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set of finite observations which correspond to the atomic propositions appearing in a given LTL formula.
Furthermore, the size of this abstraction is shown to be polynomial in the dimension of the control system
and the number of observations. These results open the doors for verification and synthesis of continuous and
hybrid control systems from LTL specifications.
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Model checking LTL over
controllable linear systems is decidable

Paulo Tabuada and George J. Pappas

Department of Electrical and Systems Engineering
University of Pennsylvania

Philadelphia, PA 19104
{tabuadap,pappasg}@seas.upenn.edu

Abstract. The use of algorithmic verification and synthesis tools for hy-
brid systems is currently limited to systems exhibiting simple continuous
dynamics such as timed automata or rectangular hybrid systems. In this
paper we enlarge the class of systems amenable to algorithmic analysis
and synthesis by showing decidability of model checking Linear Tempo-
ral Logic (LTL) formulas over discrete time, controllable, linear systems.
This result follows from the construction of a language equivalent, finite
abstraction of a control system based on a set of finite observations which
correspond to the atomic propositions appearing in a given LTL formula.
Furthermore, the size of this abstraction is shown to be polynomial in the
dimension of the control system and the number of observations. These
results open the doors for verification and synthesis of continuous and
hybrid control systems from LTL specifications.

1 Introduction

Hybrid systems are a powerful modeling paradigm for large-scale, complex sys-
tems where interaction between discrete and continuous components occurs. Due
to highly nontrivial interaction between discrete and continuous components,
one would like to have automatic tools for the analysis and synthesis of such
systems. Unfortunately, existing tools only address classes of systems with very
simple continuous dynamics, such as timed automata [2], multi-rate automata [1]
or rectangular hybrid systems [25, 13].

The main contribution of this paper is to show that algorithmic approaches
are also possible for larger classes of continuous dynamics. In particular, we
show that given a specification described by a Linear Temporal Logic (LTL)
formula ϕ, it is possible to construct a language equivalent finite abstraction
of a discrete time, controllable, linear system based on the formula ϕ. This
construction immediately implies that model checking a specification formula ϕ
over a linear system is decidable as it can be performed on the finite abstraction.
Furthermore, these results also open the doors for automatic controller synthesis
of linear systems from LTL specifications. Combining automatic synthesis for
continuous systems with existing tools for discrete systems [16, 18, 19, 11] will
eventually lead to automatic synthesis for hybrid systems.



Automatic analysis and synthesis of hybrid systems began with the seminal
work of Alur and Dill on timed automata [2]. Subsequent extensions lead to
multi-rate automata [1] and rectangular hybrid automata [25, 13] which lies on
the decidability boundary [14]. Different classes of dynamics for which finite
abstractions exist were introduced in [17] by combining tools from logic and
linear dynamical systems. See also [3] for a survey of these methods. Nonlinear
dynamics were considered in [6], and bisimulation based on foliations transverse
to the nonlinear flow were introduced. A different kind of dynamics, simple planar
differential inclusions, was considered in [4] where it was shown that qualitative
analysis of system trajectories is decidable by making use of unique topological
properties of the plane.

Our approach differs from all the above in that we consider control systems
instead of dynamical systems. It is the use of control that allows to modify1

the trajectories of the system into a form which admits a finite representation.
Hence, our results are closer to synthesis than verification problems. Another
important difference is that we consider continuous control systems in discrete
time as opposed to continuous time. Synthesis for hybrid systems using logic
has already been considered in [22], however the logic is not used to model the
specifications but rather to motivate the development of the synthesis proce-
dures as well as to prove several facts regarding the proposed algorithms. Other
synthesis techniques include supervisory control based on approximate finite ab-
stractions [9], invariants for the continuous dynamics [28], convexity properties
of affine systems [12] and mixed integer linear programming [5].

The construction of the finite abstraction of a given control system is per-
formed in two steps, each exploiting in a fundamental way the ability to shape
the system trajectories by appropriate choices of control. First, we show that (by
the use of control) we can transform any discrete time, controllable, linear system
into a canonical form, which induces a quotient system on a denumerable state
space, namely Zn. If the observations are also compatible with the quotient, we
have a bisimilar quotient. This first step depends crucially on the controllability
of the original system. The second step further abstracts the quotient system
into a finite, language equivalent system based on a finite set of observations.
The finiteness of this abstraction is again a consequence of the controllability
properties of the original control system.

The outline of this paper is the following. We revisit transition systems in
Section 2 and discuss the relation between linear control systems and transition
systems in Section 3. Section 4 shows how a denumerable (but not finite, how-
ever) bisimulation of a control system can be obtained. This bisimulation can be
further reduced to a language equivalent finite abstraction. This is described in

1 We note that the results in [4] can also be given a control interpretation. The authors
prove a normal form for the edge crossing trajectories (edge signatures) by showing
that for any system trajectory, there is another with the same qualitative properties
but with a special structure. This new trajectory can then be though as the result
of applying a suitable control law. However, our results are not restricted to planar
systems.



Section 5, where the main contribution of the paper is also presented. For space
reasons no proofs are presented and the interested reader is referred to [29].

2 Transition systems

Given a set S (finite or not), we denote by Sω the set of all infinite strings formed
by elements of S. An element of Sω is of the form α = α1α2 . . . and we identify
it with the map α : N → S by setting α(1) = α1, α(2) = α2, etc. The main
object used in this work are transition systems:

Definition 1. A transition system with observations is a tuple T = (Q,L,−→
, O, h), where:

– Q is a (possibly infinite) set of states,
– L is a (possibly infinite) set of labels,
– −→⊆ Q× L×Q is a transition relation,
– O is a (possibly infinite) set of observations,
– h : Q → O is a map assigning to each q ∈ Q an observation h(q) ∈ O.

We say that T is finite when Q,L, O are finite, and infinite otherwise. We will
usually denote by q

l−→ q′ a triple (q, l, q′) belonging to −→. As we will only use
transition systems with observations, we shall refer to them simply as transition
systems. Transition systems define subsets of Oω, also called languages:

Definition 2. Given a transition system T = (Q,L,−→, O, h), we say that γ ∈
Oω is an observed string of T if there exists a pair of infinite strings (α, β) ∈
Qω × Lω such that α(i)

β(i)−→ α(i + 1) and γ(i) = h(α(i)) for every i ∈ N. The
collection of all observed strings is denoted by L(T ) and defines the language of
the transition system.

Given transition systems T1 and T2 with the same observation space, we
say that T1 is language equivalent to T2 when L(T1) = L(T2). For later use we
introduce also the Pre operator. Given a state q ∈ Q, we denote by Pre(q) the
set of states in Q that can reach q in one step, that is:

Pre(q) = {q′ ∈ Q : q′ l−→ q for some l ∈ L}

We extend Pre to sets Q′ ⊆ Q in the usual way:

Pre(Q′) =
⋃

q′∈Q′
Pre(q′)

Finally, we recursively define Prei(Q′) by:

Pre1(Q′) = Pre(Q′)
Prei(Q′) = Pre(Prei−1(Q′)) (1)



2.1 Transition systems as LTL models

Linear temporal logic (LTL) provides a succinct and formal way of representing
temporal properties of dynamical and control systems. In this section we briefly
describe the syntax and semantics of LTL.

Specification formulas are built from atomic propositions belonging to a finite
set P and are recursively defined by:

– true, false, p and ¬p are LTL formulas for all p ∈ P;
– if ϕ1 and ϕ2 are LTL formulas, then ϕ1 ∧ϕ2 and ϕ1 ∨ϕ2 are LTL formulas;
– if ϕ1 and ϕ2 are LTL formulas, then ©ϕ1 and ϕ1Uϕ2 are LTL formulas.

The operator © is read as “next”, with the meaning that the formula it precedes
will be true in the next time step. The second operator U is read as “until” and
the formula ϕ1Uϕ2 specifies that ϕ1 must hold until ϕ2 holds.

We shall interpret LTL formulas over observed sequences of transition sys-
tems. We consider that the set of observations O is defined by P ∪ {τ} for some
element τ /∈ P . This allows to use LTL formulas to specify the sequences of
observations. The special symbol τ is used to represent observations not cor-
responding to any atomic proposition. LTL formulas are now interpreted over
sequences of observations γ : N→ O as follows:

For any p ∈ P, LTL formulas ϕ1, ϕ2, and i ∈ N:

– γ(i) |= p iff p = γ(i),
– γ(i) |= ϕ ∧ ϕ2 iff γ(i) |= ϕ1 and γ(i) |= ϕ2,
– γ(i) |= ϕ ∨ ϕ2 iff γ(i) |= ϕ1 or γ(i) |= ϕ2,
– γ(i) |= ©ϕ1 iff γ(i + 1) |= ϕ1,
– γ(i) |= ϕ1Uϕ2 iff ∃j ≥ i such that for all k, 0 ≤ k < j γ(k) |= ϕ1 and

γ(j) |= ϕ2.

Finally we say that a sequence γ satisfies formula ϕ iff γ(0) |= ϕ.
In Section 3 we will associate a transition system with a given control system.

Such association will enable the use of LTL as a specification mechanism for
control systems through the use of the associated transition system.

2.2 Relationships between transition systems

We now review some relationships between transition systems. The interested
reader may which to consult [8, 20] for a detailed discussion these and other re-
lated concepts. We start by introducing simulation and bisimulation relations [21,
24].



Definition 3 (Simulation and Bisimulation). Let T1 = (Q1, L1,−→1, O, h1)
and T2 = (Q2, L2,−→2, O, h2) be transition systems and R ⊆ Q1×Q2 a relation.
Relation R is a simulation relation from T1 to T2 if (q1, q2) ∈ R implies:

– if q1
l1−→1 q′1, there exists q′2 ∈ Q2, l2 ∈ L2 such that q2

l2−→2 q′2 and
(q′1, q

′
2) ∈ R,

– h(q1) = h(q2).

Relation R is a bisimulation relation between T1 and T2 if R is a simulation
relation from T1 to T2 and R−1 is a simulation relation from T2 to T1.

We note that in the previous definition we require the observation spaces of
T1 and T2 to be the same. Furthermore, we only require T2 to match transitions
in T1 with transitions having equal observations but not necessarily equal labels
as we are only interested in the observed behavior.

We now review several important consequences of bisimulation relations:

Theorem 1. Let T1 = (Q1, L1,−→1, O, h1) and T2 = (Q2, L2,−→2, O, h2) be
transition systems and R ⊆ Q1 ×Q2 a bisimulation relation between T1 and T2.
Then, they are language equivalent, that is, the following equality holds:

L(T1) = L(T2)

Language equivalence is important as it ensures that properties expressible
in LTL are preserved:

Theorem 2 ([27, 10]). Let T1 and T2 be two language equivalent transition
systems. Then, any LTL formula interpreted over observed sequences is satisfied
by T1 iff it is satisfied by T2.

Combining Corollary 1 with Theorem 2 we conclude that bisimilarity pre-
serves properties expressible in LTL, however bisimilarity also preserves proper-
ties expressible in other temporal logics such as CTL, CTL∗ and µ-calculus [8].

3 Linear control systems as transition systems

Control systems can be seen as specifying infinite transition systems. In this
section we will see how to extract such transition systems from linear control
systems:

Definition 4. A discrete time, linear control system Σ = (A,B) is a controlled,
discrete dynamical system defined by:

x(t + 1) = Ax(t) + Bu(t) (2)

with x(t) ∈ Rn, A ∈ Qn×n, B ∈ Qn×m, u(t) ∈ Rm and t ∈ N.



The vector x describes the state of the system which can be influenced by the
inputs u through the controlled dynamics (2). Although in control theory [26] it
is customary to define A as an element of Rn×n and B as an element of Rn×m, we
consider only rational entries since any computer implementation of the results
presented in this paper requires computable or decidable fields. The number n
is the dimension of the control system.

In this paper we consider discrete time, controllable, linear systems. A control
system is controllable if every point in the state space is reachable from any
other point in the state space. Such property can be effectively decided through
Kalman’s rank condition which asserts that a control system Σ = (A,B) is
controllable iff the matrix [B AB . . . An−2B An−1B] is full row rank [26].

Given a linear control system Σ = (A,B) we can construct a transition
system TΣ defined by:

TΣ = (Rn,Rm,−→, O, h)

with −→⊆ Rn × Rm × Rn given by x
u−→ x′ iff x′ = Ax + Bu.

The observation space O and observation map h are not defined by Σ. The
nature of O and h will be determined in the next sections. We note that TΣ is
only one of the possible embeddings, described in [23], of control systems in the
class of transition systems.

4 Controllable linear systems and their denumerable
bisimulations

The main contribution of this paper is to provide a decidability result obtained
through the computation of a finite abstraction of TΣ for a given discrete time,
controllable, linear system Σ and finite set of observations O. This finite abstrac-
tion will be constructed through several intermediate steps, the first one being
the extraction of a bisimulation with denumerable state space from TΣ . This
will be achieved by transforming the control system into a normal form which
immediately suggests how to obtain such a denumerable bisimulation.

We consider a discrete time, controllable, linear system Σ = (A,B) and
transform it to a special form called Brunovsky normal form [26]:

Definition 5 (Brunovsky normal form). Consider a linear control system
of dimension n with m inputs defined by the pair of matrices (A,B) and let
k = (k1, k2, . . . , kr) be a sequence of integers satisfying:

k1 ≥ k2 ≥ . . . ≥ kr and k1 + k2 + . . . + kr = n (3)

We say that the pair (A,B) is in Brunovsky normal form if matrices A and B
are of the following form:

A =




Ak1 0 . . . 0
0 Ak2 . . . 0
...

...
. . .

...
0 0 . . . Akr


 B =




bk1 0 . . . 0 0 . . . 0
0 bk2 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . bkr 0 . . . 0


 (4)



where matrix A is partitioned in r2 blocks while matrix B is partitioned in mr
blocks. Each block Aki and bki are of the form:

Aki =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
αi

1 αi
2 αi

3 . . . αi
ki




bki =




0
0
...
0
1




(5)

where λki − αi
ki

λki−1 − . . .− αi
2λ− αi

1 is the characteristic polynomial2 of Aki
.

Any controllable linear system can be effectively transformed to Brunovsky
normal form by a change of state coordinates as asserted by the following result:

Theorem 3 ([7, 15]). For every controllable linear system, there exists a unique
sequence of integers k = (k1, k2, . . . , kr) satisfying (3) and an invertible linear
transformation P ∈ Qn×n such that the pair (PAP−1, PB) is in Brunovsky
normal form.

In addition to state transformation P , we consider also a feedback transfor-
mation determining new inputs u′ from inputs u and state x as follows:




u′1
u′2
...

u′m


 =




u1 + α1
1x1 + α1

2x2 + . . . + α1
k1

xk1

u2 + α2
1xk1+1 + α2

2xk1+2 + . . . + α2
k2

xk1+k2

...
um + αr

1xn−kr+1 + αr
2xn−kr+2 + . . . + αr

kr
xn


 (6)

where we assumed m = r, which corresponds to the requirement that columns
of matrix B are linearly independent and constitutes no loss of generality. Such
assumption will be used throughout the paper. Combining state transformation
P with feedback transformation (6) we obtain the invertible transformation U :
Rn × Rm → Rn × Rm defined by:

[
x′

u′

]
= U

[
x
u

]
=

[
P 0n×m

V Im×m

] [
x
u

]
(7)

where 0n×m is a n×m matrix of zeros, Im×m is the m×m identity matrix and
V is a matrix where each row vi is of the form:

vi = [01×(k1+k2+...+ki−1) αi
1 αi

2 . . . αi
ki

01×(ki+1+...+kr)] (8)

Note that, as it was the case for P , transformation U is also invertible and
has rational entries. The control system Σ′ = (A′, B′) obtained from Σ by

2 The characteristic polynomial of a square matrix A is given by det(A− λI), where
I is the identity matrix. Note that since A has rational entries, the coefficients αi

j

are also rational.



transformation U has state space Rn with coordinates x′ = Px, input space Rm

with coordinates u′ defined by (6) and is of the form:

x′(t + 1) = A′x′(t) + B′u′(t) (9)

where the pair (A′, B′) is defined by block matrices with the format (4), but
where each block is of the form:

A′ki
=




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0




b′ki
=




0
0
...
0
1




(10)

We now see that the effect of feedback (6) was to cancel out the last line of the
matrices A′ki

. This has the effect of rendering these matrices nilpotent and can
only be achieved by means of control. This fact marks the departure of the pre-
sented results from existing techniques for dynamical systems, where no inputs
are available to modify the system dynamics. We shall refer to the form (9), (10)
as the shift register form. This name is justified by the representation of control
system (9) presented in Figure 1. In the control literature, the use of feedback
transformations of the form (6) is usually referred to as deadbeat control, see for
example, [26], Section 1.3, for a quick introduction to digital control.

X



�
X



�
X



�
X



�
X



�
X



�

U



Fig. 1. Representation of a discrete time system in shift register form as a shift register
for n = 6 and m = 1.

Control systems Σ and Σ′ are related by the invertible transformation U
which has the following immediate consequence for the transition systems they
define:

Proposition 1. Let TΣ = (Rn,Rm,−→Σ , O, hΣ) be the transition system de-
fined by a discrete time, controllable, linear system Σ of dimension n with m
inputs, let Σ′ be the shift register form of Σ and TΣ′ = (Rn,Rm,−→Σ′ , O, hΣ′)
the corresponding transition system. Given any observation map hΣ′ : Rn → O



for TΣ′ , the choice of observation map hΣ = hΣ′ ◦P for TΣ renders TΣ bisimilar
to TΣ′ with respect to the relation R ⊆ Rn × Rn defined by:

R = {(x, x′) ∈ Rn × Rn : Px = x′}
Proposition 1 is not surprising since Σ and Σ′ are isomorphic via the invert-

ible linear transformation U . However, this result paves the way to the introduc-
tion of a new transition system, bisimilar to TΣ′ , but with state space Zn. The
new state space Zn is obtained from Rn through the following quantization:

B =
⋃

z∈Zn

Bδ(z)

where the blocks Bδ(z) are defined for any δ ∈ Q+ by:

Bδ(z) =
{
x ∈ Rn : δzi − δ/2 < x′i ≤ δzi + δ/2 i = 1, 2, . . . , n

}

X�

X�

n n

Fig. 2. Quantization B of R2, where each square represents a block Bδ(z).

The quantization induced by B defines the new state space by identifying
each block Bδ(z) ⊂ Rn with the point z ∈ Zn. This identification is given by the
quantization map hB : Rn → Zn, where the ith component hBi of hB is defined
by:

hBi(x′) =
⌊x′i

δ
+

1
2
sgn(

x′i
δ

)
⌋

(11)

In the previous expression, bac denotes the floor map, returning the integer part
of a while sgn denotes the sign map defined by:

sgn(a) =
{−1 if a < 0

1 if a ≥ 0



X�

X�

X�

X�

X�

X�

a) b) c)

Fig. 3. Controlled evolution on the space of blocks. The left figure represents the initial
state Bδ(2, 1) at t = 0. The middle figure illustrates the reachable set in one step from
the initial condition, while the right figure represents the set reached for input w = 2.

For the sake of exposition, we now assume that n = 2 and m = 1, as this
will allow to represent graphically the next steps of the construction. For n = 2,
the quantization defined by B divides the plane in a square grid of resolution δ
as displayed in Figure 2. We now introduce a control system on Z2, which we
shall denote by Γ , such that TΓ will be bisimilar to TΣ′ under suitably defined3

observations. The construction of Γ exploits the fact that, the shift register
form of Σ′ induces a well defined controlled dynamics between blocks of the
quantization B. This means that, under appropriate inputs, blocks will move
into other blocks of the grid.

To illustrate the main idea of the construction process, consider all the points
(x′1, x

′
2) ∈ Bδ(z1, z2) for some (z1, z2) ∈ Z2. These points (x′1, x

′
2) are represented

in Figure 3a) for (z1, z2) = (2, 1) and satisfy at t = 0:

δz2 − δ/2 < x′2(0) ≤ δz2 + δ/2

Since control system Σ′ is in shift register form, x′1(1) = x′2(0), that is:

δz2 − δ/2 < x′1(1) ≤ δz2 − δ/2 (12)

This shows that, after one time step, all the points in block Bδ(z1, z2) will be
contained in the vertical strip displayed in Figure 3b) and defined by (12). To
have a well defined controlled dynamics between blocks, we only need to ensure
that x′2(1) will, in fact, be contained in a interval of length δ. However, this can
easily be achieved with the control law:

u′(t) = x′2(t) + δy(t), y ∈ Z (13)

The following computations show that x′2(1) will also lie on a interval of length
δ:

δz2 − δ/2 < x′2(0) ≤ δz2 + δ/2
δz2 + δy(0)− δ/2 < x′2(0) + δy(0) ≤ δz2 + δy(0) + δ/2

δ
(
z2 + y(0)

)− δ/2 < x′2(1) ≤ δ
(
z2 + y(0)

)
+ δ/2

3 Recall that Proposition 1 holds for any observation map hΣ′ .



This simple control law ensures that the system evolves from Bδ(z1(0), z2(0))
to Bδ(z1(1), z2(1)) with z1(1) = z2(0) and z2(1) = z2(0)+y(0) therefore defining
a control system on Z2 with input y ∈ Z. We note that the controlled dynamics
between blocks is not in shift register form since z2(t + 1) = z2(t) + y(t). As was
the case for Σ, we introduce a feedback transformation to convert the controlled
dynamics between blocks to shift register form. This transformation determines
the new input w from the previous input y and state z2 by:

w = y + z2 (14)

The previous argument used for the construction of the controlled dynamics
between blocks can be extended for any n and m resulting in control system Γ
defined by:

z(t + 1) = A′z(t) + B′w(t)

for z ∈ Zn and w ∈ Zm. Transition system TΣ′ can now be related to transition
system TΓ defined by control system Γ :

Theorem 4. Let TΣ′ = (Rn,Rm,−→Σ′ , O, hΣ′) be the transition system defined
by control system Σ′ and let TΓ = (Zn,Zm,−→Γ , O, hΓ ) be the transition system
defined by control system Γ . Given any observation map hΓ : Zn → O for TΓ ,
the choice of observation map hΣ′ = hΓ ◦ hB for TΣ′ renders TΣ′ bisimilar to
TΓ with respect to the relation Rδ ⊆ Rn × Zn defined by:

Rδ =
{
(x′, z) ∈ Rn × Zn : hB(x′) = z

}
(15)

In practice it is not necessary to compute TΓ to obtain a finite abstraction of
TΣ . Instead, we compute the finite abstraction directly from Σ as described in the
next section. However, the introduction of TΓ greatly simplifies the presentation
of the forthcoming results.

5 Language equivalent finite abstractions

In this section we further restrict the set of observations O to be finite. We
consider a finite set S ⊂ Zn on the state space of TΓ and define the observation
space O to be:

O = S ∪ {τ} (16)

for some τ /∈ S. The set S is identified with the finite set of atomic propositions
P appearing in a given LTL specification formula. Finiteness of observations,
and the shift register form of Γ will now allow to obtain a language equivalent,
finite abstraction of TΓ . This finite abstraction requires the following subsets of
the state space, defined for any a ∈ S:

Ca
0 = {a}

Ca
1 = Pre(Ca

0 )\S
Ca

2 = Pre(Ca
1 )\S

...
Ca

k1
= Pre(Ca

k1−1)\S



These sets have some properties that are fundamental to define the finite
abstraction of TΓ :

Proposition 2. For any 0 ≤ i ≤ k1 and a ∈ S, the sets Ca
i are nonempty.

Proposition 3. For any a ∈ S, b ∈ Zn there exists a c ∈ Ca
k1

such that b ∈
Pre(c).

Proposition 3 is the heart of the finite abstraction construction. It shows
that, if it is possible to go from a state z to a state a without visiting S, then
it is possible to do so in no more than k1 + 1 steps. This bound on the number
of steps implies a finite bound on the number of states necessary to encode the
controlled dynamics between states in S and hence finiteness of the abstraction.

We now have all the necessary ingredients to construct a finite transition
system T∆ = (Q,L,−→∆, O, h∆) defined by:

Q = S × {0, 1, 2, . . . , k1} (17)
L = {1} (18)
O = S ∪ {τ} (19)

h∆((a, i)) =
{

a if i = 0
τ if i 6= 0 (20)

It remains to define the transition relation −→∆⊆ Q × L × Q. We proceed as
follows:

((a, k1), 1, (a, k1)) ∈−→∆ for any a ∈ S, (21)
((a, i), 1, (a, i− 1)) ∈−→∆ for any a ∈ S and any 1 ≤ i ≤ k1, (22)

((a, 0), 1, (b, 0)) ∈−→∆ for any a, b ∈ S such that a ∈ Pre(b), (23)
((a, 0), 1, (b, i)) ∈−→∆ for any a, b ∈ S such that a ∈ Pre(c)

for some c ∈ Cb
i , 1 ≤ i ≤ k1 − 1, (24)

((a, 0), 1, (b, k1)) ∈−→∆ for any a, b ∈ S. (25)

Intuitively, we retain from TΓ all the states a ∈ S in the form (a, 0) ∈ Q, as
well as all the transitions between these states. However, to capture the controlled
dynamics between states not in S, only k1 states of additional memory are
required for each a ∈ S and these states are encoded by the states (a, i) ∈ Q for
1 ≤ i ≤ k1.

The finite transition system T∆ obtained through the previous construction
is language equivalent to the infinite transition system TΓ as asserted in the next
result:

Theorem 5. Let T∆ = (Q,L,−→∆, O, h∆) be the finite transition system ob-
tained from TΓ = (Zn,Zm,−→Γ , O, hΓ ) by the previous construction and con-
sider the observation space O = S ∪ {τ} and the observation maps:

hΓ (z) =
{

z if z ∈ S
τ if z /∈ S

h∆((z, i)) =
{

z if i = 0
τ if i 6= 0

Transition systems TΓ and T∆ are language equivalent.



Transition system T∆ has (k1 + 1)|S| states, which shows that in the worst
case the size of T∆ grows linearly with the dimension of the control system.
The size of T∆ is also linear in the number of observables, which is natural, as
the observed dynamics is also encoded in T∆. Furthermore, the size of T∆ is
independent of the grid resolution δ considered in the previous section. This is
another important factor contributing for the scalability of the proposed results.

As our main result asserts decidability of model checking, we start by showing
that the computation of T∆ from Σ can be performed in a finite number of steps:

Lemma 1. Let Σ = (A,B) be a discrete time, controllable, linear system and
consider a finite set of observations O = S ∪ {τ}, where τ /∈ S and elements in
S denote subsets of Rn of the form P−1h−1

B (hB(Px)), x ∈ Rn and h−1
B denoting

the set valued inverse of hB. Then, constructing T∆ from Σ can be performed in
a finite number of steps.

The main contribution of the paper is now obtained by combining Proposi-
tion 1 with Theorems 4 and 5, and Lemma 1. Intuitively the result follows from
the ability to effectively construct T∆ and from the fact that TΣ is language
equivalent to T∆ under the appropriate observations.

Theorem 6. Let Σ be a discrete time, controllable, linear system on Rn and ϕ
any LTL formula where each atomic proposition denotes a subset of Rn of the
form P−1h−1

B (hB(Px)), x ∈ Rn and h−1
B denoting the set valued inverse of hB.

Then, determining if TΣ satisfies ϕ is decidable.

The previous result can also be summarized in the following diagram:

TΣ
bisimilar- TΣ′

bisimilar- TΓ
lang. eq.- T∆

where the relationships between the several transition systems are represented.
As bisimilarity implies language equivalence and language equivalence preserves
LTL formulas, the previous figure shows that deciding if TΣ is a model for a LTL
formula is equivalent to decide if T∆ is a model for the same formula. However,
such translation between models is accompanied by an appropriate translation
of the sets denoted by the atomic propositions. To see this, consider the following
diagram representing the relation between the observation spaces of the several
transitions systems:

Rn P - Rn hB - Zn hΓ- S ∪ {τ}

We now see that an atomic proposition denoting a set of the form P−1h−1
B (hB(Px))

for TΣ is mapped by P to a set of the form PP−1h−1
B (hB(Px)) = h−1

B (hB(x′))
for TΣ′ and since this set is a quantization block, the quantization map hB
now transforms it to an element hB(x′) = z ∈ Zn. The finite set S is chosen
so as to capture every z ∈ Zn which is the image of a set in Rn denoted by an



atomic proposition. Therefore observed sequences of transition system T∆ repre-
sent sequences of atomic propositions interleaved with sequences of the element
τ , denoting that no atomic proposition is satisfied.

The above discussion shows that there is a tradeoff between the decidability
result of Theorem 6 and the requirement of having atomic propositions denoting
sets of the special form P−1h−1

B (hB(Px)). These sets are hypercubes skewed by
the linear transformation P−1, where the amount of linear distortion caused by
P−1 is determined by the controllability properties of Σ. Nevertheless, these sets
can be arbitrarily scaled by properly adjusting the resolution parameter δ and
used to model any other set as a union of such skewed hypercubes.

6 Discussion

Theorem 6 shows that given a discrete time, controllable, linear system Σ, and
a LTL formula ϕ with adequate atomic propositions, we can effectively decide if
TΣ is a model for ϕ. However, this result is far more interesting and important for
control design than for verification. From the assumption of controllability, we
know that every state is reachable from any other state, which somewhat reduces
the interest in verification questions. Furthermore, we have used several times, in
a fundamental way, the fact that control inputs u take values in an unbounded
set, namely Rm. This makes somewhat difficult to interpret the action of u as the
environment or as a disturbance acting on the system. Nevertheless, these results
seem extremely promising at the level of control design. Given a specification
formula ϕ, one can determine the intersection of the language satisfying ϕ with
the language of transition system T∆ in the form of a Buchi automaton. Such
automaton can then be refined to define a controller for TΣ . This allows to design
controllers for all the specifications expressible in LTL thereby enriching the
class of specifications (and respective controller designs) usually used in control
theory. We note that, although the system is assumed to be controllable, not
every specification is achievable by the system. Even the simple formula ϕ1 U ϕ2

may represent an unachievable specification as the system may need to leave the
set denoted by atomic proposition ϕ1 in order to reach the set denoted by ϕ2.
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