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An SVD-Based Projection Method for Interpolation on SE(3)

Abstract
This paper develops a method for generating smooth trajectories for a moving rigid body with specified
boundary conditions. Our method involves two key steps: 1) the generation of optimal trajectories in

GA*(n), a subgroup of the affine group in R” and 2) the projection of the trajectories onto SE(3), the Lie
group of rigid body displacements. The overall procedure is invariant with respect to both the local
coordinates on the manifold and the choice of the inertial frame. The benefits of the method are threefold.
First, it is possible to apply any of the variety of well-known efficient techniques to generate optimal curves on

GA™(n). Second, the method yields approximations to optimal solutions for general choices of Riemannian
metrics on SE(3). Third, from a computational point of view, the method we propose is less expensive than
traditional methods.
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An SVD-Based Projection Method
for Interpolation onS E(3)

Calin Beltg Student Member, IEEEBN Vijay Kumar Senior Member, IEEE

Abstract—This paper develops a method for generating smooth this space. Jutler [8] formulated a more general version of the
trajectories for a moving rigid body with specified boundary polynomial interpolation by using dual (instead of dual unit)
conditions. Our method involves two key steps: 1) the generation quaternions to parameterisez(3). In such a parameterization,

of optimal trajectories in GAt(n), a subgroup of the affine | t oS E(3 ds t hol ival |
group in IR™ and 2) the projection of the trajectories onto.SE(3), an element o5 E(3) corresponds to a whole equivalence class

the Lie group of rigid body displacements. The overall procedure Of dual quaternions. Srinivasan [9] and Jutler [10] propose the
is invariant with respect to both the local coordinates on the use of spatial rational B-splines for interpolation. Park and
manifold and the choice Of. the. inertial frame. The benefits of Kang [11] derived a rational interpolating scheme for the group
the method are threefold. First, it is possible to apply any of the of rotationsSO(3) by representing the group with Cayley pa-

variety of well-known efficient techniques to generate optimal ; . . .
curves on G A+ (n). Second, the method yields approximations rameters and using Euclidean methods in this parameter space.

to optimal solutions for general choices of Riemannian metrics on Marthinsen [12] suggests the use of Hermite interpolation and
SE(3). Third, from a computational point of view, the method the use of truncated inverse of the differential of the exponential

we propose is less expensive than traditional methods. mapping and the truncated Baker—Campbell-Hausdorff for-
Index Terms—interpolation, Lie groups, trajectory generation. ~ mula to simplify the constuction of interpolation polynomials.
The advantage of these methods is that they produce rational
curves.
It is worth noting that all these works (with the exception of
E ADDRESS the problem of finding a smooth motiori6]) use a particular parameterization of the group and do not
that interpolates between two given positions and oriediscuss the invariance of their methods. In contrast, Noakes
tations. This problem finds applications in robotics and con@l. [13] derived the necessary conditions for cubic splines on
puter graphics. The problem is well understood in Euclidegeneral manifolds without using a coordinate chart. These re-
spaces [1]-[3], but it is not clear how these techniques can $gts are extended in [14] to the dynamic interpolation problem.
generalized to curved spaces. There are two main issues fd@cessary conditions for higher order splines are derived in
need to be addressed, particularly on non-Euclidean space§:amarinhat al.[15]. A coordinate-free formulation of the vari-
is desirable that the computational scheme be independent ofatienal approach was used to generate shortest paths and min-
description of the space and invariant with respect to the choiseum acceleration and jerk trajectories §®(3) and SE(3)
of the coordinate systems used to describe the motion. Seconifiy16]. However, analytical solutions are available only in the
the smoothness properties and the optimality of the trajectorgigiplest of cases, and the procedure for solving optimal mo-
need to be considered. tions, in general, is computationally intensive. If optimality is
Shoemake [4] proposed a scheme for interpolating rotatiogacrificed, it is possible to generate bi-invariant trajectories for
with Bezier curves based on the spherical analog of the tigerpolation and approximation using the exponential map on
Casteljau algorithm. This idea was extended by Ge and Rav#re Lie algebra [17]. While the solutions are of closed form, the
[5] and Park and Ravani [6] to spatial motions. The focus if¢sulting trajectories have no optimality properties. In contrast,
these papers is on the generalization of the notion of interpofptimality is taken into account in [18], where Newton and con-
tion from the Euclidean space to a curved space. jugate gradient algorithms are developed into the more general
Another class of methods is based on the representatfeamework of Grassmann and Stiefel manifolds.
of Bezier curves with Bernstein polynomials. Ge and Ravani In this paper, we build on previous work [13], [15]-[17] to
[7] used the dual-unit quaternion representation S¥(3) generate smooth curves. We pursue a geometric approach and
and subsequently applied Euclidean methods to interpolater@giuire that our results be invariant with respect to the choice
of reference frames and independent of the parameterization of

_ _ _ the manifold. Our approach is defining a metric on the group of
Manuscript received September 23, 2001; revised January 20, 2002. This.

paper was recommended for publication by Associate Editor G. Oriolo ahi@id body d!splf';lcements which has_phy3|cal significance (in-
Editor S. Hutchinson upon evaluation of the reviewers’ comments. This pagddces the kinetic energy of the moving body as a norm). The
was presented at the Ball 2000 Symposium Commemorating the Legacy, Wolkgiyariant metric OnSO(n) [19] and the left invariant metric

d Life of Sir Robert Stawell Ball, University of Cambridge, Cambridge, U.K. .
?Sly gl_eli 2'500? ert StawelEall, Tniversty of -ambricge, ~ambrage. ©% broposed by Park and Brockett [20] are special cases of our gen-

The authors are with the General Robotics, Automation, Sensing, a@tial treatment. Also, this paper generalizes our preliminary re-
Perception (GRASP) Laboratory, University of Pennsylvania, Philadelphigy|ts presented in [21]_
PA 19104-6228 USA (e-mail: calin@grasp.cis.upenn.edu; kumar@grasp.cis . . . . .
upenn.edu). ( @grasp.cis.up @0rasp-CiS\ve first show that a left or right invariant metric on
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On any Lie group the tangent space at the group identity has
the structure of a Lie algebra. The Lie algebrasséi(3) and
E(3) denoted byo(3) andse(3), respectively, are given by

30(3):{@ |0 e R¥3, o = —a;}

se(g)z{sz [‘6 g} | 0eR¥? ve R 0T = —a}

wheré€' is the skew-symmetric operator.
Given a curve

At):[~a,a] — SE(3), A(t) = [R(()t) d(lt)}

an element5(t) of the Lie algebrasc(3) can be identified with
GL*(n) (GAT(n)) equipped with the appropriate metricthe tangent vectad(t) at an arbitrary point by

Fig. 1. Inertial (fixed) frame and moving frame attached to the rigid body.

Next, a projection operator that projects points and curves ) o(t) RTJ

from the ambient manifold ont§O(n) (SE(n)) is defined. S(t)= AR A®R) = [ 0 0 } (1)
The uniqueness and smoothness of the projected trajectory are

discussed. Several examples are presented to illustrate eREre

curves generated in the ambient manifold can be projected to o) = RT(t)R(t) @

get near-optimal results #0(n) andSE(n), especially when
the excursion of the trajectories is “small.” In certain cases, Wethe corresponding element frosn(3).

are also able to establish quantitative results that measure thg ¢ rve onSE(3) physically represents a motion of the rigid
closeness of the generated trajectory to the optimal traject(yddy If {w(#),v(t)} is the vector pair corresponding &(#),

[22]. thenw physically corresponds to the angular velocity of the rigid
body whilew is the linear velocity of the origid®’ of the frame
IIl. BACKGROUND {M?, both expressed in the framé/ }. In kinematics, elements
A. Lie GroupsSO(3) and SE(3) of this form are called twists ane:(3) thus corresponds to the

set of all twists. The twistS(¢) computed from (1) does not
depend on the choice of the inertial frafne’}.

Sinceso(3) is a vector space, any element can be expressed as
SO(n) ={R| R e GL(n), RRT = I}. a 3x 1 vector of components corresponding to a chosen basis.
The standard basis fep(3) is

Let GL*(n) denote the set of all positive-definitex n real
matrices andbO(n) the subset of7 LT, defined as

Let R R R
L‘f:el LSIGQ ngeg
M d n . .
GA*(n) = {B | B= [ 0 } MeGL*(n);deR } where{e;, es, es} is the canonical base IR>.

L3, L3, and Lg represent instantaneous rotations about the

and Cartesian axes, y, and z, respectively. The components of a
R d @ € so(3) in this basis are given precisely by the angular ve-
SE(”)I{A | A= [0 } ReS0(n); dERn}- locity vectorw.
The standard basis fer(3) is
GL*(n), SO(n), GAT(n), andS E(n) have the structure of a 7o 0]
group under matrix multiplication. Moreover, matrix multipli- Ly = 01 0
cation and inversion are both smooth operations, which make S
all GL*(n), SO(n), GA*(n), andSE(n) Lie groups. Ly = L3 0
GL*(n) and GAT(n) are subgroups of the general linear L 0 0:
groupGL(n) (the set of all nonsingular x n matrices) and of L — Ly 0
the affine groug7 A(n) = GL(n) x R", respectivelySO(n) is 5 | 0 0]
referred to as the special orthogonal group or the rotation group [0 ¢ ]
onR™. SE(n) is the special Euclidean group, and is the set of Li= 0 0
all rigid displacements iiR"™. 0 o]
Special consideration will be given t60(3) and SE(3). L; = 0 02
Consider a rigid body moving in free space. Assume any iner- - :
tial reference framé F'} fixed in space and a framigV/ } fixed L¢ = 0 e
to the body at poin®)’ as shown in Fig. 1. At each instance, the 100

configuration (position and orientation) of the rigid body can b&he twistsL,, L5 and Lg represent instantaneous translations
described by a homogeneous transformation matrix SE(3) along the Cartesian axes y, andz, respectively. The compo-
corresponding to the displacement from fraf¥€} to frame nents of a twistS € se(3) in this basis are given precisely by
{M}. the components of the velocity vector p&is, v }.
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B. Left Invariant Vector Fields inheriting the appropriate metric at each point from the ambient

A left invariant differentiable vector fieldX, on SE(3) is manifold.
obtained by left translation of an elemehE se(3). The value o i
of the vector fieldX at an arbitrary pointd € SE(3) is given A. AMetricinGL™(n)
by X(A) = AS. Since the vectord,, L., ..., L¢ are a basis  Let W be a symmetric positive-definitex » matrix. For any
for the Lie glgebrase(ii), any vector fieldX can be expressed M € GL*(n) and anyX,Y € T);GL*(n), define
asX = > ., X'(AL;), where the coefficients(* vary over . J— T .
the manifold. If the coefficients are constants, theiis leftin. v Y Jez+ =Lr(XTYW) = Tr(WXTY) = Tr(YW.XT).
variant. By definings = [X*, X2, X3]7, v = [X*, X7, XO|T, (5)
we can _associate avector pairoffuncti({nsv}t_o an arbitra_ry By definition, form (5) is the same at all points GL™*(n).
vector field X. If a curve A(t) describes a motion of the rigid |:"is clear that it is quadratic in the entries &f and Y. Let

bodty and_V = dA/dt 'S.‘ tth?j ve_tcl;c;)r field tang(;eni t?h(t).’ thte T,y € IR"2 be the column vectors obtained by collecting all
vector pair{w, v} associated witft” corresponds to the ins aN-1he elements o andY row by row. Then,

taneous twist (screw axis) for the motion. B
(X,Y)gr+ =z"Wy

C. Local Parameterization of £(3) Where
In this paper, we choose a parameterizatiofibf3) induced

by the product structur6O(3) x IR®. In other words, we define W =diag(W?*, wt, ... . wh), We R,
asetof coordinates,, o2, 03, d1, d2, d3 for an arbitrary element
A= (R, d) € SE(3) sothatd;, dz, ds are the coordinates of
in IR®. Exponential coordinates are chosen as local paramet
zation of SO(3). For R € SO(3) sufficiently close to the iden-
tity (i.e., excluding the pointd'r(R) = —1 (Tr(A) = 0), or,
equivalently, rotations through angles9f we define the expo-
nential coordinate® = exp(5) = ¢/, o € R® whereé is the
skew-symmetric matrix correspondingdo= [0, o2, o3]%.

It is easy to see thal’ is symmetric and positive definite if and
only if W is symmetric and positive definite. Therefore, (5) is
%'Riemmanian metric of¥ LT (n) whenW is symmetric and
positive definite. We next prove the following interesting result.

Proposition 1: The metric given by (5) defined o@L™ (n)
is left invariant when restricted t§O(n). The restriction on
SO(n) is bi-invariant if W = «l, & > 0, I is then x n identity
matrix.

Proof: LetanyM € GL*(n)and any vector&,Y inthe

tangent space at an arbitrary point@£.*(n). Then, we have

If a smoothly varying positive-definite bilinear, symmetric : .
form (-,-) is defined on the tangent space at each point on the (X,Y)gr+ =Tr(X"YW)
manifold, such a form is called a Riemannian metric and thg
manifold is Riemannian [23], [24]. OAE(3) (and on any Lie
group), an inner product on the Lie algebra can be extended to a (MX,MY)ar+ = Tr(XTMTMYW)
Riemannian metric over the manifold using left (or right) trans-
lation. To see this, consider the inner product of two elemeritem which we conclude that the metrids invariant under

D. Riemannian Metrics on Lie Groups

51, 82 € se(3) defined by left translations by elements fro§10(n). Therefore, when re-
- stricted toSO(n), metric (5) is left invariant. For right invari-
(S1,82)r = 51 Gso () ance, ifR € SO(n), we have
wheres; ands;, are the 6x 1 vectors of components & and (X, Verr = Tr(Y WXT)

S with respect to some basis a@ids a positive-definite matrix.
If V1 andV; are tangent vectors at an arbitrary group elemeffd
A € SE(3) andSy, S; are elements ofe(3) identified with V;
andV;, respectively, the inner produg¥;, V2) 4 in the tangent
spacel’4 S E(3) can be defined by

(XR,YR)gp+ = Tr(YRWRYXT).

Therefore, right invariance is guaranteed only under the condi-

(Vi,Va)a = (A7, A7), = sT G, (4) tion that RWRT = W, i.e., whenW commutes with all the
! elementsk € SO(n), which is easily seen to be equivalent to
The metric obtained in such a way is said to be left invariapt’ = 7. u
[23]. Remark 1: If right invariance onSO(n) is desired (and left

invariance is not needed), we can define
[ll. RIEMANNIAN METRICS ONSO(n) AND SE(n) T T T

KXY >ar=Tr(XYTW)=TrYTWX)=Tr(WXYT).

In this section, we will show that there is a simple ) ) )

way of defining a left or right invariant metric on Similar proof shows that the metrie, >+ will be right
SO(n) (SE(n)) by introducing an appropriate constantnvariant on_SO(n) for W symmetric and positive definite and
metric in GL*(n) (GA+(n)). Defining a metric (i.e., the Pi-invariant it W = al.
k'net_'c e_nergy) at the Lie algebr@o(_”) (Or_sc(”)) ar_wd €X- 1we will use the subscripfL+ whenever we refer to the metric in the am-
tending it through left (right) translations will be equivalent tmient spacez L+ (n).
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B. Induced Metric or6O(3) BecausdV is positive definite, it follows thaf; > 0 which
impliesp; > 0, i.e., G is positive definite. For the third part,

Even though the following derivation can be done in the gen- (8) we have

eral case of an(n — 1)/2-dimensional manifold6O(n) in the
ambientn2-dimensional manifold7L*(n), we will limit our

M2+ p3 —
discussion to the = 3 case to avoid new notation. Further, the AL == 5
results are of direct interest 510(3). \, Mt = e
Let R be an arbitrary element i$i0(3). Let X, Y be two vec- 2= 2
tors fromTrSO(3) andR,(¢), R,(t) the corresponding local PO + p2 — (i3 )
flows so that 37 2 :

If u; satisfy the triangle inequality,; are positive and the claim
is proved. [ |
Remark 2: In the particular case wheW = ol, o > 0,
The metric inherited fronéZLZ*(3) can be written as from (7), we have? = 2«l, which is the standard bi-invariant
metric onSO(3). This is consistent with the second assertion
_ in Proposition 1 Fora = 1, metric (5) induces the well-known
(X, ¥)s0 =(X, ¥>GL+ . Frobenius matrix norm oL+ (3) [25].
=Tr (Rf (HR, (t)W) Remark 3: The quadratic form? Gw associated with metric
. . (6) can be interpreted as the (rotational) kinetic energy. Conse-
=Tr (R“«T‘(t)RRTRy(t)W) quently,2G can be thought of as the inertia matrix of a rigid
=Tr (w;—fwyw) body with respect to a certain choice of the body fraé}.
The triangle inequality restriction frofroposition 2therefore
simply states that the principal moments of inertia of a rigid
body satisfy the triangle inequality, which, by definition, is true
for any rigid body. Therefore, for an arbitrarily shaped rigid
eonddy with inertia matrix2G, we can formulate a (positive defi-
nite) metric (5) in the ambient manifoldZ+(3) with matrix

X =R,(t) Y =R,(t) R.(t)=R,(t)=R

whered, = R,(t)7R,(t) and®, = R, ()T R,(t) are the cor-
responding twists from the Lie algebsa(3). If we write the
above relation using the vector form of the twists, some elem
tary algebra leads to

_ T
<X7 Y>SO = Wy Gwy (6) W = %TT(G)IP, -G, (10)
where Thus, (10) gives us a formula for constructing an ambient
metric space that is compatible with the given metric structure
G=Tr(W)l; - W ()  of SO(3).

is the matrix of the metric oi5O(3) as defined by (3). A dif- C. A Metricin GAT(n)
ferent but equivalent way of arriving at the expressiorzods

in (7) would be defining the metric ino(3) (i.e., at identity ~ -°"
of SO(3)) as being the one inherited frofyGL*(3): g;; = W W a 1
Tr (LYTLIW), 4§ = 1,2,3 (L{, L3, L§ is the basis iso(3)). =T w 11)

Left translating this metric throughout the manifold is equiva-
lent to inheriting the metric at each three-dimensional tangdd® a symmetric positive-definite +1) x (n+1) matrix, where
space ofSO(3) from the corresponding nine-dimensional tan¥" is the matrix of metric (5)« € R™, andw € R. Let X and

gent space of7L*(3). Y be two vectors from the tangent space at an arbitrary point
Proposition 2: The metricW on GL*(3) and the induced of GAT(n) (X andY are(n + 1) x (n + 1) matrices with all
metric G on SO(3) share the following properties. entries of the last row equal to zero). Similar to Section IlI-A,

« (7 is symmetric if and only i’ is symmetric. a quadratic form

* If W is positive definite, theid is positive definite. -
« If Gis positive definite, thefiV is positive definite if and (X,Y)gar =Tr(XTYW) (12)
only if the eigenvalues aff satisfy the triangle inequality.
Proof: The first part follows immediately from (7). For the
second part, we can use (7) to prove that the eigenvalue$
G are given in terms of the eigenvalugsof W by

is symmetric and positive definite if and only#f is symmetric
and positive definite.

D. Induced Metric inSE(3)

EEVENEY We can get a left invariant metric &h&(n) by letting S E(n)

i =22t A3 inherit the metrid-) ¢ 4+ given by (12) from@A* (n). To derive
fr2 =A1 + Az the induced metric irt £(3) we follow the same procedure as
3 =A1 + Ao. (8) in Section IlI-B for the particular case of = 3.
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Let A be an arbitrary element froii£(3). Let X, Y be two IV. PROJECTION ONSO(n)
vectors fromT4SE(3) and A,(t), A,(t) the corresponding

We can use the norm induced by metric (5) to define the dis-
local flows so that

tance between elements L *(3). Using this distance, for a
givenM € GL™(3), we definethe projectionof Af on SO(3)
as being the closegt € SO(3) with respect to metric (5).

The solution of the projection problem is derived for the gen-

X =A.(t) Y=A4,0t) A.(t)=A,0) =A.

Let eral case of7L*(n) and is based on the following lemma (a
Ri(t) dy(t) . related treatment can be found in [26]).
Aqi(t) = [ 0 1 } o ie{xy} Lemma 1: Let M € GL*(n) andM = UV its singular
value decomposition. The®? = UV is the solution to the
and the corresponding twists at timhe maximization problem
. N g max Tr(MTR).
S; = A:l(t)AZ(t) = |:U.(J)Z T(J)z:| , 1€ {.’L’,y} RCSO(n) ( )
Proof: The proof is based on the Cauchy—-Schwartz in-
The metric inherited fronéz A+ (3) can be written as equality and is omitted. The interested reader is referred to [27]
for a detailed proof of an almost similar problem. The unique-
(X,Y)se =(X,Y)ga+ ness of the solution is also guaranteed. ]
: : 5 The following proposition is the main result of this section.
=Tr (AL (A, ()W o :
! ( = () 4,(?) ) Proposition 3: Let M € GL*(n) andU, %, V the singular
=Ty (SfATASyW) . value decomposition ot/ W (i.e., MW = UXVT). Then, the
- projection of M on SO(n) with respect to metric (5) is given
— T
Now, using the orthogonality of the rotational part4find the by R = UV". , U
Proof: The problem to be solved is a minimization

special form of the twist matrices, a straightforward calculation bi
leads to the result problem

i in ||M - R|g
(X,Y)sg =Tr (SfSyW) RESO(n) I (PP
=Tr (oL o,W) +Tr (2fv,a") We have

+ v;‘fd)ya + vayw.

IM — Rllg .+ =(M — R,.M — R)gp+

P T
Keeping the notation from Section 1lI-B, & is the matrix of =Ir{(M - R)* (M - R)W]

the metric inSO(3) induced byGL*(3), then =Tr(M* MW —M"RW — R" MW +R" RW).
i oA | wy Note thatZr(RTMW) = Tr(WMTR) = Tr(MTRW)
(X.Y)sp=[wy v;]C [UJ and the quantitied/Z MW and RTRW = W are constant
N and, therefore, does not affect the optimization. Therefore, the
~ G a
G = { P } (13) problem to be solved becomes
- 3

. T
and@ is given by (7). Rl Ir(WM*" R).

Remark 4: The metric given by (13) is leftinvariant since the _ _
matrix G of this metric in the left invariant basis vector field isWith MW = UUSV?, according toLemma 1 the solution to

constant. the above problem i& = UV, ™
Remark 5: If W is symmetric and positive definite, thet ~ Remark 7: Let P denote theu(n + 1) /2-dimensional subset
given by (13) is symmetric and positive definite. of symmetric matrices oL " (n).

Remark 6: The quadratic fors” ('s associated with metric ~ » For the particular case whé# = I,,, P describes the set
(13) can be interpreted as being the kinetic energy of a moving of all matrices that project to identity in metric (5)—the

(rotating and translating) rigid body, wheueis twice the mass fiber at identity. Note that the dimensions agt&@(n)

m of the rigid body. If the body fixed framgM } is placed at the is n(n — 1)/2 dimensional, the fibeP is n(n + 1)/2
centroid of the body, thea = 0. Moreover, if{AM} is aligned dimensional; the sum gives®, which is the dimension
with the principal axes of the body, theéh = (1/2)H, where of the ambientGL*(n). Also, in this case, givelR €

H is the diagonal inertia matrix of the body. In the most general  SO(n), the set that projects t& (fiber at R) is the left
case, when the framg\! } is displaced by soméR, do) from translatedP: RP.

the centroid and the orientation parallel with the principal axes, ¢ Inthe general case, the set of matrices that project to some
we have [16] given R € SO(3) in metric (5) isRPW —1.

A Remark 8: It is easy to see that the distance betwaémnd
G =RYHRy — mRYdyRy, a = —mRodp. R in metric (5) is given byl'r(W—VX2VT) + Tr(W) —
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2Tr(%). For the particular case whéfi = I, the distance be- The quantityB” BW is notinvolved in the optimization. There-
comesy_._, (¢; — 1)2, which is the standard way of describingfore, the problem becomes
how “far” a matrix is from being orthogonal.

The question we might ask is what happens with the solution Aclggl(n)[—ZTT(BTAW) + Tr(ATAW)].
to the projection problem when the manifd#L* (n) is acted _
upon by the grouppO(n). The answer is given below. Since

Proposition 4: The solution to the projection problem on

SO(n) is left invariant under actions of elements fréf®(n).
If W = «ls, the solution is bi-invariant. and

Proof: LetM € GL*(n), MW = UXVT and the corre-
sponding projectio? € SO(n), R = UVT. Consider the ac- Tr(BYAW) = Tr (B RW) + (Bfd+ 1) w
tionofanyL € SO(n)onM: M = LM.Then, asingularvalue o )
decomposition (SVD) fod/W yields MW = (LU)LVT. Wecan separate the initial problem into two subproblems
Then, byProposition 3 the projection oM/ on SO(3) is R = T _ ] T
LUVT = LR, which proves left invariance. However, right b ReSOM) Tr(B{ RW) = RESOM) Tr (WB{R)
translation ofM by L € SO(3) givesM = ML andMW =
UXVTW—LLW. The translated projectionigV” L. Right in- and

Tr(ATAW) = Tr(W) + (d¥d + Dw

variance is therefore guaranteedit LW = L, i.e., W com- 2) min [_2BQTd + de] )
mutes with arbitrary elements fro§00(n). This is true only if 4elR™
W =al.

From Lemma 1 the solution to the first subproblem 8 =

. A . UV, For the second subproblem, note tat B, is the only
that other projection methods do not exhibit bi-invariance. F%Fitical point of the scalar functior-2BLd + dZd. It is easy

instance, it is customary to find the projectighe 5O(n) by to verify that the Hessian at this point 24, which is positive

aPp'ying a_ C_;ram—Schmidt procedun@](i.dec_ompo_sitior.w). In definite. Therefore, the solution is= B, which concludes the
this case, it is easy to see that the solution is left invariant, bH}oof -

in general, itis not right invariant. Similar to theSO(n) case, the projection afiF(n) exhibits
several interesting invariance properties.
V. PROJECTION ONS E(n) Proposition 6: The solution to the projection problem on
Similar to Section 1V, if a metric of the form (12) is definedSE(n) is left invariant under actions of elements fréh'(n).
onGA™*(n) with the matrix of the metric given by (11), we canln the special case whéii = o, the projection is bi-invariant
find the corresponding projection dhE(n). We consider the under rotations.

Remark 9: For the caséV = I, it is worthwhile to note

casea = 0, which corresponds to a body frarpé/} fixed at Proof: Let
the centroid of the body. B B
Proposition 5: Let B € GA*(n) with the following block B= [ 01 12} € GAT(n)
partition:
B B and define4, U, %, V such that
B=|"Y 77|, B, € GL™(n); By € R" T
0 1 T UVt DBy
BW=Usvt a=|"o 7| €SE®)
and U, X, V be the singular value decomposition Bf W.
Then, the projection aB on SE(n) is given by Let
: =[5 ]
A:[U‘Of ?165E(n). 0 1
be an arbitrary element froliE(n). Under left actions ofy,
Proof: Let the solution pair becomes
RB; RB>—+d
A:[ﬁ ﬂ Re SO(n); deR™ QB:{ 0 ] }
A [BUVT RBy+d
The problem to be solved can be formulated as follows: QA= 0 1

; B_ Al2 which proves left invariance of the projection. For the second
min || G- . - L
ACSE(n) part, note that the right translated solution pair is

We have B{R B1d+B2:|

BQ:[ 0 1

1B = Allg 4 =T7((B = A)T(B - W] ] o [UVTR UVTd+ B,
—Tr(BT BW) — 2Tr(BY AW) + Tr(AT AW). @=1"" 1 :
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It is easy to see thaB; RW = USVIW-IRW.With W = in{F'}isQ € SE(3). As seen from the new framid” }, the
al, we haveB; RW = UXVTR. If only rotations(d = 0) boundary conditions are

are taken into consideration, right invariance is proved. A more . .
detailed treatment of this case can be found in [21]. m  QA(0), QA(1), QA(0), QA(1),...,QA"™(0), QA (1)

VI. PROJECTIONMETHOD and the interpolating curve i7A*(3) satisfying the new

) boundary conditions becomes
Based on the results we proved so far, we can outline a method

to generate an interpolating curvi(t) € SE(3), t € [0, 1] B(t) = Bo+ Byt + -+ + + Boy, 1?71
while satisfying the boundary conditions
where

_ o B; =I; (QA(0), QA(1), QA(0), QA(1), ...
where the superscrigt)™ denotes thenth derivative. The .
projection procedure consists of two steps. QA™(0), QA(’")(l)) ;o i=1....2m-1L
Step 1) Generate the optimal cury&(¢) in the ambient . i _
manifold GA*+(3), which satisfies the boundaryS'”Ce the functiong"; are linear, we conclude tha(¢) =
conditions. QB(t). Now usingProposition 6 the projection ofQB(t) €
Step 2) ProjecB3(t) from Step 1) onted(t) € SE(3). GAT(3) onto SE(3) is simply QA(#). Thus, the projection
Due to the fact that the metric we defined 6ai™(3) is the Method onSE(3) consisting of two steps is left invariant, i.e.,
same at all points, the corresponding Christoffel symbols & generated trajectories are invariant to displacements of the

all zero. Consequently, the optimal curves in the ambient mdpertial frall(me{F}. he ) h .
ifold assume simple analytical forms. For example, geodesiceeéMark 10: Due to the linearity on the boundary conditions

are straight lines, minimum acceleration curves are cubic pofjf- (€ curve in the ambient manifold, the first step is always
nomial curves, and minimum jerk curves are fifth-order polyn di-invariant, i.e., invariant to arbitrary displacements in both the

mial curves inGA™(3), all parameterized by time. Therefore,inertial .frame{F} and the body framgM}. The ipvariance
in Step 1), the following curve is constructedGhi ™+ (3): properties of the overall method are, therefore, dictated by the

second step. According ®roposition 6 the procedure is bi-in-

A(0), A(1), A(0), A(1),..., A (0), AT (1)

B(t) = Bo+ Byt + -+ + Bop_t*™7 ! variant with respect only to rotations ¢#'} in the particular
case ofW = «l. In the most general case, i.e., for arbitrary
where the coefficient®; i = 1,...,2m—1 are linear functions choices ofi¥, the method is left invariant to arbitrary displace-
I'; of the input data ments of the inertial frame.

B; =T; (A(0)7 A(1), A(0), A(1), ..., At™(0), A(m)(l)) _ B. Unigueness and Smoothness of the Projection
Due to the fact thaSE(3) = SO(3) x IR® and the met-
Step 2) consists of an SVD decomposition weighted by the mgs that we use are product metrics, it is sufficient to answer
trix W as described iRroposition 5to produce the curvel(t).  the above questions f&O(3) and the ambien& L (3). Also,
due to the left invariance of the generated trajectories, without
loss of generality, we can restrict our attention to curves passing
If the interpolating curve o E(3) is generated by solving through identity. Finally, in accordance with the scope of this
the exact equations of the optimal motion in the Lie algebgmper, the discussion will be limited to geodesics and minimum
se(3), i.e., (17) for geodesics, then the resulting trajectory ecceleration curves.
invariant to displacements of the inertial frag¥é}. Thismeans 1) Uniqueness:Let us first note that even if the SVD of
that, given the optimal trajectory of the body with respect to esome matrix fromV/ € GL*(3): M = UXVT is not unique (it
inertial frame [i.e., a curve 08 E(3)], the optimal trajectory is unique up to permutations of the singular values), the product
in a new displaced frame is obtained by left translation. The = UUVT giving the projection or§O(3) is unique. Finding
geometric argument for this is that left invariance of the metrithe projection or§O(3) in the form/V'*" using SVD is equiv-
combined with the left invariance of the twists, gives invariancaent to determining the polar decompositibth= Q.5 (Q or-
of the metric to changes (constant diplacements) of the inertiabgonal,S symmetric and positive definite) with = R =
frame. UVvT, 8 =VvZV7T. Also, as noted in [28], using the polar de-
Similarly, for the projection method outlined above, we askomposition, one can find the orthogonal p@by averaging
if the generated motion is independent of the choice of thlee matrix with its inverse transpose until convergence, which
reference frame{F'}. The answer is given in the following can be proved to be cheaper to compute than the actual SVD of
proposition. the matrix. We use SVD throughout the paper simply because
Proposition 7: The projection method oS E(3) is left in- there is a lot more information in SVD than in polar decom-
variant, i.e., the generated trajectories are independent of puesition. For example, proof dfemma lis much simpler than
choice of the inertial fram¢ F}. the proof of a somewhat similar result given in the appendix of
Proof: Assume the inertial framgF'} is displaced td F”}  [28], which uses the Lagrange multiplier method to solve a con-
and the transformation matrix giving the displacemen{ B}  strained optimization problem. Also, the invariance properties

A. Left Invariance—Independence of Inertial Frame
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Fig. 2. Upper bounds on the end velocities$0(3) are imposed so that the interpolating cubic in the ambient manifold does no¥¥davé3).

of the projection become transparent in the SVD. Moreover, than be rewritten ad/(t) = M; (t) + M2 (¢) where
deviation of the actual singular values of some matrix from 1 is

a good measure of how far that matrix is from being orthogonal. M1 () =I + (R(1) — ) f(t), f(t) =3t —2°
In the actual implementation of the method, one can always use Moy(t) =(t — 212 1 ﬁ)}'g(()) + (—t2 + t3)}'g(1)_
polar decomposition if calculation becomes expensive.

Also, uniqueness of the projection adHroposition 3s guar- Leta(-) ande(-) denote the largest and smallest singular values
anteed ifMW is nonsingular [29]. Sinc# is positive definite, of some matrix. Then,
we only need to make sure that the smooth cuv&) gener-
ated in the ambient manifold do not leatid. ™ (3) (an element M(t) >0 a(M(t) >0, t €[0,1].
of GL(3) with negative determinant will not project to a rota-
tion but to a reflection). Using

Consider the following interpolant betwedrat¢ = 0 and
R(1) = ¢ € SO(3) att— 1. o(M(t)) z o(M(t)) = o(Ma(1))
finding a lower bound for (M (¢)) reduces to finding a lower
bound fora (M (¢)) and an upper bound f@r( Mx(t)).

M, (t) is of the form (14), and, therefore, it has singular values
at{1, s(t), s(t)}, wheres(t) is given by (15). Itis easy to see that
for f(t) = 3t2—2¢%, s(¢) < 1,and, thereforer(M;(¢)) = s(t).

Now assume that the end velocities are upper bounded by

S(t) _ \/2(1 oS ||w0||)f(t)2 _ 2(1 — cos ||w0||)f(t) 1. 6 > 0in 2-norm, i.e.g(R(0)),5(R(1)) < 6. We have

M@) =T+ (R(1)-1)f(t), te[0,1] (24)

where f(¢) is a smooth function withf(0) = 0, f(1) = 1.
According to [22], the singular values @i (t) are given by
{1, s(t), s(t)} where

(1s) _ 2 3y
By studying the binomial under the square root, it is easy to s%gMQ(t)) < o((t =267 + £)R(0) s s )
thats(t) > 0,V ¢ € [0,1] if and only if ||wo|| # (2k + 1), k +o((—t" +#7)R(1)) < (t = t7)6.

integer.s(¢) can become zero if and only fitvo|| = (2k + )7 . " _
andf = 1/2. Note that this condition corresponds to singulafhen: & sufficient condition fos(M(#)) > 0'is
points of the exponential coordinates f©(3). Therefore, re- s(t)
stricting the magnitude of the rotatidn< ||wp|| < = (which 6 = g(t,||lwol) :=
is the usual assumption when exponential coordinates are used
as local parameterization 61O(3) around identity) guarantees A plot of g(¢, ||wo||) is presented in Fig. 2(a) fére [0, 1] and
that the singular values d¥/(t) stay positive whert € [0,1], ||wol| € [0, #]. It can be seen (even though this can be proved rig-
i.e., M(t) stays inGL*(3). As a particular case fof (t) =, orously by taking derivatives af(t, ||wo||)) that the minimum
the geodesic ilGL*(3), M(t) = I + (R(1) — I)t, passing value of the function is always attainedtat= 0.5, for all the
through identity at = 0 does not leav&/ L (3) if the magni-  values ofl|wy|| € [0,#]. We conclude that a sufficient condition
tude of the rotation is less than for a cubic interpolant of the form (16) to remainGi. * (3) for

For a minimum acceleration curve, we expect the stay cope [0, 1] can be expressed in terms of upper bounds on the end
dition to also depend on the magnitudes of the end velocitieglocities ass < 9(0.5, ||lwo||) To illustrate the magnitudes of
Explicitly, the cubic polynomial interpolating boundary condithe allowed velocities, a plot 0.5, ||wo||) is given in Fig. 2(b)
tions onSO(3) given by R(0) = I, R(0) att = 0 andR(1), fora||wo|| € [0, 7]. As expected, the upper bound on end veloc-

t—1t2°

R(1)att =1 ities becomes more restrictive with the increase on the rotational
. . . ) displacement.
M(t) =1+ R(0)t + (=31 + 3R(1) — 2R(0) — R(1))t Remark 11: The bound on the amount of rotatién< = is

+(21 — 2R(1) + R(0) + R(1))}t*> (16) not really restrictive, since rotatiomdarger thanr can always
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be achieved by rotatings — ¢ around the same axis but onSO(3). Without loss of generality, we will assumig, = I.
opposite direction. Indeed, a geodesic between two arbitrary poftsand R, is
2) SmoothnessSince the SVD (or polar decomposition) is ahe geodesic betweehandelRQ left translated by, [13],
smooth operation, and provided that the smooth curve generdts].
in the ambient manifold does not leati. * (3) (this guarantees  The differential equations to be satisfied by the geodesics on
unigque projections), the projected curve. 0 (3) is smooth.  SO(3) equipped with metrie7 are given by (2) together with
Singularities might occur due to the projection fré#i.t(3) the celebrated Euler’s equations:
(a nine-dimensional manifold) t§O(3) (a three-dimensional
manifold). Specifically, the projected curve can have a cusp Go(t) + w(t) x (Guw(t)) = 0. (17)
point when the tangent to the curve in the ambient space is also
tangent to the fiber of the projection. Also, a curve that meefsnice derivation of (17) using differential geometric tools is
a fiber in two places will project to a curve with a self intergiven in [16]. Even though (17) has an explicit solution in terms
section. However, provided that the curvedm(3) is smooth ©0f Jacobi elliptic functions [30], there is no closed form expres-
in time, since the goal of this method is motion generation f&on for the interpolating curve on the base manifé\d(3), ex-
robots, cusps and self intersection points are allowed. A cusp@pt for the special case whéh= al. In the general case, one
a smooth curve 08O(3) will physically correspond to a situa- Must solve the differential system given by (2) and (17) numer-
tion when the angular velocity of the body smoothly decreas&&lly. A local parameterization &fO(3) should be chosen and
to 0 and then starts increasing. This situation mostly occurstfiree first-order differential equations relatiagto the deriva-
motion generation for nonholonomic robots. A self intersectidives of the parameters augment the system. Here, exponential

point corresponds to the body attaining the same pose at tg@Prdinatess1, o2, o3 are used to parameterizeO(3). We
different times. solve a system of six first-order nonlinear coupled differential

equations with three boundary conditions at each end. We ob-
C. Closeness of Projected Curves to Optimal Interpolating tain the numerical solution by using a relaxation method [31].
Trajectories In our projection method described above, we solve the

It can be proved [22] that in the Euclidean cage £ al;, Problem in GL*(3), while keeping the proper boundary
W = (a/2)I; in (5) and (6)), the geodesiB(t) € SO(3) conditions for_SO(3). Geodesics are found i&#L*(3) and
interpolating betweei (att = 0) and Ry = e*° (att = 1) eventually projected back ont80(3).

The geodesic i7 LT (3) is
R(t) = ¢t
M(t) = Ro+(R1 — Ro)t, te€][0,1].
follows the same path as the projecti&t (¢) of the corre-

sponding line The projection ontdO(3) using the metrid¥ is given by:
M(t) =1+ (R —1I)t, tel0,1] MW =U@®SHV )T,
1
but with a different parameterization, i.e., Rt)=UBV(®T, W= §T7’(G)Ig -G, (18)
M(t) =U@SHVE (1) = R (1) = UBVT(t) = e lllustrative examples are shown in Figs. 3 and 4, where end
o(t) = 1 atan2(1 — t + £ cos |jwo|), tsin [Jwo|)- positions onSO(3) are given irll.exp.onential coordinates: In all
[lwoll the examples, the initial condition ig0) = [0, 0, 0], which

By inverting the functior®, one can also find the parameterizagOrreSpondS to the body frama/} being parallel with the in-

. i 1 . . . ertial frame{F'} att = 0. Both Figs. 3(a) and 4(a) correspond
tion of t_he line fromGLT(3), which will project to the exact to final conditiono(1) = [r/10, /10, x/10]% (i.e., a rota-
geodesic o5 O(3).

e . : _tion of 7v/3/10 about the unit vectdil /v/3, 1/v/3, 1/v3]V),
For non-Euclidean metrics # «/3 and higher order polyno while Figs. 3(b) and 4(b) describe the final conditiofl) —

mial curves, we cannot establish how close the projected curye T : — .
are to the optimal ones simply because there is no analytigrgl?& n/3, /2] (i.e., a rotation ofr/14/6 about the unit

— —— S )
closed form expression for the latter. However, numerical Si%gctor[l/ 14, 2/v14, 3/V14]"). In other words, Figs. 3(a)

ulations like the ones included in Section VII give satisfactorgnd 4(a) represent a small (gompared ywi)hrotaﬂon, \.Nh'le
results. igs. 3(b) and 4(b) are a rotation approximately four times that

in Figs. 3(a) and 4(a).
In Fig. 3,G = «f and the geodesic passing through identity
on SO(3) is a uniformly parameterized line through the origin
We will first focus onSO(3). Due to the product structure ofin exponential coordinates. Also, as proved in [22], the pro-
bothSE(3) = SO(3) x R* and the metrid, ) si for a = 0, all  jected geodesic follows the same path but with a different pa-

VII. GENERATING SMOOTH CURVES ON.SO(3) AND SE(3)

the results are straightforward to extendSts'(3). rameterization. When the displacement is small, as in Fig. 3(a),
i the parameterizations of the curves obtained by relaxation and
A. Geodesics 050(3) projection are almost the same. The difference in parameteri-

The problem we approach is generating a geodB$i¢ be- zation is more pronounced in Fig. 3(b), when the excursion is
tween given end position®; = R(0) and R, = R(1) on large.
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Fig. 4. Geodesics o¥O(3) for metric G
[x/6, n/3, =/2]7.

In Fig. 4, G # «l and the geodesics in exponential coorB. Minimum Acceleration Curves &f0(3)
dinates are not straight lines anymore. Also, the geodesic angrhe differential equations to be satisfied by minimum acceler-
the projected curve follow different paths. Again, the differation curves oO(3) with metricG are known only for the case
ence between the geodesic obtained by relaxation and the gro-= 7 [16]. In the general case, the calculation of the sym-
jected curve is more noticeable for larger displacements, asniretric connection corresponding®as veryinvolved and almost

intractable. The projection method can still be used to generate

Fig. 4(b).
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Fig. 5. Geodesic motion for a parallelepipedic body. (a) Relaxation method. (b) Projection method.

smooth interpolating motion, even though we do not have a wayThe following boundary conditions were considered:
of comparing the generated trajectory with the optimal one.

In what follows, the time interval will beé € [0, 1] and the s(0)=[0 0 0]"
boundary condition£(0), R(1), R(0), R(1) are assumed to be Defz = =T
specified. The minimum acceleration curveGL™ (3) with a d=[5 3 3

. : . T
constant metri€, ).+ is a cubic given by d(0)=[0 0 0]
d1)=[8 10 12]"

M(t) = Mo+ Myt + Mot + Mat?
The geodesics for a parallelepiped with= ¢ = 2, b = 10,
whereMo, My, My, My € GL*(3) are gndm =12are givgn in Fig. 5. For visualization, a small square
is drawn on one of its faces and the center of the parallelepiped
is shown starred. For this case,

My =R(0)

M; =R(0) 52 0 0
M, = — 3R(0) + 3R(1) — 2R(0) — R(1) G=|0 4 0
Ms =2R(0) — 2R(1) + R(0) + R(1). 0 0 952

) ) o As seenin Fig. 5, even though the total displacement between
Now the curve or50(3) is obtained by projecting/(t) onto e injtial and final positions 0$O(3) is large (rotation angle

50(3) using (18). Several examples are shown in our preVi°H§7r\/ﬁ/6), there is no noticeable difference between the true
work [22]. and the projected motions.

C. Generation of Rigid Body Motion D. Computational Efficiency

~ Since we know how to generate near optimal curves i s not difficult to see that, from a computational point of

in SO(3), the extension tOSE(%) is simply adding the yiew, it is less expensive to generate interpolating motion using
well-known optimal curves froniR". In the example consid- the projection method as opposed to the relaxation method. Re-
ered in Fig. 5, a homogeneous parallelepiped is assumed:fQ that the complexity of the SVD of a x n matrix is of
move (rotate and translate) in free space. We assume that §hger,2 [25]. If M is the number of uniformly distributed points

body frame{}} is placed at the center of mass and aligneg| [o, 1], then the number of flops required by the projection
with the principal axes of the body. Letb, andc be the lengths ,ethod iNGL* (n) is of orderO(n3M).

of the body along itsr, y, andz axes, respectively, and the  The relaxation method for generating solutiondt mesh
mass of the body. Th& matrix of metric(, )so isgivenby  points of a system ofV differential equations with two
boundary conditions implies solving &N x MN linear
B+ 2) 0 0 system in the corrections iteratively until the method relaxes
G= 0 %(a2 +c?) 0 to the solution (corrections converge to zero) [31]. Gaussian
0 0 2(a® +1?) elimination, whose complexity is cubic, is used to solve the
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linear systems. Therefore, the number of flops required in theie]
relaxation method is of ordep(A2N3).

Consider the problem of generating geodesicsS@i(n).
Here N = n(n — 1). The projection method involve3(nM)
flops while the relaxation method has complexity of the ordef18l
O(nSM?). ForM = 100, as we used in this paper, the genera-
tion of geodesics 08O(3) (n = 3) requires millions of flops  [19]
by the relaxation method, while requiring only thousands by th?zo]
projection method.

[17]

[21]
VIII. CONCLUSION

This paper develops a method for generating smooth trajeézz]
tories for a moving rigid body with specified conditions at end
points. Our method involves two key steps: 1) the generatiof?3]
of optimal trajectories iz A™(n); and 2) the projection of the 241
trajectories fromGA™* (n) to SE(n). The overall procedure is
invariant with respect to both the local coordinates on the man25]
ifold, and the choice of the inertial frame. The benefits of the[26]
method are three-fold. First, it is possible to apply any of the
variety of well-known efficient techniques to generate optimall27]
curves onGA*(n) [1], [3]. Second, the method yields nearly 28]
optimal solutions for general choices of Riemannian metrics org
SE(3). For example, we can incorporate the dynamics of arbif29]
trarily shaped rigid bodies. Third, from a computational point of ol
view, the method we propose is less expensive than traditiongl
methods. We presented the application of the basic ideas to[i]
motion generation problem with specified boundary conditions.
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