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Controlling biological systems: the lactose regulation system of

Escherichia coli

A. Agung Julius, Adam Halasz, Vijay Kumar and George J. Pappas

Abstract— In this paper we present a comprehensive frame-
work for abstraction and controller design for a biological
system. The first half of the paper concerns modeling and model
abstraction of the system. Most models in systems biology are
deterministic models with ordinary differential equations in the
concentration variables. We present a stochastic hybrid model
of the lactose regulation system of E. coli bacteria that capture
important phenomena which cannot be described by continuous
deterministic models. We then show that the resulting stochastic
hybrid model can be abstracted into a much simpler model, a
two-state continuous time Markov chain.

The second half of the paper discusses controller design for a
specific architecture. The architecture consists of measurement
of a global quantity in a colony of bacteria as an output
feedback, and manipulation of global environmental variables
as control actuation. We show that controller design can
be performed on the abstracted (Markov chain) model and
implementation on the real model yields the desired result.

I. INTRODUCTION

In this paper we present a framework that consists of

modeling, abstraction and control of a biological system,

namely, the lactose regulation system of the Escherichia coli

bacteria. The conceptual idea behind the paper is captured in

Figure 1. Roughly speaking, the paper can be divided into

two parts. The first part corresponds to the lower half of

the hourglass in Figure 1, that discusses modeling of the lac

regulation system as a stochastic hybrid system. The model

presented in this paper is a slight modification of the one

presented in our earlier work [1]. We also discuss how the

stochastic hybrid model can be abstracted into a two-state

continuous time Markov chain, and demonstrate how this

abstraction is consistent with the macroscopic behavior of a

colony of bacteria.

The second part of the paper pertains to the upper half of

the hourglass, as it discusses feedback controller synthesis

with the abstract model (two-state continuous time Markov

chain) as the plant model. We also demonstrate that the

controller designed for the abstract model yields the desired

behavior when implemented on the actual system, which is a

colony of bacteria. The control goal, in this case, is to make

a certain fraction of the population induced.

The first part of the paper thus resides in the domain of

biology/biophysics, where model building is performed. The

second part of the paper is arguably of control/engineering

nature, where the problem of controller design and synthesis

This work was partially supported by the NSF Presidential Early CA-
REER (PECASE) Grant 0132716, NIH-NLM Individual Biomedical Infor-
matics Fellowhip award 5-F37-LM008343-1, and the ARO Grant W911NF-
05-1-0219

The authors are with the GRASP Laboratory,
School of Engineering and Applied Sciences, Univer-
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Fig. 1. The hourglass paradigm presented in this paper.

for a particular control problem is discussed. The abstract

model can be viewed as a divider between the two domains,

where controller design can be done with the abstract model,

without the control engineer having to know about the

biology/biophysics aspect of the system.

The lactose regulation system in E. coli [2] is one of the

most extensively studied examples of positive feedback in a

naturally occurring gene network. Two of its three compo-

nent genes encode enzymes (β-galactosidase and permease)

which contribute to the synthesis of allolactose which in

turn acts as an inducer for the operon itself. Hysteresis and

bistability on the level of the entire bacterial population

was identified early on by Monod and Pappenheimer [3].

Novick and Weiner [4] discovered bistability at the level of

individual cells by studying the expression of β-galactosidase

in a population of identical E. coli cells. They showed that

cells were essentially in one of two discrete states: either

fully induced, with enzyme levels close to maximum or

uninduced, with negligible enzyme levels. The observation

of intermediate activity on the level of the entire population

reflects comparably sized sub-populations of induced and

uninduced bacteria.

The lactose control system, encoded by the lac operon,

is often used as a switch to control genes in genetically

engineered systems [5], [6].

Having in mind applications where a graded setting of a

protein level is needed, we would like to investigate whether

such a response at the level of a bacterial population can be

ensured by a macroscopic feedback controller design while

maintaining the underlying bistable behavior on the level of

individual cells. Possible applications are in using bacterial

populations in large scale synthesis in drug production [7],

novel energy sources [8]. Although control of biological

and biochemical systems is not a new field, to the authors’

knowledge there has not been other attempts at controlling

the induction level of E. coli bacteria using macroscopic

feedback controller.
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The rest of this paper is organized as follows. In Section

II we present the mathematical model of the system under

consideration, together with its abstraction. In Section III,

we discuss the construction of a feedback control mechanism

based on the abstract model of the system. Some simulation

results for the controller described in Section III are pre-

sented in Section IV. We conclude the paper with Section V,

where we present a few potential future research directions.

II. MODELING THE LACTOSE REGULATION SYSTEM

A. Deterministic continuous model

Our starting point is a model of the lactose system due

to Yildirim and Mackey [1], [9], adapted to the use of thio-

methyl galactosidase (TMG) as inducer. Briefly, the mRNA

(M) transcribed from the lactose operon is translated into

three different gene products, among them permease (P )
and β-galactosidase (B). Permease facilitates the influx of

inducer TMG (T ) from the exterior and also an opposing

process, equilibrating the concentration of lactose inside the

cell with the external lactose. The enzyme β-galactosidase

plays a role in the lactose induced network. However, in the

TMG induced network, it is effectively decoupled from the

equations of motion and has no effect on the dynamics of

the remaining three variables. It is however the experimental

quantity that is traditionally used as the observable, for

example in [4]. A feedback loop is formed by the effect of

TMG on the transcription of the lac operon. This complicated

relationship involves substances not explicitly considered in

the Yildirim-Mackey model, and results in the nonlinear

activation function summarized by the first and second terms

in Equation (1a).
The equations of motion for the TMG induced network

are as follows:

dM

dt
= αM

1 + K1(e
−µτM T (t − τM ))n

K + K1(e−µτM T (t − τM ))n
+ Γ0 − γ̃MM, (1a)

dB

dt
= αBe

−µτB M(t − τB) − γ̃BB, (1b)

dT

dt
= αLP

Te

KTe
+ Te

− βLP
T

KL1
+ T

− γ̃LT, (1c)

dP

dt
= αP e

−µ(τP +τB)
M(t − τP − τB) − γ̃P P. (1d)

We take into account time delays due to transcription and

translation. Variables without an argument are taken at time

t, time delays are indicated by an explicit argument, e.g.,

M(t− τB) is the value of the variable M delayed with τB .

The symbol Te in equation (1c) signifies the external TMG

concentration. If the system is to be viewed as an input-state

system, then Te can be thought of as an input to the system,

while the other four concentrations are the state variables.

The other symbols in the equation are constant parameters.

Because of space limitation, we refer the reader to [10] for

the values of these parameters.

For the value of Te between 1.4 - 32 µM, the system has

three equilibria. Two of these equilibria are stable, giving rise

to bistability of the system. Varying the value of Te causes

a hysteresis behavior. See Figure 2 for the bifurcation dia-

gram of the system. The model (1) qualitatively reproduces

the observed experimental behavior. The higher-dimensional

version defined in [9] and discussed in [1], very closely
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Fig. 2. The equilibria of the system given by (1). The middle range of Te

has three branches of equilibria.

approximates that behavior. However, that model (with its

original parameter set) is correct only as a description of the

average behavior of a large number of cells described as a

single “reactor”. This is because stochastic behavior on the

level of individual cells is ignored both in its construction

and in its validation.

It has been recognized early on that the observed con-

centrations on the level of a very large number of cells is

actually an average over two distinct sub-populations of cells,

whose β-galactosidase level takes one of two extreme values.

This microscopic bistability was termed the “all-or-none”

phenomenon [4]. Although individual cells spend most of the

time in one of the two stable equilibria, a closer examination

of traditional induction experiments reveals that the popula-

tion average cannot be maintained at these extreme values.

Rather, it can converge to intermediate values between the

two extremes.

Following the discussion in [1], we identify the necessity

of introducing stochasticity in the model to bridge the gap

between the macroscopic behavior (population average) and

microscopic behavior.

B. Stochastic model

While stochasticity is sometimes thought of as leading

to small deviations from the ODE prediction, it actually

may often lead to qualitatively different behavior [11]. There

are several sources of randomness or noise in biochemical

processes [12], [13]. Here we focus on “intrinsic” stochastic

phenomena related to the small copy number of molecule

species inside individual cells. Chemical reactions, at the

microscopical level, amount to creation and breaking up

of chemical molecules. These processes can be modeled as

Poisson random processes [14], [15], whose rates depend

on the state of the system, i.e. the number of molecules in

the reaction. We develop a hybrid stochastic model for the

system, where only a subset of the species is treated stochas-

tically and the remainder are treated as continuous variables

that obey traditional ODEs [1]. This computationally less

expensive approach allows us to perform quasi-simultaneous

simulations for many cells. The connection between the ODE

and the stochastic description is through the the conversion

constant CN = 6.023 · 104 molecules
mM .
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Fig. 3. Simulation results of two cells. In this plot, the external concen-
tration of TMG is increased at t = 200 minutes (marked by the arrows).
We observe that spontaneous inductions occur approximately 200 and 400
minutes later.

In terms of stochastic differential equations, our hybrid

stochastic model can be written as follows.

dMt = dM̂t − dM̃t, (2a)

dBt = dB̂t − dB̃t, (2b)

dTt

dt
=

TeαLPt

KLe
+ Te

−

βLPtTt

KL1
+ Tt

− γ̃LTt, (2c)

dPt

dt
= αP e−µ(τP +τB) M(t−τP −τB)

CN

− γ̃P Pt. (2d)

Here the processes M̂t and M̃t are the Poisson processes

that are responsible for the creation and breaking up of the

messenger RNA molecules, respectively. Similarly, B̂t and

B̃t are the Poisson processes that are responsible for the

creation and breaking up of the β - galactosidase molecules,

respectively. The rates of these processes are given by the

reaction rates of the ODE model (1). We simulate the model

(2) using a numerical scheme similar to the explicit tau-

leaping method for Gillespie simulation, combined with a

fixed time step Euler scheme for the continuous variables.

The size of the time steps is fixed at 0.1 minute. Our

implementation also takes into account the time delays. For

more details we refer to [1]. A pair of typical simulation

traces for individual cells are shown in Figure 3.

C. Two state Markov chain model

Similarly to [1], the bulk behavior can be well described by

a simple two-level abstraction of the states of an individual

cell, as illustrated in Figure 7, as a continuous time Markov

chain [16]. The states of the Markov chain correspond to the

low and high stable equilibria of the systems, also known

as the induced and uninduced states. The rates of switching

between the two states are given as a function of the external

TMG concentration Te. See Figure 4 for a diagram of the

system.

This simple model can closely reproduce the bulk behavior

of a large number of cells. We run the simulation of the full

model (given in (2)) to simulate a colony of 1000 cells. The

macroscopic behavior of the colony, which is computed as

the average across the 1000 samples are plotted in Figure

5. It is this colony-level average behavior that is observed

in macroscopic experiments like Novick and Weiner’s. The

experimental curves as well as those corresponding to the

Low state
(uninduced)

High state
(induced)

λ
1
(Te)

λ
2
(Te)

Fig. 4. The two-state continuous time Markov chain model.
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Fig. 5. The average behavior of a colony with 1000 bacteria from stochastic
simulations. The exponential curve is plotted to show that the macroscopic
behavior can be fitted quite well with a first order dynamics (given in (3)).

average of many individual simulations are well matched by

a two-exponential behavior. This is a strong argument for the

validity of our simple two-level model, where the evolution

of the probability of the two states is given by

d

dt

[

xlo

xhi

]

=

[

−λ1(Te) λ2(Te)
λ1(Te) −λ2(Te)

] [

xlo

xhi

]

. (3)

The connection between the full model and the abstraction

is as follows. The rate of the exponential curve, λ1, should

match 1/τ , which is the mean time to transit from the low

stable state to the high stable state. We compute this time

average from the 1000 samples and use its value to compute

the exponent of the curves in Figure 8. We can observe that

the fit is good.

We will rely on the two-level abstraction (3) to design

a control strategy for obtaining a graded response from a

colony of individually bacteria, by modulating the external

TMG. We will use simulation on the full model for valida-

tion.

III. CONTROLLER SYNTHESIS

The architecture of the control system that we discuss in

this paper is illustrated in Figure 6. The plant to be controlled

in a colony of E. coli bacteria. The controller affects the plant

by adjusting of the external concentration of TMG in the

environment. Feedback information is read from the plant in

the form of a global quantity, which we consider as the output

of the control system. By this, we mean the controller does

not have any information about the individual cells in the

WeB18.2
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Fig. 6. The control block diagram.

colony. Rather, a global quantity, for example, the fraction

of induced cells in the population, is fed into the controller.

The control goal is to make the output track a given reference

trajectory or attain a desired level.

Feedback control of a group of Markov chains by adjusting

the transition rates has been studied, for example in [17].

There, the plant is a group of artificial muscle cells that can

switch between contracting and noncontracting states.

Recall the two state Markov chain model of the bacteria.

We denote the probability of finding the cell at time t in

the induced state as xhi(t), and in the uninduced state as

xlo(t). The evolution of the variables xhi and xlo satisfies

differential equation (3). Suppose that we have N cells, and

for each cell, we introduce an output/observation map

yi
t =

{

yhi, if the i-th cell is induced at time t,
ylo, if the i-th cell is uninduced at time t.

(4)

with yhi and ylo both fixed real numbers. Obviously
{

yi
t

}

i∈{1,...,N}
are random processes. Furthermore, we de-

note the average output across the population as another

random process ȳN
t ,

ȳN
t :=

1

N

N
∑

i=1

yi
t.

Notice that we explicitly write down the dependency of the

average output on the size of the population.

Suppose that we are given a control problem, namely we

want to make ȳt track a certain given trajectory η(t). We

propose the following solution. Consider the following model

of control system

d

dt

[

x1

x2

]

=

[

−λ1(u) λ2(u)
λ1(u) −λ2(u)

] [

x1

x2

]

,

y(t) = ylox1(t) + yhix2(t)

Suppose that we have an output feedback law

u(t) = f(y(t)), (5)

such that the closed loop system

d

dt

[

x1

x2

]

=

[

−λ1(f(y)) λ2(f(y))
λ1(f(y)) −λ2(f(y))

] [

x1

x2

]

, (6)

[

x1(0)
x2(0)

]

=

[

x1,0

x2,0

]

, y(t) = ylox1(t) + yhix2(t), (7)

produces the output trajectory

y(t) = η(t). (8)

We can state the following theorem about the effect of a

feedback control law on the behavior of the system.

Theorem 3.1: If we apply the following feedback

Te(t) = f(ȳt),

on a colony of N cells with independently identically dis-

tributed initial states,
[

xlo(0)
xhi(0)

]

=

[

x1,0

x2,0

]

,

then the expected value of ȳt satisfies

lim
N→∞

EȳN
t = η(t). (9)

Because of space limitation, we refer the reader to [10]

for a proof of Theorem 3.1. This theorem provides us with

a guarantee that if we design a suitable output feedback law

based on the model (3), implementing the feedback law on

the colony of N cells will make the expected value of the

average output EȳN
t as N tends to infinity.

In the remainder of the paper we shall address the follow-

ing control problem. Given the control architecture in 6, we

want to design a controller such that the fraction of induced

cells attains a certain level, for example 50%. Declaring the

fraction of induced cells as output is equivalent to setting

ylo = 0 and yhi = 1.

Before we proceed to propose a feedback control algo-

rithm, notice that the equilibria of (3) is given by:

d

dt

[

xlo

xhi

]

=

[

−λ1(Te) λ2(Te)
λ1(Te) −λ2(Te)

] [

xlo

xhi

]

= 0,

xhi =
λ1(Te)

λ2(Te)
xlo,

such that the fraction of induced cells at the equilibria is

given by

n =
λ1(Te)

λ1(Te) + λ2(Te)
. (10)

Figure 7 captures the relation between the transition rates

λ1 and λ2, and the external concentration of TMG. Notice

that λ1 is a monotonously increasing function of Te, while

λ2 is monotonously decreasing. Also notice that at Te = 1.4
µM, λ2 is about 9 times bigger than λ1, while at Te = 2
µM λ1 is about 4.5 times bigger than λ2. Therefore, if the

external concentration of TMG is kept at 1.4 µM, the fraction

of induced cells is going to converge to around 10%, while

if the external concentration of TMG is kept at 2 µM, the

fraction of induced cells is going to converge to around 80%.

Based on this knowledge, we propose the following simple

on-off feedback control strategy.

On-off controller. The external concentration can assume

only two values, Tlo = 1.4 µM and Thi = 2 µM. If

the fraction of induced cells, ȳt, is higher than 0.52, then

Te = Tlo. If ȳt is less than 0.48 then Te = Thi. If ȳt is

between 0.48 - 0.52, then Te is kept at its current value. We

therefore create a deadzone that will prevent the controller

from switching indeterminately around the desired level of

ȳt = 0.5.
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Fig. 8. The hybrid automaton representing the flow controller. The value
of k is chosen such that the time constant of the exponential is 10 minutes
(k = 0.1).

The on-off controller algorithm assumes that the external

concentration of TMG can change between Tlo and Thi in-

stantaneously. This is not physically feasible if the controller

is to be actually implemented. We therefore propose another

controller that is more feasible.

Flow controller. The controller that we propose is essen-

tially a hybrid system with two modes of dynamics. The

continuous dynamics of the first mode, high, is such that

the concentration of Te converges exponentially to Thi, while

in the other mode, low, Te converges exponentially to Tlo.

The scheme of the dynamics is shown in Figure 8. If the

fraction of induced cells, ȳt, is higher than 0.52, then the

controller is switched to the low mode. If ȳt is less than

0.48 then the controller is switched to the high mode. If

ȳt is between 0.48 - 0.52, then Te is kept at its current

value. Again, here we create a deadzone that will prevent the

controller from switching indeterminately around the desired

level of ȳt = 0.5.

Actuation in the flow controller is indeed physically

feasible, since we assume that the change in the external

concentration of TMG is done gradually in the order of

minutes. Sensing of the fraction of induction is also possible

to implement. One way of doing it is by inserting a new

gene in the DNA of the bacteria in the lac operon. As the

genes in the operon gets expressed, the new gene produces

gfp, a fluorescent protein that emits green light [18]. The

amount of emitted light can be used as an indication of the

concentration of proteins in the cell, which in turn determines

if the cell is classified as induced or uninduced.

Theorem 3.1 provides us with a convergence guarantee if

the controller is a static feedback controller, which is not the

case with the controllers that we propose. Nevertheless, in

the following section we present some simulation results that
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Fig. 9. Simulation results using the on-off controller. Left: Fraction
of induced cells. Here the simulation is initiated at two different initial
conditions. The dashed lines indicate the deadzone between 48% and 52%.
Right: The level of Te for both simulations. For clarity, the Te trajectory
of the fully induced initial condition is plotted higher.
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Fig. 10. Simulation results using the flow controller. Left: Fraction
of induced cells. Here the simulation is initiated at two different initial
conditions. The dashed lines indicate the deadzone between 48% and 52%.
Right: The level of Te for both simulations. For clarity, the Te trajectory
of the fully induced initial condition is plotted higher.

show that the controllers indeed function as intended. Estab-

lishing a stronger convergence proof for dynamic feedback

controller is one of the our future research goals.

IV. SIMULATION RESULTS

In this section, we present some simulation results on the

application of the two controllers proposed in the previous

section to a colony of bacteria with 1000 cells. Figure 9

shows the simulation results with two initial conditions,

fully induced and fully uninduced colony, when the on-off

controller is used. We can see that the desired fraction of

activation of 50% can be attained and maintained within the

deadzone. On the right side of Figure 9 we can see the level

of Te switches between Tlo and Thi in both simulations.

The same simulations are repeated with the flow controller

and the results are shown in Figure 10. We can see that

the desired fraction of activation of 50% can be attained

and maintained close to the deadzone. The variation of

the fraction of induction is larger than that of the on-off

controller, which can be expected since the flow controller

is more sluggish.

In Figure 11 we can see a dynamic histogram that shows

the distribution of the internal concentration of TMG in the

cells, when the flow controller is used with fully uninduced

initial condition. We can see that initially (at time t =
0) the distribution is concentrated at the bottom level. As

time progresses, a second cluster, which corresponds to the

induced cells appears. After t = 300 minutes, we can see

that the higher cluster moves up and down because of the

modulation of Te, as it is also shown in Figure 10.
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Fig. 11. A dynamic histogram of the distribution of the internal concen-
tration of TMG in the cells. The colony size is 1000 cells. At each time
instant, the classes in the histogram are constructed using 15 equal length
intervals of internal TMG concentration between 0 and 40 µM.

V. CONCLUDING REMARKS

In this paper, we present a comprehensive framework for

abstraction and controller design for the lactose regulation

system of the E. coli bacteria. The abstraction framework is

based on the idea that two stable equilibria of the systems

can be thought of as states of a continuous time Markov

chain, and that the transition rates of the Markov chain can

be obtained through Monte Carlo simulations of the actual

system.

Because of the simplicity of the abstract model and its

demonstrated accuracy in predicting the average behavior of

a colony with many cells, we can use the abstract model as a

building block for designing, for example, a feedback control

system for the biological systems. By feedback control here

we mean influencing the average behavior of the colony

using an environmental variable (external concentration of

TMG) as control actuation. In the (future) implementation,

the role of the flow controller may be played by another

genetically engineered module, such as a toggle switch [5]

that results in the production or consumption of the inducer.

This may be implemented in the same organism or in another

strain which is present in the same bioreactor. Thus, one

might be able to construct a network using specifically

engineered organisms as circuit elements.

Control of a large number of Markov chains by adjusting

the transition rates is quite a versatile framework. For exam-

ple, it has been studied in [17] for artificial muscle fibers.

Considering the generality of the framework, we see potential

application of it in other fields such as active materials

and networked engineering systems with a large number

of autonomous agents such as sensor networks and robotic

swarms [19].

Concluding the discussion in this paper, we point out two

future goals for our research. The first goal is of theoretical

nature, namely, we want to establish a stronger proof of

convergence than Theorem 3.1. By stronger we mean we

want to have a proof of stochastic convergence of the average

output for system with dynamic feedback. The second goal

is very much related to the spirit of this paper, as captured

in Figure 1. We want to develop the upper part of the

hourglass in Figure 1, which means posing and solving more

complicated control problems, for example, various types of

optimal control problems that are relevant to the biological

system, using strategies such as model predictive control.
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