
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

8-2012

Time-triggered Implementations of Dynamic
Controllers
Truong X. Nghiem
University of Pennsylvania

George J. Pappas
University of Pennsylvania, pappasg@seas.upenn.edu

Rajeev Alur
University of Pennsylvania, alur@cis.upenn.edu

Antoine Girard
Université Joseph Fourier

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Part of the Controls and Control Theory Commons

Nghiem, T. X.; Pappas, G. J.; Alur, R. & Girard, A. (2012). Time-Triggered Implementations of Dynamic Controllers. ACM Transactions on Embedded
Computing Systems (TECS), 11(S2), Article 58. doi: 10.1145/2331147.2331168
© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, August 2012 http://doi.acm.org/10.1145/
2331147.2331168

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/620
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Truong X. Nghiem, George J. Pappas, Rajeev Alur, and Antoine Girard, "Time-triggered Implementations of Dynamic Controllers", .
August 2012.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=repository.upenn.edu%2Fese_papers%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1145/2331147.2331168
http://doi.acm.org/10.1145/2331147.2331168
http://doi.acm.org/10.1145/2331147.2331168
http://repository.upenn.edu/ese_papers/620
mailto:repository@pobox.upenn.edu

Time-triggered Implementations of Dynamic Controllers

Abstract
Bridging the gap between model-based design and platform-based implementation is one of the critical
challenges for embedded software systems. In the context of embedded control systems that interact with an
environment, a variety of errors due to quantization, delays, and scheduling policies may generate executable
code that does not faithfully implement the model-based design. In this paper, we show that the performance
gap between the model-level semantics of linear dynamic controllers, e.g. the proportional- integral-derivative
(PID) controllers, and their implementation-level semantics can be rigorously quantified if the controller
implementation is executed on a predictable time-triggered architecture. Our technical approach uses lifting
techniques for periodic, time-varying linear systems in order to compute the exact error between the model
semantics and the execution semantics. Explicitly computing the impact of the implementation on overall
system performance allows us to compare and partially order different implementations with various
scheduling or timing characteristics.

Keywords
control, dynamic controller, time-triggered, implementation, perfor- mance, PID, PI, scheduling

Disciplines
Controls and Control Theory | Electrical and Computer Engineering | Engineering

Comments
Nghiem, T. X.; Pappas, G. J.; Alur, R. & Girard, A. (2012). Time-Triggered Implementations of Dynamic
Controllers. ACM Transactions on Embedded Computing Systems (TECS), 11(S2), Article 58. doi: 10.1145/
2331147.2331168

© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in ACM Transactions on Embedded
Computing Systems, Vol. 11, No. S2, August 2012 http://doi.acm.org/10.1145/2331147.2331168

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/620

http://dx.doi.org/10.1145/2331147.2331168
http://dx.doi.org/10.1145/2331147.2331168
http://doi.acm.org/10.1145/2331147.2331168
http://repository.upenn.edu/ese_papers/620?utm_source=repository.upenn.edu%2Fese_papers%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages

58

Time-triggered Implementations
of Dynamic Controllers

TRUONG NGHIEM, GEORGE J. PAPPAS, and RAJEEV ALUR, University of Pennsylvania
and ANTOINE GIRARD, Laboratoire Jean Kuntzmann, Université Joseph Fourier

Bridging the gap between model-based design and platform-based implementation is one of the critical

challenges for embedded software systems. In the context of embedded control systems that interact with

an environment, a variety of errors due to quantization, delays, and scheduling policies may generate exe-
cutable code that does not faithfully implement the model-based design. In this paper, we show that the

performance gap between the model-level semantics of linear dynamic controllers, e.g. the proportional-

integral-derivative (PID) controllers, and their implementation-level semantics can be rigorously quantified
if the controller implementation is executed on a predictable time-triggered architecture. Our technical ap-

proach uses lifting techniques for periodic, time-varying linear systems in order to compute the exact error

between the model semantics and the execution semantics. Explicitly computing the impact of the imple-
mentation on overall system performance allows us to compare and partially order different implementations

with various scheduling or timing characteristics.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-purpose and
Application-based Systems—Real-time and embedded systems; C.4 [Computer Systems Organization]:
Performance of Systems—Modeling techniques, Performance attributes; J.7 [Computer Applications]:
Computers in other Systems—Real time,Command and control

General Terms: Design, Performance

Additional Key Words and Phrases: control, dynamic controller, time-triggered, implementation, perfor-
mance, PID, PI, scheduling

ACM Reference Format:
Truong Nghiem , George J. Pappas, Rajeev Alur, and Antoine Girard, 2012. Time-triggered Implementations
of Dynamic Controllers. ACM Trans. Embedd. Comput. Syst. 11, S2, Article 58 (August 2012), 23 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Bridging the gap between high-level modeling or programming abstractions, and im-
plementation platforms is one of the key challenge for embedded software research
[Sastry et al. 2003; Lee 2000]. The goal of our research, initiated in a recent pa-
per [Yazarel et al. 2005], is to address this challenge in the context of implementing
feedback control loops by software [Caspi and Maler 2005].

Consider a physical plant interacting with a controller that measures some plant
signals and generates appropriate control signals in order to influence the behavior

This work has been supported by NSF Information Technology Research (ITR) Grant 0121431 and NSF
Embedded and Hybrid Systems (EHS) Grant 0410662.
Authors’ addresses: Truong Nghiem and George J. Pappas, Department of Electrical and Systems Engi-
neering, University of Pennsylvania, USA; Rajeev Alur, Department of Computer and Information Science,
University of Pennsylvania, USA; Antoine Girard, Laboratoire Jean Kuntzmann, Université Joseph Fourier,
France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/08-ART58 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:2 Truong Nghiem et al.

of the plant. The models of both the plant and the controller have well-defined timed
semantics that can be used for simulation and analysis. Once the controller design is
complete, the designed controller model is typically expressed as a set of control (usu-
ally MATLAB) blocks. Each control block is compiled into an executable code in a host
language such as C, and the control designer specifies a period for the corresponding
task. To implement the resulting periodic tasks on a specific platform, one needs to
determine the worst-case-execution-time for each block, and check whether the task
set is schedulable (c.f. [Buttazo 1997; Kopetz 2000]).

While the real-time scheduling based implementation offers a separation of concerns
using the abstraction of real-time tasks with periods and deadlines, it introduces sev-
eral sources of unpredictability. In particular, there are no guarantees regarding when
a control block actually reads its inputs and when its outputs become available to its
environment, and the order in which the various blocks execute. As a result, quan-
tifying the error between the timed semantics of the control blocks and the possible
executions of scheduled tasks, and understanding its impact on the application-level
quality-of-service, remains difficult.

The recent emergence of time-triggered architecture as an implementation platform
for embedded systems offers opportunities for a more predictable mapping of control
models [Kopetz and Bauer 2003; Kopetz 2000]. In a time-triggered implementation,
instead of mapping control blocks to periodic tasks, the compiler can allocate well-
defined time slots to control blocks. Given a mapping of all the control blocks to the
time slots, one can precisely define the trajectories of the implementation and quantify
the error with respect to the model-level semantics.

In our formalization, given a dynamic controller model as a set of interacting con-
trol blocks, we define the controller implementation on a time-triggered platform using
a dispatch sequence that gives the order in which the blocks are repeatedly executed,
and a timing function that gives the number of time slots needed to execute each block.
For a given model of the plant, we can precisely define the semantics of the implemen-
tation, and measure its quality by metrics, such as the L2-norm, of the discrepancy
between the trajectories of the model and the implementation. Given linear control
plants, linear dynamic controllers (e.g. PID controllers), a dispatch sequence, and a
timing function, we model the controller implementation naturally as a periodic lin-
ear time-varying system (PLTV). Compared to our previous work [Nghiem et al. 2006],
in this paper we consider the application of our theoretical results in the analysis
and design of controller implementations in section 4. In section 5, we also present
a MATLAB implementation of our techniques and a SIMULINK-based simulation tool
for time-triggered real-time control systems. More numerical examples with detailed
discussion are provided in section 6 to illustrate our results.

Related Work : Programming abstractions for embedded real-time controllers in-
clude synchronous reactive programming (languages such as ESTEREL and LUSTRE
[Halbwachs et al. 1991; Halbwachs 1993]), and the related Fixed Logical Execution
Time (FLET) assumption used in the Giotto project [Henzinger et al. 2003]. Research
on time-triggered architecture has focused on achieving clock synchronization, fault
tolerance, real-time communication, and automotive applications (c.f. [Kopetz 2000;
Kopetz and Bauer 2003]). The goal of this research has been ensuring predictable com-
munication between components. In the context of this paper, time-triggered platform
offers predefined time slots for scheduling, and we study how this can be exploited for
predictable execution of control blocks.

Recently, the problem of generating code from timed and hybrid automata has been
considered in [Alur et al. 2003; Hur et al. 2004; Wulf et al. 2004], but the focus has been
on choosing the sampling period so as to avoid errors due to switching and communica-
tion. The work on mapping SIMULINK blocks to Lustre focuses on signal dependencies

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:3

[Caspi et al. 2003]. In [Alur and Chandrashekharapuram 2005], relative scheduling as
a way of generating a dispatch sequence for a control model for soft real-time appli-
cations has been explored but it did not have a framework for quantifying the errors.
Automaton-based scheduling of control systems was introduced in [Alur and Weiss
2008], however quantitative measure of the performance was not considered. Many
variations of basic scheduling model have been explored, but the emphasis is not on
quantifying the errors introduced during mapping control model to the task model.
Perhaps the most related of these efforts is control-aware scheduling [Seto et al. 1996]
and control-scheduling co-design [Årzén et al. 2005].

There is a rich literature on sampled control systems [Aström and Wittenmark 1997]
along two main approaches. The first approach discretizes a continuous plant given
implementation dependent sampling times, and a controller is designed for the dis-
cretized plant. The second approach starts with a designed continuous controller and
focuses on discretizing the controller on some implementation platform [Aström and
Wittenmark 1997]. Even though this is the spirit of our approach, the resulting error
analysis has historically focused on quantifying the errors introduced due to sampling
without paying attention to more detailed models of implementation platforms that
must sequentially execute multiple control blocks.

2. MODELING
In this section, we model embedded control systems and provide two different seman-
tics: model-level semantics used for control design, and implementation-level seman-
tics used for execution on a time-triggered platform. The goal of this paper will be to
compute a distance between these two semantics, thus providing a measure for the
quality of the implementation.

2.1. Feedback Control Model
Consider a finite set X = {x1, . . . , xn} of plant variables, a set Y = {y1, . . . , yp} of
output variables, a set U = {u1, . . . , um} of control variables, and a set Z = {z1, . . . , zq}
of controller’s internal variables. All variables take values in R. A state over a set of
variables is a mapping from the set of variables to corresponding values. The set of
all possible plant states is thus Rn, and we obtain similar sets of states for all other
variables.

A feedback control model is a tupleM = 〈MP ,MC〉 consisting of a plant model MP

and a controller modelMC . A plant modelMP consists of

— A function f : Rn×Rm → Rn that defines the dynamics of variables xi in terms of the
current plant state and control inputs.

— A function h : Rn → Rp that expresses the observable output of the plant given the
current plant state.

A controller model MC = (B1, . . . ,Br) consists of r control blocks, each describes the
dynamics of some internal variables or computes the values of some control variables
in terms of observable plant outputs, internal variables, and other control variables.
We assume that the control blocks are well-defined so that given the values of the
internal variables at time t0 and the plant outputs for time t ≥ t0, the values of all
internal variables and control variables at time t ≥ t0 are uniquely determined.

Note that the class of controllers considered by this model is dynamic due to the ex-
istence of the internal variables zi that have their own dynamics. This model captures
the widely used proportional-integral-derivative (PID) controllers as well as more gen-
eral observer-based controllers. This is a significant extension of the class of static
controllers considered in our previous work [Yazarel et al. 2005].

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:4 Truong Nghiem et al.

2.2. Model Level Semantics
Given a feedback control modelM = 〈MP ,MC〉with variablesX, Y , U , Z, a trajectory
for M is a function from the time domain R≥0 to the set of states over all variables.
Let x(t) = (x1(t), . . . , xn(t)) denote plant trajectories in vector notation, and, similarly,
y(t) = (y1(t), . . . , yp(t)), u(t) = (u1(t), . . . , um(t)), and z(t) = (z1(t), . . . , zq(t)). Given feed-
back control modelM, we denote the continuous-time semantics of the feedback control
model by [[M]] and define [[M]] as the collection of all trajectories (x(t), y(t), u(t), z(t))
that for all t ≥ 0 satisfy the following differential and algebraic constraints modeling
the feedback interconnection between the plant and the controller dynamics:

MP :

{
ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))
x(0) ∈ Rn

(1)

MC :

ż(t) = g(z(t), y(t))
u1(t) = k1(y(t), ẏ(t), z(t))
uj(t) = kj(y(t), ẏ(t), z(t), u1(t), . . . , uj−1(t)), 2 ≤ j ≤ m
z(0) = 0

(2)

where g : Rq ×Rp → Rq describes the dynamics of the internal variables zi and kj com-
putes the control variable uj . The derivative ẏ(t) is included in kj to allow modeling
of PID controllers. The dependence among the control variables is acyclic so that the
feedback law for the control variable uj , j > 1, is a function of the plant outputs and
their derivatives, the internal states, and the control variables u1, . . . , uj−1, while u1

does not depend on the other control variables. We assume that the feedback compo-
sition is well-posed, meaning that for any initial plant state x(0) the above equations
have unique solutions, i.e. the differential equations satisfy the Lipschitz-continuous
condition. Given x(0), we denote the unique solution for the continuous-semantics as

(x(t), y(t), u(t), z(t)) = [[M]](x(0)) (3)

The continuous-time semantics is implementation independent semantics that is used
for the mathematical analysis and design of controllers that achieve desired perfor-
mance specifications of the output trajectories y(t), using a variety of techniques from
control theory. Our goal in this paper is to quantify the deviation from this ideal se-
mantics when the controllerMC is implemented on a given time-triggered platform.

2.3. Implementation Level Semantics
The control blocks of controllerMC = (B1, . . . ,Br) are usually defined during the pro-
cess of designing the controller, using a design tool such as SIMULINK/MATLAB. Typ-
ically, the designer may choose among several structures of MC = (B1, . . . ,Br) to ex-
press the same model-level semantics (2). Figure 1 illustrates two possible structures.
In Figure 1a, there is a block BI which computes the internal variables zi according to
their dynamics ż(t) = g(z(t), y(t)), and there are m blocks B1, . . . ,Bm which compute
the control variables uj respectively. In the structure in Figure 1b, each control block
Bj updates its own copy of the internal variables and computes the control variable uj .
Thus, the main difference between these two structures is that the first has a separate
block to compute z while the latter incorporates the computation of z into each control
block Bj . In this paper, we will only consider the structure in Figure 1a, however the
results are readily applicable to other structures1.

The ideal model-level semantics assumes that all control blocks of controllerMC =
(B1, . . . ,Br) are “computed” instantaneously and simultaneously. Of course, any soft-

1See the remark at the end of section 3.3

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:5

Controller MC

BI

ż = g(z, y) u1

zy

u2

um

z
y

u1

y
z

um−1

u1

y

Bm

um = k2(y, ẏ, z,
u1, . . . , um−1)

B2

u2 = k2(y, ẏ, z, u1)

B1

u1 = k1(y, ẏ, z)

(a)

Controller MC

u1
y

u2

um

u1

y

um−1

u1

B1

u1 = k1(y, ẏ, z)

ż = g(z, y)

ż = g(z, y)
B2

u2 = k2(y, ẏ, z, u1)

Bm

um = k2(y, ẏ, z, u1, . . . , um−1)
ż = g(z, y)

y

(b)

Fig. 1: Two structures ofMC

ware implementation of the controller MC will violate both assumptions. Moreover,
ideal differentiation and integration computations assumed by the model-level seman-
tics cannot be satisfied by the implementation, where approximation algorithms must
be used.

As discussed in the introduction, mapping control blocks to periodic tasks does not
allow a mathematically rigorous execution semantics. Instead, we assume that the
implementation is on a time-triggered platform in which time can be allotted in fixed-
size slots. To model the order in which the control blocks are executed we consider a
dispatch sequence ρ, which is an infinite string over the set {B0,BI ,B1, . . . ,Bm}. Here,
B0 is used to model idling from the viewpoint of the controller (e.g., idling, or alloca-
tion of a time slot to activities other than the computation of control outputs). Typ-
ically, ρ will be periodic, and will be specified by a finite string that repeats. Each
control block is to be executed without preemption, and when one control block com-
pletes its execution, the next block can start immediately. For example, given a con-
troller MC = (BI ,B1,B2,B3) with one internal and three control blocks, possible dis-
patch sequences are the uniform sequence (BIB1B2B3)ω or the nonuniform sequence
(BIB1BIB2BIB1BIB3B0)ω that also includes idling. Note that a dispatch sequence con-
tains only ordering information, and is thus independent of the processing speed of the
platform.

A time-triggered platform provides an atomic time slot of length δ, and each block is
assigned to a fixed number of such slots. The computation of each control block Bj (or
BI) consists of reading the relevant plant output variables using sensors, updating the
control variable uj (or internal variables z), and finally writing the computed control
value to the actuators at the end of its allotted time. The computation time of each
control block is captured by a timing function τ : {BI ,B1, . . . ,Bm} → Z+ which asso-
ciates to each control block the number of time slots needed to execute it. Without loss
of generality, we assume τ(B0) = 1.

Informally, given a feedback control modelM = 〈MP ,MC〉, a dispatch sequence ρ,
a timing function τ and a time slot length δ, we can define the implementation seman-
tics associated withM, denoted as [[M]](ρ,τ,δ), to be the set of trajectories obtained by
executing the control blocks of controller MC according to the dispatch sequence ρ,
where the number of slots of length δ for each control block are chosen according to the
timing function τ .

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:6 Truong Nghiem et al.

Formally, to define the implementation semantics, we note that the dispatch se-
quence ρ, timing function τ and time slot length δ result in the following sequence of
timing instants ti: t0 = 0 and ti =

∑i−1
k=0 τ(ρ(k))δ for i ≥ 1. Except for t0, these are the

precise timing instants when a control block completes its computation and its outputs
are updated. In addition, we recursively define the time instants ∆I(i), i = 0, 1, 2 . . . ,
as ∆I(0) = 0 and

∆I(i+ 1) =

{
∆I(i) + τ(ρ(i))δ if ρ(i) 6= BI
τ(BI)δ if ρ(i) = BI

(4)

in order to model the time elapsed since the last execution of block BI . Furthermore,
the derivatives of plant outputs y are numerically computed only in blocks Bj , 1 ≤ j ≤
m, and are hold in internal variables w. To model the time elapses between the updates
of w, we define the sequence of time instants ∆D(i), i = 0, 1, 2 . . . , as ∆D(0) = 0 and

∆D(i+ 1) =

{
∆D(i) + τ(ρ(i))δ if ρ(i) ∈ {B0,BI}
τ(ρ(i))δ if ρ(i) 6∈ {B0,BI}.

(5)

The implementation semantics [[M]](ρ,τ,δ) can now be defined as the collection of trajec-
tories (x(t), y(t), u(t), z(t)) that for all t ≥ 0 satisfy the continuous-time plant dynamics
defined by Eq. (1), and the following controller implementation constraints for every
1 ≤ j ≤ m and i ≥ 0,

Initialization

z(0) = 0, w(0) = 0, uj(0) = 0 (6)

Inter-sample

z(t) = z(ti), w(t) = w(ti), uj(t) = uj(ti) for ti < t < ti+1 (7)

Controller Updates

uj(ti+1) =

{
uj(ti) if ρ(i) 6= Bj
kj(y(ti), w(ti+1), z(ti), u1(ti) . . . uj−1(ti)) if ρ(i) = Bj

(8)

Numerical Differentiation

w(ti+1) =

{
w(ti) if ρ(i) ∈ {B0,BI}
D(y(ti), y(ti −∆D(i)),∆D(i), w(ti)) if ρ(i) 6∈ {B0,BI}

(9)

Numerical Integration

z(ti+1) =

{
z(ti) if ρ(i) 6= BI
G(z(ti), y(ti), z(ti −∆I(i)), y(ti −∆I(i)),∆I(i)) if ρ(i) = BI

(10)

Implementation constraints (6) capture initialization, constraints (7) express the fact
that during the execution of any control block all computed values remain constant,
equation (8) describes the equations for updating the control variables, (9) repre-
sents the numerical computation of the derivatives of plant outputs, and (10) captures
the numerical scheme for integrating the internal variables when control block BI is
scheduled. The implementation constraints clearly show that uj(t), z(t), and w(t) are
piecewise-constant signals.

Note that function G can be used to model a variety of fixed-step numerical integra-
tion algorithms. Different choices for this function can model different choices for well
known numerical algorithms as shown in Table I. Euler is a one-step method, whereas

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:7

Table I. Function G for some well known numerical integration algorithms
Euler
z(ti+1) = z(ti) + ∆I(i)g(z(ti), y(ti))

Trapezoid

z(ti+1) = z(ti) +
∆I(i)

2
(g(z(ti), y(ti)) + g(z(ti −∆I(i)), y(ti −∆I(i))))

Adams-Bashforth

z(ti+1) = z(ti) +
∆I(i)

2
(3g(z(ti), y(ti))− g(z(ti −∆I(i)), y(ti −∆I(i))))

Table II. Two numerical differentiation algorithms
Backward Difference

w(ti+1) = 1
∆D(i)

(
y(ti)− y(ti −∆D(i))

)
Tustin’s Approximation

w(ti+1) = 2
∆D(i)

(
y(ti)− y(ti −∆D(i))

)
− w(ti)

Trapezoid and Adams-Bashforth are two-step methods that utilize information in two
different time instants in integrating the dynamics of the internal variables. Higher
order methods could easily be modeled at the expense of more variables, one for each
step2. Note that every time the integration block BI is executed, the numerical meth-
ods needs to integrate the internal dynamics starting from the last time block BI was
executed. Therefore the dispatch sequence will have a direct effect on the size of the
integration step ∆I(i) and therefore the quality of the approximation.

Similarly, function D can be used to model the numerical computation of the deriva-
tives of y. Two commonly used algorithms for approximating the derivatives are given
in Table II.

Given x(0), we denote the solutions for the implementation-semantics as

(x̃(t), ỹ(t), ũ(t), z̃(t)) = [[M]](ρ,τ,δ)(x(0)) (11)

The main goal of this paper is to quantify the quality of the controller implemen-
tation for a particular dispatch sequence ρ, timing function τ and time slot length
δ. Having defined both the ideal platform-independent semantics, and the platform-
dependent semantics, we can directly define the error of the implementation as a func-
tion of the initial plant state x(0) simply as

eM(ρ, τ, δ, x(0)) =

∫ +∞

0

‖y(t)− ỹ(t)‖22dt (12)

We are therefore measuring the implementation error in the L2 sense. Note that we are
measuring the implementation error on the output variables of the overall closed loop
system, rather than the error on the controller variables. We are therefore directly
measuring the effect of controller implementation on the performance of the overall
feedback interconnection.

Given a feedback control model M and a set of initial plant states X0, we will
say that the implementation (ρ1, τ1, δ1) is more accurate than the implementation

2Note that Runge-Kutta methods, even though popular for simulation, are problematic for code generation,
as they require evaluations such as g(z(ti + ∆I(i)), y(ti + ∆I(i))), which in turns requires predicting the
sensed input y(ti + ∆I(i)) in the future.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:8 Truong Nghiem et al.

(ρ2, τ2, δ2) (noted (ρ1, τ1, δ1) �M (ρ2, τ2, δ2)) if the implementation error of (ρ1, τ1, δ1)
is smaller than the one of (ρ2, τ2, δ2) for all initial states:

∀x(0) ∈ X0 eM(ρ1, τ1, δ1, x(0)) ≤ eM(ρ2, τ2, δ2, x(0)). (13)

Note that the relation �M is a preorder on the set of implementations. The challenge
is now to compute the L2 norm of the implementation error as a function of x(0), given
implementation specifics (ρ, τ, δ).

3. ERROR ANALYSIS
In this section we provide a method for the computation of the implementation error
eM(ρ, τ, δ, x(0)) for an important class of plants and embedded controllers. We assume
that the plant model is a linear, time-invariant (LTI) system:

MP :

ẋ(t) = Apx(t) +Bpu(t)

y(t) = Cpx(t)

x(0) ∈ Rn
(14)

where Ap ∈ Rn×n, Bp ∈ Rn×m and Cp ∈ Rp×n. We will also assume that the feedback
controller modelMC has the following form

MC :

ż(t) = Acz(t) +Bcy(t)

u(t) = KP y(t) +KIz(t) +KDẏ(t) + Lcu(t)

z(0) = 0

(15)

where Ac ∈ Rq×q, Bc ∈ Rq×p, KP ∈ Rm×p, KI ∈ Rm×q, and Lc ∈ Rm×m. The controller
model MC = (BI ,B1, . . .Bm) consists of one control block BI for integrating all the
internal variables zi, and one control block Bj for computing each variable uj . Note
that the assumption that the dependence between control variables are acyclic implies
that Lc is a lower triangular matrix. In the special case where Ac = 0 and Bc = I,
since the internal variables zi simply integrate the output variables yi, we obtain the
familiar equation

u(t) = KP y(t) +KI

∫ t

0

y(τ)dτ +KD
dy

dt
(t) + Lcu(t).

We can thus readily see that the controllers captured in this class are the so-called
proportional-integral-derivative (PID) controllers.

Without loss of generality and for the sake of simplicity, we will assume that all
execution of all control blocks require one time slot. Thus, τ(BI) = 1 and τ(Bj) = 1,
1 ≤ j ≤ m, and for all i ≥ 0, ti = iδ. If a block Bj takes more than one time slot for its
computation, that is τ(Bj) = k for k > 1, any execution of Bj in the dispatch sequence
can be replaced by the sequence (BY B0 . . .B0B?j) where B0 is executed k − 2 times. In
this sequence, BY , with τ(BY) = 1, is a special block that saves the current values of
outputs y to certain internal variables, and B?j , with τ(B?j) = 1, is the same as Bj except
that it uses the values in the internal variables for y. The results in this section are
still valid, although the calculation may be more complicated.

The challenge now is to compute the difference eM(ρ, τ, δ, x(0)) between the model-
semantics and implementation-semantics for the class of plants and controllers de-
scribed. Our first result along this direction is a sampling result that allows us to ex-
actly compute the implementation error, defined over all t ≥ 0, by using plant, output,
and internal state information on the timing instants ti.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:9

THEOREM 3.1. There exists a computable, symmetric, positive semi-definite matrix
Q such that the implementation error defined by equation (12) is equal to

eM(ρ, τ, δ, x(0)) =

i=+∞∑
i=0

ψ(ti)
TQψ(ti) (16)

where vector ψ(t) is defined as ψ(t) = [x(t)T z(t)T x̃(t)T ũ(t)T]T .

The proof of this theorem is given in the Appendix. Theorem 3.1 has effectively re-
placed a continuous integration with an infinite sum. It is worth noting that Theo-
rem 3.1 holds for any controller structure MC of model (15), for example Figures 1a
and 1b, as long as the values x(ti), z(ti) from the model-level semantics and the values
x̃(ti), ũ(ti) from the implementation level semantics can be obtained. We will now de-
fine two discrete-time dynamical systems, that will generate these desired sequences.

3.1. Model-Level Semantics
The evolution of the closed loop feedback system for the model-level semantics is de-
scribed in Equation (27). Given the timing sequence ti = iδ, we can directly generate
the desired sequences x(ti), z(ti) by considering successive iterations of the following
discrete-time, linear, time-invariant system:[

x(ti+1)
z(ti+1)

]
= E

[
x(ti)
z(ti)

]
x(t0) = x(0) z(t0) = 0 (17)

where E = eδÂ is simply the matrix exponential of δÂ. Because of Theorem 3.1, the
model level semantics that are relevant for the computation of the implementation
error are all captured in model (17).

3.2. Implementation-Level Semantics
Our goal is now to develop a similar discrete-time model for the implementation se-
mantics. The main idea is that the execution of any particular control block can be
modeled as a discrete-time linear system. However, as the dispatch sequence switches
control blocks, this results in a switching discrete-time linear system. Furthermore,
since the sequence of executions of the control blocks is periodic, the implementation
semantics will be captured by a periodic, linear, time-varying (PLTV) system.

Because the numerical differentiation and integration algorithms require past val-
ues of ỹ, we need to introduce memory variables which capture the relevant informa-
tion for the computations. Specifically, memory variables ỹm(ti) = ỹ(ti − ∆D(ti)) are
used for differentiation and memory variables z̃m(ti) = Acz̃(ti) +BcCpx̃(ti) for integra-
tion. Let us define the vector ϑ̃(t) =

[
x̃(t)T z̃(t)T z̃m(t)T w̃(t)T ỹm(t)T ũ(t)T

]T which
consists of all variables of the implementation semantics. For each control block, we
will develop a discrete-time model that updates ϑ̃ according to the evolution of the
system.

Modeling control blocks Bj . Consider a control block Bj , 1 ≤ j ≤ m, executed during the
time interval [ti, ti+1]. First, the derivatives ˙̃y(ti) are numerically computed and stored
in variables w̃(ti+1). Then the control variable uj is updated while the other control
variables ũk, for k 6= j, are not changed.

In the execution of control block Bj , the values of ỹ(ti) are saved to memory variables
ỹm, that is ỹm(ti+1) = ỹ(ti) = CP x̃(ti), and w̃ are updated according to the chosen

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:10 Truong Nghiem et al.

algorithm for differentiation computation:

Backward Difference
w̃(ti+1) = 1

∆D(i) (CP x̃(ti)− ỹm(ti)) (18)

Tustin’s Approximation

w̃(ti+1) = 2
∆D(i) (CP x̃(ti)− ỹm(ti))− w̃(ti) (19)

Then the control variable ũj is computed as

ũj(ti+1) = [KP]jCpx̃(ti) + [KI]j z̃(ti) + [KD]jw̃(ti+1) + [Lc]j ũ(ti)

where [KC]j , [KI]j , [KD]j and [Lc]j denote the jth rows of matrices KC , KI , KD and
Lc respectively. Note that ũj(ti+1) depends on w̃(ti+1), thus its expression in terms of
the components of ϑ̃(ti) is dependent of the chosen differentiation method. For exam-
ple, if the Tustin’s Approximation method is used, i.e. w̃(ti+1) is updated according to
Eq. (19), ũj(ti+1) can be written as

ũj(ti+1) =
(

[KP]j + 2
∆D(i) [KD]j

)
Cpx̃(ti) + [KI]j z̃(ti)

− [KD]jw̃(ti)− 2
∆D(i) [KD]j ỹm(ti) + [Lc]j ũ(ti)

Because the other control variables ũk, for k 6= j, are not changed during the execution
of Bj , we can write vector ũ(ti+1) as

ũ(ti+1) = Xj(i)x̃(ti) + Zj z̃(ti) +Wj(i)w̃(ti) + Yj(i)ỹm(ti) + (I + Uj + Vj)ũ(ti)

where matrices Xj(i), Zj , Wj(i), Yj(i), Uj and Vj are defined appropriately. Specifically,
Xj(i), Zj , Wj(i), Yj(i) and Uj are the matrices whose jth rows are respectively the co-
efficients of x̃(ti), z̃(ti), w̃(ti), ỹm(ti) and ũ(ti) in the expression of ũj(ti+1), and all the
other rows are 0. Vj is the matrix whose coefficients are all zero except the jth element
of its diagonal [Vj]j,j = −1.

Having obtained the equation for ũ(ti+1) and given that z̃ and z̃m are not changed
by Bj , we can now write the discrete-time system that updates ϑ̃ after the execution of
Bj . If the Tustin’s Approximation method is used, we have that

ϑ̃(ti+1) =

eδAp 0 0 0 0 αp(δ)

0 I 0 0 0 0
0 0 I 0 0 0

2
∆D(i)Cp 0 0 −I − 2

∆D(i)I 0

Cp 0 0 0 0 0
Xj(i) Zj 0 Wj(i) Yj(i) I + Uj + Vj

 ϑ̃(ti) = EBj (i)ϑ̃(ti).

Similar equations can be obtained for other differentiation methods. Note that for i =
0, 1

∆D(0) = 0. Also observe that if the dispatch sequence ρ is periodic, the matrix EBj (i)
is periodic after the first period of ρ.

Modeling integration block BI . Let us consider the evolution of the implementation se-
mantics when integration block BI is executed. Since the execution of BI does not
change the control variables, we have that ũ(ti+1) = ũ(ti). On the time interval [ti, ti+1],
the plant evolves continuously according to Eq. (28) in the Appendix. By integration
we thus obtain that

x̃(ti+1) = eδAp x̃(ti) + αp(δ)ũ(ti) (20)

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:11

where αp(δ) =
∫ δ

0
eApτBp dτ , which reduces to αp(δ) = (eδAp − I)A−1

p Bp if Ap is in-
vertible. The evolution of the internal variables zi is captured by the equations de-
scribing the numerical algorithm that integrates the equations (15). Recalling that
ỹ(ti) = Cpx̃(ti), we obtain following discrete-time models for the numerical integrators
above

Euler

z̃(ti+1) = (I + ∆I(i)Ac) z̃(ti) + ∆I(i)BcCpx̃(ti)

Trapezoid

z̃(ti+1) =
(
I + 1

2∆I(i)Ac
)
z̃(ti) + 1

2∆I(i)BcCpx̃(ti) + 1
2∆I(i)z̃m(ti)

z̃m(ti+1) = Acz̃(ti) +BcCpx̃(ti)

Adams-Bashforth

z̃(ti+1) =
(
I + 3

2∆I(i)Ac
)
z̃(ti) + 3

2∆I(i)BcCpx̃(ti)− 1
2∆I(i)z̃m(ti)

z̃m(ti+1) = Acz̃(ti) +BcCpx̃(ti)

Note that more precise, higher order (multi-step) methods can be easily considered by
using more memory variables.

Collecting all the above equations allows us to construct a discrete-time linear sys-
tem that models the evolution of the implementation when the integration block is
executed. For example, for the two-step Adams-Bashforth scheme, the discrete-time
model is

ϑ̃(ti+1) = EBI (i)ϑ̃(ti) =

eδAp 0 0 0 0 αp(δ)

3∆I (i)

2 BcCp I+
3∆I (i)

2 Ac −∆I (i)

2 0 0 0
BcCp Ac 0 0 0 0

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 ϑ̃(ti)

Note that matrix EBI (i) is not fixed but depends on ∆I(i). However, since we assume
that ρ is periodic, ∆I(i) is periodic after the first period of the dispatch sequence. For
Euler, Trapezoid and other numerical schemes we can obtain similar discrete-time
models. Note that for the first order Euler method, there is no need for the extended
z̃m(ti) variables.

Modeling idle block B0. The execution of the idle block B0 does not affect either the in-
ternal or control variables. Therefore we have that ũ(ti+1) = ũ(ti), w̃(ti+1) = w̃(ti),
ỹm(ti+1) = ỹm(ti), z̃(ti+1) = z̃(ti), and z̃m(ti+1) = z̃m(ti) in case a higher order integra-
tion method is used. On the time interval [ti, ti+1], the plant still evolves continuously
according to equation (20). Therefore, the value of the variables are modified by the
execution of the control block B0 according to the following discrete-time system

ϑ̃(ti+1) = EB0
ϑ̃(ti) =

 eδAp 0 0 0 0 αp(δ)
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 ϑ̃(ti)

Note that unlike matrices EBj and EBI , EB0
is fixed.

From dispatch sequences to PLTV systems. Let us consider a dispatch sequence ρ defining
the order in which the control blocks have to be executed. The sequences x̃(ti), z̃(ti),

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:12 Truong Nghiem et al.

z̃m(ti), w̃(ti), ỹm(ti), and ũ(ti), for i ≥ 0, can be determined from the following discrete-
time dynamical system:

ϑ̃(ti+1) = E(i)ϑ̃(ti) (21)

where E(i) = Eρ(i)(i). Therefore the implementation values at instants ti are captured
by a discrete-time linear system that is time-varying. Furthermore, since we assume
that ρ is periodic (let nρ denote its period), this dynamical system is a PLTV system.

3.3. Error Computation
Having modeled both the model-level and implementation level semantics at the in-
stants ti, we define a system which describes both the discretized model-level seman-
tics and the discrete-time implementation level semantics. Its state is the vector ψ̄(t)
defined as

ψ̄(t)T =
[
x(t)T z(t)T x̃(t)T z̃(t)T z̃m(t)T w̃(t)T ỹm(t)T ũ(t)T

]
.

Then,

ψ̄(ti+1) = Ē(i) ψ̄(ti) =

[
E 0
0 E(i)

]
ψ̄(ti) (22)

Note that Ē(i) is periodic after the first period of the dispatch sequence. Thus the com-
posite system is also a PLTV system of period nρ. Using so-called lifting techniques for
the analysis of PLTV systems (see for instance [S.Bittanti and P.Colaneri 2000]), which
transform a periodic time-varying system into a higher order linear time-invariant sys-
tem, we can state the main result of this paper.

THEOREM 3.2. The implementation error is exactly equal to

eM(ρ, τ, δ, x(0)) = ψ̄(0)T Ôψ̄(0) (23)

where Ô = ĜT0 Q̂Ĝ0 + ÊT0 OÊ0, and O is solution to the following Lyapunov equation

O = ÊTOÊ + ĜT Q̂Ĝ (24)

for implementation-dependent matrices Ê0, Ĝ0, Ê, Ĝ, Q̂ (see proof). ψ̄(0) can be com-
puted by ψ̄(0) = Hx(0) where H = [I 0 I 0 0 0 0 0]

T .

Theorem 3.2 states that the implementation error can be computed exactly for
this class of systems and controllers, and furthermore, the L2-norm error is a global
quadratic function of the initial state x0. The proof of this theorem is given in the
Appendix.

In implementing the controller, we are only interested in implementations that
follow the ideal system, in the sense that the corresponding implementation error
eM(ρ, τ, δ, x(0)) is finite for all x(0) ∈ Rn. From the Lyapunov equation (24) in The-
orem 3.2, it is straightforward to see that this can only be achieved if matrix Ê is
stable [Rugh 1996]. We thus have the following corollary.

COROLLARY 3.3. The implementation error eM(ρ, τ, δ, x(0)) for a given implemen-
tation (ρ, τ, δ) is finite for all x(0) ∈ Rn if and only if matrix Ê is stable, that is all
eigenvalues of Ê are inside the unit circle on the complex plane.

Remark: Although the results in this section were developed for a specific structure
of controller MC (Figure 1a), they are readily applicable to other structures of MC .
Indeed, Theorem 3.1 is independent of the controller structure. Similar to section 3.2,

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:13

for each control block in the new structure, a discrete-time system that models the sys-
tem evolution during its execution can be obtained. This allows us to write the PLTV
system (22) of the implementation and to apply Theorem 3.2 as well as Corollary 3.3.

4. APPLICATIONS IN ANALYSIS AND DESIGN OF IMPLEMENTATIONS
In section 3, we presented the main result of this paper: given a feedback control model
M, an initial state x(0) and an implementation (ρ, τ, δ), we can compute exactly the
implementation error, thus can assess the quality of the implementation. Moreover,
the L2-norm error is a quadratic function of x(0). In this section, we discuss some
applications of this result in the analysis and design of controller implementations.

4.1. Analysis of Implementations
For a specific implementation (ρ, τ, δ) of a control model M, Theorem 3.2 provides a
quantitative measure of its quality by allowing us to compute the implementation error
as a quadratic function of the initial state. Intuitively, the smaller the error is, the
better the implementation is. However, in practice, a precise initial state is usually not
known but a bounded set of initial states X0. In this case, we are more interested in
the upper bound of the implementation error for X0, which can be computed by solving
the quadratic program:

maximize xTHT ÔHx
subject to x ∈ X0.

If X0 is a convex set, this quadratic program can be solved efficiently using convex
optimization techniques [Boyd and Vandenberghe 2004]. Alternatively, the spectral
norm ‖HT ÔH‖2 can be used as a measure of the implementation quality, especially
when X0 is not provided or is unbounded.

Theorem 3.2 also provides a criterion for comparing two different time-triggered
implementations of an embedded controller. Let (ρ1, τ1, δ1) and (ρ2, τ2, δ2) be two im-
plementations that satisfy the condition in Corollary 3.3 so that both implementation
errors are finite. Given a set of initial states X0, we have (ρ1, τ1, δ1) �M (ρ2, τ2, δ2)

if for all x(0) ∈ X0, x(0)THT Ô1Hx(0) ≤ x(0)THT Ô2Hx(0), or equivalently 0 ≤
x(0)THT (Ô2 − Ô1)Hx(0). This is equivalent to checking whether

min
x(0)∈X0

x(0)THT (Ô2 − Ô1)Hx(0) ≥ 0,

which can be performed using convex programming ([Boyd and Vandenberghe 2004])
if X0 is a convex set. On the other hand, if X0 = Rn, then checking whether 0 ≤
x(0)THT (Ô2 − Ô1)Hx(0) for all x(0) ∈ Rn, that is (ρ1, τ1, δ1) is globally better than
(ρ2, τ2, δ2), reduces to checking whether HT (Ô2 − Ô1)H is a positive semi-definite ma-
trix.

4.2. Design of Dispatch Sequences
In designing a time-triggered implementation of a given control model M, the main
problem is choosing a dispatch sequence ρ that gives good performance while con-
forming to certain requirements, e.g. the minimum ratio of idling time. Automaton-
based schedulers ([Alur and Weiss 2008]) offer a flexible and dynamic approach to this
scheduling problem. However, in this paper, we only consider static periodic dispatch
sequences ρ in the form of a finite string that repeats. If we use ‖HT ÔH‖2 as the
performance measure of an implementation, the scheduling problem is equivalent to

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:14 Truong Nghiem et al.

solving the minimization problem:

minimize ‖HT Ô(ρ)H‖2
subject to ρ ∈ Π,

where Π is the set of feasible dispatch sequences and Ô(ρ) depends on ρ. An obvious
approach to solving this minimization is the brute-force search algorithm: compute
the performance measure for every ρ ∈ Π up to a certain length, then choose the best
one. Although it is appropriate for small models M, the brute-force algorithm does
not scale well with the size of the system. In order to speed up the search, certain
heuristics could be used to reduce the search space. For instance when one part of
the plant has faster dynamics than the rest, we can restrict our interest to dispatch
sequences that schedule the control computation for this part more often than the
others. Another useful heuristics is to restrict the frequency of the idling block B0 in ρ
to the minimum requirement because in general, scheduling more executions of B0 in
the dispatch sequence results in worse performance. Better techniques for designing
dispatch sequences or improving the brute-force search is a subject for future research.

5. COMPUTATIONAL TOOLS
5.1. Analysis Tool
We implemented the analysis method discussed in section 3 in MATLAB. Given the
modelM = 〈MP ,MC〉, the implementation specifics (ρ, τ, δ), and an initial state x(0),
the MATLAB program computes the implementation error eM(ρ, τ, δ, x(0)). One diffi-
culty in implementing this algorithm is the computation of matrix Q given in equa-
tion (30), which involves integrals of exponentials of (possibly singular) matrices. Al-
though numerical integration can be used to compute Q, it will fail if A is singular
since in such case, α(t) =

∫ t
0
eAτB dτ cannot be simplified to

(
eAt − I

)
A−1B. Symbolic

computation (e.g. with MATHEMATICA) works when A is singular but it is inefficient,
especially for large matrices. The technique used in our program to compute matrix Q
employs the results from [Van Loan 1978]. The algorithm is summarized below.

If A is nonsingular then
Compute

exp
(
δ
[
−AT CTC

0 A

])
=
[
R12 R22

0 R13

]
, exp

(
δ
[
A CTC
0 0

])
=
[
R13 R23

0 R14

]
Compute

M =
∫ δ

0
eA

T tCTCeAt dt = RT13R22

N =
∫ δ

0
eA

T tCTC dt = R23, P =
∫ δ

0
CTC dt = δCTC

Compute
Q1,1 = M
Q1,2 = QT2,1 = (M −N)A−1B
Q2,2 = BT (A−1)T (M −N −NT + P)A−1B

Else
Compute

exp

(
δ

[
−AT I 0 0

0 −AT CTC 0
0 0 A B
0 0 0 0

])
=

[
R11 R21 R31 R41

0 R12 R22 R32

0 0 R13 R23

0 0 0 R14

]
Compute

Q1,1 = RT13R22

Q1,2 = QT2,1 = RT13R32

Q2,2 =
(
BTRT13R41

)
+
(
BTRT13R41

)T
End If

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:15

Time−triggered PID

Controller

PID Control

Plant 1

x’ = Ax+Bu

 y = Cx+Du

Plant

x’ = Ax+Bu

 y = Cx+Du

L2−Norm Error

In1

In2
Error

Implementation

Output

ImplOut

Ideal PID

Controller

PID

Ideal

Output

IdealOut

Error

Fig. 2: SIMULINK Model For Error Computation

Return Q =
[
Q1,1 Q1,2

Q2,1 Q2,2

]
Note that the computation does not involve integration, but uses exponential of con-
stant matrices instead [Moler and Loan 2003]. Therefore, algorithmically, the construc-
tion of the implementation-dependent matrices Ê0, Ĝ0, Ê, Ĝ, Q̂ requires straightfor-
ward matrix operations (sums, products, exponentiation) on matrices, whereas solving
Lyapunov equations is polynomial in the size of the matrices. The largest matrices in
Theorem 3.2 are matrices Ĝ and Ĝ0 which have nρ× (2n+5p+m) rows and 2n+5p+m
columns.

5.2. Simulation Tool
We also developed a MATLAB/SIMULINK-based simulator for time-triggered real-time
control systems. The simulator is based on the TRUETIME library [Henriksson et al.
2003] and can be used to simulate general time-triggered systems, not limited to the
controller implementation considered in this paper. TRUETIME is a MATLAB toolbox
which facilitates simulation of multitasking real-time kernel executing control tasks,
modeled as ordinary SIMULINK blocks [Henriksson et al. 2003]. The main component
of TRUETIME is a computer kernel block which executes user-defined tasks written
in MATLAB code or C++ code. The tasks can generally do anything, such as control
algorithms, network communication, and I/O interface. The computer kernel block
supports most important features of an actual real-time kernel: interrupts and inter-
rupt handlers, priorities and task scheduling policies (both predefined and user-defined
scheduling policies can be used), periodic and aperiodic tasks, synchronization mecha-
nisms (e.g. monitors, events, semaphores), timing control, I/O (A/D, D/A, and network),
to name a few. TRUETIME also supports simulation of communication networks with
various medium access control protocols (CSMA/CD, CSMA/CA, Round Robin, FDMA,
TDMA) and user-defined transmission rate [Henriksson et al. 2003]. Therefore, TRUE-
TIME is capable of simulating not only dynamic real-time control systems but net-
worked control loops as well.

Our simulator is an extension of TRUETIME to time-triggered real-time systems. In
general, any time-triggered control task, implemented in MATLAB code or C++ code, can
be simulated. The scheduling can be periodic (specified as a periodic dispatch sequence)
or aperiodic (e.g. specified by a finite state machine). In addition, for convenience, the
commonly used PID controller is predefined with various integration and differentia-
tion algorithms (see section 2.3). Given a plant modelMP , a controller modelMC and
its time-triggered implementation (ρ, τ, δ), for a particular initial state x(0), we can
construct the SIMULINK model shown in Figure 2 using our simulation library and
simulate it in order to visualize the discrepancies between the output variables y(t)
and ỹ(t). All output plots in the following examples were generated by this simulator.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:16 Truong Nghiem et al.

Table III. Implementation errors for various time-triggered platforms.
No. δ Integration Differentiation ρ ‖HT ÔH‖2 eM
1 0.001 Euler Backward Diff. (BIB1B2)ω 21.9183 10.0058
2 0.001 Euler Backward Diff. (BIB2B1)ω 0.0394 0.5241
3 0.001 Euler Backward Diff. (BIB2B1B1)ω N/A ∞
4 0.001 Euler Backward Diff. (BIB2B1B1B1B1)ω 0.0640 0.6336
5 0.00075 Euler Backward Diff. (BIB1B2)ω 0.8523 1.9457
6 0.0005 Euler Backward Diff. (BIB2B1B1)ω 0.0281 0.3704

6. NUMERICAL EXAMPLES
6.1. Example 1: PID Controller
Consider the plant[

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

]
=

[−1020 −156.3 0 0
128 0 0 0
0 0 −10.2 −2.002
0 0 1 0

] [x1(t)
x2(t)
x3(t)
x4(t)

]
+

[
8 0
0 0
0 0.5
0 0

] [
u1(t)
u2(t)

]
[
y1(t)
y2(t)

]
= [0 4.8828 0 0

0 0 0 0.4]

[
x1(t)
x2(t)
x3(t)
x4(t)

]
which consists of two separate subsystems: one subsystem (captured by variables x1,
x2) has much faster dynamics than the other (captured by variables x3, x4). A PID
controller designed for this plant is[

u1(t)
u2(t)

]
= KP

[
y1(t)
y2(t)

]
+KI

[∫ t
0
y1(τ)dτ∫ t

0
y2(τ)dτ

]
+KD

[
dy1(t)/dt
dy2(t)/dt

]
where

KP =
[−116 0

0 −250

]
KI =

[−480 0
0 −30

]
KD =

[−0.2 0
0 −20

]
Control variable u1 regulates the faster subsystem, whereas u2 regulates the slower
subsystem. Table III summarizes the performance results for various dispatch se-
quences. For each implementation, the spectral norm ‖HT ÔH‖2 and the implemen-
tation error for initial state x1(0) = x2(0) = x3(0) = x4(0) = 2 are computed. Figure 3
shows the evolution of output y1(t) for various implementation choices. From Table III,
it is observable that though the ideal closed loop system is stable, implementation
(ρ3, τ3, δ3) destabilizes the plant. The uniform dispatch sequence ρ1 produces a large
error, while by slightly changing the dispatch sequence, implementation (ρ2, τ2, δ2) out-
performs (ρ1, τ1, δ1) by a large factor. In fact, (ρ2, τ2, δ2) gives better performance than
other implementations, even those on faster platforms. Thus, scheduling can have
great effect on the overall performance of the system. Since the dynamics of subsys-
tem 1 are faster than those of subsystem 2, it is predictable that allocating more time
slots to control block B1 will result in better performance, as illustrated by implemen-
tation (ρ4, τ4, δ4). The above observations show that the performance of a controller
can be considerably improved without changing the platform, however care should be
taken when choosing the dispatch sequence. Furthermore, even on a slightly faster
computer, the performance of (ρ5, τ5, δ5) may be worse than (ρ4, τ4, δ4) executing on a
slower computer but with better scheduling. Nonetheless, for sufficiently faster plat-
form (ρ6, τ6, δ6), the performance is improved greatly.

On a platform with δ = 0.001 secs and Euler method for integration and Backward
Difference method for differentiation, we can use the brute-force algorithm to search
for the best periodic dispatch sequence ρ with nρ up to 8, subject to a minimum idling

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−30

−20

−10

0

10

20

30

O
u
tp

u
t
1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−30

−20

−10

0

10

20

30

O
u
tp

u
t
1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−30

−20

−10

0

10

20

30

O
u
tp

u
t
1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−30

−20

−10

0

10

20

30

O
u
tp

u
t
1

Fig. 3: Plots of y1 of example 1 for the ideal semantics [[M]] (top left), and implementations
[[M]](ρ1,τ1,δ1) (top right), [[M]](ρ5,τ5,δ5) (bottom left), [[M]](ρ2,τ2,δ2) (bottom right).

Table IV. Best dispatch sequences for various idling time require-
ments.

Idling Time Best ρ ‖HT ÔH‖2
≥ 0% (B1B1B1B1BIB2)ω 0.0180
≥ 10% (B1B1B1B1BIB0B2)ω 0.0235
≥ 20% (B1B0B1B1BIB0B2)ω 0.0314
≥ 50% (B2B1BIB0B1B0B0B0])ω 0.0852

time requirement. Table IV summarizes the search results for various idling time re-
quirements. These results show that a carefully chosen dispatch sequence can perform
very well, even with 50% idling time. Using the heuristics that B1, which computes the
control output u1 for the faster subsystem, should be scheduled more frequently than
B2, we managed to speed up the brute-force algorithm by up to two times.

6.2. Example 2: State-feedback Control with Observer
Given plant model (14), a state-feedback controller u = Kx can be designed so that the
closed-loop system meets the specifications (by placing its poles at desired positions
on the complex plane). However, since state information x(t) is generally not directly
available, a state observer (or state estimator) is usually required to provide an esti-
mate of x(t), given input u(t) and output y(t). A Luenberger observer has the form

ż(t) = Apz(t) +Bpu(t) + L(y(t)− Cpz(t)) (25)

where L is designed so that z(t) converges to x(t) sufficiently fast as t→∞ [Antsaklis
and Michel 1997]. Putting all together, we obtain the following model of controllerMC :

ż(t) = (Ap +BpK − LCp)z(t) + Ly(t)

u(t) = Kz(t)

z(0) = 0

(26)

which is of the form (15).

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:18 Truong Nghiem et al.

u1z1
u1

y1

u2

y2
z2 u2

S1

Observer 1

S2

Observer 2

C1

K1

C2

K2

Fig. 4: Controller structure in example 2

Now consider two plants to be controlled using state-feedback with observers. The
first plant has model:

ẋ(t) =

[
0 1 0
0 0 1
0 2 −1

]
x(t) +

[
0 1
1 1
0 0

]
u(t)

y(t) = [1 0 0]x(t)

with poles 0, 1,−2. The second plant has model:

ẋ(t) =

0 1 0 0
0 0 1 0
0 0 0 1
1 1 −2 3

x(t) +

1 0
0 0
0 0
0 1

u(t)

y(t) = [1 0 0 0]x(t)

with poles 2.414, 0.5±0.866i, −0.414. Note that both plants are unstable, and the latter
is “more unstable” in the sense that its poles are further to the right of the imaginary
axis on the complex plane. State-feedback controllers and observers were designed for
the first plant:

K1 =

[
2 −1 −2
−2 0 0.5

]
, L1 = [8 21 22]

T

and for the second plant:

K2 =

[
−1.8799 4.7722 4.9236 2.2896
−1.3906 −5.1201 −4.3603 −7.1201

]
, L2 = [23 217 1106 3533]

T .

Assume that the state-feedback controllers are implemented in one computer, con-
nected to the two plants through a time-triggered communication network. In each
time-slot, the computer can only read from or write to one plant. Thus, a natural block
structure of the controller is given in Figure 4. Block S1 is the observer which gives
an estimate of state z1 of the first plant. Block C1 computes control variable u1 for this
plant from the estimated z1. Similarly, S2 estimates state z2 and C2 computes control
variable u2 for the second plant. Though this structure is different from that considered
in section 3, similar analysis can be carried out to obtain the implementation error.
Note that theorems 3.1 and 3.2 still hold for this case, provided the relevant matrices,
for example E(i), Ê and Ĝ, are appropriately computed. Table V shows some compu-
tational results for various implementations of the system, when x(0) = [1 1 1]

T for
the first plant and x(0) = [0 0.5 0.5 0.5]

T for the second plant. The simple dispatch se-
quence (S1C1S2C2)ω destabilizes the system, while by giving more computation time for
observer blocks (S1 and S2), implementation (ρ2, τ2, δ2) results in a relatively small er-
ror. Moreover, by allocating more time-slots to observer S2, implementation (ρ3, τ3, δ3)

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:19

Table V. Implementation errors for Example 2
No. δ Integration ρ eM
1 0.002 Euler (S1C1S2C2)ω ∞
2 0.002 Euler (S1S2S1S2C1C2)ω 1.119
3 0.002 Euler (S1S2S2S2C1C2)ω 0.7651
4 0.002 Euler (S1S2S1S1C1C2)ω ∞
5 0.003 Euler (S1S2S1S2S1S2S2S2S2C1C2B0B0)ω 6.865
6 0.003 Euler (S1S2S1S2S1S2S1S2S2C1C2B0B0)ω ∞
7 0.003 Euler (S1S2S1S2S1S2S1S2S1C1C2B0B0)ω ∞
8 0.003 Euler (S1S2S1S2S1S2S1S1S1C1C2B0B0)ω ∞

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

Fig. 5: Plots of outputs y1 (solid lines) and y2 (dashed lines) of example 2 for the ideal se-
mantics [[M]] (top left), and implementations [[M]](ρ1,τ1,δ1) (top right), [[M]](ρ2,τ2,δ2) (bottom left),
[[M]](ρ3,τ3,δ3) (bottom right).

gives better performance, which is expected since the second subsystem has faster dy-
namics than the first one. Devoting most computation time to a wrong block may make
the system unstable, as shown in implementation (ρ4, τ4, δ4). Therefore, scheduling can
have great impact on the overall performance of the system. This fact is illustrated
again in implementations 5 through 8, where (ρ5, τ5, δ5) which focuses on observer S2

stabilizes the system while other schedules destabilize it. Figure 5 shows the outputs
for various implementation choices.

7. CONCLUSIONS
In this paper, we continue our efforts aimed at understanding and quantifying the
gap between model-level timed semantics of embedded controllers and their imple-
mentation on time-triggered platforms. For linear plant models and linear dynamic
controllers (e.g. PID controllers), we have presented a method to exactly compute the
L2-error of the deviation of the plant’s output in the implementation semantics from
that in the continuous time semantics. This method gives a criterion to measure the
quality of implementations and to compare different implementations. It can also be
used in designing schedules for a time-triggered platform.

Future research includes the extension of our framework to larger classes of plant
models, including nonlinear and hybrid systems, as well as more general nonlinear
controllers. Whereas exact computation of the error may not be feasible in these gen-

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:20 Truong Nghiem et al.

eral settings, computable error bounds for appropriate norms will still enable the
comparison of different implementations. Our approach may enable us to develop a
scheduling framework on time-triggered platforms in order to reduce implementation
error, while potentially achieving a decomposition between dispatch sequences and
timing functions. Finally, more efficient algorithms for designing schedules is also a
subject of future research.

APPENDIX
PROOF OF THEOREM 3.1. First, note that eM(ρ, τ, δ, x(0)) =

∑i=+∞
i=0 Ii where Ii =∫ ti+1

ti
‖ (y(t)− ỹ(t)) ‖22 dt. On the interval [ti, ti+1), using equations (14), (15) and notice

that ẏ(t) = CP ẋ(t), the evolution of the closed loop system for the model-level, contin-
uous time semantics can be described by the differential equations:[

ẋ(t)
ż(t)

]
=
[
M(Ap+Bp(I−Lc)−1KPCp) MBp(I−Lc)−1KI

BcCp Ac

] [
x(t)
z(t)

]
= Â

[
x(t)
z(t)

]
(27)

where M =
(
I −Bp(I − Lc)−1KDCp

)−1. On the same interval [ti, ti+1), the computed
control ũ(t) = ũ(ti) stays constant until the next instant ti+1, therefore the evolution
of the implementation semantics is given by

˙̃x(t) = Apx̃(t) +Bpũ(ti). (28)

We now define the following linear system with output ye(t) = y(t)− ỹ(t){
ϕ̇(t) = Aϕ(t) +Bũ(ti),
ye(t) = Cϕ(t)

(29)

where

A =

[
Â 0
0 Ap

]
, B =

[
0
Bp

]
, C = [Cp 0 −Cp] , ϕ(t) =

[
x(t)
z(t)
x̃(t)

]
By explicitly solving the differential equation (29), we obtain

ye(t) = C
[
eA(t−ti)ϕ(ti) +

∫ t
ti
eA(t−τ)Bdτ ũ(ti)

]
= C

[
eA(t−ti)ϕ(ti) + α(t− ti)ũ(ti)

]
where α(t) =

∫ t
0
eAτB dτ . On the interval [ti, ti+1), we can check that

Ii =
∫ ti+1

ti
‖(y(t)− ỹ(t))‖22 dt =

∫ ti+1

ti
ye(t)

T ye(t) dt

= ϕ(ti)
T
(∫ δ

0
eA

T tCTCeAt dt
)
ϕ(ti) + ϕ(ti)

T
(∫ δ

0
eA

T tCTCα(t) dt
)
ũ(ti)

+ ũ(ti)
T
(∫ δ

0
α(t)TCTCeAt dt

)
ϕ(ti) + ũ(ti)

T
(∫ δ

0
α(t)TCTCα(t) dt

)
ũ(ti)

Let us define the following matrices

Q1,1 =
∫ δ

0
eA

T tCTCeAt dt

Q1,2 = QT2,1 =
∫ δ

0
eA

T tCTCα(t) dt

Q2,2 =
∫ δ

0
α(t)TCTCα(t) dt

Then, we have

Ii =

[
ϕ(ti)
ũ(ti)

]T [
Q1,1 Q1,2

Q2,1 Q2,2

] [
ϕ(ti)
ũ(ti)

]
= ψ(ti)

TQψ(ti) (30)

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:21

Note that matrix Q is constant and computable. In case matrix A is invertible, it is
straightforward to see that α(t) =

(
eAt − I

)
A−1B.

The desired result is directly obtained from (30).

PROOF OF THEOREM 3.2. Define the matrices

Ê0 = Ē(nρ − 1)Ē(nρ − 2) . . . Ē(1)Ē(0),

Ĝ0 =

I

Ē(0)
Ē(1)Ē(0)

...
Ē(nρ − 2) . . . Ē(0)

 ,

and

Ê = Ē(2nρ − 1)Ē(2nρ − 2) . . . Ē(nρ + 1)Ē(nρ),

Ĝ =

I

Ē(nρ)
Ē(nρ + 1)Ē(nρ)

...
Ē(2nρ − 2) . . . Ē(nρ)

Using Eq. (22), we have that,

ψ̄(tnρ) = Ê0 ψ̄(0) ψ̄(0)
...

ψ̄(tnρ−1)

 = Ĝ0 ψ̄(0)
(31)

and for all l ≥ 1,

ψ̄(t(l+1)nρ) = Ê ψ̄(tlnρ) ψ̄(tlnρ)
...

ψ̄(tlnρ+nρ−1)

 = Ĝ ψ̄(tlnρ)
(32)

Note that we can write vector ψ(t), defined in Theorem 3.1, as ψ(t) = Fψ̄(t) where

F =

I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 I

 .

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

58:22 Truong Nghiem et al.

Theorem 3.1 yields

eM(ρ, τ, δ, x(0)) =

l=+∞∑
l=0

i=lnρ+nρ−1∑
i=lnρ

ψ(ti)
TQ ψ(ti)

=

l=+∞∑
l=0

i=lnρ+nρ−1∑
i=lnρ

ψ̄(ti)
TFTQ Fψ̄(ti)

=

l=+∞∑
l=0

 ψ̄(tlnρ)

...
ψ̄(tlnρ+nρ−1)

T F

TQF
. . .

FTQF

 ψ̄(tlnρ)

...
ψ̄(tlnρ+nρ−1)

 (33)

Define Q̂ to be a block diagonal matrix composed of nρ blocks equal to FTQF :

Q̂ =

F
TQF

. . .
FTQF

 .

From Eq. (31), Eq. (32) and Eq. (33) we have:

eM(ρ, τ, δ, x(0)) = ψ̄(0)T ĜT0 Q̂Ĝ0 ψ̄(0) +

l=+∞∑
l=1

ψ̄(tlnρ)
T ĜT Q̂Ĝ ψ̄(tlnρ)

= ψ̄(0)T ĜT0 Q̂Ĝ0 ψ̄(0) + ψ̄(0)TÊT0

(
l=+∞∑
l=0

(Êl)T ĜT Q̂ĜÊl

)
Ê0ψ̄(0)

= ψ̄(0)T
[
ĜT0 Q̂Ĝ0 + ÊT0 OÊ0

]
ψ̄(0)

= ψ̄(0)T Ô ψ̄(0)

where

O =

l=+∞∑
l=0

(Êl)T ĜT Q̂Ĝ Êl.

From the theory of LTI systems [Rugh 1996], O is the solution of the Lyapunov equa-
tion (24). Moreover, from the continuous time and the implementation semantics, we
have ψ̄(0) = Hx(0).

REFERENCES
R. Alur and A. Chandrashekharapuram. 2005. Dispatch sequences for embedded control models. In Proceed-

ings of the 11th IEEE Real-time and Embedded Technology and Applications. 508–518.
R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky. 2003. Generating embedded software from hierarchical

hybrid models. In Proceedings of the ACM Conference on Languages, Compilers, and Tools for Embedded
Systems. 171–182.

Rajeev Alur and Gera Weiss. 2008. Regular Specifications of Resource Requirements for Embedded
Control Software. In RTAS ’08: Proceedings of the 2008 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium. IEEE Computer Society, Washington, DC, USA, 159–168.
DOI:http://dx.doi.org/10.1109/RTAS.2008.13

P. Antsaklis and A. Michel. 1997. Linear Systems. McGraw Hill.
Karl-Erik Årzén, Anton Cervin, and Dan Henriksson. 2005. Implementation-Aware Embedded Control Sys-

tems. In Handbook of Networked and Embedded Control Systems. Birkhäuser.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

Time-triggered Implementations of Dynamic Controllers 58:23

K.J. Aström and B. Wittenmark. 1997. Computer-controlled systems: Theory and Design. Prentice Hall.
Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.
G.C. Buttazo. 1997. Hard real-time computing systems: Predictable scheduling algorithms and applications.

Kluwer Academic Publishers.
P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. 2003. Translating discrete-time Simulink to

Lustre. In Proceedings of Third International Conference on Embedded Software (LNCS 2855). 84–99.
Paul Caspi and Oded Maler. 2005. From Control Loops to Real-Time Programs. In Handbook of Networked

and Embedded Control Systems. Birkhäuser.
N. Halbwachs. 1993. Synchronous Programming of Reactive Systems. Kluwer Academic Publishers.
N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The synchronous dataflow programming language

Lustre. Proc. IEEE 79 (1991), 1305–1320.
Dan Henriksson, Anton Cervin, and Karl-Erik Årzén. 2003. TrueTime: Real-time Control System Simu-

lation with MATLAB/Simulink. In Proceedings of the Nordic MATLAB Conference. Copenhagen, Den-
mark.

T.A. Henzinger, B. Horowitz, and C.M. Kirsch. 2003. Giotto: A time-triggered language for embedded pro-
gramming. Proc. IEEE 91, 1 (2003), 84–99.

Y. Hur, J. Kim, I. Lee, and J. Choi. 2004. Sound code generation from communicating hybrid models. In
Hybrid Systems: Computation and Control, Proceedings of the 7th International Workshop (LNCS 2993).
432–447.

H. Kopetz. 2000. Real-Time Systems: Design Principles for Distributed Embedded Applications. Kluwer Aca-
demic Publishers.

H. Kopetz and G. Bauer. 2003. The time triggered architecture. Proc. IEEE 91, 1 (2003), 112–126.
E.A. Lee. 2000. What’s ahead for embedded software. IEEE Computer (September 2000), 18–26.
Cleve Moler and Charles Van Loan. 2003. Nineteen Dubious Ways to Compute the Exponential of a Matrix,

Twenty-Five Years Later. SIAM Rev. 45, 1 (2003), 3–49. DOI:http://dx.doi.org/10.1137/S00361445024180
Truong Nghiem, George J. Pappas, Rajeev Alur, and Antoine Girard. 2006. Time-triggered implementations

of dynamic controllers. In EMSOFT ’06: Proceedings of the 6th ACM & IEEE International conference on
Embedded software. ACM, New York, NY, USA, 2–11. DOI:http://dx.doi.org/10.1145/1176887.1176890

Wilson J. Rugh. 1996. Linear System Theory. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
S. Sastry, J. Sztipanovits, R. Bajcsy, and H. Gill. 2003. Modeling and design of embedded software. Proc.

IEEE 91, 1 (2003).
S.Bittanti and P.Colaneri. 2000. Invariant representations of discrete-time periodic systems - a survey. Au-

tomatica 36, 12 (2000), 1777–1793.
D. Seto, J. Lehoczky, L. Sha, and K. Shin. 1996. On task schedulability in real-time control systems. In

Procedings of the IEEE Real-Time Systems Symposium.
C. Van Loan. 1978. Computing integrals involving the matrix exponential. Automatic Control, IEEE Trans-

actions on 23, 3 (1978), 395–404. 0018-9286.
M. De Wulf, L. Doyen, and J.-F. Raskin. 2004. Almost ASAP semantics: From timed models to timed imple-

mentations. In Hybrid Systems: Computation and Control, Proceedings of the 7th International Work-
shop (LNCS 2993). 296–310.

H. Yazarel, A. Girard, G. J. Pappas, and R. Alur. 2005. Quantifying the Gap between Embedded Control
Models and Time-Triggered Implementations.. In Proceedings of the 26th IEEE Real-Time Systems
Symposium (RTSS). 111–120.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 58, Publication date: August 2012.

	University of Pennsylvania
	ScholarlyCommons
	8-2012

	Time-triggered Implementations of Dynamic Controllers
	Truong X. Nghiem
	George J. Pappas
	Rajeev Alur
	Antoine Girard
	Recommended Citation

	Time-triggered Implementations of Dynamic Controllers
	Abstract
	Keywords
	Disciplines
	Comments

	tmp.1360097937.pdf.r4tam

