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From Nonlinear to Hamiltonian via Feedback

Abstract

Mechanical control systems are a very important class of nonlinear control systems. They possess a rich
mathematical structure which can be extremely important for the solution of various control problems. In this
paper, we expand the applicability of design methodologies developed for mechanical control systems by
locally rendering nonlinear control systems, mechanical by a proper choice of feedback. In particular, we
characterize control systems which can be transformed to Hamiltonian control systems by a local feedback
transformation.
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From Nonlinear to Hamiltonian via Feedback!

Paulo Tabuada and George J. Pappas

Department of Electrical and Systems Engineering
University of Pennsylvania
Philadelphia, PA 19104
e-mail: {tabuadap,pappasg}@seas.upenn.edu

Abstract

Mechanical control systems are a very important class
of nenlinear control systems. They posses a rich math-
ematical structure which can be extremely important
for the solution of various control problems. In this
paper, we expand the applicability of design method-
ologies developed for mechanical control systems by lo-
cally rendering nonlinear control systems, mechanical
by a proper choice of feedback. In particular, we char-
acterize control systems which can be transformed to
Hamiltonian control systems by a local feedback trans-
formation.

1 Introduction

Mechanical control systems are clearly a very large
class of nonlinear contro! systems. Their refined math-
ematical structure of mechanical control systems can
be extremely useful and must be exploited in their con-
trol design. Tt is therefore very natural that a wealth of
powerful design methodologies have been developed for
mechanical systems. Examples include energy shaping
methods [4, 2, 12], specialized controllability notions
and tests [9, 5], motion planning and generation [7],
among many others. See also the monographs [11, 14]
for several design techniques based on the related no-
tion of passivity.

In this paper, we broaden the applicability of design
tools for mechanical control systems to other classes of
nornlinear control systems by proper choice of feedback.
More specifically, we will solve the following equiva-
lence problem: Given a control system, determine if
it is possible to transform it to a Hamiltonian control
system by a feedback transformation. We recall that
this has been considered one of the open problems in
the area of mechanical feedback control systems as de-
scribed in the following passage from [3]: “ Find other
technigues which enable one to use feedback control for

1This research is partially supported by the National Science
Foundation Information Technology Research Grant CCROI-
21431,
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mechanical or, indeed, nonmechanicel systems, which
leave or put the sysiem inte Hamiltonian or Lagrangian
Jorm.”

After reviewing some notions of symplectic geometry,
in Section 2, we introduce a notion of Hamiltonian con-
trol systems. In Section 3 we provide a simple test to
determine if a given control system can be rendered
Hamiltonian with respect to a given Hamiltonian. In
Section 4, we determine sufficient and necessary condi-
tions for the existence of any Hamiltonian and a feed-
back transformation rendering a control system Hamil-
tonian. It should be noted that the feedback trans-
formations are local in nature, and with respect to the
canonical symplectic structure. These geometric condi-
tions are then illustrated with an example. In Section 5
we present some topics for further research.

2 Hamiltonian Control Systems

Several different models of mechanical control systems
abound in the literature on control of mechanical con-
trol systems. We will adopt what we think to be one
of the simplest such models: Hamiltonian control sys-
tems. To introduce it, we review some elementary no-
tions of symplectic geometry {6, 10]. A symplectic form
w on a smooth manifold A is a two-form satisfying the
following properties:

1. Nondegeneracy: w(X,Y) =0 for every X € TA
implies ¥ =0,

2. Closedness: dw = 0.

where we have denoted the exterior derivative by d.
We also use the notation ixw to represent the contrac-
tion of the two-form w with the vector field X, that
is (ixw)(Y) = w(X,Y) for any Y € TM. The first
property of the form w is required to obtain an isomor-
phism between TM and T* M from w. This is achieved -
by the correspondence X — ixw € T M which allows
to associate a unigue Hamiltonian vector field X g with



any smooth map H : M — R through the equality:
iXHw =dH

Hamiltoniar: vector fields conserve energy (the Hamil-
tonian H} along their flows ¢;. This fact can be shown
by the following computation:

It

¢;(£XHH)

¢y (dH - Xpr)
¢:(iXH“-’ - XH)
¢¢(w( Xy Xu))
= 0

d .,
a®d

It

The nondegeneracy condition on w also implies that
the dimension on M has to be an even number, see for
example [6]. The closedness condition is required to
cnsure that the flow ¢y of a Hamiltonian vector field
Xz respects the symplectic form, that is ¢,"w = w,
as can be seen again by simple computations where we
denote by Lx,w the Lie derivative of w along Xg.

%ét’w‘ = ¢ (Lxyw)
= Qit*(diXHW + ix},dw)
= ¢ (ddH +ix,dw)
= G'Je*(ixudw)

We now introduce the class of Hamiltonian control sys-
tems we will use in this paper:.

Decfinition 2.1 Let A be a smooth manifold equipped
with symplectic form w and let U be the input manifold.
A control affine system F 1 M x U — TAf:

P
F=X+) Yu
i=1
is said to be a Hamiltonian control system with Hamil-

tonian H if the vector field X is Hamiltonian with
Hamiltonien H.

Within the context of Hamiltonian contrel systems one
could also consider other models, for example, one
could consider that the vector fields Y; are also Hamil-
tonian {16] or even the more general class of port-
controlled Hamiltonian systems [17]. However, we will
focus on this simple model as the techniques developed
in this paper extend to such cases in a straightforward
manner, . ’

3 Achieving a given Hamiltonian

We start by determining if there exists a
feedback transformation, that is, & map!

11In the current setting where control systems are assumed to
be affine in the inputs it is natural to restrict feedback transfor-

o)+ B{x)v : M xU - U with 8(z) invertible
such that the feedback transformed system:

X(z)+ Y Yi(@)os(z) + »_ Yi(z)Byler;  (3.1)
i - 1,7

is Hamiltonian with a given Hamiltonian H. From ex-
pression (3.1) it is clear that one only needs to design
afz) to change X, so we will simply consider that G(x)
is the identity map on U. This question has the follow-
ing simple answer:

Proposition 3.1 Let F be an affine control system on
e smooth manifold M equipped with symplectic from w
end H : M — R a smooth map. There exists a local
feedback transformation rendering F Hamiltonian with
Hamiltonion H iff:

dH —ixw € span{iy,w,inw, ..., iy,w} (3.2)

or equivalently:-

(dH —ixw} AlpwAipwA .. Aly,w=10

Proof: Assume that a such a feedback exists, then

- the feedback transformed system satisfies:

IX45P aia)Yi(zyw = dH

i=1

which we rewrite as:
P .
dH —ixw =Y aiivw
i=1 .

clearly showing that (3.2) is satisfied. Conversely, as-
sume that (3.2) holds, then there are locally defined
smooth functions a; : A — R such that:

p
dH - ixw =Y aivw

i=1
We now define o by the equalities o; = —a; which
define the desired local feedback. m

While the conditions in Proposition 3.1 provide a quick
test to determine if one can transform a control system
to a Hamiltonian one with a specified H, they are not
useful if one wants to search for a feedback transfor-
mation and also a Hamiltonian. We devote the next
section to this problem.

4 Achieving any Hamiltonian

To provide a solution for the general case where no
Hamiltonian is a priori specified we will reshape condi-
tion (3.2). We start by making the following additional
assumption:

mations to affine transformations as this ensures that the trans-
formed system is still input affine.
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1. The distribution spanned by the input vector
fields ¥1,Y2,...,Y}, denoted by A, is locally of
constant rank.

4.1 A Geometric Solution

To develop a geometric solution we introduce the sym-
plectic orthogonal of A, which we denote by A¥ and
define by:

A*={ZeTM : w(Z,Y}=0 VY €A}
Note that A“ is locally of constant rank in virtue of
nondegeneracy assumption and smoothness of w. By
making use of A¥ we can reformulate condition (3.2)
to a more useful form. If condition (3.2) is satisfied
then dH — ixw = 3.5_, a;iy,w and contracting this
expression with any vector field in A% we have:

dH(Z) =w(X,Z) YZeA® (4.1)

Conversely, if (4.1) is satisfied, then dH = ixw + 7 for
some ¥ € span{iy,w, iy,w, ..., iy,w} which implies con-
dition (3.2} and shows how (3.2) can be equivalently ex-
pressed as {4.1). This expression can also be regarded
as a partial differential equation {PDE) whose solution
provides the desired Hamilionian . We now interpret

this PDE geometrically by defining the new manifold:
M=MxR

with local coordinates (z, y), where & are coordinates
for M and y coordinates for R. We also define the map
H:M—->Rhby:

as well as the vector fields:

- 8 i)

=Z— -

Z ot w(X,Z) 3y
defining the distribution A% on M. These new objects
allow to rewrite (4.1) as:

LzH=0 VZeldv
which we interpret as the requirement that vector fields
Z are tangent to the submanifold (H)~(0) of M.
We thus see that, in this geometric interpretation of
PDE (4.1), finding a Hamiltonian H is equivalent to
finding a submanifold of Af, implicitly defined by a
map H : M — R, such that A~ is contained in the
tangent space of (H)~*(0). Furthermore H must also
satisfy % # 0 which ensures, via. the implicit function
theorem, that I defines a function on M, the desired
Hamiltenian H. Necessary and sufficient conditions for
the local existence of such a map H are given in the

next result which provides geometric conditions for the
integrability of PDE (4.1):

Theorem 4.1 Let F be an affine control system on @
smooth manifold M with symplectic form w and denote
by C and C the inuolutive closures of A* and A% which
we assume to be reqular. There exists a locally defined
map H : M — R and e local feedback transformation
rendering F' Hamiltonian with Hamiltonian H iff:

dim(€) = dim(C) (4.2)

Proof:  In view of the discussion preceding Theo-
rem 4.1 it suffices to show that (4.2) is sufficient and
necessary for the existence of the map H : M — R
satisfying % # 0 and A¥ C T((H)"1(0)). To show
necessity assume the existence of H = H — y satisfy-
ing &% C T((H)~10)). Let i : M — M be the map
i(z) = (z, H(z)) and note that:

T.i Z(z) = Z(m)%+TzH-Z(m)%
9 3
~ Z)g +ulX. D)y

Z(e. H(z))
Z oi(x)

where the second equality follows from (4.1). This
shows that the vector fields Z are i-related to the vec-
tor fields Z. Since if Z; is i-related to Z; and Z; is i-
related to Z;, the bracket [Z;, Z;] is i-related to [Z;, Z}]
(see [1]), it follows by induction that dim(C) = dim(C).

§1jﬂ'1ciency is proved by applying Frobenius theorem to
C (which is regular by assumption) to conclude the exis-
tence of a submanifold of A to which the vector fields
in A¥ are tangent. Furthermore, Frobenius theorem
also ensures that this submanifold is locally described
by the zero level of a smooth map H : M — R [1]. It
remains to show that % # 0. We proceed by contra-
diction assuming that dim(C) = dim(C) and § = 0.
Then, the vector field Z = 02 + 14 € ker(dH) =

ker(%gdz + %;fdy). This shows that dim(C) is at least
greater them dim(C) by one, a contradiction. =

Theorem 4.1 gives necessary and sufficient conditions
for the existence of a solution to PDE (4.1). The so-
lution of partial differential equations naturally appear
in similar local feedback equivalence problems, such as
feedback linearization [8], and several control design
problems for mechanical control systems (2, 12].

As an immediate consequence of Theorem 4.1 we see
that in the case dim(AY) = 1, that is, control system F
has 2m - 1 inputs and dim{A) = 2m, condition (4.2)
is automatically satisfied.

Corollary 4.2 Let F be an affine control system on &
smooth manifold M of dimension 2m with symplectic
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Jorm w and 2m — 1 inputs. Then, there exists a locally
defined mep H : M — R and a local feedback trans-
formation rendering F Hemiltonian with Hamillonian
H,

The discussion so far has assumed that the symplectic
form w has been a priori specified. However, this is
not necessary in virtue of Darboux theorem [6] which
asserts that, locally, every symplectic manifold of di-
mension 2m is symplectomorphic {diffeomorphic by a
diffeomorphism that preserves the symplectic forms) to
E?™ with symplectic form:

w = f:d.’lfl /\dy,'

i=1

(4.3)

expressed in coordinates (T1,%2,. .., Zm: Y1, Y2:- - - » Ym)
for R?™, We thus see that if a contro! system can be lo-
cally rendered Hamiltonian with respect to the form w,
then by a change of coordinates, it is also Hamiltonian
with respect to any other symplectic form.

4.2 An alternative Characterization

The conditions for the existence of a Hamiltonian and a
feedback transformation given in Theorem 4.1 require
the computation of several objects such as A%, A, C,
C, ctc. However, some of these objects contain some
degree of redundancy and we will now see how one can
verify the conditions of Theorem 4.1 in & more direct
way. In particular we shall take advantage of the special
form of the vector fields in A®. From the expression of
[Z:, Z;] in local coordinates:

(Z.25] = [dw(%(z%zj) 8] [w(a’iizi}]

[ & o Z;
dw(X, Z;)} 0] |w(X, Z;)
we see that [Z,, Z;] is given by:

iZ, Z_,-]—a% + (Lz,w(X, Z;) — Lzw(X, Zi))% (4.4)

We now rewrite Lz,w(X, Z;) — Lz,w(X, Z;) as:
=d(iz,ixw)(Z) - Lz,w(X, Z;)

which by the Cartan magic formula [1] becomes:

—(Lz;ixw — iz;dixw)(Z;} - Lzw(X, Z;)

=iz, Lzixw+ gz, dixw - Lz w(X, Z;)

EZjiZiiXW - iziﬁz_,ixw + iziizjdixw

w(X,[Z;, Zj]) + iz‘.izjdixu) (4.5}

and where the last equality is a consequence of the fact
that Lz iz, v —iz,Lz,v = v([Z;, Z;]} for any one-form
5.

Expression (4.5) allows to formulate the following al-
ternative version of Theorem 4.1:
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Theorem 4.3 {Alternative Characterization)
Let F be an affine control system on a smooth mani-
fold A wnth symplectic form w. There exists a locally
defined map H : M — R ond a local feedback transfor-
mation rendering F Hamiltonien with Homiltonian H
iff:

Yz, Zj €AY

iz;iz;dixw =0 (4.6)

Proof: As we have seen in the proof of Theorem 4.1,
existence of H and the feedback transformation implies
that every vector field Z € A" is i-related to the vec-
tor field Z € A¥ for i(z) = (z, H(z)). This, in turn,
implies that [Z;, Z;] is also i-related to {Z;, Z;] leading
to:

—_— 8 ol
(23, 23] = [2: 23] 5 + (X, 2, Zj])ga
Comparing this expression with (4.4) we see that we

necessarily have iz,iz dixw = 0.

To show sufficiency we note that if {Z;, Z;] =37, a1 Z;
for Z;, Z;, Z; € C and smooth real valued functions a;,
it follows by (4.4) that [Z;, Z;] equals:

a
Zi, Zi] 5,
7] . e gs
Za,z,—a-; + (w(X, ZG{ZJ) +iz,iz,dixw
I i

+ (w(X, [Z:, Z5]) + iz,iz, dixw)a—y
)

glo Jlo

a P
| ZI:‘”Z’@_E' + (; (X, Zy) + iz,iz,dixw)

i

Zagz + iziizj dixw
[ %

The assumption iz,iz;dixw = 0 now allows to con-

clude that [Z,Z} = Y a2 = [ZuZ) = L aZ;

and an induction argument shows that dim({C)

dim(C) which by Theorem 4.1 implies the existence of

H and the desired feedback transformation. =

This formulation also allows to see that Corollary 4.2
is a simple consequence of the skew-symmetry of w.
If dim(A“} = 1 we have that for any Z;, Z; € A¥,
Z; = XZ; for a smooth real valued map A and
(dixw)(Z;, AZ;) = Mdixw)(Z;, Z;) = 0.

The necessary steps to determine the existence of a
solution to PDE (4.1) can now be resumed to the fol-
lowing:

1. Compute a basis for the sym-
plectic orthogonal AY of A,
A*={ZeTM : w(Z,Y)=0 VY € A},

2. Check if iz,iz;dixw = 0 for every Z;, Z; in the
basis of A* computed in step 1.



If Theorem 4.1 is satisfied, then a solution to (4.1)
must be obtained in order to determine the feedback
transformation. X H is such'a solution, we determine
the feedback transformation by computing the smooth
functions a; satisfying:

P
-dH —ixw = Zaiiy‘w

i=1

These functions allow to determine the term «(x) of the
feedback transformation a(z)+ 8(z)v by the equalities
a; = —a;. The term B(z} can be taken as the identity
on U/ or any other invertible (pointwise) linear map
from U to U.

4.3 Example

We now provide an example of the previously intro-
duced methodology. Consider the following control sys-
tem:

1 = TaTz+ 2ol

. 1

g = :1?11‘% + -Q-(Ilg

I3 = I TaT4+ ToTatly

ii.;'4 = I1Xx3 (47)

on R? with symplectic form w = dizy Adzy +des Adz,.
In this case we have:

TaT3 ] 0
2 1.2
115+ 5T 0 0
X = 142 T 9543 Y, = Y =
1Yoy 0 Tolg
I1Ir3 G 0

(4.8)

and A = span{Y1,Y2}. We now follow the steps out-
lined in the previcus section computing;

1. The symplectic orthogonal of A is obtained by
first computing:
iY]“) :L‘zd:l:z

iy:u) = .’L‘gl‘:;qu (4.9)

and then determining A* as the annihilating dis-
tribution of span{iy,w, iy;w}. Distribution A¥ is
then given by the span of:

Z] = Zg = (4 10)

e R R
oo o

2. We now compute:

. I
ixw = —(§z§ + :vlz'g)d:rl 4+ zor3dxrs

—rirsdrs + r1xazadrs

1519

which by differentiation gives:

dixw = -—Z2xjzodz; Adzy — z3des Ada
+zxadxsy A dx; - zzdry A dzs
+xoxadry Adzy + nizadrs Adxy
—2ryx3dxs Adxy + z3dx3 A dxs

+‘Izl‘4d.’171 N d.T.4 + 3&‘13?4(!.‘122 A d:r,;
and evaluating dixw on Z, and Zj:

.’L'zd;l','z
0

iz, dixw
izlizgdixw

shows, via Theorem 4.3, that a Hamiltonian and
a feedback transformation exist.

To obtain H one has to solve (4.1), which in this case
results in:

oH

'é-ﬂ;': = —51‘%—211‘%
OH | e

6:1‘:3 = 43

It suffices to solve the first equation to obtain:
H= 122 2
= —5(1'19«'2 + x173)
One now computes dH — ixw = (xxs — T273)dTs —

x1x2x4dxy which can be written as dH — ixw
aiiy,w + azly,w for:

1
a = (rz—22) ay= - TTEs (4.11)

3
These functions now allow to define the feedback trans-
formation as o;(x) = —a;{z) and for B(c) we simply
use the identity on U. The feedback transformed sys-
tem is now of the form:

£ = a—-H- -+ Taty
31’2

__ oH

e = — -,CEI-

. OH

T3 = o +ZTaus
3‘.2.‘4

. 8H

Iy = - a

revealing its Hamiltonian structure.

5 Conclusions

In this paper, we have addressed the problem of ren-
dering a nonlinear control system Hamiltonian by a
proper choice of feedback. We showed that the solu-
tion is given by the solution of a partial differential



equation, and provided sufficient and necessary condi-
tions for the local existence of solutions. These results
enlarge the class of systems to which powerful control
design methods developed for mechanical systems are
applicable.

Many related problems remain open. When we can-
not perform such a feedback transformation it may still
be possible to extract a quotient (an abstraction, see
for example [13, 15]) or a subsystem that is mechan-
ical, or that can be rendered mechanical by feedback.
This would allow to synthesize controllers for part of
the variables by making use of techniques developed
for mechanical control systems. Another alternative is
to perform a change of coordinates on the state space
that would render the system Hamiltonian, possibly
complemented by a feedback transfermation.
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