, as sometimes demonstrated
at four-way stops, let alone robots. Therefore, in the future, we
wish to explore how such inputs should be designed, imple-
mented, and verified.

We plan to extend this work in several other directions.
At the low level, we wish to consider more detailed dynam-
ics. At the high level, we intend to address more complex
robot coordination and tasks. Our research also focuses on
accessible specification languages such as some form of natu-
ral language. Furthermore, we plan to run several experi-
ments with real systems that demonstrate the work described
in this article.

Figure 5. A snapshot of the simulation. Cars surrounded by
red ellipses are cars that are stopping because of the hazard
input, in this case based on a stoplight.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Close-up looks at different behaviors seen
throughout the simulation. (a) Blue car leaving. (b) Red car
parking. (c) Yielding to turn in progress. (d) Two cars at
stoplight. (e) Two cars parking. (f) Two cars parking.

Furthermore, given a collection of

local feedback control policies, the

approach is fully automatic and

correct by construction.
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