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Distributed Geodesic Control Laws for Flocking of Nonholonomic
Agents

Abstract
We study the problem of flocking and coordination of a group of kinematic nonholonomic agents in 2 and 3
dimensions. By analyzing the velocity vectors of agents on a circle (for planar motion) or sphere (for 3D
motion), we develop geodesic control laws that minimize a misalignment potential based on graph Laplacians
resulting in velocity alignment. The proposed control laws are distributed and will provably result in flocking
when the underlying proximity graph which represents the neighborhood relation among agents is connected.
Furthermore, we develop a vision based control law that does not rely on heading measurements, but only
requires measurement of bearing, optical flow and time-to-collision, all of which can be efficiently measured.
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Distributed Geodesic Control Laws for Flocking of Nonholonomic
Agents

Nima Moshtagh, Ali Jadbabaie, Kostas Daniilidis

Abstract— We study the problem of flocking and coordination
of a group of kinematic nonholonomic agents in 2 and 3
dimensions. By analyzing the velocity vectors of agents on a
circle (for planar motion) or sphere (for 3D motion), we develop
geodesic control laws that minimize a misalignment potential
based on graph Laplacians resulting in velocity alignment.
The proposed control laws are distributed and will provably
result in flocking when the underlying proximity graph which
represents the neighborhood relation among agents is connected.
Furthermore, we develop a vision based control law that
does not rely on heading measurements, but only requires
measurement of bearing, optical flow and time-to-collision, all
of which can be efficiently measured.

I. INTRODUCTION

Cooperative control of multiple autonomous agents has
become a vibrant part of control theory research. The main
underlying theme of this line of research is to analyze
and/or synthesize spatially distributed control architectures
that can be used for motion coordination of large groups of
autonomous vehicles. Each vehicle is assumed to be capable
of local sensing and communication, and there is often a
global objective, such as swarming, or reaching a stable
formation, etc. A non-exhaustive list of relevant research in
control theory and robotics includes [1], [3]–[6], [8], [10],
[12], [13], [15], [17], [18].

On the other hand, such problems of distributed co-
ordination have also been studied in areas as diverse as
statistical physics and dynamical systems (in the context of
synchronization of oscillators and alignment of self propelled
particles [21], [24]), in biology, and ecology, and in computer
graphics in the context of artificial life and simulation of
social aggregation phenomena.

Most of the above cited research on distributed control
of multi-vehicle systems has been focused on fully actuated
systems [16], [22], or planar under-actuated systems [10],
[19], [23]. Our goal here is to develop motion coordination
algorithms that can be used for distributed control of a group
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of nonholonomic vehicles in 2 and 3 dimensions. Using re-
sults of Bullo et al. [2] we develop geodesic control laws that
result in flocking and velocity alignment for nonholonomic
agents in 3 dimensions.

In order to introduce the idea of a geodesic control law to
the reader, we start with the special case of planar motion
in section III. We will show that the planar version of such
a control law (where the velocity vector is restricted to stay
on a circle) is exactly the well-known Kuramoto model of
coupled nonlinear oscillators [9], [19], [20]. Such a control
law is a gradient controller that minimizes a potential func-
tion which represents the aggregate “misalignment energy”
between all agents. In section IV we return to the general
case of 3D motion and we develop control laws that result
in stable coordination and velocity alignment of a group of
agents with a fixed connectivity graph.

One application of the introduced geodesic control law
is presented in section V, where a vision-based control
law is developed. It is shown that flocking and formation
control is possible using visual sensing, even if there is
no communication between nearby agents, but each agent
can sense certain information about its neighbors. Finally, in
section VI we provide simulations that show the effectiveness
of the designed controllers.

II. GRAPH THEORY PRELIMINARIES

In this section we introduce some standard graph theoretic
notation and terminology. For more information, the inter-
ested reader is referred to [7].

An (undirected) graph G consists of a vertex set, V , and
an edge set E , where an edge is an unordered pair of distinct
vertices in G. If x, y ∈ V , and (x, y) ∈ E , then x and y
are said to be adjacent, or neighbors and we denote this by
writing x ∼ y. The number of neighbors of each vertex is
its valence. A path of length r from vertex x to vertex y is a
sequence of r+1 distinct vertices starting with x and ending
with y such that consecutive vertices are adjacent. If there is
a path between any two vertices of a graph G, then G is said
to be connected. If there is such a path on a directed graph
ignoring the direction of the edges, then the graph is weakly
connected.

The adjacency matrix A(G) = [aij ] of an (undirected)
graph G is a symmetric matrix with rows and columns
indexed by the vertices of G, such that aij = 1 if vertex i and
vertex j are neighbors and aij = 0, otherwise. The valence
matrix D(G) of a graph G is a diagonal matrix with rows
and columns indexed by V , in which the (i, i)-entry is the
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valence of vertex i. The (un)directed graph of a (symmetric)
matrix is a graph whose adjacency matrix is constructed by
replacing all nonzero entries of the matrix with 1.

The symmetric singular matrix defined as:

L(G) = D(G) − A(G)

is called the Laplacian of G. The Laplacian matrix captures
many topological properties of the graph. The Laplacian
L is a positive semidefinite M-matrix (a matrix whose
off-diagonal entries are all nonpositive) and the algebraic
multiplicity of its zero eigenvalue (i.e., the dimension of its
kernel) is equal to the number of connected components in
the graph. The n-dimensional eigenvector associated with the
zero eigenvalue is the vector of ones, 1.

Given an orientation of the edges of a graph, we can define
the edge-vertex incidence matrix of the graph to be a matrix
B with rows indexed by vertices and columns indexed by
edges with entries of 1 representing the source of a directed
edge and -1 representing the sink. The Laplacian matrix of a
graph can be also represented in terms of its incidence matrix
as L = BBT independent of the orientation of the edges.

III. DISTRIBUTED CONTROL OF PLANAR

NONHOLONOMIC VEHICLES

Consider a group of N agents on a plane. Each agent is
capable of sensing some information from its neighbors as
defined by:

Ni
.= {j|i ∼ j} ⊆ {1, . . . , N}\{i}. (1)

The neighborhood set of agent i, Ni, is a set of agents that
can share their heading (orientation) information with agent i.
The size of the neighborhood depends on the characteristics
of the communication device. We therefore assume that there
is a predetermined radius R which determines the neighbor-
hood relationship. The location of agent i, (i = 1, . . . , N) in
the world coordinates is given by (xi, yi) and its velocity is
vi = (ẋi, ẏi)T . The heading or orientation of agent i is θi

and is given by: θi = atan2
(
ẏi, ẋi

)
.

Without loss of generality, it is assumed that all agents
move with constant unit speed. Thus, the kinematic model
of each agent can be written as

ẋi = cos θi

ẏi = sin θi

θ̇i = ωi i = 1, . . . , N (2)

The goal is to design the control input ωi so that the group
of mobile agents flock in the sense of following definition:

Definition 3.1: (Flocking) A group of mobile agents is
said to (asymptotically) flock, when all agents attain the
same velocity vectors and distances between the agents are
asymptotically stabilized to constant values. The state where
all the headings are the same is called the consensus state.

We consider the case where the neighboring relations
among agents are represented by a fixed weighted graph.

Fig. 1. Velocity vectors on the unit circle

Definition 3.2: The proximity graph G = {V, E ,W} is a
weighted graph consisting of:

• a set of vertices V indexed by the set of mobile agents;
• a set of edges E = {eij = (vi, vj) | vi, vj ∈ V , and

i ∼ j};
• a set of weights W , over the set of edges E .
In order to design the desired control law for agent i, let

us view all the velocity vectors of neighbors of agent i in a
unit circle as shown in Figure 1. Each velocity vector vi can
be written in terms of the heading angle θi (measured in a
fixed inertial frame) as follows vi = [cos θi , sin θi]T , i ∈
{1, . . . , N}. As the velocity vector vi changes, we can write
the dynamic equation of agent i as v̇i = ωiXiθ where vector
Xiθ is tangent to vi and given by Xiθ = [− sin θi , cos θi]T .

Let αij be the angle between two velocity vectors vi and
vj , αij = |θi − θj |. When vi and vj are neither equal nor
opposite (0 < αij < π), we can define a unit vector Yij

tangent to vi such that it is pointing towards the velocity
vector vj . This unit-length vector is defined as:

Yij
.=

v⊥
j

|v⊥
j | =

(vi × vj) × vi

‖ (vi × vj) × vi ‖ =
vj− < vi, vj > vi

sin αij
(3)

where v⊥
j is the component of vj orthogonal to vi. Now, we

can prove the following theorem for the distributed control
of the velocity vectors of a group of N agents.

Theorem 3.3: Consider the system of N equations v̇i =
ωiXiθ, i = 1, . . . , N. If the proximity graph is fixed and
connected, then by applying the control law

ωi =
∑
j∈Ni

sin αij < Yij , Xiθ >=
∑
j∈Ni

< vj , Xiθ > (4)

all trajectories converge to the set of equilibrium points
given by θ̇ = 0. Furthermore, consensus state is locally
asymptotically stable, which means the N-agent group flocks
in the sense of Definition 3.1.

Proof: We observe that on the unit circle Yij = Xiθ

or Yij = −Xiθ, depending on the orientations of vi and vj .
Hence we write the input (4) as

ωi = −
∑
j∈Ni

sin(θi − θj). (5)
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which as shown in [9], [13], [20] it is exactly the one used
in the Kuramoto model of coupled nonlinear oscillators .

Assume an arbitrary orientation for the edges of graph G.
Consider the N×e incident matrix, B, of this oriented graph
with N vertices and e edges. Then, we can write (5) as:

θ̇ = ω = −B sin(BT θ) (6)

where θ = [θ1, . . . , θN ]T . Equation (6) can be written in a
more compact form of:

θ̇ = ω = −BW (θ)BT θ = −Lw(θ)θ, (7)

where W (θ) = diag{sinc(θi − θj) | (i, j) ∈ E}. is a
diagonal matrix whose entries are the edge weights for G,
and Lw(θ) = BW (θ)BT .

When sinc(θi−θj) = sin(θi−θj)/(θi−θj) is positive, Lw

can be thought of as the weighted Laplacian of G. For this to
hold θ should belong to the open cube (−π/2, π/2)N , where
N is the number of vertices of the graph. In other words, over
any compact subset of the cube (−π/2, π/2)N , the dynamics
can be represented by a state-dependent weighted Laplacian.

Now consider the Lyapunov function

U =
1
2

∑
j∼i

‖ vi−vj ‖2=
1
2
[ejθ]∗L[ejθ] =

∑
j∼i

1−cos(θi−θj)

(8)
where the sum is over all the neighboring pairs, denoted by
i ∼ j, L is the Laplacian of the graph, and [ejθ] is the
stack of velocity vectors in complex notation. The above sum
represents the total misalignment energy between velocity
vectors. Since we have U = e − 1T cos(BT θ) and because
of (7), the time derivative of U becomes

U̇ = ∇U θ̇ = −θT L2
wθ = −θ̇T θ̇ ≤ 0

Using LaSalle’s invariance principle, we conclude that all
trajectories converge asymptotically to equilibria correspond-
ing to θ̇ = 0. Furthermore, a simple quadratic Lyapunov
function V = 1

2θT θ, and a compact set Ωc = {θ | V ≤ c}
which is characterized by the largest level set of V that
is contained inside the cube (−π/2, π/2)N can be used to
show that the synchronized state is the only equilibrium
within the set E = {θ ∈ Ωc | V̇ = 0}. This is true since
V̇ = −θT Lwθ ≤ 0. Thus, equilibrium points are the set
of solutions of Lwθ = 0. If graph G is connected, within
Ωc the null space of weighted Laplacian Lw is the span of
the vector 1 .= [1, . . . , 1]T . Thus, the solution is Null{Lw},
which is the set S = {θ | θ ∈ span{1}}. This suggests that
all agents reach the same heading as t → ∞.

Remark 3.4: When the proximity graph G has the ring
topology (i.e. all agents have exactly two neighbors), there are
two sets of equilibrium: θ ∈ span{1} and BT θ ∈ span{1}
where the former corresponds to the set {θi = θj , ∀i 
= j}
and the latter corresponds to {θi − θj = 2π

N , ∀i 
= j}.
Remark 3.5: Local asymptotic stability of the consensus

state can be established even when the proximity graph
changes with time [14] so long as a weak connectivity notion
called joint connectivity [8] holds.

IV. DISTRIBUTED COORDINATION OF NONHOLONOMIC

AGENTS IN 3D

Consider a group of N agents in the 3 dimensional space.
Our goal in this section is to design a control law for
each agent such that it guarantees flocking in the sense of
Definition 3.1.

Each agent is capable of communicating some information
with its neighbors, defined by (1). The neighborhood set of
agent i, Ni, is a set of agents that can share their headings and
attitudes (orientation) information with agent i. As before,
it is assumed that there is a predetermined sphere with
radius R which determines the neighborhood relationship.
The location of agent i in the fixed world coordinates is
given by (xi, yi, zi) and its velocity is vi = (ẋi, ẏi, żi)T .
The orientation of the velocity vector of agent i can be
characterized by specifying two angles θi (heading) and φi

(attitude) relative to the world frame, and they are defined
as:

θi = atan2
(
ẏi, ẋi

)
, 0 ≤ θi ≤ 2π (9)

φi = atan2
(√

ẋ2
i + ẏ2

i , żi

)
, 0 < φi < π . (10)

Without loss of generality, it is assumed that all agents
move with a constant unit speed. The velocity of agent i in
3 dimensions is given by:

vi =

⎛
⎝ẋi

ẏi

żi

⎞
⎠ =

⎛
⎝cos θi sin φi

sin θi sin φi

cos φi

⎞
⎠

Hence, all velocity vectors are on a unit sphere S2 .= {p =
(x, y, z) ∈ R

3 : ‖ p ‖= 1} (see Figure 2). We represent
each vector vi as a point on this unit sphere. As the direction
of the velocity vector of agent i changes, the corresponding
point vi will move along a curve on the sphere. The tangent
vector to this curve at vi ∈ S2 can be uniquely represented
as a vector v̇i ∈ R

3 such that v̇i ⊥ vi and v̇i ∈ TiS2 where
TiS2 is the tangent plane at vi. A basis for the tangent space
TiS2 can be obtained by differentiating vi, and thus v̇i can
be written as

v̇i = UiθXiθ + UiφXiφ ∈ TiS2

where Bi = {Xiθ, Xiφ} is an orthonormal basis for the
tangent plane TiS2, and

Xiθ =

⎛
⎝− sin θi

cos θi

0

⎞
⎠ , Xiφ =

⎛
⎝cos θi cos φi

sin θi cos φi

− sinφi

⎞
⎠ .

The control inputs Uiθ and Uiφ are related to θ̇i and φ̇i:

Uiθ = θ̇i sin φi, Uiφ = φ̇i . (11)

When points vi and vj are neither equal nor opposite, a vector
Yij ∈ TiS2 called the geodesic versor can be defined to
show the geodesic direction from vi to vj (see Figure 2).
The unit length geodesic versor is defined by equation (3).
The difference from the 2-dimensional case is that on the
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Fig. 2. The sphere and its tangent plane.

sphere the angle αij is the radian distance between points vi

and vj over the great circle path.
Now, we can prove the following theorem for the geodesic

control of the velocity vectors of a group of N agents, which
is a generalization of Theorem 2 in [2] to arbitrary number
of agents and connected topologies.

Theorem 4.1: Consider the system of N equations v̇i =
UiθXiθ + UiφXiφ, i ∈ {1, . . . , N}. If the proximity graph
of the agents is fixed and connected, then by applying the
control laws

Uiθ =
∑
j∈Ni

sin αij < Yij , Xiθ >=
∑
j∈Ni

< vj , Xiθ > (12)

Uiφ =
∑
j∈Ni

sin αij < Yij , Xiφ >=
∑
j∈Ni

< vj , Xiφ > (13)

all trajectories converge to equilibria. Furthermore, the con-
sensus state is locally asymptotically stable. As a result the
N-agent group flocks in the sense of definition 3.1.

Proof: Convergence to equilibria can be established
using the same Lyapunov function given in (8). To prove
the stability of the consensus state for the system with the
control laws given in Theorem 4.1, we need to write (12)
and (13) in terms of the heading and attitude angles. Using
(11) we obtain expression for θ̇i and φ̇i:

θ̇i = −
∑
j∈Ni

sin φj

sin φi
sin(θi − θj) (14)

φ̇i = −
∑
j∈Ni

sinφi cos φj − sin φj cos φi cos(θi − θj) . (15)

Let θ = [θ1, . . . , θN ]T denote the heading vector and write
(14) as

θ̇ = −B sin(BT θ) = −BW (θ)BT θ (16)

where W (θ) is a weight matrix given by

W (θ) = diag{ sin φj

sin φi
sinc(θi − θj) | (i, j) ∈ E}.

When θi, θj ∈ (−π/2, π/2) the function sinc(θi − θj) is
positive . Also, from the definition of the attitude angle (10),

we know that φi, φj ∈ (0, π), (excluding the poles) therefore,
W (θ) is a valid weight matrix.

Let r = cos(θi −θj). Since r ∈ [−1, 1] and φi ∈ (0, π/2)
we observe that

r sin φj cos φi ≤ sinφj cos φi

from which we can conclude φ̇i ≤ −∑
j∈Ni

sin(φi − φj).
Let φ denote the vector of attitudes φ = [φ1, . . . , φN ]T . In
matrix notation we can write the above inequality as

φ̇ ≤ −B sin(BT φ) = −BW (φ)BT φ (17)

where the diagonal weight matrix is given by W (φ) =
diag{sinc(φi − φj) | (i, j) ∈ E}. W (φ) is a valid weight
matrix, because by restricting angles φi to (0, π/2) the
function sinc(φi − φj) is always positive.

Now consider the quadratic Lyapunov function

V
.=

1
2
θT θ +

1
2
φT φ.

By using (16) and (17) we can show that V̇ is nonpositive:

V̇ = θT θ̇ + φT φ̇ ≤ −θT Lθθ − φT Lφφ ≤ 0

where Lθ = BW (θ)BT and Lφ = BW (φ)BT are the
weighted Laplacians.

The compact set Ωc = {(θ, φ) | V ≤ c} is now
positively invariant for the largest value of c such that Ωc ⊂
(−π/2, π/2)N × (0, π/2)N .

By LaSalle’s invariance principle any trajectory starting
in Ωc converges to the largest invariant set, S, contained in
E = {(θ, φ) | V̇ = 0}. The invariant set of this system is
when Lθθ = 0 and Lφφ = 0, or when vector θ ∈ Null{Lθ}
and φ ∈ Null{Lφ}. Hence S = {(θ, φ) | θ ∈ span{1}, φ ∈
span{1}} is the solution.

This analysis shows that geodesic controllers (12) and (13)
will result in stable flocking, so long as initial conditions are
inside Ωc.

V. APPLICATION: VISION-BASED FORMATION CONTROL

We now would like to extend the above results to the case
where there is no communication between nearest neighbors,
but agents are equipped with visual sensors capable of
sensing information from their neighbors. While the nearest
neighbor interactions have been shown to be biologically
plausible and have been observed in schools of fish and
flocks of birds, the assumptions about knowledge of relative
headings and distances are not, at least when vision is the
main sensing modality.

The simplest assumption we can make is that such systems
have only monocular vision and that they have basic visual
capabilities like the estimation of optical flow and time-to-
collision. Experimental evidence [25] suggest that several
animal species, including pigeons, are capable of estimating
time-to-collision .
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Fig. 3. Configuration of 2 agents.

A. System Model

Consider a group of N agents on a plane with kinematics
given by (2). The neighborhood set of agent i, Ni is now a
set of agents that can be seen by agent i. By ”seeing” we
mean that each agent can measure

• βij or the relative bearing in agent i’s reference frame
• β̇ij or ”optical flow”: the rate of change in bearing
• τij or ”time-to-collision”

for any agent j in the set of its neighbors Ni. Note that
measurement of τij is not equivalent to measurement of the
relative distance between agents as is usually the case in
visual motion problems. This is due to the fact that time-
to-collision can only recover the distance up to an unknown
factor which in our case is different for every agent. The
reader should also note that only one optical flow vector per
rigid body is observed. Thus, making it impossible to rely
on structure from motion algorithms.

Bearing βij and relative distance lij between agents i and
j are given by (see Figure 3):

l2ij = (xj − xi)2 + (yj − yi)2 (18)

βij = atan2
(
yj − yi, xj − xi

) − θi +
π

2
(19)

It can be shown that the time-to-collision between agents i
and j denoted by τij can be measured as the rate of growth
of the image area [11], i.e. the relative change in the area
Aij of projection of agent j on the image plane of agent i.
In other words

τij =
Aij

Ȧij

=
lij

l̇ij
.

B. The vision-Based Distributed Control Law

We saw in section III, Theorem (3.3) that a controller of
the form

ωi = −
∑
j∈Ni

sin(θi − θj) (20)

results in a stable flocking according to definition (3.1). The
question is how to generate a distributed control law based on
measured quantities, such that it is equivalent to the desired

control law (20). Consider any pair of agents i and any of
its neighbors j. By differentiating (18) we get

1
τij

=
l̇ij
lij

=
2
lij

sin(
θi − θj

2
) cos(βij +

θi − θj

2
) (21)

and by differentiating (19) we obtain

β̇ij + ωi = − 2
lij

sin(
θi − θj

2
) sin(βij +

θi − θj

2
) (22)

A straightforward computation, using trigonometry identi-
ties, shows that the following relation between (21) and (22)
holds:∑
j∈Ni

1
τij

cos βij−
∑
j∈Ni

(ωi+β̇ij) sin βij =
∑
j∈Ni

1
lij

sin(θi−θj).

(23)
where we have summed both sides over all the neighbors of
agent i. Equation (23) reveals that the right-hand side has
the form of the desired control law (20). By plugging (20)
in (23), we get:

ωi =
1

1 − ∑
j∈Ni

sin βij

∑
j∈Ni

(
β̇ij sin βij − 1

τij
cos βij

)
.

(24)
This is the desired control law in terms of the measured
quantities only.

VI. SIMULATIONS

In this section we numerically show that the distributed
control law (5), for the planar case, and the geodesic control
laws (12) and (13), for the three dimensional case, can force a
group of agents to flock according to definition (3.1). Figures
4 and 5 are for the two dimensional case and they show
snapshots of the motion of the group at times t = 0 and t =
100 seconds, respectively. The initial position and heading
of all agents are generated randomly within a pre-specified
area. The neighboring radius is chosen large enough so that
agents form a connected graph at time t = 0. The arrows on
each agent show the directions of the velocity vectors.

Simulations show that agents smoothly adjust their head-
ings and after a reasonable amount of time they converge to
a formation, and their relative distances stabilizes. For the
3D case, Figures 6 and 7 depict the headings of all agents at
times t = 0 and t = 100 seconds. They show that all agents
will eventually be aligned.

VII. CONCLUSIONS AND FUTURE WORK

We provided a coordination scheme which resulted in
flocking of a collection of kinematic agents in 2 and 3 dimen-
sions. The control law was based on nearest neighbor sensing.
It can be shown that flocking is possible despite possible
changes in the topology of the proximity graph representing
the neighborhood relationship. We used the introduced planar
control law to design a vision-based distributed controller
that only relies on measurements from a vision sensor.
Another generalization is to develop results similar to [22]
for dynamic models, by using artificial potential functions
[17].
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Fig. 4. 2D: At T = 0 sec agents form a connected graph.

−10 −5 0 5 10 15 20 25 30 35 40
−25

−20

−15

−10

−5

0

5

10

15

20

position [m]

po
si

tio
n 

[m
]

Fig. 5. 2D: At T = 100 sec group reaches a stable formation
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