
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

February 2008

Dynamic Assignment in Distributed Motion
Planning With Local Coordination
Michael Zavlanos
University of Pennsylvania

George J. Pappas
University of Pennsylvania, pappasg@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Copyright 2008 IEEE. Reprinted from IEEE Transactions on Robotics, Volume 24, Issue 1, February 2008, pages 232-242.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/345
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Michael Zavlanos and George J. Pappas, "Dynamic Assignment in Distributed Motion Planning With Local Coordination", . February
2008.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers/345
mailto:repository@pobox.upenn.edu

Dynamic Assignment in Distributed Motion Planning With Local
Coordination

Abstract
Distributed motion planning of multiple agents raises fundamental and novel problems in control theory and
robotics. In particular, in applications such as coverage by mobile sensor networks or multiple target tracking,
a great new challenge is the development of motion planning algorithms that dynamically assign targets or
destinations to multiple homogeneous agents, not relying on any a priori assignment of agents to destinations.
In this paper, we address this challenge using two novel ideas. First, distributed multi-destination potential
fields are developed that are able to drive every agent to any available destination. Second, nearest neighbor
coordination protocols are developed ensuring that distinct agents are assigned to distinct destinations.
Integration of the overall system results in a distributed, multiagent, hybrid system for which we show that the
mutual exclusion property of the final assignment is guaranteed for almost all initial conditions. Furthermore,
we show that our dynamic assignment algorithm will converge after exploring at most a polynomial number of
assignments, dramatically reducing the combinatorial nature of purely discrete assignment problems. Our
scalable approach is illustrated with nontrivial computer simulations.

Keywords
distributed control, hybrid systems, motion planning, multiagent assignment problems

Comments
Copyright 2008 IEEE. Reprinted from IEEE Transactions on Robotics, Volume 24, Issue 1, February 2008,
pages 232-242.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/345

http://repository.upenn.edu/ese_papers/345?utm_source=repository.upenn.edu%2Fese_papers%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages

232 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 1, FEBRUARY 2008

Dynamic Assignment in Distributed Motion Planning
With Local Coordination

Michael M. Zavlanos, Student Member, IEEE, and George J. Pappas, Senior Member, IEEE

Abstract—Distributed motion planning of multiple agents raises
fundamental and novel problems in control theory and robotics.
In particular, in applications such as coverage by mobile sensor
networks or multiple target tracking, a great new challenge is the
development of motion planning algorithms that dynamically as-
sign targets or destinations to multiple homogeneous agents, not
relying on any a priori assignment of agents to destinations. In
this paper, we address this challenge using two novel ideas. First,
distributed multidestination potential fields are developed that are
able to drive every agent to any available destination. Second, near-
est neighbor coordination protocols are developed ensuring that
distinct agents are assigned to distinct destinations. Integration
of the overall system results in a distributed, multiagent, hybrid
system for which we show that the mutual exclusion property of
the final assignment is guaranteed for almost all initial conditions.
Furthermore, we show that our dynamic assignment algorithm will
converge after exploring at most a polynomial number of assign-
ments, dramatically reducing the combinatorial nature of purely
discrete assignment problems. Our scalable approach is illustrated
with nontrivial computer simulations.

Index Terms—Distributed control, hybrid systems, motion plan-
ning, multiagent assignment problems.

I. INTRODUCTION

R ECENT advances in communication and computation
have given rise to distributed control of multiagent sys-

tems, which, compared to conventional centralized control,
provides increased efficiency, performance, scalability, and ro-
bustness. Motivated by these appealing properties of distributed
control, we investigate the multiagent assignment problem and
propose a distributed and online solution in the absence of any
a priori assignment information to the system.

Assignment problems are fundamental in combinatorial op-
timization and, roughly, consist of finding a minimum weight
matching in a weighted bipartite graph. They arise frequently
in operations research, computer vision, as well as distributed
robotics, where graphs are recently emerging as a natural

Manuscript received November 28, 2006; revised July 6, 2007. This paper was
recommended for publication by Associate Editor J. Wen and Editor L. Parker
upon evaluation of the reviewers’ comments. This work was supported in part
by the Autonomous Robots and Mobile Sensors Multidisciplinary University
Research Initiative (ARO MURI) under SWARMS Grant W911NF-05-1-0219
and in part by the National Science Foundation (NSF) under Information Tech-
nology Research (ITR) Grant 0324977. Preliminary versions of this work can
be found in [19] and [20].

The authors are with the General Robotics and Active Sensory Percep-
tion (GRASP) Laboratory, Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail: zavlanos@
grasp.upenn.edu; pappasg@grasp.upenn.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2007.913992

mathematical description for capturing interconnection topol-
ogy [1]–[11]. Depending on the form of the cost function,
assignment problems can be classified as linear or quadratic.
Optimal solutions to the linear assignment problem can be com-
puted in polynomial time using the Hungarian algorithm [12].
The quadratic assignment problem, however, is NP-hard [13],
and suboptimal solutions are achieved by means of various re-
laxations. Approaches are either purely discrete [14], [15] or
continuous [16], based on the solution of differential equations
that always converge to a discrete assignment.

In distributed robotics, the assignment problem naturally
arises in settings involving destination or target allocation. De-
pending on whether the discrete assignment is addressed si-
multaneously with the continuous navigation strategies or is
solved independently in advance, approaches can be either on-
line or offline. An online approach is proposed in [17], where
the space of permutation-invariant multirobot formations is rep-
resented using complex polynomials whose roots correspond to
the configurations of the robots in the formation. The proposed
approach is open loop and centralized, since it requires global
knowledge of the environment. On the other hand, in [18], a
polynomial-time algorithm is developed that computes offline a
suboptimal assignment between agents and destinations based
on a “minimum distance to the goal” policy.

Under the assumption that the agents have knowledge of all
destinations, in this paper, we simultaneously address the dis-
crete assignment of destinations to agents as well as the con-
tinuous control strategies for driving the individual agents to
the destinations. The resulting hybrid controller for each agent
consists of both local coordination protocols guaranteeing that
distinct destinations are assigned to distinct agents, and multi-
destination potential fields ensuring convergence of every agent
to an available destination, while significantly reducing the com-
plexity of our model. Composition of the hybrid controllers for
all agents results in a highly efficient overall system that is il-
lustrated in nontrivial multiagent motion planning tasks. The
assignment of destinations to agents is determined dynamically
by means of exploration of available destinations and nearest
neighbor communication regarding explored destinations [20],
while a sensor-based approach [19] is also discussed that solves
the problem in the absence of interagent communication. The
overall system is shown to almost always converge to an assign-
ment that has the mutual exclusion property and to have at most
polynomial complexity, despite the exponential growth of the
number of assignments with respect to the number of agents.

The rest of this paper is organized as follows. In Section II,
we define the dynamic assignment problem. In Section III, we
define the multidestination potential fields and discuss their

1552-3098/$25.00 © 2008 IEEE

ZAVLANOS AND PAPPAS: DYNAMIC ASSIGNMENT IN DISTRIBUTED MOTION PLANNING WITH LOCAL COORDINATION 233

convergence properties, while in Section IV we develop the lo-
cal coordination protocols that consist the hybrid automata that
model the agents. Properties of the overall system are discussed
in Section V, while in Section VI we illustrate our scalable
approach with nontrivial computer simulations.

II. PROBLEM FORMULATION

Consider n identical agents in R
2 and denote by xi(t) ∈ R

2

the coordinates of agent i at time t. We assume fully actuated
kinematic agents described by

ẋi(t) = ui(t) ∀ i = 1, . . . , n (1)

where ui(t) is the control vector taking values in R
2 . Consider,

further, m ≥ n destinations and denote by dk ∈ R
2 the coordi-

nates of destination k. For any destination k, let

Br (dk)
�
= {x ∈ R

2 | ‖x − dk‖2 < r} (2)

denote an open ball of radius r > 0 centered at dk and define its

closure by [Br](dk)
�
= {x ∈ R

2 | ‖x − dk‖2 ≤ r}.
We say that agent i has reached destination k if for any

given constant δ > 0 there exists a time instant Ti > 0 such
that xi(t) ∈ [Bδ](dk) for all t > t0 + Ti . Let T = maxi{Ti}
denote the time instant that every agent has reached a distinct
destination. Then, the time instant t0 + T corresponds to the
termination of the motion planning task and indicates a final
assignment between agents and destinations.

Unlike centralized and offline approaches that decouple the
assignment and navigation problems and focus on designing
control laws that drive every agent to a preassigned destination
[21], we propose a dynamic and fully distributed solution to
the multiagent assignment problem. In particular, we assume
that every agent has knowledge of the positions of all available
destinations, while the assignment decision is embedded in its
control law. We, therefore, address the following problem.

Problem 1 (Dynamic Assignment): Given n identical agents,
m ≥ n destinations, and no a priori assignment information,
derive distributed control laws for every agent i such that, for
any δ > 0 and any initial configuration xi(t0), there exists a
T > 0 such that xi(t) ∈ [Bδ](dk) for all time t > t0 + T , all
agents i, and distinct destinations k.

Implicit in Problem 1 is the mutual exclusion property of the
final assignment, i.e., that no two agents may be assigned to
the same destination. Moreover, since the agents are considered
identical, any assignment, among the (m

n)n! possible assign-
ments between agents and destinations, is equally desirable.

The main idea behind our approach is to let every agent ex-
plore destinations that it considers available and use nearest
neighbor communication to propagate information about taken
destinations in the underlying network.1 Eventually, a sequence
of destinations will be explored by every agent and an assign-
ment will be established with the first available destination to be

1We call a destination taken if it is assigned to an agent and available oth-
erwise. Note that, in this framework, a taken destination can be considered
available by an agent until it is either explored or information to the contrary is
provided by its neighbors.

Fig. 1. The following scenario describes the main idea behind our approach.
The large circles indicate the communication ranges of the agents. Agent i,
initially located at xi (t1), explores destination j at time t2 . Since destination j is
taken by its current neighbor j , agent i proceeds to exploring other destinations.
At time t3 , a neighbor k informs agent i about new taken destinations and agent
i proceeds to exploring destination i at time t4 , which is available, and hence,
is assigned to agent i.

explored (Fig. 1). In the spirit of analog solutions to combina-
torial problems [16], in this paper, we propose novel multidesti-
nation potential fields that dynamically determine the sequence
of destinations to be explored, while driving the agents to their
destinations. This approach eliminates any computational com-
plexity that could be introduced in the model by employing
deterministic algorithms to determine such a sequence of desti-
nations.

III. MULTIDESTINATION POTENTIAL FIELDS

Let I0 = {1, . . . , m} denote the index set corresponding to
a fixed labeling of the destinations. We assume that every des-
tination k ∈ I0 is uniquely associated to a coordinate vector
dk ∈ R

2 through the injective map dest : I0 → R
2 , which is

such that,

dest(k)
�
= dk ∀k ∈ I0 . (3)

Let Ia
i ⊆ I0 , with |Ia

i | = v ≤ m, denote the set of destina-
tions that agent i considers available2 and define the distance of
agent i to destination k ∈ Ia

i by γdk (xi)
�
= ‖xi − dk‖2

2 , where
xi(t) ∈ R

2 denotes the coordinates of agent i at time t. Then,
the function,

γv

(
xi, Ia

i

) �
=

∏

k∈Ia
i

γdk (xi) (4)

is a measure of the distance of agent i to the set Ia
i consist-

ing of the v destinations that are considered available, since
γv (xi, Ia

i) > 0 for all xi 	∈ dest(Ia
i) and γv (xi, Ia

i) = 0 only
if xi ∈ dest(Ia

i). Consider, further, the monotone increasing
functions in [0,∞)

σ(y)
�
=

y

1 + y
and τκ(y)

�
= yκ with κ > 0

and define the v-destination potential function ϕv : R
2 → [0, 1]

by the composition (Fig. 2)

ϕv

(
xi, Ia

i

) �
= τ1/κ ◦ σ ◦ τκ ◦ γv

(
xi, Ia

i

)
. (5)

2We denote by |A| the cardinality of the set A.

234 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 1, FEBRUARY 2008

Fig. 2. Plot of the 4-destination potential function ϕ4 (xi , Ia
i) for dest(Ia

i) =
{[.75 .75], [−.75 .75], [−.75 −.75], [.75 −.75]}.

We now show that ϕv (xi, Ia
i) is free of local minima. The fol-

lowing proposition enables us to characterize the critical points
of ϕv (xi, Ia

i) by examining the simpler function γv (xi, Ia
i).

Proposition 3.1 ([22]): Let I1 , I2 ⊆ R be intervals, γ: F →
I1 and σ: I1 → I2 be analytic. Define the composition ϕ: F →
I2 to be ϕ = σ ◦ γ. If σ is monotonically increasing on I1 , then
the sets of critical points of ϕ and γ coincide, i.e., Cϕ = Cγ ,
and the index of each point is identical, i.e., index(ϕ)|Cϕ

=
index(γ)|Cγ

.
Proposition 3.1 implies that ϕv (xi, Ia

i) and γv (xi, Ia
i) share

identical critical points. In order to characterize the critical
points of γv (xi, Ia

i), we make use of harmonic functions and
their properties [23]. Harmonic functions are completely free
of local minima and it is this property that we use to show
global convergence of our potential field to the destination set
dest(Ia

i).
Theorem 3.2: For any fixed destination set Ia

i with |Ia
i | = v,

the multidestination control system

ẋi = uv

(
xi, Ia

i

) �
= −K∇xi

ϕv

(
xi, Ia

i

)
(6)

with K > 0 a positive constant, is globally asymptotically stable
almost everywhere.

Proof: Let ϕv (xi, Ia
i) be a Lyapunov function candidate for

the system. Clearly,

ϕ̇v

(
xi, Ia

i

)
= −K

∥∥∇xi
ϕv

(
xi, Ia

i

)∥∥2
2 ≤ 0

and so all initial conditions converge to the potential function’s
critical points. We now show that the only local minima are
the destination points dest(Ia

i). By Proposition 3.1, we saw
that ϕv (xi, Ia

i) and γv (xi, Ia
i) share identical critical points.

Let γ̂v (xi, Ia
i)

�
= log(γv (xi, Ia

i)). Since the function log(·) is
monotone increasing, applying again Proposition 3.1, we get
that γ̂v (xi, Ia

i) and γv (xi, Ia
i) share identical critical points too.

But the function γ̂v (xi, Ia
i) is harmonic with respect to the vari-

able xi since it satisfies the Laplace equation. To see this, observe
that, γ̂v (xi, Ia

i) = log(
∏

k∈Ia
i

γdk (xi)) =
∑

k∈Ia
i

log(γdk (xi))
which by Lemma 2.1 in Appendix II, implies that γ̂v (xi, Ia

i)
is harmonic as a sum of the harmonic functions γdk (xi).
Hence,γ̂v (xi, Ia

i) being harmonic implies that it satisfies both
the maximum and minimum principle [23], and so its only crit-

ical points in the interior of the free space are nondegenerate
saddle points. We conclude that system (6) is globally asymp-
totically stable except for a set of measure zero critical points
(corresponding to the saddle points). �

Equivalently, Theorem 3.2 implies that for any destination set
Ia

i ⊆ I0 and any given δ > 0, there exists a destination k ∈ Ia
i

and a time instant Ti > 0 such that xi(t) ∈ [Bδ](dk) for all
t > t0 + Ti . Thus, the control law (6) guarantees the necessary
condition xi(t) ∈ [Bδ](dk) for an assignment between agent i
and destination k, according to Problem 1. The sufficient con-
dition for such an assignment is that destination k is available
and is provided by a distributed coordination framework, based
on interagent communication, that we develop in the following
section.

IV. DISTRIBUTED COORDINATION

Let I(t) and Ic(t) denote the index sets of available and
taken destinations at time t ≥ t0 , respectively, where, as be-
fore, we call a destination taken if it has been assigned to an
agent and available otherwise. Clearly, I(t0) = I0 , Ic(t0) = ∅
and I(t) ∩ Ic(t) = ∅, I(t) ∪ Ic(t) = I0 for all t ≥ t0 . Since,
in distributed control, the individual agents have no access to
the system’s global variables, we assume that every agent i is
equipped with its own sets of available and taken destinations
denoted by Ia

i (t) and It
i (t), respectively. The variables Ia

i (t)
and It

i (t) are initialized such that every agent considers all desti-
nations in I0 available, i.e., Ia

i (t0) = I0 and It
i (t0) = ∅, while

an assignment between agent i and destination k ∈ I0 at time
t is indicated by Ia

i (t) = {k}. On the other hand, as long as
agent i has not yet been assigned to a destination, i.e., as long
as |Ia

i (t)| > 1, no destination can be considered both available
and taken, i.e., Ia

i (t) ∩ It
i (t) = ∅, while any destination that is

not available, has to be taken, i.e., Ia
i (t) ∪ It

i (t) = I0 .
To achieve local coordination among the agents, we further

define the set of neighbors of agent i at time t by N ε
i (t)

�
=

{j | xj (t) ∈ Bε(xi(t))}, where Bε(xi(t)) is defined as in (2),
and call ε > 0 the coordination range of agent i. We assume that
every agent can exchange information regarding explored taken
destinations only with its neighbors in N ε

i (t), for all t ≥ t0 .
With the above notation, we now state the assumptions for our
model.

Assumptions 4.1: For every agent i = 1, . . . , n, we assume
that, for all time t ≥ t0 ,

1) it can be assigned to an available destination k ∈ I(t), if
k ∈ Ia

i (t), |Ia
i (t)| > 1 and xi(t) ∈ Bδ (dk),

2) there is a controller uv (xi(t), Ia
i), that for any initial con-

figuration xi(t0), any fixed index set Ia
i = const. and any

δ > 0, guarantees that there exists a time instant Ti > 0
and a destination k ∈ Ia

i such that xi(t) ∈ Bδ (dk) for all
t > t0 + Ti ,

3) δ, ε > 0 are such that Bδ (dk) ∩ Bδ (dl) = ∅ for all k, l ∈
I0 and ε > 2δ.

Assumption 4.1 (point 1) implies that the condition xi(t) ∈
Bδ (dk) is not sufficient for agent i to be assigned to destination
k, since destination k must also be available. Assumption 4.1
(point 2), on the other hand, implies that every agent can

ZAVLANOS AND PAPPAS: DYNAMIC ASSIGNMENT IN DISTRIBUTED MOTION PLANNING WITH LOCAL COORDINATION 235

Fig. 3. Hybrid model for agent i.

navigate to any of its available destinations, unless it has al-
ready been assigned to one, whence it should always remain
in a neighborhood of that destination. Note that the controller
proposed in Theorem 3.2 satisfies this assumption. Finally,
Assumption 4.1 (point 3) combined with Assumption 4.1 (point
1) implies that every agent can only claim one destination at a
time, while combined with Assumption 4.1 (point 2) implies that
any agent sufficiently close to a destination can know whether
this destination is taken or not.3

To resolve tie breaking scenarios, where for any destination
k, Assumption 4.1 (point 1) is simultaneously satisfied for mul-
tiple agents, we require that every agent i can identify the can-
didate agents, denoted by Ci(t), requesting to be assigned to
destination k ∈ I0 at time t, and can also break the tie if nec-
essary. To achieve this specification, we introduce the function
tb : 2N\{∅} → N such that,

tb(A)
�
= α ∈ A (7)

and assume that every agent is equipped with such a function.4

Then, the action tb(Ci), taken by any one of the agents in Ci , can
break a tie for destination k, while the outcome can be transmit-
ted to the other neighbors. Note that the set Ci is common for all
agents j ∈ Ci , by Assumptions 4.1 (point 1) and 4.1 (point 3).
The rest of this section is devoted to defining and modeling
the distributed coordination framework for the agents, that is
according to Assumptions 4.1. Then, in Section V, the overall
system is studied and is shown to satisfy Problem 1.

A. Modeling the Agents

To achieve distributed coordination, we propose a hybrid
model for every agent [24] that consists of a navigation and
a coordination automaton, as shown in Fig. 3. The navigation
automaton receives as an input the set of available destinations
Ia

i (t) of agent i and updates the state xi(t) ∈ R
2 of agent i,

while the coordination automaton receives as an input the states
xj (t) and sets of taken destinations It

j (t) of all agents, computes
agent i’s neighbors N ε

i (t), and coordinates only with them to
update the sets Ia

i (t) and It
i (t).

5 In other words, the coordi-

3The later property is due to ε > 2δ, which implies that the coordination
range of the agents is larger than the diameter of the ball Bδ (dk) around any
destination k.

4Note that any tie breaking policy can be used, deterministic or random.
5Technically, the model we propose for the agents does not correspond to

an input/output hybrid automaton [25], but to a composition of synchronized
automata. In our framework, the terms input and output are used for presentation
purposes, exclusively.

nation automaton uses explicitly nearest neighbor information,
hence the distributed nature of the approach. The two automata
are synchronized and together consist the model of agent i. The
following notion of a predicate enables us to formally define the
aforementioned automata.

Defination 4.2 (Predicate): Let X = {x1 , . . . , xn} be a finite
set of variables. We define a predicate ψ(X) over X to be a
finite conjunction of strict or nonstrict inequalities over X . We
denote the set of all predicates over X by Pred(X).

In other words, a predicate is a logical formula. For instance,
the predicate ψ(X)

�
= (‖x − x0‖2 < r) over the set of variables

X ∈ R
N for any r > 0, returns 1 if x belongs in the open ball

‖x − x0‖2 < r and 0 otherwise. Hence, the navigation automa-
ton for agent i can be defined as follows.6

Definition 4.3 (Navigation Hybrid Automaton): We define
the navigation hybrid automaton of agent i to be the tu-
ple Ni

�
= (XNi

, VNi
, ENi

,ΣNi
, sync, inv, init, guard, reset,

f low), where,

1) XNi

�
= {xi} denotes the set of owned state variables with

xi ∈ R
2 .

2) VNi

�
= {1, . . . ,m, Init} denotes the finite set of control

modes.
3) ENi

�
= {(Init,m), (v, v − p), ∀ 0 < p ≤ v − 1 | v ∈

VNi
\{1, Init}} denotes the set of control switches.

4) ΣNi

�
= {updatei} denotes the set of synchronization

labels.
5) sync: ENi

→ ΣNi
with sync(e)

�
= updatei for all e ∈

ENi
\{(Init,m)}, denotes the synchronization map map-

ping each control switch to a synchronization label.

6) inv: VNi
→ Pred(XNi

) with inv(v)
�
= true for all

v ∈ VNi
, denotes the invariant conditions of the hybrid

automaton.
7) init: VNi

→ Pred(XNi
) with init(v)

�
= true for v =

Init denotes the set of initial conditions.
8) guard: ENi

→ Pred(XNi
) with guard((Init,m))

�
=

true and guard ((v, v − p))
�
= (|Ia

i | = v − p) for all
v ∈ VNi

\{1, Init} and all 0 < p ≤ v − 1, denotes the set
of guards of the hybrid automaton.

9) reset: ENi
→ XNi

with xi := reset(e)
�
= xi for all e ∈

ENi
, denotes the set of resets associated with the guards

of the hybrid automaton.

10) flow: VNi
→ ẊNi

with ẋi = flow(v)
�
= uv (xi, Ia

i) for
v ∈ VNi

\{Init} and ẋi = flow(Init)
�
= 0, denotes the

flow conditions of the hybrid automaton that constrain
the first time derivatives of the system variables in mode
v ∈ VNi

.
By Definition 4.3, for any automaton Ni , we see that |Ia

i | = v
for all v ∈ VNi

. Hence, every mode of Ni corresponds to a dis-
tinct number v of available destinations for agent i. While au-
tomaton Ni is in mode |Ia

i | = v, control law (6) “selects” a desti-
nation in Ia

i to drive agent i to, as discussed in Sections II and III.
On the other hand, transitions in Ni are triggered whenever the

6To simplify notation, we drop the dependence of the state variables on time.
Moreover, in what follows, “:=” indicates a transition reset [24].

236 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 1, FEBRUARY 2008

Fig. 4. Navigation automaton for agent i.

set of available destinations Ia
i is updated. Such updates can ei-

ther take place because a free destination has been discovered or
because information about taken destinations has been received
from agent i’s neighbors N ε

i . Note, however, that every such
transition v

e→ v′ results in v′ < v, and so, eventually, v = 1,
which indicates an assignment for agent i. Note also that these
transitions are synchronized with transitions of the coordination
automaton due to synchronization labels sync(e) = updatei .
Fig. 4 shows the graph representation of hybrid automaton Ni .

In the following, we define the coordination automaton for
agent i. The coordination automaton is designed to continuously
compute agent i’s neighbors N ε

i , while the coordination mech-
anism uses nearest neighbor information and dictates how agent
i should update its state variables Ia

i and It
i , when it is close to

an available destination, when it is close to a taken destination,
when it has been assigned to a destination, and when it is far
from any destination.

Definition 4.4 (Coordination Hybrid Automaton): We define
the coordination hybrid automaton of agent i to be the tuple Ci

�
=

(XCi
, VCi

, ECi
,ΣCi

, sync, inv, init, guard, reset, f low),
where,

1) XCi

�
= {Ia

i , It
i ,N ε

i , Ci} denotes the set of owned state
variables with Ia

i , It
i ∈ 2I0 and N ε

i , Ci ∈ 2{1,...,n}.

2) VCi

�
= {Init,N, I, U,Ok ,Ak , Tk ,Bk ,Rk | k ∈ I0} de-

notes the finite set of control modes.7

3) ECi

�
= {(Init,N), (N, I), (I,N), (I, U), (U,N),

(N,Ok), (Ok ,N), (N,Ak), (Ak , Tk), (Ak ,Bk), (Tk ,N),
(Bk ,Rk), (Rk ,N) | k ∈ I0}, denotes the set of control
switches.

4) ΣCi

�
= {updatei, tiebreakk | k ∈ I0} denotes the set of

synchronization labels.
5) sync: ECi

→ ΣCi
with,

a) sync((Ak ,Bk))
�
= tiebreakk for all k ∈ I0 ,

7The shorthand notation stands for I
�
= New Info, N

�
= Neighbors, U

�
=

Update, Ok
�
= Dest k Owned, Tk

�
= Dest k Taken, Ak

�
= Dest k Available,

Bk
�
= Tie Break k, and Rk

�
= Tie k Resolved.

b) sync(e)
�
= updatei , for e = (U,N), (Tk ,N),

(Rk ,N).
denotes the synchronization map mapping each control
switch to a synchronization label.

6) inv: VCi
→ Pred(XCi

) with inv(v)
�
= true for all v ∈

VCi
, denotes the invariant conditions of the hybrid

automaton.
7) init: VCi

→ Pred(XCi
) with init(v)

�
= true for v =

Init, denotes the set of initial conditions.
8) guard: ECi

→ Pred(XCi
) with,

a) guard((N, I))
�
= (xi 	∈ ∪l∈I0 Bδ (dl))∨ (xi ∈Bδ (dk)

∧ Ia
i 	= {k} ∧ k ∈ ∪j∈N ε

i
It

j), for all k ∈ I0 ,

b) guard((I,N))
�
= (Ia

i ∩ (∪j∈N ε
i
It

j) = ∅),
c) guard((I, U))

�
= (Ia

i ∩ (∪j∈N ε
i
It

j) 	= ∅),
d) guard((N,Ok))

�
= (xi ∈ Bδ (dk) ∧ Ia

i = {k}) for
all k ∈ I0 ,

e) guard((N,Ak))
�
= (xi ∈ Bδ (dk) ∧ Ia

i 	= {k} ∧
k 	∈ ∪j∈N ε

i
It

j

)
for all k ∈ I0 ,

f) guard((Ak , Tk))
�
= (Ci = ∅) for all k ∈ I0 ,

g) guard
(
(Ak ,Bk)

) �
= (Ci 	= ∅) for all k ∈ I0 ,

h) guard(e)
�
= true, otherwise,

denotes the set of guards of the hybrid automaton.

9) reset: ECi
→ XCi

with, [Ia
i It

i N ε
i Ci] := reset(e) such

that,

a) reset((Init,N))
�
= [I0 ∅ {j | xj ∈ Bε(xi)} ∅],

b) reset((N, I))
�
= [Ia

i It
i N ε

i Ci],

c) reset((I,N))
�
= [Ia

i It
i {j | xj ∈ Bε(xi)} Ci],

d) reset((I, U))
�
= [Ia

i \(∪j∈N ε
i
It

j) It
i ∪ (∪j∈N ε

i
It

j)
N ε

i Ci],

e) reset((U,N))
�
= [Ia

i It
i {j | xj ∈ Bε(xi)} Ci],

f) reset((N,Ok))
�
= [Ia

i It
i ∪ (∪j∈N ε

i
It

j) N ε
i Ci],

g) reset((Ok ,N))
�
= [Ia

i It
i {j | xj ∈ Bε(xi)} Ci],

h) reset((N,Ak))
�
= [Ia

i It
i ∪ {k} ∪ (∪j∈N ε

i
It

j) N ε
i

{j ∈ N ε
i | xj ∈ Bδ (dk)} ∪ {i}],

i) reset((Ak , Tk))
�
= [{k} It

i N ε
i Ci],

j) reset((Ak ,Bk))
�
=[Ia

i It
i N ε

i tb(Ci)], if i= min{Ci}
and reset((Ak ,Bk))

�
= [Ia

i It
i N ε

i Ci], if i 	=
min{Ci},

k) reset((Tk ,N))
�
= [Ia

i It
i {j | xj ∈ Bε(xi)} Ci],

l) reset((Bk ,Rk))
�
= [{k} It

i N ε
i Ci], if i ∈ Ci and

reset((Bk ,Rk))
�
= [Ia

i \It
i It

i N ε
i Ci], if i 	∈ Ci ,

m) reset((Rk ,N))
�
= [Ia

i It
i {j | xj ∈ Bε(xi)} Ci],

for all k ∈ I0 , denotes the set of resets associated with the
guards of the hybrid automaton.

10) flow: VCi
→ ẊCi

with [İa
i İt

i Ṅ ε
i Ċi] = flow(v)

�
=

[0 0 0 0] for all v ∈ VCi
, denotes the flow conditions of

the hybrid automaton that constrain the first time deriva-
tives of the system variables in mode v ∈ VCi

.

ZAVLANOS AND PAPPAS: DYNAMIC ASSIGNMENT IN DISTRIBUTED MOTION PLANNING WITH LOCAL COORDINATION 237

Fig. 5. Coordination automaton for agent i.

Observing Definition 4.4 we see that whenever agent i is
sufficiently close to an available destination k, automaton Ci

transitions to mode Ak and the set of taken destinations It
i

is updated with new information from neighbors, according to
reset((N,Ak)). If there is no need for tie breaking or if agent
i wins the tie break, destination k is assigned to agent i, as
indicated by the resets reset((Ak , Tk)) and reset((Bk ,Rk)),
respectively. On the other hand, if agent i loses the tie break,
then Ia

i is updated by removing any new taken destinations,
according to reset((Bk ,Rk)). Now, if agent i is close to a
taken destination or if it is far from any destination, automa-
ton Ci transitions to mode I and exchanges information with
its neighbors in order to update the sets of available and taken
destinations Ia

i and It
i , according to the resets reset((I,N))

and reset((U,N)). Note that whenever the state variable Ia
i is

updated with new information, a transition is automatically trig-
gered in automaton Ni due to synchronization labels “updatei .”
This synchronization models the communication between au-
tomata Ci and Ni . Similarly, in a case of a tie for destination
k, all the involved coordination automata are synchronized ac-
cording to the synchronization labels “tiebreakk ” to participate
in a tie break where the agent with the smallest label is respon-
sible for breaking the tie, according to reset((Ak ,Bk)). Fig. 5.
shows the graph representation of hybrid automaton Ci .

Remark 4.5 (Coordination Radius): Clearly, the larger the
coordination radius ε > 0, the faster information about taken
destinations propagates in the network. In particular, if ε > 2R,
where R

�
= infr>0{W ⊆ Br} is the radius of the smallest ball

containing the workspace W ⊆ R
2 , then information in the net-

work is global. On the other hand, if ε = 0, then no information
exchange among the agents can occur. To achieve coordina-

Fig. 6. Sensing automaton for agent i.

tion, in this case, we need to assume that the agents can sense
the presence of other agents within a neighborhood of radius
εs > 0. We call εs > 0 the sensing range of the agents and re-
quire that εs > 2δ. Fig. 6 shows the graph representation of
the corresponding hybrid automaton. Note that the condition
εs > 2δ guarantees that if xi(t) ∈ Bδ (dk) and there exists an
agent j 	= i such that xj (t) ∈ Bδ (dk), then j ∈ Fi(t), where
Fi(t)

�
= {j | xj (t) ∈ Bδ (dk)}\{i} denotes the set of agents that

are in a δ-neighborhood of destination k. If Fi(t) = ∅, then the
destination is free, while if Fi(t) 	= ∅, then the destination is
taken. Hence, agent i can sense whether a destination is taken
or not. Note also that transitions in Ni can only be of the form
v

e→ v − 1 or v
e→ 1, and that in the absence of communication,

tie breaking scenarios cannot be dealt with. For more informa-
tion on sensor-based dynamic assignment problems, we refer
the reader to [19].

V. INTEGRATION OF THE OVERALL SYSTEM

Having defined the models for the agents, we now proceed
with their composition in a product system [24] and study the
properties of the overall distributed coordination scheme.

Definition 5.1 (Product System): We define the product of
the hybrid automata N1 , . . . , Nn , C1 , . . . , Cn by the tuple S

�
=

(XS , VS ,ES ,ΣS , sync, inv, init, guard, reset, f low), where,

1) XS
�
= XN1 ∪ · · · ∪ XNn

∪ XC1 ∪ · · · ∪ XCn
denotes the

set of state variables.
2) VS

�
= VN1 × · · · × VNn

× VC1 × · · · × VCn
denotes the

finite set of control modes.
3) ES

�
= {eS } denotes the set of control switches such that,

a) eS = eNi
‖eCi

∈ ES is defined as the set of con-
trol switches of S corresponding to control switches
eNi

∈ ENi
, and eCi

∈ ECi
, with sync(eNi

) =
sync(eCi

) = updatei ,
b) eS = ‖i∈J eCi

∈ ES is defined as the set of con-
trol switches of S corresponding to control switches
eCi

∈ ECi
, with sync(eCi

) = tiebreakk , for all
k ∈ I0 and all i ∈ J ⊆ {1, . . . , n}, J 	= ∅,

c) eS = (vS , v′
S) ∈ ES with vCi

= N and v′
Ci

=
U,Ok , Tk , Ak ,Bk for all k ∈ I0 .

Hence, the only variables that change with every transition
vS

eS→ v′
S are the ones involved in the control switch eS

through the corresponding automata.

4) ΣS
�
= ΣN1 ∪ · · · ∪ ΣNn

∪ ΣC1 ∪ · · · ∪ ΣCn
denotes the

set of synchronization labels.
5) sync: ES → ΣS denotes the synchronization map map-

ping each control switch to a synchronization label.

238 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 1, FEBRUARY 2008

6) inv: VS → Pred(XS) with inv(vS)
�
= inv(vN1) ∧ · · · ∧

inv(vNn
) ∧ inv(vC1) ∧ · · · ∧ inv(vCn

) for all vS ∈ VS ,
denotes the invariant conditions of the product automaton.

7) init: VS → Pred(XS) with init(vS)
�
= init(vN1)

∧ · · · ∧ init(vNn
) ∧ init(vC1) ∧ · · · ∧ init(vCn

) for all
vS ∈ VS , denotes the set of initial conditions.

8) guard: ES → Pred(XS) such that for any J ⊆
{1, . . . , n}, J 	= ∅,

a) guard(eS)
�
= guard(eNi

) ∧ guard(eCi
), if eS =

eNi
‖eCi

∈ ES ,

b) guard(eS)
�
= ∧i∈J guard(eCi

) for all k ∈ I0 and
all i ∈ J , if eS = ‖i∈J eCi

∈ ES ,

c) guard(eS)
�
= guard((vCi

, v′
Ci

)) for all eS = (vS ,
v′

S) ∈ ES with vCi
= N and v′

Ci
= U,Ok , Tk ,

Ak ,Bk ,
denotes the set of guards (or transitions) of the hybrid
automaton.

9) reset: ES → XS such that for any J ⊆ {1, . . . , n},
J 	= ∅,

a) reset(eS)
�
= reset(eNi

) ∧ reset(eCi
), if eS = eNi

‖eCi
∈ ES ,

b) reset(eS)
�
= ∧i∈J reset(eCi

) for all k ∈ I0 and all
i ∈ J , if eS = ‖j∈J eCi

∈ ES ,

c) reset(eS)
�
= reset((vCi

, v′
Ci

)) for all eS = (vS ,
v′

S) ∈ ES with vCi
= N and v′

Ci
= U,Ok , Tk ,

Ak ,Bk ,
denotes the set of resets associated with the guards of the
hybrid automaton.

10) flow: VS → ẊS with flow(vS)
�
= flow(vN1) ∪ · · · ∪

flow(vNn
) ∪ flow(vC1) ∪ · · · ∪ flow(vCn

) for all vS ∈
VS , denotes the flow conditions of the hybrid automa-
ton that constrain the first time derivatives of the system
variables in mode vS .

Clearly, the product system S, being the composition of all
elementary automata Ci and Ni , models the interconnection be-
tween them. Hence, studying S, we can identify the properties of
the whole multiagent system. The following result characterizes
the transition guards in S.8

Proposition 5.2: For any agent i and any destination k ∈ I0
such that xi ∈ Bδ (dk) and Ia

i 	= {k}, the product system S has
the following properties:

a) k 	∈ ∪j∈N ε
i
It

j if and only if destination k is available.
b) k ∈ ∪j∈N ε

i
It

j if and only if destination k is taken.
Proposition 5.2 implies that the product system S can always

identify whether a destination is available or taken using infor-
mation from its nearest neighbors. We now proceed to showing
that under the product system S, agent i is always assigned to an
available destination if it is sufficiently close to it, while it ap-
propriately updates its sets of available and taken destinations,
Ia

i and It
i respectively, otherwise.

Proposition 5.3: For any agent i, any destination k ∈ I0 , and
all time t, the product system S has the following properties:

8Proofs for this and the other results in this section can be found in
Appendix I.

a) If xi(t) ∈ Bδ (dk) and destination k is available at
time t, then Ia

i (t) := {k} and It
i (t) := It

i (t) ∪ {k} ∪
(∪j∈N ε

i
(t)It

j (t)).
b) If destination k is available at time t and xi(t) ∈ Bδ (dk)

simultaneously for multiple agents i, then S is able to
break the tie.

c) Ia
i (t) := Ia

i (t)\(∪j∈N ε
i
(t)It

j (t)) and It
i (t) := It

i (t) ∪
(∪j∈N ε

i
(t)It

j (t)) otherwise.
Note that Proposition 5.3 further implies that for all time

t ≥ t0 such that |Ia
i (t)| > 1, we have that Ia

i (t) ∩ It
i (t) = ∅

and Ia
i (t) ∪ It

i (t) = I0 . Hence, the construction of our model
is consistent with the system requirements in Section IV. The
following proposition shows that every agent that has not yet
been assigned to a destination, has always knowledge of at least
all available destinations in I(t). This property of the product
system S is necessary to show that every agent will eventually
be assigned to a distinct destination in I0 .

Proposition 5.4: The product system S guarantees that I(t) ⊆
Ia

i (t) for all time t and all agents i with |Ia
i (t)| > 1.

Our next result concerns the running time of the hybrid system
S. In particular, we show that the product system S in the worst
case can only take a finite number of transitions vS

eS→ v′
S such

that sync(eS) = updatei , which is polynomial with respect to
the number of agents n. Such transitions are triggered whenever
Ia

i is updated for any agent i, and every time they result in
vNi

= 1, a destination is assigned to agent i, while every time
they result in vNi

> 1, information about taken destinations has
been received by agent i and the set of available destinations Ia

i

has been appropriately updated. Clearly, many other transitions
may occur in the meanwhile, but as long as these transitions
are polynomial with the number of agents n, it is guaranteed
that the explored assignments are also polynomial with n. This
result is important, given that the number of assignments, and
hence, the space of control modes VS of the product system S,
grows exponentially with the number of agents.

Proposition 5.5: Let v

S

�
= (v

N1
, . . . , v

Nn
, vC1 , . . . , vCn

) be
such that v

Ni
= 1 and Ia

i ∩ Ia
j = ∅ for all j 	= i. Then, ini-

tialized at v0
S , the product system S can reach v

S in at
most n(n + 1)/2 transitions vS

eS→ v′
S such that sync(eS) =

updatei , where n is the number of automata Ni .
Having shown that the product system S satisfies the problem

specifications and has also reasonable complexity, we now show
that it also has the desired liveness and safety properties. In other
words, we show that every agent will eventually be assigned
to a destination in the set I0 and that no two agents will be
assigned to the same destination. We hence, have the following
theorem.

Theorem 5.6: For almost all initial conditions xi(t0), there ex-
ists a constant T > 0 such that for all time t > t0 + T , the prod-
uct system S is in mode v

S = (v

N1

, . . . , v

Nn

, vC1 , . . . , vCn
)

with v

Ni

= 1 and Ia
i (t) ∩ Ia

j (t) = ∅ for all j 	= i. We call v

S

the equilibrium mode of the system.

VI. SIMULATION RESULTS

We consider a navigation task where n = 50 agents, starting
from randomly chosen initial configurations, have to reach the

ZAVLANOS AND PAPPAS: DYNAMIC ASSIGNMENT IN DISTRIBUTED MOTION PLANNING WITH LOCAL COORDINATION 239

Fig. 7. Destination set dest(I0).

destination set dest(I0) in Fig. 7 consisting of m = 50 destina-
tions. We apply both the communication-based and sensor-based
coordination protocols that we have developed and observe that
both approaches succeed in determining a valid assignment for
the agents (Fig. 8).

Fig. 8 shows the evolution of the system at four consecutive
time instants for the communication-based and sensor-based co-
ordination protocols, respectively. The destinations are denoted
with small circles and the δ-neighborhoods (with δ = 0.05)
around each destination with big circles. The agents, on the
other hand, are denoted with dots and their ε-coordination ranges
(with ε = 0.1) with circles around each agent. Observe that in
both cases the hybrid system S eventually drives every agent
to a distinct destination. Note also the paths followed by the
agents until they reach their final destinations (Fig. 8(g)–(i)).
In the communication-based case, the agents switch to ex-
ploring new destinations as soon as they receive information
about taken destinations from their neighbors (Fig. 8(g)). On
the other hand, in the sensor-based case they explicitly visit
destinations in order to determine whether they are taken or
not (Fig. 8(h) and (i)). By comparing the communication-based
and sensor-based protocols in each one of the pairs 8(a) and
(b), 8(c) and (d), 8(e) and (f), and 8(g) and (h), we see that the
communication-based coordination is much more efficient, as
expected.

Remark 6.1 (Collision Avoidance): Note that the proposed
framework allows overlapping among the agents. Combining
the multidestination potential fields in Section III with repulsive
potentials that guarantee collision avoidance could make con-
vergence analysis a challenging task. To avoid such complica-
tions, we can exploit our modeling framework, which naturally
allows minor modifications to be made in order to incorporate
various secondary objectives. In particular, lifting the selection
of the sequence of destinations to be visited by an agent from
the navigation automaton to the hierarchically higher coordina-
tion automaton, simplifies the continuous navigation controllers
(which now become: “drive an agent to a single prespecified
destination”) and enables us to account for collision avoidance
using controllers from the literature [26]. Alternatively, “traffic-
based” rules for collision avoidance, such as yielding to the
agent on the right, can be directly implemented in the proposed
hybrid model for every agent.

Fig. 8. Distributed assignment for n = 50 agents. Fig. 8(a), 8(c), 8(e),
8(g), and Fig. 8(b), 8(d), 8(f), 8(h), 8(i) depict consecutive stages of the
communication-based and sensor-based protocols, respectively. Stages in each
of the pairs 8(a) and 8(b), 8(c) and 8(d), 8(e) and 8(f) and 8(g) and 8(h) are taken
at the same time instants. Note the faster convergence of the communication-
based protocol.

VII. CONCLUSION

In this paper, we considered a distributed hybrid approach to
the assignment problem in distributed motion planning that si-
multaneously addresses the discrete assignment of destinations
to agents as well as the continuous control strategies for driving
the individual agents to the destinations. The assignment was
determined dynamically through distributed coordination pro-
tocols, while navigation of the agents to any of the available
destinations was guaranteed for almost all initial conditions by
novel multidestination potential fields that were also shown to

240 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 1, FEBRUARY 2008

reduce significantly the complexity of the model. The over-
all hybrid system was shown to always guarantee the mutual
exclusion property of the final assignment and have at most
polynomial complexity, despite the exponential growth of the
number of assignments with respect to the number of agents.
Our scalable approach was verified through nontrivial computer
simulations. Future work involves experimenting with the pro-
posed framework and dealing with implementation issues such
as collision avoidance and noisy measurements.

APPENDIX I

A. Proof of Proposition 5.2

To show property (a), note that if destination k is available,
then, k 	∈ It

j , and so Ia
j 	= {k} for all j, which shows the “only

if” part of the claim. On the other hand, for any agent i such that
xi ∈ Bδ (dk) and Ia

i 	= {k}, Assumption 4.1 (point 2) and the
fact that ε > 2δ guarantee that if there exists an agent j 	= i such
that Ia

j = {k}, then j ∈ N ε
i . Thus, if k 	∈ ∪j∈N ε

i
It

j , destination
k has to be available, which shows the “if” part of the claim.

To show property (b), assume first that destination k is taken.
Then, there exists an agent j 	= i such that Ia

j = {k}, and As-
sumption 4.1 (point 2) together with the fact that ε > 2δ guar-
antee that j ∈ N ε

i . Thus, k ∈ ∪j∈N ε
i
It

j , which shows the “only
if” part of the claim. On the other hand, for any agent i, if
k ∈ ∪j∈N ε

i
It

j then, destination k clearly is taken, which shows
the “if” part of the claim.

B. Proof of Proposition 5.3

Suppose that for t = tk automaton S is in mode vk
S with

vk
Ci

= N , for any agent i, and consider the following cases:
Case I: Assume that xi(tk) ∈ Bδ (dl) and Ia

i (tk) 	= {l}
for any l ∈ I0 , and that destination l is available, i.e., l 	∈
(∪j∈N ε

i
(tk)It

j (tk)). Then, at t = tk+1 , S transitions to mode

vk+1
S with vk+1

Ci
= Al and It

i (tk+1) := reset(ek
S) = It

i (tk) ∪
{l} ∪ (∪j∈N ε

i
(tk)It

j (tk)). Moreover, the reset Ci(tk+1) :=
reset(ek

S) = {j ∈ N ε
i (tk) | xj (tk) ∈ Bδ (dl)} ∪ {i} identifies

other agents that simultaneously claim destination l. If i is
the only agent claiming destination l, i.e., if Ci(tk+1) = {i},
then at t = tk+2 , S transitions to mode vk+2

S with vk+2
Ci

= Tl

and Ia
i (tk+2) := reset(ek+1

S) = {l}. Thus, property (a) is sat-
isfied. Otherwise, if Ci(tk+1) 	= {i}, S transitions to mode
vk+2

S with vk+2
Cj

= Bl for all j ∈ Ci(tk+1) instantaneously,

due to the control switch ek+1
S = ‖j∈Ci (tk + 1)e

k+1
Cj

, which is

such that sync(ek+1
Cj

) = tiebreakl for all j ∈ Ci .9 If i is the
“leading” of the candidate agents in Ci(tk+1), i.e., if i =
min{Ci(tk+1)}, then agent i “tosses a coin” to break the tie, i.e.,
Ci(tk+2) := reset(ek+1

S) = tb(Ci(tk+1)), where the tie break-
ing function tb(·) is defined in (7). At time t = tk+3 , au-
tomaton S transitions to mode vk+3

S with vk+3
Cj

= Rl for all

j ∈ Ci(tk+1) such that Ia
i (tk+3) := reset(ek+2

S) = {l} if i ∈
Ci(tk+2) and Ia

i (tk+3) := reset(ek+2
S) = Ia

i (tk+2)\It
i (tk+2)

9Note that the set Ci (tk+1) is common for all j ∈ Ci (tk+1) since condition
ε > 2δ guarantees that they are all neighbors of each other.

if i 	∈ Ci(tk+2), where It
i (tk+1) = It

i (tk+2). Hence, the tie is
broken and S also satisfies property (b).

Observe that if at t = tk+1 (or at t = tk+2) there ex-
ists an agent j 	∈ Ci(tk+1) such that xj (tk+1) ∈ Bδ (dl), then
Ci(tk+1) ⊆ N ε

j (tk+1), and so l ∈ (∪i∈N ε
j
(tk + 1) It

i (tk+1)), i.e.,
destination l is considered taken for agent j. In other words, tie
breaking occurs only among the agents in Ci(tk+1).

Case II: Assume that xi(tk) ∈ Bδ (dl) and Ia
i (tk) 	= {l}

for any l ∈ I0 , and that destination l is taken, i.e.,
l ∈ (∪j∈N ε

i
(tk)It

j (tk)). Then, at t = tk+1 , S transitions

to mode vk+1
S with vk+1

Ci
= I . If agent i has already

knowledge of all taken destinations provided by its
neighbors, i.e., if Ia

i (tk+1) ∩ (∪j∈N ε
i
(tk + 1)It

j (tk+1)) = ∅,

then at t = tk+2 , S transitions to mode vk+2
S with

vk+2
Ci

= N and no update is done. Otherwise, if Ia
i (tk+1) ∩

(∪j∈N ε
i
(tk + 1)It

j (tk+1)) 	= ∅, then S transitions to mode

vk+2
S with vk+2

Ci
= U and Ia

i (tk+2) := reset(ek+1
S) =

Ia
i (tk+1)\(∪j∈N ε

i
(tk + 1)It

j (tk+1)) and It
i (tk+2) := reset

(ek+1
S) = It

i (tk+1) ∪ (∪j∈N ε
i
(tk + 1)It

j (tk+1)). So S satisfies
property (c).

Case III: Assume that agent i owns destination l ∈ I0 ,
i.e., that Ia

i (tk) = {l}. Then, by Assumption 4.1 (point 2),
xi(tk) ∈ Bδ (dl), and at t = tk+1 , S transitions to mode vk+1

S

with vk+1
Ci

= Ol . Clearly, It
i (tk+1) := reset(ek

S) = It
i (tk) ∪

(∪j∈N ε
i
(tk)It

j (tk)), and so S satisfies property (c).
Case IV: Assume that agent i is far from any destina-

tion, i.e., that xi(tk) 	∈ ∪l∈I0 Bδ (dl). Then, at t = tk+1 , S
transitions to mode vk+1

S with vk+1
Ci

= I . If agent i has
already knowledge of all taken destinations provided by its
neighbors, i.e., if Ia

i (tk+1) ∩ (∪j∈N ε
i
(tk + 1)It

j (tk+1)) = ∅, then

at t = tk+2 , S transitions to mode vk+2
S with vk+2

Ci
=

N and no update is done. Otherwise, if Ia
i (tk+1) ∩

(∪j∈N ε
i
(tk + 1)It

j (tk+1)) 	= ∅, then S transitions to mode

vk+2
S with vk+2

Ci
= U and Ia

i (tk+2) := reset(ek+1
S) =

Ia
i (tk+1)\(∪j∈N ε

i
(tk + 1)It

j (tk+1)) and It
i (tk+2) := reset

(ek+1
S) = It

i (tk+1) ∪ (∪j∈N ε
i
(tk + 1)It

j (tk+1)). So S satisfies
property (c).

C. Proof of Proposition 5.4

Because of the assumption |Ia
i (t)| > 1 on the system vari-

ables, we restrict our study to those agents i that are in a mode
vNi

> 1. Let tk denote the time instant that the product sys-
tem S takes its kth transition. Clearly, between transitions, the
variables Ia

i (t) are constant, and so it is sufficient to show that
I(t) ⊆ Ia

i (t) for all i with vNi
> 1, at the transition time in-

stants tk . To do so, we use induction on k. Clearly, for k = 0
we have that Ia

i (t0) = I(t0) = I0 for all i, by initialization
of the problem, and so I(t0) ⊆ Ia

i (t0) for all i. Assume that
I(tk) ⊆ Ia

i (tk) for any k > 0 and all i with vk
Ni

> 1, and
consider the transition vk

S → vk+1
S with corresponding control

switch ek
S = (vk

S , vk+1
S). Then, for t = tk+1 , we have the fol-

lowing cases:
Case I: For all agents i such that vk

Ci
= I and vk+1

Ci
= U , the

reset becomes Ia
i (tk+1) := reset(ek

S) = Ia
i (tk)\(∪j∈N ε

i
(tk)

ZAVLANOS AND PAPPAS: DYNAMIC ASSIGNMENT IN DISTRIBUTED MOTION PLANNING WITH LOCAL COORDINATION 241

It
j (tk)). Since vk

Ni
> 1 we have that, Ia

i (tk) ∪ It
i (tk) = I0

and Ia
i (tk) ∩ It

i (tk) = ∅. Hence, by Lemma 2.2(a) in Ap-
pendix II, the induction hypothesis I(tk) ⊆ Ia

i (tk) implies
that It

i (tk) ⊆ I0\I(tk), and so ∪j∈N ε
i
(tk)It

j (tk) ⊆ I0\I(tk) =
I0\I(tk+1), since I(tk) = I(tk+1) if vk

Ci
= I and vk+1

Ci
=

U . By Lemma 2.2(b) in Appendix II, the induction hy-
pothesis, and the fact that I(tk) = I(tk+1) we conclude
that Ia

i (tk)\(∪j∈N ε
i
(tk)It

j (tk)) ⊇ I(tk+1), and so Ia
i (tk+1) ⊇

I(tk+1).
Case II: For all agents i such that vk

Ci
= Al and vk+1

Ci
= Tl ,

for any l ∈ I0 , the reset Ia
i (tk+1) := reset(ek

S) = {l} gives
|Ia

i (tk+1)| = 1.
Case III: For any l ∈ I0 and i ∈ Ci(tk) such that vk

Ci
= Bl

and vk+1
Ci

= Rl , the reset Ia
i (tk+1) := reset(ek

S) = {l} gives
|Ia

i (tk+1)| = 1.
Case IV: For any l ∈ I0 and all i 	∈ Ci(tk) such that vk

Ci
= Bl

and vk+1
Ci

= Rl , the reset becomes Ia
i (tk+1) := reset(ek

S) =
Ia

i (tk)\({l} ∪ (∪j∈N ε
i
(tk)It

j (tk))). Applying Lemma 2.2(a) in
Appendix II, the induction hypothesis implies that It

i (tk) ⊆
I0\I(tk), and so ∪j∈N ε

i
(tk)It

j (tk) ⊆ I0\I(tk). Moreover,

(I0\I(tk)) ∪ {l} = (I0 ∩ Ic(tk)) ∪ {l}
= (I0 ∪ {l}) ∩ (Ic(tk) ∪ {l})
= I0 ∩ (I(tk) ∩ {l}c)c

= I0 ∩ (I(tk)\{l})c

= I0\(I(tk)\{l}) = I0\I(tk+1)

since I(tk)\{l} = I(tk+1) if vk
Ci

= Bl and vk+1
Ci

= Rl , and so

{l} ∪ (∪j∈N ε
i
(tk)It

j (tk)) ⊆ I0\I(tk+1).

By Lemma 2.2(b) in Appendix II, the induction hy-
pothesis, and the fact that I(tk)\{l} = I(tk+1), we con-
clude that Ia

i (tk)\({l} ∪ (∪j∈N ε
i
(tk)It

j (tk))) ⊇ I(tk+1), and
so Ia

i (tk+1) ⊇ I(tk+1).

D. Proof of Proposition 5.5

Let, v

S = (v

N1
, . . . , v

Nn
, vC1 , . . . , vCn

) be such that v

Ni

=
1 for all i. Then, the condition that Ia

i ∩ Ia
j = ∅ for all

j 	= i is guaranteed by Propositions 5.2–5.4. In particular,
Propositions 5.2 and 5.3 imply that only available destinations
can be claimed by any agent with vNi

> 1, and Proposition
5.4 that there always exists an available destination in Ia

i if
vNi

> 1. Hence, a one-to-one correspondence is established
between agents and destinations, which implies that mode v

S

is a reachable mode of the system S. On the other hand, every
transition vS

eS→ v′
S such that sync(eS) = updatei decreases

the value of vNi
, and thus, results in progress toward reaching

mode v

S . Since Ia

i are finite sets, the number of these tran-
sitions can only be finite. To derive an upper bound on these
transitions, we construct a worst case scenario and count the
number of transitions that S takes in that scenario.10

10Without loss of generality, we do not include in the worst case scenario
transitions due to tie breaking, since they correspond to one single successful

Observe first that to maximize the total number of transitions,
we require that Ia

i is always updated such that |Ia
i (tk+1)| :=

|Ia
i (tk)| − 1, since larger updates result in faster progress to-

ward mode v

S . Without loss of generality, we also assume that

the order of transitions is such that the last transition of vNi
in-

dicates the first transition of vNi + 1 . Reordering the transitions,
or relabeling the automata Ni , we can get any desired transi-
tion scheme. With these observations, we construct a worst case
scenario as follows.

Initially, v0
S is such that v0

Ni
= m for all i. Let,

(m, 1)N1 ‖(T1 , N)C1 be the first control switch to be en-
abled. Then, transition v0

S
eS→ v1

S is such that v1
N1

= 1. Let
(m,m − 1)N2 ‖(U,N)C2 be the second control switch to be en-
abled. Then, transition v1

S
eS→ v2

S is such that v2
N2

= m − 1. The
third control switch to be enabled is (m − 1, 1)N2 ‖(T2 , N)C2

and transition v2
S

eS→ v3
S is such that v3

N2
= 1. In the same way

the fourth, fifth, and sixth control switches to be enabled are
(m,m − 1)N3 ‖(U,N)C3 , (m − 1,m − 2)N3 ‖(U,N)C3 , and
(m − 2, 1)N3 ‖(T3 , N)C3 respectively, and after the sixth transi-
tion, v6

N3
= 1. Proceeding in the same way and adding up these

transitions, we get that S transitions n(n + 1)/2 times in total,
which completes the proof.

E. Proof of Theorem 5.2

Observe that we only need to show that there exists a constant
T > 0 such that for all time t > t0 + T , the product system S
is in mode v

S = (v

N1

, . . . , v

Nn

, vC1 , . . . , vCn
) with v

Ni
= 1

since then, Propositions 5.2–5.4 guarantee that v

S is such that

Ia
i (t) ∩ Ia

j (t) = ∅ for all j 	= i. Thus, we only need to show
that there does not exist an agent i such that vNi

> 1 for ever.
In other words, we need to show that transitions vS

eS→ v′
S such

that sync(eS) = updatei will eventually occur until v′
S = v

S .
Then, since by Proposition 5.5, the system S can only take a
finite number of such transitions, we can get T > 0 simply by
adding the time intervals between these transitions.

But, the flow conditions for any mode vS of S are given by
the system of differential equations

ẋi = uv (xi, Ia
i) ∀ v ∈ VNi

and i = 1, . . . , n

which are decoupled and hence, applying Theorem 3.2, we have
that for all i, almost all initial conditions xi(t0), and any δ > 0,
there exist Ti = Ti(δ, t0) > 0 and k ∈ Ia

i (t0) such that xi(t) ∈
Bδ (dk), for all t > t0 + Ti . Let T = mini{Ti}. Then t = t0 +
T denotes the time of the transition vS → v′

S , where v′
S is such

that v′
Nj

= 1 for j = argmini{Ti}. Applying the same argument
inductively until v′

S = v

S completes the proof.

APPENDIX II

Lemma 2.1: The function f(x) = log(‖x − y‖2) with x, y ∈
R

2 is harmonic.
Proof: Let x = [x1 x2]T and y = [y1 y2]T . Then, the

first derivative of f(x) with respect to xi for i = 1, 2

assignment and multiple failed assignments occurring simultaneously, and could
hence be treated separately without affecting the total number of transitions.

242 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 1, FEBRUARY 2008

is (∂/∂xi)f(x) = 2(xi − yi)/‖x − y‖2 , and so the second
derivative becomes,

∂2

∂x2
i

f(x) =
2‖x − y‖2 − 4(xi − yi)2

‖x − y‖4 .

So, the Laplace equation for the function f(x) becomes,

∂2

∂x2
1
f(x) +

∂2

∂x2
2
f(x) = 0

which clearly implies that f(x) is harmonic. �
Lemma 2.2: Let A,B,C, and D be any sets. Then,
a) if A ∪ B = D and A ∩ B = ∅, the inclusion C ⊆ A im-

plies, B ⊆ D\C.
b) if C ⊆ D, the inclusions B ⊆ D\C and C ⊆ A imply that

C ⊆ A\B.
Proof: To prove (a) observe that if x ∈ B then x ∈ A ∪ B and

x 	∈ A. Hence, x ∈ D and x 	∈ C which implies that x ∈ D\C.
To prove (b) observe that if x ∈ C then x ∈ A and x 	∈ D\C.
Hence, x ∈ A and x 	∈ B which implies that x ∈ A\B. �

REFERENCES

[1] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[2] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[3] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 863–
868, May 2007.

[4] J. Cortes, S. Martinez, and F. Bullo, “Robust rendezvous for mobile au-
tonomous agents via proximity graphs in arbitrary dimensions,” IEEE
Trans. Autom. Control, vol. 51, no. 8, pp. 1289–1298, Aug. 2006.

[5] L. Chaimowicz, N. Michael, and V. Kumar, “Controlling swarms of robots
using interpolated implicit functions,” in Proc. IEEE Int. Conf. Robot.
Autom., Barcelona, Spain, Apr. 2005, pp. 2498–2503.

[6] R. Sepulchre, D. Paley, and N. E. Leonard, “Stabilization of planar col-
lective motion: All-to-all communication,” IEEE Trans. Autom. Control,
vol. 52, no. 5, pp. 811–824, May 2007.

[7] G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veerman, “Decen-
tralized control of vehicle formations,” Syst. Control Lett., vol. 54, no. 9,
pp. 899–910, Sep. 2005.

[8] T. Balch and R. C. Arkin, “Behavior-based formation control for multi-
robot teams,” IEEE Trans. Robot. Autom., vol. 14, no. 6, pp. 926–939,
Dec. 1998.

[9] W. Ren and R. Beard, “Consensus seeking in multi-agent systems un-
der dynamically changing interaction topologies,” IEEE Trans. Autom.
Control, vol. 50, no. 5, pp. 655–661, May 2005.

[10] S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile sensor
networks,” in Proc. IEEE Int. Conf. Robot. Autom., New Orleans, LA,
May 2004, pp. 165–172.

[11] J. Lin, A. S. Morse, and B. D. O. Anderson, “The multi-agent rendezvous
problem,” in Proc. 42nd IEEE Conf. Decisi. Control, Maui, HI, Dec. 2003,
pp. 1508–1513.

[12] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Res. Logist., vol. 2, no. 1–2, pp. 83–97, Mar. 1955.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York: W. H. Freeman, 1979.

[14] H. A. Almohamad and S. O. Duffuaa, “A linear programming approach
for the weighted graph matching problem,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 15, no. 5, pp. 522–525, May 1993.

[15] H. Wolkowicz, “Semidefinite programming approaches to the quadratic
assignment problem,” in Nonlinear Assignment Problems: Algorithms and
Applications (Combinatorial Optimization). Norwell, MA: Kluwer,
2000, pp. 143–174.

[16] M. M. Zavlanos and G. J. Pappas, “A dynamical systems approach to
weighted graph matching,” in Proc. 45th IEEE Conf. Decis. Control, San
Diego, CA, Dec. 2006, pp. 3492–3497.

[17] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant
multirobot formations,” IEEE Trans. Robot., vol. 22, no. 4, pp. 650–665,
Aug. 2006.

[18] M. Ji, S. Azuma, and M. Egerstedt, “Role-assignment in multi-agent
coordination,” Int. J. Assist. Robot. Mechatron., vol. 7, no. 1, pp. 32–40,
Mar. 2006.

[19] M. M. Zavlanos and G. J. Pappas, “Sensor-based dynamic assignmnet
in distributed motion planning,” in Proc. IEEE Int. Conf. Robot. Autom.,
Rome, Italy, Apr. 2007, pp. 3333–3338.

[20] M. M. Zavlanos and G. J. Pappas, “Dynamic assignmnet in distributed
motion planning with limited information,” in Proc. Am. Control Conf.,
New York, Jul. 2007, pp. 1173–1178.

[21] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, and M. M.
Zavlanos, “A feedback stabilization and collision avoidance scheme for
multiple independent non-point agents,” Automatica, vol. 42, no. 2,
pp. 229–243, Feb. 2006.

[22] D. E. Koditschek and E. Rimon, “Robot navigation functions on manifolds
with boundary,” Adv. Appl. Math., vol. 11, no. 4, pp. 412–442, Dec. 1990.

[23] J. O. Kim and P. K. Khosla, “Real-time obstacle avoidance using harmonic
potential functions,” IEEE Trans. Robot. Autom., vol. 8, no. 3, pp. 338–
349, Jun. 1992.

[24] T. A. Henzinger, “The theory of hybrid automata,” in Proc. 11th Annu.
IEEE Symp. Logic Comput. Sci., New Brunswick, NJ, Jul. 1996, pp. 278–
292.

[25] N. A. Lynch, R. Segala, and F. W. Vaandrager, “Hybrid I/O automata,”
Inf. Comput., vol. 185, no. 1, pp. 105–157, Aug. 2003.

[26] D. V. Dimarogonas, K. J. Kyriakopoulos, and D. Theodorakatos, “Totally
distributed motion control of sphere world multi-agent systems using de-
centralized navigation functions,” in Proc. IEEE Int. Conf. Robot. Autom.,
Orlando, FL, May 2006, pp. 2430–2435.

Michael M. Zavlanos (S’05) received the Diploma in
mechanical engineering from the National Technical
University of Athens, Athens, Greece, and the M.S.E.
degree in electrical and systems engineering from the
University of Pennsylvania, Philadelphia, in 2002 and
2005, respectively. Currently, he is working toward
the Ph.D. degree in the Department of Electrical and
Systems Engineering, University of Pennsylvania.

His current research interests include distributed
control of multiagent systems and hybrid dynamical
systems with applications to assignment problems in

robotics, topology control of dynamic networks, and formation control.
Mr. Zavlanos was a finalist of the Best Student Paper Award at the 45th IEEE

Conference on Decision and Control, 2006.

George J. Pappas (S’91–M’98–SM’04) received the
Ph.D. degree in electrical engineering and computer
sciences from the University of California, Berkeley,
in 1998.

He is currently a Professor at the Department of
Electrical and Systems Engineering, University of
Pennsylvania, Philadelphia. He also holds secondary
appointments in the Departments of Computer and In-
formation Sciences, and Mechanical Engineering and
Applied Mechanics, and is a member and a former
Director of the General Robotics and Active Sensory

Perception (GRASP) Laboratory. He currently serves as the Deputy Dean in the
School of Engineering and Applied Science. He is the Co-Editor of Hybrid Sys-
tems: Computation and Control (Springer-Verlag, 2004). His current research
interests include the areas of hybrid and embedded systems, hierarchical control
systems, distributed control systems, nonlinear control systems, and geometric
control theory, with applications to robotics, unmanned aerial vehicles, and
biomolecular networks.

Prof. Pappas was the recipient of numerous awards including the National
Science Foundation (NSF) Career Award in 2002, the NSF Presidential Early
Career Award for Scientists and Engineers (PECASE) in 2002, and the Eliahu
Jury Award for Excellence in Systems Research from the Department of Elec-
trical Engineering and Computer Sciences, University of California at Berkeley
in 1999. His and his students’ papers were finalists for the Best Student Paper
Award at the IEEE Conference on Decision and Control in 1998, 2001, 2004,
and 2006, the American Control Conference in 2001 and 2004, and the IEEE
Conference on Robotics and Automation in 2007.

	University of Pennsylvania
	ScholarlyCommons
	February 2008

	Dynamic Assignment in Distributed Motion Planning With Local Coordination
	Michael Zavlanos
	George J. Pappas
	Recommended Citation

	Dynamic Assignment in Distributed Motion Planning With Local Coordination
	Abstract
	Keywords
	Comments

	tmp.1207757546.pdf.IGlAB

