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From Discrete to Continuous and Back: Abstractions and Mesoscopic
Phenomena in Cells

Abstract
We discuss the interplay between stochasticity and multistability in bio-molecular networks. The resulting
cell-level stochastic behavior reflects the fundamentally discrete and random nature of the underlying
molecular processes. These ideas are illustrated on the well studied example of the lac operon. We first
describe the switching behavior predicted by a differential-equation based model and then show how cell-level
stochastic behavior emerges. Finally we point out that the observed macroscopic behavior may not be enough
to determine both the dynamic and stochastic parameters.
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Abstract—We discuss the interplay between stochasticity and 
multistability in bio-molecular networks. The resulting cell-
level stochastic behavior reflects the fundamentally discrete and 
random nature of the underlying molecular processes. These 
ideas are illustrated on the well studied example of the lac 
operon. We first describe the switching behavior predicted by a 
differential-equation based model and then show how cell-level 
stochastic behavior emerges. Finally we point out that the 
observed macroscopic behavior may not be enough to determine 
both the dynamic and stochastic parameters. 

I. INTRODUCTION 

Traditionally, the role of computers in molecular 
biology was associated with the management of large 
datasets that resulted from high throughput 
experimental methods, supporting a “breadth-first” 
approach to the study of living systems. More recently, 
the accumulated knowledge on bio-molecular 
processes and quantitative experimental methods have 
made possible a line of investigation similar to 
Physics, where quantitative modeling plays the central 
role. This “depth-first” approach aims at a mechanistic 
understanding of the emergence of cellular functions 
from the underlying molecular processes. 

Quantitative methods are expected to help understand 
the functionality of complex networks involving many 
molecular species. However, biological complexity is 
fundamentally different from what we encounter in 
chaos or other high dimensional dynamical systems. A 
cell is more similar to a high-tech airplane than to a 
strongly coupled many-body system, in that there is a 
lot of structure within its several thousands of degrees 
of freedom. To further add to the challenge, the 
relevant interactions are often not well understood and 
the relevant parameters are not well known. 
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A central issue that mathematical theory must address 
is how to simplify or abstract away elements of a 
complex bio-molecular network while capturing the 
basic functionality. There is currently no coherent 
framework for the full dynamical version of this 
problem; (partial) solutions will likely involve hybrid 
dynamical systems, stochastic methods, and automated 
reasoning. The latter is likely the only way such large 
systems can be analyzed. 

In this contribution we would like to illustrate the 
utility and the challenges of building integrative and 
quantitative models of cellular functions. Given the 
huge complexity involved, rationally derived 
simplified descriptions or abstractions are a central 
ingredient in cellular modeling. We will discuss a well 
known example, the lactose metabolism of the 
Escherichia coli bacteria, which is traditionally 
modeled as a continuum dynamical system. We will 
show how this picture is related to discrete event 
systems on two levels. On one hand the continuum 
model is the approximation of a discrete system 
described by the numbers of different molecules found 
in the cell; on the other hand, it is naturally abstracted 
to a system whose only two states correspond to those 
of high and low lactose metabolism.  

II. BACKGROUND 

A. Overview of relevant processes in a bacterial cell 
The functionality of a cell is ensured by a large 
number of molecular processes. A review of basic cell 
biology is far beyond the scope of this contribution 
and the interested reader is urged to refer to a textbook 
on cell biology. An excellent introduction to the field 
of cellular/molecular systems biology from the 
perspective of Control Theory is found in [8]. Brief 
introductions appropriate for quantitative scientists 
can be found in several recent Systems Biology 
textbooks. 
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.  
Fig.1 Schematic of important bio-molecular processes in a bacterial cell. 

Below we enumerate the molecular processes relevant 
to our example. In addition to being the repository of 
genetic information, DNA also acts as a “script” that 
manages the functionality of cells. DNA can be seen 
as a long sequence of molecular characters; its 
different subsections have different roles. Genes are 
the smallest independently meaningful subsection; 
they represent blueprints of molecules with specific 
roles in the cell. The character sequence of a single 
gene is transcribed to a molecule of RNA by a 
molecular motor called RNA polymerase. One type of 
RNA, messenger RNA, acts as an intermediary and is 
transcribed by another molecular motor (ribosome) 
into a sequence of amino-acids. The final product, a 
functional protein, is obtained after the sequence of 
amino-acids folds into the appropriate spatial 
structure. We refer to this process as the expression of 
a gene. The DNA � RNA � protein paradigm is 
sometimes referred to as the “Central Dogma” of 
molecular biology. 

The metabolism is the set of reactions that transform 
the available nutrients into energy and substances used 
to build new cellular material (including RNA and 
proteins). Some proteins act as enzymes (which 
facilitate metabolic and other chemical reactions), or 
are localized on the cell membrane where they act as 
transporters (allowing the uptake of substances from 
outside the cell). Finally, certain products of the 
metabolism act as signals for the occurrence of certain 
conditions (e.g. the presence or absence of a nutrient, 

excessive heat, etc.). They modulate the transcription 
process directly or indirectly, by activating or 
inhibiting transcription factors.  

Thus, genes are expressed partially in response to the 
current state of the cell. This functionality is 
determined by the rules by which transcription factors 
are released and the ways they control the expression 
of different genes. While all of this structure is 
ultimately encoded in the DNA, many of these logical 
implications are revealed only when the relevant 
conditions occur. Disentangling this machinery is one 
of the ultimate goals of molecular systems biology. 

B. Dynamical models and their limitations 
Chemical processes are traditionally described in 
terms of rate laws. For example, consider the classic 
enzymatic reaction where the substrate S is 
transformed into the product P in the presence of 
enzyme E:  

PS E⎯→⎯  
The rate of this reaction, the quantity (concentration) 
of substrate consumed per unit time, is given by: 

m
cat KS

SEk
dt
Pd

dt
Sdr

+
==−=

][
]][[][][

 

The bracketed quantities [S],[E],[P] represent 
concentrations of the respective substances. The two 
constants kcat and Km are specific to the reaction or 
rather, the enzyme that makes it possible.  

Metabolic reactions are described by rate laws similar 
to the Michaelis-Menten rate law cited above. Other 
processes such as transport, as well as transcription 
and translation, are also described by algebraic 
formulae that relate the reaction rate to the present (or 
past, in the case of transcription / translation) 
concentrations of the participating substances. In 
principle, all cellular processes could be accounted for 
if the rate laws and rate constants were known, and we 
would have a complete dynamical model of the 
organism in the form of a system of ordinary 
differential equations (ODEs). This approach is 
currently unrealistic for at least two reasons. There are 
a few tens of thousands of such processes in a single 
bacterial cell, and the rate laws and constants are not 
known for most of them. Second, the traditional 
methods for analyzing ODE systems are limited to 
either linear systems, or nonlinear systems of only a 
few variables.  

Thus, even though most elementary cellular processes 
are known, a head-on approach to the entire cell as a 
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dynamical system is unrealistic due to complexity and 
to the lack of complete kinetic information. The 
complexity can be reduced significantly by focusing 
on individual functions and by the use of abstractions. 
Abstractions are simplified descriptions that arise from 
the analysis of a model of the system.  

A common abstraction is based on switching behavior, 
occurring on the level of individual genes and on that 
of entire cellular functions. Biologists often refer to 
genes being expressed or not; cellular properties 
linked to a [group of] gene[s] are considered either 
present or absent. Many cellular behaviors are well 
described by such discrete abstractions where 
continuous variables are replaced by discrete ones. 
These abstractions better capture the functionality of 
cells, and also reduce the complexity of the 
mathematical description [2]. 

C. The discrete nature of molecular processes 
The number of molecules in a macroscopic amount of 
a substance is huge; thus the amount of substance is 
normally regarded as a continuous quantity. However, 
bacterial cells are extremely small, and the number of 
molecules of some species in a cell may be too small 
to justify the continuum description. Continuous 
chemical rate laws break down for small molecule 
numbers. Sometimes we refer to this as the mesoscopic 
regime.  

A correct description on this level must take into 
account the fundamentally stochastic nature of 
molecular processes. The appropriate computational 
framework was initiated by the work of Gillespie [3]. 
The system is described as a continuous time Markov 
chain, whose states are labeled by the numbers of 
molecules of each species. Possible transitions 
correspond to individual occurrences of one of the 
reactions. First-principles stochastic simulation 
methods are well studied, but are significantly more 
expensive than differential equation simulators [3, 4]. 
On the other hand the stochastic description of all 
variables in the system is typically not necessary, since 
many species have large molecule numbers. The 
proper framework and approximation methods are 
currently being developed. 

We can summarize this cursory presentation of 
molecular processes as follows. The relevant 
molecular processes are traditionally described by 
ordinary differential equations for the continuous 
concentrations of the respective substances. The 
continuous picture needs to be (partially) replaced 

with discrete elements for two apparently distinct 
reasons. These are: the emergence of switching 
behavior on the level of the entire cell, which justifies 
discrete abstractions; and the fact that on the 
molecular level, the correct description of chemical 
reactions involves individual molecules.  

We will now discuss an example where the two 
discrete ‘ends’ of the continuous rate-law based 
description overlap. We will see the underlying 
stochasticity reflected in a high level description of a 
cellular system. This system controls the lactose 
metabolism of E.coli bacteria by regulating the 
expression level of a group of genes that form the lac 
operon [4].  

  
Fig.2 The lactose utilization network and the network induced by TMG 

III. BISTABILITY IN THE LAC OPERON 
Lactose is a sugar, a carbon source which bacteria 
(like humans) can use in their metabolism. There are 
other sugars, for example glucose, which are better 
nutrients and are thus preferred over lactose. In order 
to metabolize lactose, the cell requires a number of 
enzymes, which are encoded by two of the three genes 
of the lac operon. However, their synthesis represents 
an expense which is to be avoided if either there is no 
lactose in the environment or if a better alternative is 
available.  This is a likely motivation for the bistable 
behavior of the dynamical system formed by the lac 
promoter, its gene products, lactose and its 
metabolized versions. On a technical level, the 
bistability, the existence of two dynamic equilibria, is 
made possible by a positive feedback mechanism 
(Figure 2) which can be understood using a simplified 
model involving five substances: the mRNA of the 
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operon (M); two of its products: permease (P), which 
allows the uptake of external lactose and beta-
galactosidase (B) which metabolizes lactose; 
intracellular lactose (L); and finally, allolactose (A). 
Allolactose has an enhancing effect on the expression 
of the lac genes, thereby increasing the production of 
the enzymes that bring in and metabolize lactose. 

Thus, the lac operon has two modes, induced, where 
lactose is actively metabolized, and uninduced, where 
the system is in a low, conservation mode where just 
enough enzyme is maintained that can serve as a seed 
to build up the machinery if a large enough 
concentration of lactose is encountered (Figure 2, top). 
This is an example of a system that can be abstracted 

to a deterministic automaton (Figure 3), where 
transitions between the induced and uninduced states 
follow simple rules: induction if the external lactose 
concentration Le exceeds an upper threshold Lhigh and 
de-induction if Le drops below a lower threshold Llow. 

This system is studied experimentally using TMG 
instead of lactose. TMG is not metabolized, but it has 
the same effect on transcription as allolactose. This 
simplifies both the experimental conditions and the 
network (Figure 2, bottom). This system is modeled 
using a set of four ordinary differential equations. 
 
 
 
 
 
 
 
 
 
 
 
 

Here, M,B,T,P are is the concentrations of mRNA, 
beta-galactosidase, (internal) TMG,  and permease, 
respectively. The remaining symbols are model 
constants taken from Yildirim and Mackey [1]. 

IV. STOCHASTICITY 
 Significant mathematical biological work has been 
devoted to dynamical models of the lac operon (see for 
example [1] and references therein). However, as early 
as the 1950’s, it was known that the deterministic 
picture could not possibly be rigorously correct. While 
studying the enzymatic activity of a culture of bacteria, 
Novick and Weiner [5] observed that a continuous 
variation of total enzymatic activity is actually 
generated by individual cells that have high or very 
low activity. They termed this the all-or-none 
phenomenon and used it as a starting point to develop 
the bistable model discussed in the previous section.  

If the bistable ODE model were rigorously correct, the 
entire population should be simultaneously induced or 
uninduced. All bacteria should behave identically and 
follow the time dependence predicted by the equations 

of motion. In particular, in an experiment where an 
initially uninduced population is suddenly exposed to a 
high lactose concentration, all cells should induce 
simultaneously. This has been found not to be the case 
In addition to the classic results of Novick and Weiner, 
modern single cell experiments [6] have demonstrated 
directly that this is not the case. In hysteresis 
experiments where the external inducer concentration 
was varied gradually, Ozbudak and coworkers found 
that individual cells switched on or off faster than the 
observed timescale of the variation of the population-
wide enzyme activity. This indicates that there is a 
source of noise or fluctuations which make each cell 
evolve differently.  

Le

Activity

Llow Lhigh
Le

Activity

Llow Lhigh  
Fig. 3.  Steady state diagram. 
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Fig. 6.  Discrete stochastic abstraction. 

Mesoscopic effects due to small molecule copy 
numbers are a ubiquitous source of such cellular noise, 
albeit not the only one. There are standard methods to 
simulate chemical reactions under these circumstances 
[3, 4]. We performed stochastic simulations using the 
deterministic model discussed above as a starting 
point; not surprisingly, they revealed the existence of 
“tunneling” transitions between the classical regions of 
attraction of the two steady states (Figure 4). Thus the 
continuous differential equation model turns out to be 
an idealization of a Markovian stochastic process.  

We should point out that first-principle molecular 
simulations are orders of magnitude more expensive 
than the corresponding ODE simulations. Often one 
has to deal with systems where some molecular 
species are present in low copy numbers, requiring a 
stochastic simulation, while other species are very 
abundant and have consistently high molecule copy 
numbers. Stochastic simulation of these abundant 
species is very costly and does not provide useful 
information (since the intrinsic stochastic fluctuations 
of these species are negligible). The proper approach 
to mixed stochastic-deterministic simulations for these 
cases is somewhat subtle. There is ongoing work on 
building reliable algorithms that can automatically 
switch to the most economical mode that gives an 
acceptable precision [4].  

For more details on the simulations discussed here we 
refer to [7]. Our mixed simulations allowed us to 
perform many individual runs, equivalent to 
simulations of small colonies of 100-1000 cells. Thus 
we were able to make “aggregate” predictions of how 
the average observed activity would evolve during an 
induction experiment. The blue line in Figure 5 is the 
result of this type of bulk simulation. We observed that 

the total activity approached a smooth curve, which 
was well approximated by a simple analytical formula. 
This was the starting point for building a simplified 
model, where the behavior of a single cell, as predicted 
by the stochastic version of the four-dimensional 
model discussed in Section III, was approximated by a 
two-state stochastic switch. 

V. STOCHASTIC AUTOMATON 

A. Two-level stochastic automaton 
The ODE model exhibited switching behavior and 
could be abstracted to a deterministic switch [2]. In the 
stochastic case, one would still like to be able to think 
of the lac system as bistable, but with appropriately 
modified transition rules. This is exactly what we did 
in the case of the lac operon, connecting the high level 
discrete abstraction with the underlying stochastic 
phenomenon [7]. By performing first-principles 

simulations we were able to derive estimates for the 
spontaneous transition rate between the induced and 
uninduced states. Thus, the identities and parameters 
of the steady states remain essentially the same, 
including the dependence of the various equilibrium 
concentrations on external lactose. The transitions, 
however, become stochastic, characterized by rates 
that are a function of the same external lactose 
concentration (Figure 6). This model can now be used 
predict the aggregate behavior of a large population of 
cells.  

HieLoe
LoHi NLNL

dt
dN

dt
dN

)()( 21 λλ −=−=  

In Figure 5 we show the aggregate simulation of 100 
cells compared with an analytical prediction based on 
the transition rates derived from individual 
simulations. 

B. Stochastic versus dynamic parameters 
Often, only aggregate quantities are measurable in 
experiments (see Figure 5). In fact, the parameters 
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Fig. 5. Aggregate simulation of 100 cells (blue) compared to the 
analytical prediction derived from the discrete stochastic model. 
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used in the original ODE model [1] were mostly 
derived based on this type of experiment, with no 
regard to the stochastic nature of the underlying 
processes. The time constant of the aggregate behavior 
in Figure 5, is the result of the interplay of two 
characteristic times: the average escape time, a 
stochastically defined quantity, and the ballistic 
equilibration time [6], which describes the 
deterministic convergence to the equilibrium states. It 
is conceivable that different configurations of 
stochasticity and individual deterministic dynamics 
may lead to very similar bulk dynamics.  

  
Fig. 7: Comparison of the effects of speeding up the dynamics (red) and 

reducing the cell volume (blue) 
We investigated this question. Our preliminary results 
indicate that bulk measurements may not directly 
distinguish between stochastic and dynamic properties 
of the system. In Figure 7 we show the results of three 
simulations of an induction experiment of an aggregate 
of 100 cells. The reference simulation is shown in 
green. We performed the same simulation once with 
the cell volume reduced by a factor of 50%, and once 
with the dynamics accelerated by 50%. While the two 
results do not coincide precisely, we see that the 
effects of the two changes are similar. Thus, a 
variation of the cell volume, which only influences the 
stochastic aspects (since it does not change the 
corresponding ODE model), can have the same 
apparent effect as changes to the time constants of the 
underlying molecular processes (which do not change 
the equilibria but scale the time dependence of the 
solutions).  

This result highlights the practical problem of 
indirectly known parameters. The kinetic parameters 
of the ODE models in the literature are fitted to match 
macroscopic observations of cell populations with the 
ODE prediction. The stochastic version of such a 
model will lead to a qualitatively different aggregate 

behavior. The distinction can be seen by comparing 
Figure 5 and Figure 4. The time for the induction of an 
individual cell is approximately 20 times shorter than 
the time for the induction of a colony of 100 cells. The 
correct microscopic model should match the individual 
distributions of cells as well as correctly predict the 
aggregate behavior of cell colonies. 

 In summary, we propose a “depth-first” approach to 
molecular systems biology. The aim is to understand 
the emergence of cellular functions by integrating the 
quantitative knowledge about individual molecular 
processes. Traditionally these are described in terms of 
differential equations. Two major challenges are 
incomplete dynamical information and the complexity 
of the systems involved. Both issues can be alleviated 
by identifying good abstractions. Abstractions based 
on switching behavior are one source of discrete 
models in genetic networks. Another source of discrete 
features is due to the underlying discrete and 
stochastic nature of biochemical processes. Consistent 
simulation methods for this type of systems are readily 
available and can be a source of significant insight.  
We have shown that these three features: continuous 
dynamics, emerging discrete behavior and underlying 
stochasticity can be intertwined in subtle ways which 
are, fortunately, amenable to our analysis. 
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