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Convergence of Time-Stepping Method For Initial and Boundary-Value
Frictional Compliant Contact Problems

Abstract
Beginning with a proof of the existence of a discrete-time trajectory, this paper establishes the convergence of
a time-stepping method for solving continuous-time, boundary-value problems for dynamic systems with
frictional contacts characterized by local compliance in the normal and tangential directions. Our
investigation complements the analysis of the initial-value rigid-body model with one frictional contact
encountering inelastic impacts by Stewart [Arch. Ration. Mech. Anal., 145 (1998), pp. 215–260] and the
recent analysis by Anitescu [Optimization-Based Simulation for Nonsmooth Rigid Multibody Dynamics, Argonne
National Laboratory, Argonne, IL, 2004] using the framework of measure differential inclusions. In contrast to
the measure-theoretic approach of these authors, we follow a differential variational approach and address a
broader class of problems with multiple elastic or inelastic impacts. Applicable to both initial and affine
boundary-value problems, our main convergence result pertains to the case where the compliance in the
normal direction is decoupled from the compliance in the tangential directions and where the friction
coefficients are sufficiently small.
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CONVERGENCE OF TIME-STEPPING METHOD
FOR INITIAL AND BOUNDARY-VALUE FRICTIONAL

COMPLIANT CONTACT PROBLEMS∗

JONG-SHI PANG† , VIJAY KUMAR‡ , AND PENG SONG§

Abstract. Beginning with a proof of the existence of a discrete-time trajectory, this paper
establishes the convergence of a time-stepping method for solving continuous-time, boundary-value
problems for dynamic systems with frictional contacts characterized by local compliance in the normal
and tangential directions. Our investigation complements the analysis of the initial-value rigid-body
model with one frictional contact encountering inelastic impacts by Stewart [Arch. Ration. Mech.
Anal., 145 (1998), pp. 215–260] and the recent analysis by Anitescu [Optimization-Based Simulation
for Nonsmooth Rigid Multibody Dynamics, Argonne National Laboratory, Argonne, IL, 2004] using
the framework of measure differential inclusions. In contrast to the measure-theoretic approach of
these authors, we follow a differential variational approach and address a broader class of problems
with multiple elastic or inelastic impacts. Applicable to both initial and affine boundary-value prob-
lems, our main convergence result pertains to the case where the compliance in the normal direction
is decoupled from the compliance in the tangential directions and where the friction coefficients are
sufficiently small.

Key words. time-stepping methods, frictional contact problems, compliance models, differenc-
tial complementarity problems, boundary-value problems
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1. Introduction. This paper investigates the limiting properties of time-stepping
methods for rigid-body dynamics problems with multiple contacts characterized by
friction and local compliance. Comprehensive reviews on rigid-body models and their
applications can be found in the monographs [5, 13] and the excellent survey [20].
The benefits of introducing contact compliance for analysis and numerical simulation
have been discussed in previous work [23]. In particular, a compliant model elimi-
nates the static indeterminacy that is inherent in a rigid body dynamic model with
multiple contacts and the need to make assumptions about linear independence of the
columns of the Jacobian matrix [3, 10, 19]. Most important, even when one makes
the requisite assumptions for uniqueness and existence, it is not possible to analyze
the boundary-value problem in a fully rigid-body model because of the presence of
discontinuities in velocities during impacts.

The present paper is closest in spirit to the work of Stewart [19], who analyzed
the convergence of a time-stepping method [21] for initial-value rigid-body problems
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with frictional contact. Stewart’s analysis is the first of its kind in the rigid-body
dynamics literature. However, his analysis is somewhat limiting in several respects.
In particular, the main result of the paper [19], Theorem 1, pertains essentially to
the case of one inelastic contact. Even for such a simplified case, the analysis relies
on a Radon–Nikodym derivative with several technical restrictions. It is difficult to
fully extend Stewart’s analysis because of the intrinsic analytical difficulties associated
with the rigid-body paradigm. This difficulty is acknowledged in the recent paper by
Anitescu [1], who established the convergence of a sequential quadratic programming
method to a solution of a measure differential inclusion for nonsmooth rigid multibody
dynamics.

Our previous work was concerned with several analytical aspects of dynamic mod-
els with compliant frictional contacts. Comparisons between results obtained with and
without local compliance with a singular perturbation analysis are included in [15].
Uniqueness and existence results for the discrete-time problem are presented in [17]
under a semi-implicit discretization that permits the use of linear complementarity
theory [6]. In this paper, we analyze the convergence of a broad scheme of time-
stepping methods for solving frictional compliant contact problems. In contrast to
[17], the discretization scheme employed here is more general, allowing in particular
for nonlinearities in the state variables, thus going well beyond the previous analysis
of existence and uniqueness that is based on a linear theory. Unlike the analysis in
[19, 1], our main convergence result is not in terms of measure differential inclusions.
Most importantly, our analysis is carried out in a broad setting that includes both
initial-value and boundary-value problems with affine constraints on the initial and
final state (see (13)). It should be noted that although boundary-value problems arise
naturally in the design of mechanical systems governed by dynamics, previous litera-
ture on this subject addresses only initial-value problems and ours is the first attempt
to study contact problems subject to boundary conditions.

This paper addresses neither the numerical implementation nor the order of con-
vergence of the time-stepping methods. For details on practical implementation and
computational results, see [16, 18]; see also [4] for a part-insertion application of a
boundary-value planar rigid-body problem. The order of convergence analysis for
frictional contact problems is a very difficult topic, even for initial-value problems.
The discontinuity of the friction forces as a function of the system states is a main
cause for such difficulty.

The organization of the rest of the paper is as follows. In the next section, we
summarize the formulation of the continuous-time frictional compliant contact prob-
lem and formally define a concept of a weak solution to the problem. A numerical
time-stepping scheme for computing such a solution is described in section 3. The
convergence analysis of the numerical scheme begins in section 4, where we first in-
vestigate in detail the normal and tangential frictional conditions in the discrete-time
subproblems, establishing in particular the existence of a discrete-time trajectory of
the normal and tangential contact forces that are continuous functions of the state. We
also establish the uniqueness of such a trajectory under a “small coefficient of friction”
assumption; see Propositions 6 and 7. With the aid of the machinery of differential
variational inequalities [11], and under the small-friction-coefficient assumption, we
complete the convergence analysis of the time-stepping method for a compliant-body
frictional contact problem in section 5. There, an existence result, Theorem 8, for the
discrete-time boundary-value problem is first proved, which is followed by the main
convergence theorem of the paper, Theorem 9. The small-friction assumption is the
artifact of the nonlinear friction law that is in turn a characteristic of the discretiza-
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tion scheme that we employ. Such a nonlinear analysis is in contrast to previous
analysis by Stewart and Anitescu, which is based on a polygonal approximation of
the quadratic Coulomb cone.

2. Model formulation. The mathematical formulation of the frictional compli-
ant contact problem has several components: (a) equations of motion, (b) compliance
constitutive law, (c) contact and friction, and (d) boundary conditions. In what fol-
lows, we present only the essentials of the formulation and refer the reader to [14, 17]
for the detailed explanation of the overall model.

Equations of motion. The dynamics equation of motion for a multibody system
with frictional contacts can be written as

M(q)ν̇ = f(t, q, ν) + Γ(q)Tλ,(1)

where q is the nq-dimensional vector of generalized coordinates, ν is the nν-dimensional
vector of the system velocities, ν̇ denotes the time derivative of ν (i.e., ν̇ = dν/dt),
M(q) is the nν × nν symmetric positive definite mass-inertia matrix, f(t, q, ν) is the
nν-dimensional external force vector (excluding contact forces),

Γ(q)T ≡
[

Γn(q)T Γt(q)
T Γo(q)

T
]
≡ G(q)T

[
JΨn(q)T JΨt(q)

T JΨo(q)
T
]

is the transpose of the system Jacobian matrix, with Ψn,t,o(q) and JΨn,t,o(q) being
the constraint functions and their Jacobians for all possible contacts in the normal
direction (labeled n) and the two tangential directions (labeled t and o), respectively,
and λ ≡ (λn, λt, λo) = λn,t,o is the vector of contact forces in these directions. For
compliant contact models, the dimensions of the contact forces and, accordingly, the
orders of the associated Jacobian matrices, are related to the compliance constitu-
tive model being used. The matrix G(q) is a nq × nν parametrization matrix that
allows us to use different parameterizations for the motion group via the the following
kinematics equation:

q̇ = G(q)ν,(2)

where q̇ ≡ dq/dt is the time-derivative of the system configuration. Together, (1)
and (2) constitute the equations of motion governing the dynamics of the mechanical
system.

Letting T > 0 be the terminal time of the problem, we postulate the following
assumptions (A)–(C) on the above model functions. Notice that no rank assumption
is imposed on Γ(q); this is a distinct advantage of a compliant model in that the
number of contact points need not be restricted by the degrees of freedom of the
bodies in contact.
(A) The function f(t, q, ν) is Lipschitz continuous on [0, T ] × �nq+nν with constant
L

f
> 0; thus,

‖f(t, q, ν) − f(t ′, q ′, ν ′)‖ ≤ L
f
[|t− t ′| + ‖q − q ′‖ + ‖ν − ν ′‖]

∀ (t, q, ν), (t ′, q ′, ν ′) ∈ [0, T ] ×�nq+nν .

(B) The functions G(q) and Γ(q) are Lipschitz continuous and bounded on �nq ; thus
there exist positive constants L

G
, L

W
, η

G
, and η

W
such that for all q and q ′ in �nq ,

‖G(q) −G(q ′) ‖ ≤ L
G
‖ q − q ′ ‖, ‖Γ(q) − Γ(q ′) ‖ ≤ L

W
‖ q − q ′ ‖,

sup
q∈�nq

‖G(q) ‖ ≤ η
G
, sup

q∈�nq

‖Γ(q) ‖ ≤ η
W

;
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moreover, the function Ψn(q) satisfies the limit condition

lim
‖q−q ′‖→0

‖Ψn(q) − Ψn(q ′) − JΨn(q ′)(q − q ′) ‖
‖ q − q ′ ‖ = 0,(3)

or, equivalently, for every scalar ε > 0, a scalar ς > 0 exists such that

‖ q − q ′ ‖ ≤ ς ⇒ ‖Ψn(q) − Ψn(q ′) − JΨn(q ′)(q − q ′) ‖ ≤ ε ‖ q − q ′ ‖.(4)

(C) The mass-inertia matrix M(q) is Lipschitz continuous on �nq with Lipschitz
constant L

M
> 0; moreover, positive constants σ

M
and σ ′

M
exist such that

inf
q∈�nq

min
‖ν‖=1

νTM(q)ν ≥ σ
M

and sup
q∈�nq

max
‖ν‖=1

νTM(q)ν ≤ 1/σ ′
M
.

Condition (3) is clearly satisfied if JΨn(q) is Lipschitz continuous. Unlike the treat-
ment in [1], Ψn(q) is not assumed to be twice differentiable. (The squared distance
function to a closed convex set—the obstacle set—is an example of a (scalar) function
that is continuously differentiable with a Lipschitz gradient but is not twice differ-
entiable.) Conditions (A), (B), and (C) have several immediate consequences, which
will be used freely throughout the paper where appropriate.

A constitutive model for compliance. While there are many compliance
models, we employ the distributed model described in [14, 17], to which we refer the
reader for details and references. Specifically, this model postulates that the contact
forces are linearly dependent on the body deformations and on the deformation rates:

λ = K(q)δ + C(q)δ̇(5)

where δ ≡ (δn, δt, δo) = δn,t,o is the vector of body deformations in the normal (n)

and the two tangential directions (t and o), δ̇ denotes the vector of velocities of the
deformations (i.e., δ̇ = dδ/dt); the stiffness matrix K(q) and the damping matrix
C(q), which are partitioned as

K(q) ≡

⎡⎢⎢⎣
Knn(q) Knt(q) Kno(q)

Ktn(q) Ktt(q) Kto(q)

Kon(q) Kot(q) Koo(q)

⎤⎥⎥⎦ and C(q) ≡

⎡⎢⎢⎣
Cnn(q) Cnt(q) Cno(q)

Ctn(q) Ctt(q) Cto(q)

Con(q) Cot(q) Coo(q)

⎤⎥⎥⎦ ,
are each of order 3n2

snc, with n2
s being the number of elements with lumped stiffness

and damping properties that comprise a contact patch; each of the 18 block matrices
(such as Knt(q), etc.) in K(q) and C(q) is an n2

snc block diagonal matrix with nc

diagonal blocks, one for each contact patch, and each such diagonal block is in turn
a square matrix of order n2

s. With nδ ≡ n2
snc, it follows that the vectors λn, λt, λo,

δn, δt, and δo are each of dimension nδ. We postulate the following condition:
(D) K(q) and C(q) are Lipschitz continuous symmetric positive definite matrix-valued
functions of q; moreover, positive constants η

K
> 0, σ

KC
and η

KC
exist such that

sup
q∈�nq

‖K(q)‖ ≤ η
K

, and, for all scalars h > 0 sufficiently small,

inf
q∈�nq

min
‖δ‖=1

δ T [hK(q) + C(q) ]−1δ ≥ σ
KC

and sup
q∈�nq

∥∥∥ [hK(q) + C(q) ]
−1
∥∥∥ ≤ η

KC
.

Notice that the above implies sup
q∈�nq

‖C(q)‖ ≤ 1/σ
KC

.
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Contact and friction. Stated as a complementarity condition, the normal con-
tact condition is

0 ≤ λn ⊥ Ψn(q) + δn ≥ 0,(6)

where the notation u ⊥ v means that the two vectors u and v are perpendicular. The
tangential friction condition is expressed by a minimization principle over the cone of
frictional forces: for each i = 1, . . . , nδ,

(λit, λio ) ∈ argmin
{
sitλ̃it + sioλ̃io : ( λ̃it, λ̃io ) ∈ F(μi λin)

}
,(7)

where

sit ≡ d(δit + Ψit(q))

dt
= δ̇it + ∇Ψit(q)

T q̇,

sio ≡ d(δio + Ψio(q))

dt
= δ̇io + ∇Ψio(q)q̇

(8)

are the tangential slip velocities at contact patch i, which depend on both the defor-
mations of the compliant elements and the rigid body motions, and where μi ≥ 0 is
the friction coefficient and

F(τ) ≡ { ( a, b ) ∈ �2 :
√
a2 + b2 ≤ τ }, τ ≥ 0,

is the standard Coulomb friction cone. From (7), it follows that

sitλit + sioλio = −μi λin

√
s2
it + s2

io.(9)

Moreover, provided that μiλin > 0, we have, with ri ≡
√
s2
it + s2

io,

sit +
ri λit√
λ2
it + λ2

io

= 0, so +
ri λio√
λ2
it + λ2

io

= 0,

0 ≤ ri ⊥ μi λin −
√
λ2
it + λ2

io ≥ 0,

where we define 0/0 to be 1. If we use polar coordinates to represent the pair (sit, sio),
say,

sit = ri cosψi and sio = ri sinψi,

then there exists a scalar φi ∈ [−1, 1] satisfying ri > 0 ⇒ φi = 1 such that

λit = −μi λin φi cosψi and λio = −μi λin φi sinψi.

The latter representation of (λit, λio) remains valid when μiλin = 0, by letting φi = 0.

More on the compliance model. The constitutive law (5) can be used to
eliminate the slip velocities (sit, sio) in the friction law (7), resulting in an expression
of the latter in terms of the state variables (q, ν, δn,t,o) and the normal force λn.
This reformulation of the friction law is significant because the slip velocities may
behave discontinuously and lead to technical difficulties in the convergence analysis
of a numerical method. From (5), we have δ̇ = C(q)−1(λ − K(q)δ). Writing

C(q)−1 ≡

⎡⎢⎢⎢⎣
Ĉnn(q) Ĉnt(q) Ĉno(q)

Ĉtn(q) Ĉtt(q) Ĉto(q)

Ĉon(q) Ĉot(q) Ĉoo(q)

⎤⎥⎥⎥⎦ ,
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we obtain (
δ̇it

δ̇io

)
=

⎡⎣ Ĉitn(q) Ĉitt(q) Ĉito(q)

Ĉion(q) Ĉiot(q) Ĉioo(q)

⎤⎦ ( λ − K(q)δ ),

where Ĉitn(q) denotes the ith row of the (sub)matrix Ĉtn(q), and similarly for the
other notation. Clearly, the friction condition (7) at contact i is equivalent to: for all

(λ̃it, λ̃io) ∈ F(μiλin),

0 ≤
(

λ̃it − λit

λ̃io − λio

)T (
sit

sio

)
=

(
λ̃it − λit

λ̃io − λio

)T [(
δ̇it

δ̇io

)
+

(
Γit(q)

Γio(q)

)
ν

]

=

(
λ̃it − λit

λ̃io − λio

)T
⎧⎨⎩
⎡⎣ Ĉitn(q) Ĉitt(q) Ĉito(q)

Ĉion(q) Ĉiot(q) Ĉioo(q)

⎤⎦ ( λ − K(q)δ ) +

(
Γit(q)

Γio(q)

)
ν

⎫⎬⎭ .

(10)

Proposition 1 shows that under the constitutive compliance law (5), the tangential
friction forces in a frictional compliant model can be characterized by the solution to
a convex quadratic program.

Proposition 1. Given q, ν, λn, and δ, under (5), the tangential forces (λt, λo)
satisfy the minimum principle (7) if and only if (λt, λo) is the optimal solution, which
must necessarily be unique, of the convex quadratic program:

(11)

minimize
1

2

(
λ̃t

λ̃o

)⎡⎣Ĉtt(q) Ĉto(q)

Ĉot(q) Ĉoo(q)

⎤⎦(λ̃t

λ̃o

)

+

(
λ̃t

λ̃o

)T
⎧⎨⎩
⎡⎣Ĉtn(q)

Ĉon(q)

⎤⎦λn +

[
Γt(q)

Γo(q)

]
ν −

⎡⎣Ĉtn(q) Ĉtt(q) Ĉto(q)

Ĉon(q) Ĉot(q) Ĉoo(q)

⎤⎦K(q)δ

⎫⎬⎭
subject to ( λ̃t, λ̃o ) ∈

nδ∏
i=1

F(μi λin) .

Proof. It suffices to note that the first-order optimality conditions of (11) are
equivalent to the variational conditions (10).

Boundary conditions. To complete the description of the model, we postulate
a set of boundary conditions that connect the state variable x ≡ (q, ν, δ) ∈ �n, where
n ≡ nq+nν+3nδ, at the initial and terminal times: t = 0 and t = T , respectively. The
most general such conditions would be expressed by a nonlinear functional relation of
the form F (x(0),x(T )) = 0. Nevertheless, such generality would make the analysis
extremely difficult, if not impossible. In general, the boundary conditions should be
consistent with the constraints; such consistency would require the initial pair (q0, δ0

n)
to satisfy the feasibility condition:

Ψn(q0) + δ0
n ≥ 0.(12)
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Therefore, to both accommodate realistic applications and facilitate the mathematical
analysis, we consider a class of boundary conditions where the initial configuration
q(0) = q0 and deformation δ(0) = δ0 are known and satisfy (12); but the initial
velocity ν(0) and terminal state x(T ) are subject to a system of linear equations,

b = Mνν(0) + Nx(T ),(13)

for some given vector b ∈ �nν and matrices Mν ∈ �nν×nν and N ∈ �nν×n. When
Mν is the identity matrix and N is the zero matrix, we recover an initial-value problem
with a known initial state x(0).

Weak solutions. The frictional compliant contact problem under study is to
find a state trajectory x : [0, T ] → �n and a force trajectory λ : [0, T ] → �3nδ such
that q(0) = q0, δ(0) = δ0, and the conditions (1), (2)–(8), (12), and (13) are satisfied.
Ideally, we want these conditions to be satisfied at all times t ∈ [0, T ], but due to
the possible discontinuity of the force trajectory λ, this ideal goal is generally not
attainable, especially when it pertains to the numerical solutions obtained by a time-
stepping scheme, such as the one described in the next section; see [19, 20]. Therefore,
we have to settle for a kind of weak solution that satisfies the dynamics equations and
the contact and friction conditions in a weak sense. This is an inherent limitation
of the model, particularly (5). It may be possible to get a strong solution by using
a more sophisticated, nonlinear constitutive model. (See [15] for an example of such
a model.) However, we refrain from pursuing such an extended consideration and
restrict ourselves to the law (5), whose analysis is already fairly involved.

Definition 2. The pair of trajectories x : [0, T ] → �n and λ : [0, T ] → �3nδ is
said to be a weak solution of the frictional compliant contact problem if

(a) (the state equations) x(t) is absolutely continuous on [0, T ] and satisfy for all
τ ≤ τ ′ in [0, T ],

ν(τ ′) − ν(τ) =

∫ τ ′

τ

M(q(t))−1[ f(t, q(t), ν(t)) + Γ(q(t))Tλ(t) ] dt,

q(τ ′) − q(τ) =

∫ τ ′

τ

G(q(t))ν(t) dt,

δ(τ ′) − δ(τ) =

∫ τ ′

τ

C(q(t))−1[ λ(t) − K(q(t))δ(t) ] dt;

(b) (the normal contact condition) Ψn(q(t))+δn(t) ≥ 0 for all t ∈ [0, T ], λn(t) ≥ 0
for almost all t ∈ [0, T ], and∫ T

0

λn(t)T [ Ψn(q(t)) + δn(t) ] dt = 0;

(c) (the friction condition) for every i = 1, . . . , nδ, (λit(t), λio(t)) ∈ F(μiλin(t))

for almost all t ∈ [0, T ] and for every continuous function (λ̃t, λ̃o) : [0, T ] → �2nδ

such that for every i = 1, . . . , nδ, (λ̃it(t), λ̃io(t)) belongs to F(μiλin(t)) for almost all
t ∈ [0, T ], it holds that∫ T

0

(
λ̃t(t) − λt(t)

λ̃o(t) − λo(t)

)T
⎧⎨⎩
⎡⎣ Ĉtt(q(t)) Ĉto(q(t))

Ĉot(q(t)) Ĉoo(q(t))

⎤⎦[( λt(t)

λo(t)

)

−
[

Ktt(q(t)) Kto(q(t))

Kot(q(t)) Koo(q(t))

](
δt(t)

δo(t)

)]
+

(
Γt(q(t))

Γo(q(t))

)
ν(t)

}
dt ≥ 0,
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(d) (initial and boundary conditions) q(0) = q0, δ(0) = δ0, and (13) hold.
We make a couple remarks about the above definition. First, the slip velocities

do not enter in the above definition; second, the tangential friction condition is stip-
ulated to hold in an integral form that is an aggregation over all contacts. This is in
contrast to requiring the condition to hold at every contact. In the special case where
compliance is decoupled among the contacts, then the aggregated condition indeed
decouples into separate conditions at each individual contact.

3. A time-stepping scheme. The kind of “semi-implicit” discretization meth-
ods described herein for computing a weak solution to the frictional compliant contact
problems has been used extensively for solving initial-value rigid-body problems and,
to a lesser extent, for compliant-body problems; see, e.g., [2, 3, 11, 21, 17, 18, 19].
Specifically, we divide the time interval [0, T ] into Nh + 1 subintervals each of equal
length h > 0; thus (Nh + 1)h = T . The variables of the discrete-time system are

{ qh,0, qh,1, . . . , qh,Nh+1 }, { νh,0, νh,1, . . . , νh,Nh+1 }, { δh,0n,t,o, δ
h,1
n,t,o, . . . , δ

h,Nh+1
n,t,o },

{λh,1
n,t,o, λ

h,2
n,t,o, . . . , λ

h,Nh+1
n,t,o }, and { sh,1t,o , . . . , s

h,Nh+1
t,o }.(14)

We write xh,j ≡ (qh,j , νh,j , δh,j), δh,j ≡ δh,jn,t,o, and λh,j ≡ λh,j
n,t,o. To derive the

discrete-time system, we replace the time derivatives of the state variable x ≡ (q, ν, δ)
by standard finite-difference quotients such as:

ẋ(t) ≈ x(t + h) − x(t)

h
.

The right-hand expressions in the equation of motion (1) and in the kinematic equa-
tion (2) are approximated by a semi-implicit scheme that employs a θ-rule, whereby
the differential variables q and ν are evaluated at some intermediate values in the
respective subintervals determined by the scalar θ ∈ [0, 1]. Specifically, with

qh,θj ≡ θ qh,j + ( 1 − θ ) qh,j+1 and νh,θj ≡ θ νh,j + ( 1 − θ ) νh,j+1,

the discrete-time dynamics and kinematics equations at time th,j+1 are

M(qh,j)( νh,j+1 − νh,j ) = h [ f(th,j+1, q
h,θj , νh,θj ) + Γ(qh,j)Tλh,j+1],

qh,j+1 − qh,j = hG(qh,j)νh,θj .
(15)

(More generally, we could use different θ-values in these two equations. For simplicity,
we avoid this minor variation and use (15).) Since st,o = δ̇t,o + JΨt,o(q)q̇ by (8), we
employ the following discrete-time approximation for the vector of tangential slip
velocities st,o:

sh,j+1
t,o =

δh,j+1
t,o − δh,jt,o

h
+ JΨt,o(q

h,j)
qh,j+1 − qh,j

h
=

δh,j+1
t,o − δh,jt,o

h
+ Γt,o(q

h,j)νh,θj ,

where we have used the discrete-time kinematics equation qh,j+1−qh,j = hG(qh,j)νh,θj

and the definition of Γt,o(q
h,j) ≡ JΨt,o(q

h,j)G(qh,j) to obtain the second equality.
In deriving the discrete-time normal contact condition, we employ the first-order
approximation

Ψn(q(t + h)) ≈ Ψn(q(t)) + hJΨn(q(t)) q̇(t),
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which holds for all h > 0 sufficiently small, and approximate q̇(t) similarly.
Putting together all the above approximations, we arrive at the following discrete-

time frictional compliant contact problem: given (q0, δ0) satisfying (12), compute (14)
such that the conditions below are satisfied for all j = 0, 1, . . . , Nh,

M(qh,j)( νh,j+1 − νh,j ) = h [ f(th,j+1, q
h,θj , νh,θj ) + Γ(qh,j)Tλh,j+1],

qh,j+1 − qh,j = hG(qh,j)νh,θj ,

δh,j+1
t − δh,jt = h [sh,j+1

t − Γt(q
h,j)νh,θj ],

δh,j+1
o − δh,jo = h [sh,j+1

o − Γo(q
h,j)νh,θj ],

0 ≤ λh,j+1
n ⊥ Ψn(qh,j) + hΓn(qh,j)νh,θj + δh,j+1

n ≥ 0,

λh,j+1 = K(qh,j)δh,j+1 +
C(qh,j)

h
( δh,j+1 − δh,j ),(

λh,j+1
it

λh,j+1
io

)
∈ arg min

(λ̃it,λ̃io)∈F(μi λ
h,j+1
in )

⎧⎨⎩
(

sh,j+1
it

sh,j+1
io

)T (
λ̃it

λ̃io

)⎫⎬⎭ ,

b = Mνν
h,0 + Nxh,Nh+1, and ( qh,0, δh,0 ) = ( q0, δ0 ).

(16)

The inclusion of the parameter θ in selected terms raises the question of why it
is not used consistently throughout the constraints. An answer to this question can
be traced to the paper [21], where the intention was to use a linear complementarity
solver to solve the subproblems. As seen from the subsequent paper [19], excluding θ
from the matrices M(qh,j), Γ(qh,j), and G(qh,j) simplifies the analysis significantly.
The Ph.D. thesis [24] contains an analysis of a fully implicit time-stepping method
for an initial-value rigid-body model, which leads to subproblems that are nonlinear
complementarity problems. A computational comparison between a fully implicit
scheme versus a semi-implicit scheme can be found in [25]. Presumably, the use of
the parameter θ is to induce a higher order of convergence; yet such a goal is hard
to substantiate formally. The analysis below does not address this issue of order of
convergence.

Beginning in the next section, we will analyze two fundamental issues associated
with the above discrete-time system: (a) the existence of a solution to each discrete-
time boundary-value subproblem, and (b) the convergence of such a discrete-time tra-
jectory to a weak solution of the frictional compliant contact problem. Part of the chal-
lenge in the convergence analysis lies in the coupled nature of the individual time-step
subproblems, which are linked by the boundary equation b = Mνν

h,0 + Nxh,Nh+1.
Briefly, the analysis consists of two major tasks. First, we show that for an arbitrary
triple xh,j , a unique friction triple λh,j+1 exists that has some desirable continuity
and boundedness properties, provided that the friction coefficients μi are sufficiently
small. These properties of the friction forces allow us to apply an argument used in
[11] for a class of boundary-value differential variational inequalities to complete the
convergence analysis of the discrete-time trajectory as the time step tends to zero.

Naturally, there is an important computational issue associated with the above
numerical scheme; namely, how can the discrete-time system (16) be efficiently solved
in practice? The proof of Theorem 8 suggests a fixed-point method. Yet, specialized
complementarity methods [8] may prove to be more effective. Nevertheless, there is
presently no formal study on the applicability of the latter methods. The numerical
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experiments in [17] employed the complementarity solver path [7], which produced
satisfactory results. Despite such practical experience, which is somewhat limited,
there is an urgent need for the development of some robust algorithms for solving
(16) along with a rigorous proof of applicability.

4. Preliminary analysis: Initial-value problems. The analysis in this sec-
tion is best considered as one for an initial-value problem, where νh,0, in addition
to (qh,0, δh,0), is assumed to be fixed but arbitrary. (This is the case where Mν is
the identity matrix and N is the zero matrix.) This analysis will be the basis for
extension to the boundary-value problem where νh,0 has to be determined to satisfy
the boundary equation defined by a more general pair of boundary matrices (Mν ,N).
As the first step in the convergence analysis, we show that the discrete-time dy-
namics and kinematics equations (15) have a unique solution (qh,j+1, νh,j+1) for any
(qh,j , νh,j) and λh,j+1; moreover, such a solution, for fixed (qh,j , νh,j), has several
desirable properties in λh,j+1.

Proposition 3. Under conditions (A)–(C), for any θ ∈ [0, 1], positive constants
h0, ηq , Lq, and σ

ν
exist such that for every tuple y ≡ (t, qref , νref) ∈ [0, T ]×�nq+nν and

every h in (0, h0], a bounded continuous function (qh(·; y), νh(·; y)) : �nν → �nq+nν

exists satisfying the following properties:
(a) for every vector e ∈ �nν , (qh(e; y), νh(e; y)) is the unique pair (qh, νh) satis-

fying

M(qref)(νh − νref) = h[f(t, qref + (1 − θ)(qh − qref), νref + (1 − θ)(νh − νref)) + e],

qh − qref = hG(qref)[ νref + ( 1 − θ ) ( νh − νref ) ];

moreover,

‖ qh − qref ‖ + ‖ νh − νref ‖ ≤ h ηq

[
1 + ‖ qref ‖ + ‖ νref ‖ + ‖ e ‖

]
;

(b) (qh(·; y), νh(·; y)) is Lipschitz continuous with constant hLq; thus

‖ qh(e1; y) − qh(e2; y) ‖ + ‖ νh(e1; y) − νh(e2; y) ‖ ≤ hLq ‖ e1 − e2 ‖ ∀ e1, e2 ∈ �nν ;

(c) the function νh(·; y) : �nν → �nν is strongly monotone with constant hσ
ν
;

thus,

( νh(e1; y) − νh(e2; y) )T ( e1 − e2 ) ≥ hσν ‖ e1 − e2 ‖2 ∀ e1, e2 ∈ �nν .

Proof. For a given vector e ∈ �nν , it is easily seen that the map(
ν

q

)
�→
(
νref +hM(qref)−1 [f(t, qref +(1−θ)(q−qref), νref + (1−θ)(ν−νref)) + e]

qref + hG(qref)[νref +(1−θ)(ν−νref)]

)
is a contraction with a modulus that can be made as small as we want by choosing
h > 0 sufficiently small. Moreover, the constant h0 depends only on the constants
Lf , θ, η

G
, and σ

M
. Therefore, the above map has a unique fixed point, which yields

the existence and uniqueness of the pair (qh(e; y), νh(e; y)). The proof of the bound
on ‖qh − qref‖ + ‖ νh − νref‖ is similar to that of (b); for this reason, we prove only
the latter. For any two vectors e1 and e2, we have

‖ νh(e1; y) − νh(e2; y) ‖

≤ h

σ
M

[Lf ( 1 − θ ) ( ‖qh(e1; y) − qh(e2; y)‖ + ‖νh(e1; y) − νh(e2; y)‖ ) + ‖e1 − e2‖ ]

≤ h

σ
M

[Lf ( 1 − θ ) ( 1 + h ( 1 − θ ) η
G

) ‖ νh(e1; y) − νh(e2; y) ‖ ) + ‖e1 − e2‖ ],
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which implies

‖ νh(e1; y) − νh(e2; y) ‖ ≤
hσ−1

M
‖ e1 − e2 ‖

1 − hσ−1
M

[Lf ( 1 − θ ) ( 1 + h ( 1 − θ ) η
G

) ]
.

Hence,

‖ qh(e1; y) − qh(e2; y) ‖ ≤
h2 ( 1 − θ ) η

G
σ−1

M
‖ e1 − e2 ‖

1 − hσ−1
M

[Lf ( 1 − θ ) ( 1 + h ( 1 − θ ) η
G

) ]
,

establishing the desired Lipschitz continuity of (qh(·; y), νh(·; y)). To prove (c), note
that

σ
M
‖ νh(e1; y) − νh(e2; y) ‖2 ≤ h ( νh(e1; y) − νh(e2; y) )T ( e1 − e2 )

+hLf (1 − θ) ‖νh(e1; y) − νh(e2; y)‖(‖qh(e1; y) − qh(e2; y)‖ + ‖νh(e1; y) − νh(e2; y)‖),

which yields

( νh(e1; y) − νh(e2; y) )T ( e1 − e2 )

≥ [σ
M

− hLf ( 1 − θ ) ( 1 + h ( 1 − θ ) η
G

) ]

h
‖ νh(e1; y) − νh(e2; y) ‖2.

Furthermore,

h ‖ e1 − e2 ‖ ≤ η
M
‖ νh(e1; y) − νh(e2; y) ‖

+hLf ( 1 − θ ) (‖qh(e1; y) − qh(e2; y)‖ + ‖νh(e1; y) − νh(e2; y)‖)
≤ [ η

M
+ hLf ( 1 − θ ) ( 1 + h ( 1 − θ ) η

G
) ] ‖ νh(e1; y) − νh(e2; y)‖,

which implies

‖ νh(e1; y) − νh(e2; y)‖ ≥ h ‖ e1 − e2 ‖
η
M

+ hLf ( 1 − θ ) ( 1 + h ( 1 − θ ) η
G

)
.

Consequently,

(νh(e1; y) − νh(e2; y))T (e1 − e2) ≥ h [σ
M

− hLf (1 − θ) (1 + h(1 − θ)η
G
) ] ‖e1 − e2‖2

η
M

+ hLf (1 − θ) (1 + h(1 − θ)η
G
)

,

which establishes the desired strong monotonicity of νh(·; y).
From the discrete-time compliance equation

λh,j+1 = K(qh,j)δh,j+1 +
C(qh,j)

h
( δh,j+1 − δh,j ),

we deduce

δh,j+1 − δh,j = h [hK(qh,j) + C(qh,j) ]−1 [ λh,j+1 − K(qh,j)δh,j ].(17)

Considering the expression in the normal direction,

Ψn(qh,j) + hΓn(qh,j)νh,θj + δh,j+1
n = Ψn(qh,j) + hΓn(qh,j)νh,θj + δh,jn + δh,j+1

n − δh,jn ,
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we define the discrete-time normal slip velocity,

sh,j+1
n ≡ δh,j+1

n − δh,jn

h
+ Γn(qh,j) νh,θj ,

which is consistent with the corresponding expressions for the discrete-time tangential
velocities sh,j+1

t,o . Writing s ≡ sn,t,o, we have

sh,j+1 =
δh,j+1 − δh,j

h
+ Γ(qh,j) [ θ νh,j + ( 1 − θ ) νh,j+1 ]

= [hK(qh,j) + C(qh,j) ]−1[ λh,j+1 − K(qh,j)δh,j ]

+ Γ(qh,j)νh,j + (1 − θ)Γ(qh,j)(νh,j+1 − νh,j).

In view of the latter expression, we define, for fixed yref = (t, qref , νref , δref), the
following function in λ:

s(λ;yref) ≡ [hK(qref) + C(qref) ]−1[λ − K(qref)δref ] + Γ(qref)νref

+ ( 1 − θ )Γ(qref) [ νh,ref(Γ(qref)Tλ) − νref ],

where νh,ref(r) ≡ νh(r; (t, qref , νref)). Since νh,ref is strongly monotone (albeit nonlin-
ear), it follows that the map λ �→ Γ(qref) νh,ref(Γ(qref)Tλ) is monotone. Consequently,
by assumption (D), we deduce

( λ − λ ′ )T ( s(λ;yref) − s(λ ′;yref) ) ≥ σ
KC

‖λ − λ ′ ‖2, ∀λ,λ ′ ∈ �3nδ ;

that is, the function s(·;yref) is strongly monotone with a modulus that is indepen-
dent of yref . Moreover, s(·;yref) is Lipschitz continuous with a modulus that is also
independent of yref ; indeed, by assumption (D) and part (b) of Proposition 3, we have

‖ s(λ;yref) − s(λ ′;yref) ‖ ≤ [ η
KC

+ hLq ( 1 − θ ) η2
W

] ‖λ − λ ′ ‖ ∀λ,λ ′ ∈ �3nδ .

Furthermore,

s(0;yref) = −[hK(qref) + C(qref) ]−1K(qref)δref + θΓ(qref)νref + (1 − θ)Γ(qref) νh,ref(0).

From part (a) of Proposition 3, we obtain

‖ νh,ref(0) ‖ ≤ ‖ νref ‖ + h ηq [ 1 + ‖ qref ‖ + ‖ νref ‖ ].

Consequently, we deduce that a constant cs > 0 exists such that

‖ s(0;yref) ‖ ≤ cs [ 1 + ‖ qref ‖ + ‖ νref ‖ + ‖ δref ‖ ] ∀yref ≡ ( t, qref , νref , δref ).

(18)

This inequality will be used later; see Lemma 4. It is important to remark that the
above constant cs and the strong modulus and the Lipschitz constant of the function
s(·;yref) are all independent of yref and of h > 0, provided that the latter is sufficiently
small.

In terms of the function s(·;yh,j), where yh,j ≡ (th,j+1,x
h,j), the discrete fric-

tional compliant contact problem at time step th,j+1, without the boundary con-
dition, can be stated simply as the quasi-variational inequality of finding a triple
λ ≡ λn,t,o ∈ �3nδ such that

0 ≤ λn ⊥ Ψn(qh,j) + δh,jn

h
+ sn(λ;yh,j) ≥ 0
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and for all i = 1, . . . , nδ,

(λit, λio ) ∈ argmin
{
sit(λ;yh,j)λ̃it + sio(λ;yh,j)λ̃io : ( λ̃it, λ̃io ) ∈ F(μi λin)

}
.

We state and prove a lemma pertaining to the above contact and friction condi-
tions. This lemma is the key to the entire convergence analysis of the time-stepping
method.

Lemma 4. Let s(λ;y) be a continuous function that is Lipschitz continuous and
strongly monotone in λ ∈ �3nδ uniformly in y ∈ �m; i.e., positive constants ηs and
σs exist such that for all λ and λ ′ and y,

(λ − λ′)T ( s(λ;y) − s(λ′;y) ) ≥ σs ‖λ − λ′‖2 and ‖s(λ;y) − s(λ′;y)‖ ≤ ηs ‖λ − λ′‖.

Suppose further that a constant cs > 0 exists such that ‖s(0;y)‖ ≤ cs‖y‖ for all
y ∈ �m. There exists a positive scalar μ̄ > 0 such that for every vector μ > 0
satisfying max1≤i≤nδ

μi ≤ μ̄, a continuous function λμ : �m → �3nδ exists such that
for every parameter y, λμ(y) is the unique triple λn,t,o satisfying

0 ≤ λn ⊥ sn(λn,t,o;y) ≥ 0,

and, for every i = 1, . . . , nδ,(
λit

λio

)
∈ arg min

(λ̃it,λ̃io)∈F(μi λ in)

⎧⎨⎩
(

λ̃it

λ̃io

)T (
sit(λn,t,o;y)

sio(λn,t,o;y)

)⎫⎬⎭ .

Proof. There are several things to be proved: the existence of the scalar μ̄ and the
existence, uniqueness, and continuity of λμ

n,t,o(y) for all μ > 0 as specified. Indeed,
the existence of a triple λ satisfying the above friction conditions for every μ > 0 is
proved by invoking a general result from the theory of quasi-variational inequalities [8,
Corollary 2.8.4], as done in several previous references, such as [12]. In what follows,
we show the uniqueness of such a solution for all μ > 0 sufficiently small.

Suppose that λ1
n,t,o and λ2

n,t,o are two solutions corresponding to a given y. Write,

for j = 1, 2, sjn,t,o ≡ sn,t,o(λ
j
n,t,o;y). We may write, for every i,

sjit ≡ rji cosψj
i and sjio ≡ rji sinψj

i ,

where rji ≡
√

(sjit)
2 + (sjio)

2. It then follows that φj
i ∈ [−1, 1] exist satisfying

rji > 0 ⇒ φj
i = 1(19)

(φj
i is not necessarily equal to 1 when rji = 0) and

λj
it = −μi λ

j
in φ

j
i cosψj

i and λj
io = −μi λ

j
in φ

j
i sinψj

i .

We have

λ1
it − λ2

it = −μi λ
1
in φ

1
i cosψ1

i + μi λ
2
in φ

2
i cosψ2

i

= −(μi φ
1
i cosψ1

i ) (λ1
in − λ2

in ) + μi λ
2
in (φ2

i cosψ2
i − φ1

i cosψ1
i ).
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Similarly,

λ1
io − λ2

io = −(μi φ
1
i sinψ1

i ) (λ1
in − λ2

in ) + μi λ
2
in (φ2

i sinψ2
i − φ1

i sinψ1
i ).

Therefore, letting Dt and Do be the diagonal matrices whose diagonal entries are
−μiφ

1
i cosψ1

i and −μiφ
1
i sinψ1

i , respectively, we can write

λ1
t − λ2

t = Dt(λ
1
n − λ2

n ) + μλ2
n (φ2 cosψ2 − φ1 cosψ1 ),

λ1
o − λ2

o = Do(λ
1
n − λ2

n ) + μλ2
n (φ2 sinψ2 − φ1 sinψ1 ),

where the notation in the second terms in the right-hand side of the above equations
has an obvious componentwise meaning. Consequently,⎛⎜⎝ λ1

n − λ2
n

λ1
t − λ2

t

λ1
o − λ2

o

⎞⎟⎠ =

⎡⎢⎣ I 0 0

Dt I 0

Do 0 I

⎤⎥⎦
⎛⎜⎝ λ1

n − λ2
n

μλ2
n (φ2 cosψ2 − φ1 cosψ1)

μλ2
n (φ2 sinψ2 − φ1 sinψ1)

⎞⎟⎠
or, equivalently,⎛⎜⎝ λ1

n − λ2
n

μλ2
n(φ2 cosψ2 − φ1 cosψ1)

μλ2
n(φ2 sinψ2 − φ1 sinψ1)

⎞⎟⎠ =

⎡⎢⎣ I 0 0

Dt I 0

Do 0 I

⎤⎥⎦
−1⎛⎜⎝ λ1

n − λ2
n

λ1
t − λ2

t

λ1
o − λ2

o

⎞⎟⎠
=

⎡⎢⎣ I 0 0

−Dt I 0

−Do 0 I

⎤⎥⎦
⎛⎜⎝ λ1

n − λ2
n

λ1
t − λ2

t

λ1
o − λ2

o

⎞⎟⎠ .

Writing

D(μ) ≡

⎡⎢⎣ I 0 0

−Dt I 0

−Do 0 I

⎤⎥⎦ ,
we claim that positive constants σ ′

s and μ̄ exist such that for all μ > 0 satisfying
max

1≤i≤nδ

μi ≤ μ̄,

(D(μ)λ − D(μ)λ ′ )T ( s(λ;y) − s(λ ′;y) ) ≥ σ ′
s ‖λ − λ ′ ‖2

for all λ and λ ′. To establish the claim, we write

(D(μ)λ − D(μ)λ ′ )T ( s(λ;y) − s(λ ′;y) )

= ( λ − λ ′ )T ( s(λ;y) − s(λ ′;y) ) − [ ( I − D(μ) ) ( λ − λ ′ ) ]T ( s(λ;y) − s(λ ′;y) )

≥ [σs − ηs ‖ I − D(μ) ‖ ] ‖λ − λ ′ ‖2;

clearly, we can choose μ̄ > 0 sufficiently small such that for all μ > 0 satisfying
max

1≤i≤nδ

μi ≤ μ̄, we have σs − ηs‖I − D(μ)‖ ≥ 1
2σs ≡ σ ′

s. This establishes the claim.

Next, we show that

0 ≥ (D(μ)λ1 − D(μ)λ2 )T ( s(λ1;y) − s(λ2;y) ).(20)
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The right-hand side of the above inequality is equal to⎛⎜⎝ λ1
n − λ2

n

μλ2
n (φ2 cosψ2 − φ1 cosψ1)

μλ2
n (φ2 sinψ2 − φ1 sinψ1)

⎞⎟⎠
T ⎛⎜⎝ s1

n − s2
n

s1
t − s2

t

s1
o − s2

o

⎞⎟⎠ .

By complementarity, we have (λ1
n − λ2

n)T (s1
n − s2

n) ≤ 0. Furthermore,

(φ2
i cosψ2

i − φ1
i cosψ1

i ) ( s1
it − s2

it ) + (φ2
i sinψ2

i − φ1
i sinψ1

i ) ( s1
io − s2

io )

= (φ2
i cosψ2

i − φ1
i cosψ1

i ) ( r1
i cosψ1

i − r2
i cosψ2

i )

+ (φ2
i sinψ2

i − φ1
i sinψ1

i ) ( r1
i sinψ1

i − r2
i sinψ2

i )

= −r1
i φ

1
i − r2

i φ
2
i + ( r1

i φ
2
i + r2

i φ
1
i ) cos(ψ1

i − ψ2
i )

= −r1
i − r2

i + ( r1
i φ

2
i + r2

i φ
1
i ) cos(ψ1

i − ψ2
i ) ≤ 0,

where the last equality follows from (19) and the last inequality holds because |φ1,2
j | ≤

1. Consequently, the inequality (20) holds. In turn, this implies that λ1
n,t,o = λ2

n,t,o.
This establishes the uniqueness of λμ(x) for all μ > 0 sufficiently small.

In the rest of the proof, we fix an arbitrary μ > 0 sufficiently small and drop the
superscript μ in λμ. To show the continuity of λn,t,o(y), we first derive a bound for
‖λn,t,o(y)‖. We have

0 ≥ λ(y)T s(λ(y);y) = λ(y)T ( s(λ(y);y) − s(0;y) ) + λ(y)T s(0;y)

≥ σs ‖λ(y) ‖2 − cs ‖λ(y) ‖ ‖y ‖,

which implies ‖λ(y)‖ ≤ cs‖y‖. Let {yk} be a sequence of parameters converging to
y∞. Write λk

n,t,o ≡ λn,t,o(y
k). Since the sequence {λk

n,t,o} is bounded, by what has

just been shown, let λ∞
n,t,o be the limit of a convergent subsequence {λk

n,t,o : k ∈ κ},
where κ is an infinite subset of {1, 2, . . . }. It suffices to show that λ∞

n,t,o is a solution
to the limiting system

0 ≤ λ∞
n ⊥ sn(λ∞

n,t,o;y
∞) ≥ 0(21)

and (
λ∞
it

λ∞
io

)
∈ arg min

(λ̃it,λ̃io)∈F(μi λ∞
in)

⎧⎨⎩
(

λ̃it

λ̃io

)T (
sit(λ

∞
n,t,o;y

∞)

sio(λ
∞
n,t,o;y

∞)

)⎫⎬⎭ .

Since 0 ≤ λk
n ⊥ sn(λk;yk) ≥ 0 for all k, passing to the limit k(∈ κ) → ∞ yields (21).

Similarly, since (λk
it)

2 + (λk
io)

2 ≤ μ2
i (λ

k
in)2 for all k, we deduce (λ∞

it , λ
∞
io ) ∈ F(μiλ

∞
in ).

Moreover, since

λk
it sit(λ

k;yk) + λk
io sio(λ

k;yk) = −μi λ
k
in

√
sit(λ

k;yk)2 + sio(λ
k;yk)2,

passing to the limit k(∈ κ) → ∞ easily completes the proof.
Applying Lemma 4 to the friction and contact conditions, we conclude that for

all h > 0 and sufficiently small and for all μ > 0 not exceeding a certain upper bound
μ̄, for a given triple xh,j ≡ (qh,j , νh,j , δh,j), a unique friction force triple λh,j+1

n,t,o exists
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at time step th,j+1 that is a continuous function of xh,j . In what follows, we derive a

bound on ‖λh,j+1‖ that takes advantage of the normal contact condition at time step
j. This improved bound is important for the subsequent analysis. (A straightforward
application of the previous lemma would yield a bound of the order 1/h, which tends
to infinity as h ↓ 0, and thus is not effective for small h. The bound obtained below
stays finite as h tends to zero, as shown subsequently.)

Lemma 5. Let λh,j+1 satisfy

0 ≤ λh,j+1
n ⊥ Ψn(qh,j) + δh,jn

h
+ sn(λh,j+1;yh,j) ≥ 0

and for all i = 1, . . . , nδ,

(λh,j+1
it , λh,j+1

io ) ∈ arg min
(λ̃it,λ̃io)∈F(μiλ

h,j+1
in )

{
sit(λ

h,j+1;yh,j)λ̃it + sio(λ
h,j+1;yh,j)λ̃io

}
.

A constant η
λ
> 0, which depends only the model functions, exists such that

‖λh,j+1‖ ≤ η
λ

[
‖min( 0,Ψn(qh,j) + δh,jn ) ‖

h
+ 1 + ‖xh,j‖

]
.

Proof. As in the proof of Lemma 4, we have

0 ≥ (λh,j+1
n )T

Ψn(qh,j) + δh,jn

h
+ ( λh,j+1 )T s(λh,j+1;yh,j)

≥ (λh,j+1
n )T

Ψn(qh,j) + δh,jn

h
+ ‖λh,j+1 ‖2 − cs ‖λh,j+1 ‖ [ 1 + ‖xh,j ‖ ]

≥ (λh,j+1
n )T min

(
0,

Ψn(qh,j) + δh,jn

h

)
+ ‖λh,j+1 ‖2 − cs ‖λh,j+1 ‖ [ 1 + ‖xh,j ‖ ],

where the last inequality holds because λh,j+1
n ≥ 0. Consequently, the desired bound

on ‖λh,j+1‖ follows easily by rearranging terms and then applying the Cauchy–
Schwartz inequality.

Combining Proposition 3 and Lemmas 4 and 5, we obtain the following result,
which brings us one step closer to the main existence and uniqueness for the discrete-
time boundary value problem.

Proposition 6. Under conditions (A)–(D), positive scalars μ̄, h0, and ηx exist
such that for every vector μ > 0 satisfying max

1≤i≤nδ

μi ≤ μ̄, every scalar h ∈ (0, h0], and

every tuple (qh,0, νh,0, δh,0), a unique discrete-time trajectory (14) exists satisfying
(16) for every j = 0, 1, . . . , Nh but not necessarily (13); moreover,

‖xh,j+1 − xh,j ‖ ≤ h η
x
[ 1 + ‖xh,j ‖ + ‖λh,j+1 ‖ ].(22)

Finally, if Ψn(qh,0)+δh,0n ≥ 0, then, for any scalar cq > 0, the implication below holds
for all j = 0, 1, . . . , Nh, where qh,−1 ≡ qh,0:

‖min(0,Ψn(qh,j) − Ψn(qh,j−1) − JΨn(qh,j−1)(qh,j − qh,j−1))‖ ≤ cq h

⇒ ‖λh,j+1‖ ≤ η
λ

( 1 + cq + ‖xh,j‖ ).
(23)
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Proof. The bound for ‖δh,j+1 − δh,j‖, which is part of (22), follows from (17).
Since

Ψn(qh,j) + Γn(qh,j−1)(qh,j − qh,j−1) + δh,jn ≥ 0,

we have

0 ≥ min( 0,Ψn(qh,j) + δh,jn )

≥ min( 0,Ψn(qh,j) − Ψn(qh,j−1) − Γn(qh,j−1)(qh,j − qh,j−1) )

+ min( 0,Ψn(qh,j−1) + Γn(qh,j−1)(qh,j − qh,j−1) + δh,jn )

= min( 0,Ψn(qh,j) − Ψn(qh,j−1) − Γn(qh,j−1)(qh,j − qh,j−1) ).

Taking norms, we obtain

‖min(0,Ψn(qh,j) + δh,jn )‖ ≤ ‖min( 0,Ψn(qh,j) − Ψn(qh,j−1) − Γn(qh,j−1)(qh,j − qh,j−1))‖.

The bound (23) on ‖λh,j+1‖ follows readily from Lemma 5.
So far, we have not used the limit condition (3) in proving the above results. This

condition allows us to establish the boundedness of the state variables {xh,j} and
thus of the force variables {λh,j+1} also. We first state a technical fact, which can be
proved by induction; see also [11, Lemma 7]. Namely, for every nonnegative integer
k ≤ Nh, if

‖xh,j+1 − xh,j ‖ ≤ hψ
x
( 1 + ‖xh,j‖ ) ∀ j = 0, 1, . . . , k,(24)

then (recalling that T = (Nh + 1)h),

‖xh,j+1 ‖ ≤ eT ψx ( 1 + ‖xh,0 ‖ ) − 1 ∀ j = 0, 1, . . . , k.(25)

Proposition 7. For any positive scalar cq, let ψx ≡ ηx(1 + η
λ
(1 + cq)). For any

scalar R0 > 0, the scalar h0 in Proposition 6 can be chosen such that (25) holds for
k = Nh for all h ∈ (0, h0] and for all xh,0 satisfying ‖xh,0‖ ≤ R0; moreover, for all
j = 0, 1, . . . , Nh,

‖λh,j+1 ‖ ≤ η
λ

[ cq + eT ψx ( 1 + ‖xh,0 ‖ ) ].(26)

Proof. Choose ε > 0 such that εψxe
Tψx (1 + R0) < cq. Corresponding to the

chosen ε, let ς > 0 be such that (3) holds. Let h0 > 0 be sufficiently small such that
h0ψxe

Tψx (1+R0) < ς. Let xh,0 be an arbitrary vector satisfying ‖xh,0‖ ≤ R0 and let
h ∈ (0, h0] be arbitrary. It suffices to prove (24) for k = Nh. Clearly, (24) is valid for
k = 0 because ‖xh,1 − xh,0‖ ≤ hηx(1 + ‖xh,0‖) ≤ hψx(1 + ‖xh,0‖). Assume that (24),
and thus (25), holds for some k ≥ 0. To complete the induction, we need to show

‖xh,k+2 − xh,k+1 ‖ ≤ hψx ( 1 + ‖xh,k+1 ‖ ).

By the choice of h and ‖xh,0‖, (24) with j = k and (25) with j = k − 1 imply

‖xh,k+1 − xh,k ‖ ≤ hψ
x
eT ψx ( 1 + ‖xh,0 ‖ ) < ς.

By (3) and the choice of cq, it follows that

‖ min( 0,Ψn(qh,k+1) − Ψn(qh,k) − JΨn(qh,k)(qh,k+1 − qh,k) ) ‖
≤ ε ‖ qh,k+1 − qh,k ‖ ≤ ε hψx e

T ψx ( 1 + ‖xh,0 ‖ ) ≤ h cq.
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Consequently, by the implication (23), we obtain

‖λh,k+2 ‖ ≤ η
λ

( 1 + cq + ‖xh,k+1 ‖ ) ≤ η
λ

( 1 + cq ) ( 1 + ‖xh,k+1 ‖ ).

Substituting this into (22) with j = k + 1 yields

‖xh,k+2 − xh,k+1 ‖ ≤ h ηx [ 1 + ‖xh,k+1 ‖ + η
λ

( 1 + cq ) ( 1 + ‖xh,k+1 ‖ ) ]

= hψ
x ( 1 + ‖xh,k+1 ‖ ),

completing the induction. The bound on ‖λh,j+1‖ holds by (23) and the bound on
‖xh,j‖.

Based on Proposition 7, we can establish the convergence of the time-stepping
method for an initial-value frictional compliant contact problem where x(0) is com-
pletely known. Since our treatment of the boundary-value problem will cover this
case, we proceed directly to the latter.

5. Boundary-value analysis. Proposition 7 allows us to employ the line of
proof in [11] to complete the convergence analysis of the time-stepping method. Need-
less to say, the boundary equation (13) will play a key role in this analysis. For this
reason, we partition the boundary matrix N as

N ≡
[

Nq Nν Nδ

]
,

where Nq ∈ �nν×nq , Nν ∈ �nν×nν , and Nδ ∈ �nν×nδ , and we write the discrete-time
boundary equation as

(Mν + Nν )νh,0 = b + Nνν
h,0 − Nxh,Nh+1 = b̂ − N (xh,Nh+1 − xh,0 ),(27)

where b̂ ≡ b − Nqq
0 − Nδδ

0. We are now ready to formally state and prove the
two main results of this paper: Theorems 8 and 9. While the former establishes
the existence of a solution to the discrete-time boundary system (16), including the
boundary condition, the latter proves the convergence to a continuous-time trajectory.

Theorem 8. Assume conditions (A)–(D) and that Mν +Nν is nonsingular. Let
ψ

x be the constant obtained in Proposition 7. If

eTψx < 1 +
1

‖ (Mν + Nν )−1N ‖ ,(28)

positive scalars μ̄, h0, and ψx exist such that for every vector μ > 0 satisfying
max

1≤i≤nδ

μi ≤ μ̄, every scalar h ∈ (0, h0], and every pair (qh,0, δh,0) satisfying (12),

a discrete-time trajectory (14) exists satisfying (16) for every j = 0, 1, . . . , Nh. More-
over, (24) holds for k = Nh and (26) holds for all j = 0, 1, . . . , Nh.

Proof. Throughout the proof below, the scalars h and μi are taken to be suffi-
ciently small so that the previous results can all be applied. More specifically, with
the constant r0 chosen at the end of the proof (cf. (31)), the upper limits h0 and μ̄
are then guaranteed by Proposition 7. The derivation below emphasizes the process
of how the constant r0 is obtained.

For xref ≡ (qref , νref , δref) in �n, let νh(xref) be the unique tuple (qh, νh, δh),
which, along with a (unique) triple of friction forces λh, satisfies the following condi-
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tions:

M(qref)( νh − νref ) = h [ f(th,j+1, q
h,θref , νh,θref ) + Γ(qref)Tλh ],

qh − qref = hG(qref)νh,θref ,

δht − δref
t = h [sht − Γt(q

ref)νh,θref ],

δho − δref
o = h [sho − Γo(q

ref)νh,θref ],

0 ≤ λh
n ⊥ Ψn(qref) + hΓn(qref)νh,θref + δhn ≥ 0,

λh = K(qref)δh +
C(qref)

h
( δh − δref ),(

λh
it

λh
io

)
∈ arg min

(λ̃it,λ̃io)∈F(μi λh
in)

⎧⎨⎩
(

shit

shio

)T (
λ̃it

λ̃io

)⎫⎬⎭ ,

where

qh,θref ≡ θ qref + ( 1 − θ ) qh and νh,θref ≡ θ νref + ( 1 − θ ) νh.

The well-definedness of νh(xref) is ensured by Proposition 3 and Lemma 4; moreover,
this map is continuous. For j = 0, 1, . . . , Nh, define the maps Λh,j : �n → �n

recursively by Λh,j+1(x) ≡ νh(Λh,j(x)), where Λh,0 is the identity map. Define the
auxiliary map Φ : �nν → �n by Φ(ν) ≡ (qh,0, ν, δh,0). In terms of these maps we can
write the boundary equation (27) as a fixed-point equation: νh,0 = Υ(νh,0), where
Υ : �nν → �nν is the map defined by

Υ(ν) = (Mν + Nν )−1[ b̂ − N ◦ ( Λh,Nh+1 − I ) ◦ Φ(ν) ],

which is continuous. We claim that a constant r0 > 0 exists such that Υ maps the
closed Euclidean ball with center at the origin and radius r0 into itself. Once this
claim is established, Brouwer’s fixed-point theorem then shows that the discrete-time
boundary system (16) has a solution.

By Proposition 7, we have, for j = 0, 1, . . . , Nh,

‖Λh,j+1(xref) ‖ ≤ Rh,j+1 and ‖Λh,j+1(xref) − Λh,j(xref) ‖ ≤ Rh,j+1 −Rh,j ,(29)

where Rh,j+1 satisfies the recursion

Rh,j+1 ≡ ( 1 + hψx )Rh,j + hψx, j = 0, 1, . . . , Nh,(30)

with Rh,0 ≥ ‖xref‖. Consequently, for any vector ν ∈ �nν , letting r0 ≥ ‖ν‖ and
Rh,0 ≡ r0 + ‖q0‖ + ‖δ0‖, we have

‖Υ(ν)‖ ≤ ‖ (Mν + Nν )−1b̂ ‖ + ‖ (Mν + Nν )−1N ‖ ‖Λh,Nh+1(Φ(ν)) − Λh,0(Φ(ν))‖

≤ ‖ (Mν + Nν )−1b̂ ‖ + ‖ (Mν + Nν )−1N ‖ (Rh,Nh+1 −Rh,0 )

≤ ‖ (Mν + Nν )−1b̂ ‖ + ‖ (Mν + Nν )−1N ‖ ( eTψx − 1 )( 1 + Rh,0 ),

where the last inequality follows from (25), which gives Rh,Nh+1 ≤ eTψx (1+Rh,0)−1.
Consequently for any r0 ≥ ‖ν‖, we have

‖Υ(ν)‖ ≤ ‖ (Mν + Nν )−1b̂ ‖ + ‖ (Mν + Nν )−1N ‖ ( eTψx − 1 )( 1 + ‖ q0 ‖ + r0 + ‖ δ0 ‖ ).
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By (28), it follows that 1 > ‖(Mν + Nν)
−1N‖(eTψx − 1); hence if

r0 >
‖ (Mν + Nν )−1b̂ ‖ + ‖ (Mν + Nν )−1N ‖ ( eTψx − 1 )( 1 + ‖ q0 ‖ + ‖ δ0 ‖ )

1 − ‖ (Mν + Nν )−1N ‖ ( eTψx − 1 )

(31)

then ‖Υ(ν)‖ < r0.

5.1. Final convergence. The remaining issue to be dealt with is the conver-
gence of the discrete-time trajectory to a weak solution of the continuous-time fric-
tional compliant contact problem. To deal with this issue, we use the discrete-time
iterates {xh,0,xh,1, . . . ,xh,Nh+1} to construct a continuous-time state trajectory by
linear interpolation. Specifically, define the affine function x̂h : [0, T ] → �n as follows:

x̂h(t) ≡ xh,j +
t− th,j

h
(xh,j+1 − xh,j ) ∀ t ∈ [ th,j , th,j+1 ].

Let λ̂
h
(t) be the (possibly discontinuous) piecewise constant interpolants of the fam-

ilies {λh,j+1}, i.e., λ̂
h
(t) ≡ λh,j+1 for t ∈ (th,j , th,j+1].

The following theorem is the main convergence result of this paper. Part (c) of
the theorem assumes that the constitutive law of compliance for the normal forces is
decoupled from that for the tangential forces. In this case, the submatrices Ktn(q),

Kon(q), Ĉtn(q) and Ĉon(q) are zero, and the tangential friction QP becomes

minimize

(
λt

λo

)⎧⎨⎩ 1

2

⎡⎣ Ĉtt(q) Ĉto(q)

Ĉot(q) Ĉoo(q)

⎤⎦( λt

λo

)
+

[
Γt(q)

Γo(q)

]
ν

−

⎡⎣ Ĉtt(q) Ĉto(q)

Ĉot(q) Ĉoo(q)

⎤⎦[ Ktt(q) Kto(q)

Kot(q) Koo(q)

](
δt

δo

)⎫⎬⎭
subject to (λt, λo ) ∈

nδ∏
i=1

F(μi λin) .

(32)

Theorem 9. Under the setting of Theorem 8, the following statements hold:
(a) There is a sequence {h�} ↓ 0 such that x̂h� converges uniformly on [0, T ] to a

Lipschitz function x̂, and λ̂
hν

converge weakly to a function λ̂ in L2(0, T ); i.e.,

lim
�→∞

sup
t∈[0,T ]

‖ x̂(t) − x̂h�(t) ‖ = 0

and, for any function ϕ ∈ L2(0, T ),

lim
�→∞

∫ T

0

ϕ(t)Tλh�
n,t,o(t) dt =

∫ T

0

ϕ(t)T λ̂n,t,o(t) dt.

(b) All such limits (x̂, λ̂) satisfy properties (a), (b), and (d) in Definition 2 of a
weak solution of the frictional compliant contact problem.

(c) If Ktn(q), Kon(q), Ctn(q), and Con(q) are equal to zero for all q, then (x̂, λ̂)
also satisfies property (c) in Definition 2 and hence is a weak solution of the frictional
compliant contact problem.
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Proof. Combining (24) and (25), we deduce

‖ x̂h(t) − xh,j ‖ ≤ ‖xh,j+1 − xh,j ‖ ≤ hψx e
Tψx ( 1 + r0 ),(33)

where r0 satisfies (31). By the limit condition (3), we obtain

lim
h↓0

max
0≤j≤Nh

sup
t∈[th,j ,th,j+1]

‖Ψn(q̂h(t)) − Ψn(qh,j) − hΓn(qh,j)νh,θj ‖ = 0.(34)

Moreover, the former inequalities show that the piecewise interpolants x̂h are not only
Lipschitz continuous on [0, T ], but the Lipschitz constant is independent of h. Hence
there is a positive scalar h ′

0, which depends only on the model functions such that
the family of functions {x̂h} for h in (0, h ′

0] is an equicontinuous family of functions.
As in the proof of [11, Theorem 7.1], it follows from the Arzelá–Ascoli theorem (see,
e.g., [22, p. 167] or [9, pp. 57–59]) that there is a sequence {h�} ↓ 0 such that {x̂h�}
converges in the supremum (i.e., L∞) norm to a Lipschitz function x̂ on [0, T ]. Since

sup
h∈(0,h ′

0]

sup
t∈[0,T ]

‖x̂h(t)‖ < ∞,

by (26), we deduce that

sup
h∈(0,h ′

0]

sup
t∈[0,T ]

‖λ̂
h
(t)‖ < ∞.(35)

Moreover, by the same proof, it follows that, by working with an appropriate sub-
sequence of {h�} if necessary and by invoking Alaoglu’s theorem [9, pp. 71–72] and

Mazur’s theorem [9, p. 88], the sequence {λ̂
h�} is weakly convergent with a weak*

limit λ̂, which satisfies λ̂n(t) ≥ 0 and (λ̂it(t), λ̂io(t)) ∈ F(μiλ̂in(t)) for almost all t.
The proof of the latter frictional inclusion is based on the observation that a pair
(a, b) ∈ F(τ) if and only if the triple (a, b, τ) belongs to the closed convex graph of
the friction map F .

We need to verify the four properties (a)–(d) of a weak solution to the contact
problem. The boundary equation (d) requires no verification, as it is a simple matter
of passing to the limit in the discrete-time boundary equation (27). Hence we focus
on the verification of (a)–(c). We first deal with the dynamics equations. We have

νh,j+1 − νh,j = hM(qh,j)−1[f(th,j+1, q
h,θj , νh,θj ) + Γ(qh,j)Tλh,j+1]

=

∫ th,j+1

th,j

M(q̂h(t))−1[ f(t, q̂h(t), ν̂h(t)) + Γ(q̂h(t))T λ̂
h
(t) ] dt + O(h2).

Hence for 0 ≤ τ ≤ τ ′ ≤ T , we obtain

ν̂h(τ ′) − ν̂h(τ) =

∫ τ ′

τ

M(q̂h(t))−1[ f(t, q̂h(t), ν̂h(t)) + Γ(q̂h(t))T λ̂
h
(t) ] dt + O(h).

Restricted to the subsequence {h�}, we have

lim
�→∞

∫ τ ′

τ

M(q̂h�(t))−1 f(t, q̂h�(t), ν̂h�(t)) dt =

∫ τ ′

τ

M(q̂(t))−1 f(t, q̂(t), ν̂(t)) dt
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by the uniform convergence of (q̂h� , ν̂h� ) → (q̂, ν̂). We also have∥∥∥∥∥
∫ τ ′

τ

[
M(q̂h�(t))−1Γ(q̂h�(t))Tλh�(t) −M(q̂(t))−1Γ(q̂(t))T λ̂(t)

] ∥∥∥∥∥
≤
∫ τ ′

τ

∥∥M(q̂h�(t))−1Γ(q̂h�(t))T −M(q̂(t))−1Γ(q̂(t))T
∥∥ ‖ λ̂

h�

(t) ‖ dt

+

∥∥∥∥∥
∫ τ ′

τ

M(q̂(t))−1Γ(q̂(t))T ( λ̂
h�

(t) − λ̂(t) ) dt

∥∥∥∥∥
The first summand on the right-hand side converges to zero because {q̂h�} → q̂ uni-

formly and λ̂
h�

is bounded; the second summand converges to zero because {λ̂
hν}

converges weakly in L2(0, T ) to λ̂. Consequently, we deduce

ν̂(τ ′) − ν̂(τ) = lim
�→∞

[ν̂h�(τ ′) − ν̂h�(τ)] =

∫ τ ′

τ

M(q̂(t))−1[f(t, q̂(t), ν̂(t)) + Γ(q̂(t))T λ̂(t)]dt.

Similarly, we can establish

q̂(τ ′) − q̂(τ) =

∫ τ ′

τ

G(q̂(t))ν̂(t) dt and

δ̂(τ ′) − δ̂(τ) =

∫ τ ′

τ

C(q̂(t))−1[ λ̂(t) − K(q̂(t))δ̂(t) ] dt,

completing the proof of property (a) of a weak solution. We next address property
(b). For t in [th,j , th,j+1], we can write

Ψn(q̂h(t)) + δ̂hn(t) = Ψn(q̂h(t)) − Ψn(qh,j) + δ̂hn(t) − δh,j+1
n

+ Ψn(qh,j) + hΓn(qh,j)νh,θj + δh,j+1
n − hΓn(qh,j)νh,θj ;

since Ψn(qh,j) + hΓn(qh,j)νh,θj + δh,j+1
n ≥ 0, we deduce

Ψn(q̂h(t)) + δ̂hn(t) ≥ Ψn(q̂h(t)) − Ψn(qh,j) + δ̂hn(t) − δh,j+1
n − hΓn(qh,j)νh,θj .

Letting Φh
n(t) be the right-hand expression, we deduce from (34) and (33) that ‖Φh

n(t)‖
is bounded by a constant for all h > 0 sufficiently small and all t and Φh

n(t) → 0 for all
t as h ↓ 0. Restricted to the subsequence {h�}, the left-hand side converges uniformly

to Ψn(q̂(t)) + δ̂n(t); therefore, Ψn(q̂(t)) + δ̂n(t) ≥ 0 for all t ∈ [0, T ]. Next we show
that ∫ T

0

λ̂n(t)T [ Ψn(q̂(t)) + δ̂n(t) ] dt = 0.(36)

The left-hand side is equal to the limit

lim
�→∞

∫ T

0

λ̂h�
n (t)T [ Ψn(q̂(t)) + δ̂n(t) ] dt = lim

�→∞

∫ T

0

λ̂h�
n (t)T [ Ψn(q̂h�(t)) + δ̂h�

n (t) ] dt.
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For each h > 0, we have∫ T

0

λ̂h
n(t)T [ Ψn(q̂h(t)) + δ̂hn(t) ] dt =

Nh∑
j=0

∫ th,j+1

th,j

λ̂h
n(t)T [ Ψn(q̂h(t)) + δ̂hn(t) ] dt

=

Nh∑
j=0

∫ th,j+1

th,j

(λh,j+1 )TΦh
n(t) dt.(37)

Since {λh,j+1} is bounded, by letting h ↓ 0 in (37) along the subsequence {h�}, (36)
follows readily from the dominated convergence theorem, thereby completing the proof
of property (b) of weak solution.

Finally, to prove property (c), let (λ̃t, λ̃o) : [0, T ] → �2nδ be continuous functions

such that (λ̃it(t), λ̃io(t)) ∈ F(μiλ̂in(t)) for almost all t ∈ [0, T ] and all i = 1, . . . , nδ.
We need to verify∫ T

0

(
λ̃t(t) − λ̂t(t)

λ̃o(t) − λ̂o(t)

)T
⎧⎨⎩
⎡⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤⎦⎡⎣⎛⎝ λ̂t(t)

λ̂o(t)

⎞⎠

−
[

Ktt(q̂(t)) Kto(q̂(t))

Kot(q̂(t)) Koo(q̂(t))

]⎛⎝ δ̂t(t)

δ̂o(t)

⎞⎠⎤⎦+

(
Γt(q̂(t))

Γo(q̂(t))

)
ν̂(t)

⎫⎬⎭ dt ≥ 0.

Since∫ T

0

(
λ̂h�

t (t)

λ̂h�
o (t)

)T
⎡⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤⎦⎛⎝ λ̂h�
t (t)

λ̂h�
o (t)

⎞⎠ dt

=

∫ T

0

(
λ̂h�

t (t) − λ̂t(t)

λ̂h�
o (t) − λ̂o(t)

)T [
Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

](
λ̂h�

t (t) − λ̂t(t)

λ̂h�
o (t) − λ̂o(t)

)
dt

− 2

∫ T

0

(
λ̂h�

t (t) − λ̂t(t)

λ̂h�
o (t) − λ̂o(t)

)T [
Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

](
λ̂t(t)

λ̂o(t)

)
dt

+

∫ T

0

(
λ̂t(t)

λ̂o(t)

)T
⎡⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤⎦⎛⎝ λ̂t(t)

λ̂o(t)

⎞⎠ dt,

and since the first integral on the right-hand side is nonnegative (by the positive
semidefiniteness of the quadratic form), the second integral converges to zero because

λ̂h�
t,o converge to λ̂t,o in L2(0, T ), we deduce

∞ > lim inf
�→∞

∫ T

0

(
λ̂h�

t (t)

λ̂h�
o (t)

)T
⎡⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤⎦⎛⎝ λ̂h�
t (t)

λ̂h�
o (t)

⎞⎠ dt

≥
∫ T

0

(
λ̂t(t)

λ̂o(t)

)T
⎡⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤⎦⎛⎝ λ̂t(t)

λ̂o(t)

⎞⎠ dt,

(38)
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where the left-hand limit is finite by (35). Consequently, it follows that

∫ T

0

⎛⎝ λ̃t(t) − λ̂t(t)

λ̃o(t) − λ̂o(t)

⎞⎠T ⎧⎨⎩
⎡⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤⎦⎡⎣⎛⎝ λ̂t(t)

λ̂o(t)

⎞⎠

−
[

Ktt(q̂(t)) Kto(q̂(t))

Kot(q̂(t)) Koo(q̂(t))

]⎛⎝ δ̂t(t)

δ̂o(t)

⎞⎠⎤⎦+

(
Γt(q̂(t))

Γo(q̂(t))

)
ν̂(t)

⎫⎬⎭ dt

≥ lim sup
�→∞

∫ T

0

⎛⎝ λ̃t(t) − λ̂h�
t (t)

λ̃o(t) − λ̂h�
o (t)

⎞⎠T ⎧⎨⎩
⎡⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤⎦⎡⎣⎛⎝ λ̂h�
t (t)

λ̂h�
o (t)

⎞⎠

−
[

Ktt(q̂(t)) Kto(q̂(t))

Kot(q̂(t)) Koo(q̂(t))

]⎛⎝ δ̂t(t)

δ̂o(t)

⎞⎠⎤⎦+

(
Γt(q̂(t))

Γo(q̂(t))

)
ν̂(t)

⎫⎬⎭ dt by (38)

≥ lim sup
�→∞

∫ T

0

⎛⎝ λ̃t(t) − λ̂h�
t (t)

λ̃o(t) − λ̂h�
o (t)

⎞⎠T ⎧⎨⎩
⎡⎣ Ĉtt(q̂

h�(t)) Ĉto(q̂
h�(t))

Ĉot(q̂
h�(t)) Ĉoo(q̂

h�(t))

⎤⎦⎡⎣⎛⎝ λ̂h�
t (t)

λ̂h�
o (t)

⎞⎠

−
[

Ktt(q̂
h�(t)) Kto(q̂

h�(t))

Kot(q̂
h�(t)) Koo(q̂

h�(t))

]⎛⎝ δ̂h�
t (t)

δ̂h�
o (t)

⎞⎠⎤⎦+

(
Γt(q̂

h�(t))

Γo(q̂
h�(t))

)
ν̂h�(t)

⎫⎬⎭ dt,

where the second inequality holds because {(q̂h� , ν̂h� , δ̂h�
t,o)} converges to (q̂, ν̂, δ̂t,o)

uniformly. For each h > 0, we have

∫ T

0

⎛⎝ λ̃t(t) − λ̂h
t (t)

λ̃o(t) − λ̂h
o (t)

⎞⎠T ⎧⎨⎩
⎡⎣ Ĉtt(q̂

h(t)) Ĉto(q̂
h(t))

Ĉot(q̂
h(t)) Ĉoo(q̂

h(t))

⎤⎦⎡⎣⎛⎝ λ̂h
t (t)

λ̂h
o (t)

⎞⎠

−
[

Ktt(q̂
h(t)) Kto(q̂

h(t))

Kot(q̂
h(t)) Koo(q̂

h(t))

]⎛⎝ δ̂ht (t)

δ̂ho (t)

⎞⎠⎤⎦+

(
Γt(q̂

h(t))

Γo(q̂
h(t))

)
ν̂h(t)

⎫⎬⎭ dt

=

Nh∑
j=1

∫ th,j+1

th,j

⎛⎝ λ̃t(t) − λh,j+1
t

λ̃o(t) − λh,j+1
o

⎞⎠T ⎧⎨⎩
⎡⎣ Ĉtt(q̂

h(t)) Ĉto(q̂
h(t))

Ĉot(q̂
h(t)) Ĉoo(q̂

h(t))

⎤⎦[(λh,j+1
t

λh,j+1
o

)

−
[

Ktt(q̂
h(t)) Kto(q̂

h(t))

Kot(q̂
h(t)) Koo(q̂

h(t))

]⎛⎝ δ̂ht (t)

δ̂ho (t)

⎞⎠⎤⎦+

(
Γt(q̂

h(t))

Γo(q̂
h(t))

)
ν̂h(t)

⎫⎬⎭ dt.

Since for almost all t ∈ (th,j , th,j+1], we have (λ̃it(t), λ̃io(t)) ∈ F(μiλ
h,j+1
in ), it follows
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that⎛⎝ λ̃t(t) − λh,j+1
t

λ̃o(t) − λh,j+1
o

⎞⎠T ⎧⎨⎩
⎡⎣ Ĉtt(q

h,j) Ĉto(q
h,j)

Ĉot(q
h,j) Ĉoo(q

h,j)

⎤⎦[( λh,j+1
t

λh,j+1
o

)

−
[

Ktt(q
h,j) Kto(q

h,j)

Kot(q
h,j) Koo(q

h,j)

](
δh,jt

δh,jo

)]
+

(
Γt(q

h,j)

Γo(q
h,j)

)
νh,θj

}
≥ 0

for almost all t ∈ (th,j , th,j+1]. Since the state variables satisfy

lim
�→∞

t∈(th�,j
,th�,j+1]

(x̂h�(t) − xh�,j) = 0

uniformly on [0, T ], we easily derive the desired limiting friction property (c).

6. Conclusion and discussion. This paper provided an in-depth investigation
of time-stepping methods for rigid body dynamics problems with multiple contacts
characterized by friction and local compliance. The main results are (a) the exis-
tence of a discrete-time solution trajectory the boundary-value problem (Theorem 8),
and (b) the convergence of such a solution to a weak solution of the corresponding
continuous-time problem (Theorem 9). Whereas the convergence results obtained are
in a sense stronger than those in [19, 1], it is worth noting that this is because of our
choice of a phenomenologically correct model that explicitly characterizes the com-
pliance at each contact. Even so, there are limitations in our investigation. First, the
friction coefficients are required to be sufficiently small in the main results (this is
the result of our discretization which respects the nonlinear friction conditions at all
iterates λh,ν+1). Second, we are not able to establish convergence to a strong solution.
This limitation begs the question of whether such a solution can be proved to exist in
a continuous-time model under an appropriate compliance constitutive law. The key
difficulty lies in the fact that the friction forces are not continuous functions of the
system states with the model (5). This issue remains unresolved to date. Third, in our
convergence analysis, the parameters of the compliance model (i.e., the stiffness and
damping) are fixed. It would be very interesting to extend the analysis to allow these
parameters to tend to infinity, with the goal of recovering a solution of some kind to a
fully rigid-body model. Such an extended analysis is beyond the scope of this paper.
In the previous paper [17], we considered, in a discrete-time framework with a fixed
discretization step, the issue of convergence when the stiffness and damping both tend
to infinity and obtained some positive results; nevertheless, such a convergence issue
in a continuous-time model seems difficult and has not been studied.

In view of the unresolved issues associated with strong solutions, which are seem-
ingly very difficult, our results are significant and provide a first step for a deeper
analysis. Needless to say, we are interested in extending the analysis to models
with nonlinear constitutive laws for which the existence of strong solutions to the
continuous-time model could be shown and for which the convergence of a numerical
time-stepping method to such a solution could be established. Our future work will
address such extensions and the application of numerical methods for solving bound-
ary value problems to the optimal design of manufacturing processes with frictional
contacts.
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