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Finite state abstraction of a stochastic model of the lactose regulation
system of Escherichia coli

Abstract
This paper focuses on the lactose regulation system in Escherichia coli bacteria, one of the most extensively
studied examples of positive feedback in a naturally occurring gene network. State-of-the-art nonlinear
dynamical system models predict a bi-stability phenomenon that is confirmed in experiments. However, such
deterministic models fail to explain experimental observations of spontaneous transition between the two
stable states in the system and the simultaneous occurrence of both steady states in a population of cells. In
this paper, we propose a stochastic model that explains this phenomenon. Furthermore, we also extract a
coarser two-state continuous-time Markov chain as a higher level abstraction of this model, and show that
macroscopic properties are retained in the abstraction.
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Finite state abstraction of a stochastic model
of the lactose regulation system of Escherichia coli

A. Agung Julius, Adam Halasz, Vijay Kumar and George J. Pappas

Abstract— This paper focuses on the lactose regulation system
in Escherichia coli bacteria, one of the most extensively studied
examples of positive feedback in a naturally occurring gene
network. State-of-the-art nonlinear dynamical system models
predict a bi-stability phenomenon that is confirmed in ex-
periments. However, such deterministic models fail to explain
experimental observations of spontaneous transition between
the two stable states in the system and the simultaneous
occurrence of both steady states in a population of cells. In
this paper, we propose a stochastic model that explains this
phenomenon. Furthermore, we also extract a coarser two-state
continuous-time Markov chain as a higher level abstraction of
this model, and show that macroscopic properties are retained
in the abstraction.

I. INTRODUCTION

Systems biology is an effort to use systems theoretic
thinking, coupled with sophisticated computational methods,
to gain better understanding of the functions of biologi-
cal systems. Recent work by Sontag and collaborators [1]
on monotone systems opens the possibility of representing
complicated reaction networks as much simpler networks
of interconnected monotone subsystems. Similarity between
engineering design principles and the organization of a bio-
logical system has been investigated in [2]. Hybrid systems
theory has been applied to multi-cellular networks by Ghosh
and Tomlin [3], and genetic networks by Batt et al [4] as well
as [5]. Stochastic hybrid systems were used to study genetic
networks by Hespanha and Singh [6]. Important progress on
the biochemical mechanism of domineering nonautonomy in
the Drosophila wing has been made using optimization to
tune the parameters of a differential equation based model
[7].

In this paper, we present a stochastic hybrid model for the
lactose regulation system in the Escherichia coli bacteria.
The lactose operon [8] is one of the most extensively studied
examples of positive feedback in a naturally occurring gene
network. Two of its three component genes encode enzymes
(β-galactosidase and permease) which contribute to the syn-
thesis of allolactose which in turn acts as an inducer for the
operon itself. Hysteresis and bistability on the level of the
entire bacterial population was identified early on by Monod
and Pappenheimer [9]. Novick and Weiner [10] discovered
bistability at the level of individual cells by studying the
expression of β-galactosidase in a population of identical
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E. coli cells. They showed that cells were essentially in
one of two discrete states: either fully induced, with enzyme
levels close to maximum or uninduced, with negligible
enzyme levels. The observation of intermediate activity on
the level of the entire population reflects comparably sized
sub-populations of induced and uninduced bacteria.

The population heterogeneity was interpreted by Novick
and Weiner as a result of a bistability of the gene expression
mechanism of individual cells combined with stochastic
fluctuations inherent to bio-molecular processes involving
few molecules. A possibly related and yet unexplained
phenomenon, discovered by Knorre [11] is that of transient
oscillations (of a period on the order of an hour) of β-
galactosidase activity upon diauxic shift from glucose to
lactose medium (and vice versa, [12]).

The notion of autocatalytic gene expression in the lac
system has motivated significant work in the context of
dynamical models, starting from the early sixties [13]. It
was well known that positive feedback and delays can
result in multiple stable equilibrium points and limit cycles,
as is the case in many other biological models. Different
models were proposed to study the conditions for stability,
the possibility of oscillations, and the effect of time delays
due to transcription and translation in the lac system.
This direction of research gradually led to more detailed
dynamical models, which explicitly incorporate all relevant
biochemical processes along with experimentally motivated
kinetic constant values. The work of Yildirim and Mackey
[14] is an example of this new generation of experimentally
grounded dynamical modeling.

While much of the modeling of biochemical reactions
is based on deterministic models with ordinary differential
equations, it is well known that these models do not satis-
factorily explain the behavior of systems with very low con-
centrations in which the continuum model is not applicable.
Methods for stochastic simulations of biochemical reactions
have been developed [15], [16], [17]. Autocatalytic gene
expression has also been studied in the stochastic context,
for example [18]. Recently it has been recognized that
stochastic phenomena may have a crucial role in the fate of
individual cells [19]. Multistability and stochastic transitions
between equilibrium states were found to have a role in the
phenomenon of bacterial persistence [20] and more generally
are seen as an evolutionary strategy for survival in varying
environments [21].

The motivation for a detailed stochastic model of the lac-
tose induction mechanism comes from the work of Ozbudak
et al [22] in which they used fluorescent labelling techniques
allowing in vivo observation of individual cells. They showed
a distinct bimodal distribution of the activity of the lac
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operon in individual cells. Thus, population-averaged con-
tinuous changes with inducer concentration reflect changes
in the relative size of the induced and uninduced populations,
reinforcing the conclusions of Novick and Weiner [10].

The experimental results of Ozbudak et al were well
summarized by a simple empirical model. A more elaborate
model, highlighting the role of individual biochemical pro-
cesses, is desirable. While Yilidirm and Mackey [14] provide
a detailed account of the underlying processes, characterized
by parameters that can be measured independently, their
model can only predict the bulk behavior of a population of
cells. While it predicts bistability and explains the hysteretic
switching between steady states, it does not explain the
bimodal distribution of β-galactosidase [10] and lactose
operon activity [22] that have been experimentally observed.

In this paper we propose a stochastic hybrid model for
the lactose regulation system. Stochasticity in the system
naturally arises due to the low copy numbers of molecules
involved in the reaction within the cell [23], [2]. In this
situation, a model where the reactions are viewed as discrete
Poisson random processes is more accurate than a determin-
istic one [15]. However, due to the incurred computational
cost, we choose to use a model in which only those reactants
with small copy numbers are modeled as discrete quantities,
while the others are modeled as continuous concentrations.

We show that our stochastic hybrid model is able to
reproduce the spontaneous transitions that are impossible
to capture in the deterministic model. Further, the steady
state behavior of a bulk of cells simulated with our model
demonstrates agreement with the predicted equilibria of the
Yildirim-Mackey model. Furthermore, we extract a finite
state abstraction of the hybrid stochastic model, which is
structured as a two-state continuous time Markov chain [24].
We demonstrate that despite of the simplicity of the abstrac-
tion, it can describe the average (macroscopic) behavior of a
colony of E. coli bacteria, each of which is simulated with
the hybrid stochastic model.

The remaining parts of this paper are organized as follows.
The next section is devoted to the deterministic model, as
given by Yildirim-Mackey [14]. In Section 3 we discuss the
proposed hybrid stochastic model of the lactose regulation
system. In Section 4 we describe the numerical simulation
algorithm that we use to simulate the hybrid stochastic
model. The finite state abstraction of the hybrid stochastic
model using a two-state continuous time Markov chain is
explained in Section 5. Finally, Section 6 contains some
conclusions and directions for future work.

II. THE DETERMINISTIC MODEL

Our starting point is the time-delayed ordinary differential
equation (ODE) model proposed in [14], describing the
dynamics of the concentration of five substances that are
involved in the lactose metabolism and its regulation. Briefly,
the mRNA (M) transcribed from the lactose operon is
translated into three different gene products, among them
permease (P ) and β-galactosidase (B). Permease facilitates
the influx of lactose (L) from the exterior and also an
opposing process, equilibrating the concentration of lactose
inside the cell with the external lactose. The enzyme β-

galactosidase has a dual role; it converts lactose to allo-
lactose (A) and also converts allolactose further to glucose
and galactose. The control loop is closed by the effect of
allolactose (A) on the transcription of the lac operon. This
complicated relationship involves substances not explicitely
considered in the Yildirim-Mackey model, and results in the
nonlinear activation function summarized by the first and
second terms in Equation (1a).

The equations of motion are as follows:

dM

dt
= αM

1 + K1(e
−µτM A(t − τM ))n

K + K1(e−µτM A(t − τM ))n
+ Γ0 − γ̃MM, (1a)

dB

dt
= αBe

−µτB M(t − τB) − γ̃BB, (1b)

dA

dt
= αAB

L

KL + L
− βAB

A

KA + A
− γ̃AA, (1c)

dL

dt
= αLP

Le

KLe
+ Le

− βLP
L

KL1
+ L

− βL2
B

L

KL2
+ L

− γ̃LL, (1d)
dP

dt
= αP e

−µ(τP +τB)
M(t − τP − τB) − γ̃P P. (1e)

The symbol Le in equation (1d) signifies the external lactose
concentration. If the system is to be viewed as an input-state
system, then Le can be thought of as an input to the system,
while the other five concentrations are the state variables.
The other symbols in the equation are constant parameters,
given by the following table. Variables without an argument
are taken at time t, time delays are indicated by an explicit
argument, e.g., M(t − τB) is the value of the variable M
delayed with τB .

Value Unit Value Unit
n 2 KLe

0.26 mM
γM 0.411 min−1 γB 8.33 · 10−4 min−1

γA 0.52 min−1 Γ0 7.25 · 10−7 mM/min
K 7200 αM 9.97 · 10−4 mM/min
τB 2.0 min αA 1.76 · 104 min−1

KL1
1.81 mM αB 1.66 · 10−2 min−1

KA 1.95 mM βA 2.15 · 104 min−1

τM 0.1 min KL 9.7 · 10−1 mM
γL 0.0 min−1 γP 0.65 min−1

αL 2880 min−1 αP 10.0 min−1

τP 0.83 min βL1
2.65 · 103 min−1

µ 3.47 · 10−2 min−1 K1 2.52 · 104 (mM)−2

KL2
9.7 · 10−1 mM βL2

2880 min−1

together with the following relations

γ̃M = γM + µ, γ̃B = γB + µ, (2)

γ̃A = γA + µ, γ̃P = γP + µ. , (3)

where µ is the growth rate.
When the value of Le is maintained between 0.03 - 0.06

mM, the system has three equilibria. Two of these equilibria
are stable, giving rise to bistability of the system. Also,
varying the value of Le causes a hysteresis behavior. See
Figure 1 for the illustration.

The mathematical model that we have in (1) is deter-
ministic. It correctly reproduces experimental results [11],
[26] on the timecourse of an upward shift of enzymatic
activity when the initially uninduced system is placed in
a high concentration of external lactose. However, even at
steady state, a bimodal distribution of β-galactosidase [10]
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Fig. 1. The equilibria of the system given by (1), taken from [25]. The
middle range of Le has three branches of equilibria.

as well as operon activity [22] have been observed. In fact,
it is suggested that the bimodal distribution varies depending
on the concentration of external lactose Le, implying quasi-
instantaneous transitions between stable equilibria.

The fact that the model of [25] is not consistent with
the behavior observed at the level of individual cells is not
surprising, since some of the model parameters have been
explicitly chosen to reproduce the macroscopic behavior
observed on a large number of cells. On the other hand,
extensive biochemical work has identified the processes
included in the model (1) as having a role in the observed
phenomenology of the lac operon. In attempting to build
a correct microscopic model, we use the structure of the
Yildirim-Mackey model as a starting point, and investigate
its behavior when stochastic effects are taken into account.

III. THE STOCHASTIC HYBRID MODEL

There are several sources of stochasticity in the biochem-
istry of individual cells [27]. In this paper we will focus
on one major source, intrinsic noise generated by low copy
numbers of molecules. The deterministic ODE model relies
on continuously varying concentrations, which is a good
approximation when the substances are available in huge
molecule numbers. If we consider chemical reactions within
a cell, whose volume is in the order of 10−16 l [28], the
number of molecules involved in the reaction may not be
too large. This is especially the case if the concentration of
the chemical substances is low.

Chemical reactions, at the microscopical level, amount
to creation and breaking up of chemical molecules. These
processes can be modeled as Poisson random processes
[15], [29], whose rates depend on the state of the system,
i.e. the number of molecules in the reaction. In fact, the
reaction rates given by the ODE can be considered as the
rates of the Poisson processes. This is not the only way to
introduce stochasticity to the system. Another approach is
to use an ordinary differential model perturbed by stochastic
noise [30]. However, we argue that modeling the chemical
reactions as Poisson processes is more physically founded.
There has also been previous work where stochasticity is

introduced by modeling chemical reaction as Poisson pro-
cesses [31]. However, the underlying reaction model is based
on empirical observation rather than physical modeling as in
[25].

We develop a hybrid stochastic model for the system.
The model is based on the idea that the messenger RNA
(M) and the β-galactosidase (B) are expressed as molecule
counts that evolve following some Poisson processes, while
the other three substances, allolactose (A), lactose (L), and
permease (P ), are expressed as chemical concentrations that
evolve following deterministic ODE. A similar approach, i.e.
part stochastic and part deterministic simulation for chemical
processes is reported in [23]. The reason behind this idea is
that a fully stochastic model is computationally expensive,
while a hybrid model already demonstrates the stochastic
noise that is lacking in the deterministic model.

We are interested in the phenomenology of a model with
the structure of that in [25], incorporating the presence of
realistic level of noise. The relative importance of stochastic
fluctuations of one concentration will be the largest for
the species with the lowest concentrations. We choose to
discretize M and B, whose concentrations at the uninduced
steady state at a Le = 0.04 mM correspond to values on the
order of one molecule per cell.

We define the conversion constant CN as

CN = 10−16 l ·6.022 · 1023 molecules

mole
· 10−3 M

mM
,

= 6.022 · 104 molecules

mM
.

In terms of stochastic differential equations, our hybrid
stochastic model can be written as follows.

dMt = dM̂t − dM̃t, (4a)

dBt = dB̂t − dB̃t, (4b)
dAt

dt
=

LαA

KL + L

Bt

CN

−
βAAt

KA + At

Bt

CN

− γ̃AAt, (4c)

dLt

dt
=

LeαLPt

KLe
+ Le

−
βLPtLt

KL1
+ Lt

−
βL2

BtLt

KL2
+ Lt

− γ̃LLt,

(4d)

dPt

dt
= αP e−µ(τP +τB) M(t−τP −τB)

CN

− γ̃P Pt. (4e)

Here the processes M̂t and M̃t are the Poisson processes
that are responsible for the creation and breaking up of the
messenger RNA molecules, respectively. Similarly, B̂t and
B̃t are the Poisson processes that are responsible for the
creation and breaking up of the β - galactosidase molecules,
respectively. The rates of these processes are state dependent,
and are given as follows.

λM̂ (t) = CN

[
αM

1 + K1(e
−µτM A(t−τM ))

n

K + K1(e−µτM A(t−τM ))n
+ Γ0

]
,

(5a)

λM̃ (t) = γ̃MMt, (5b)

λB̂(t) = αBe−µτBM(t−τB), (5c)

λB̃(t) = γ̃BBt. (5d)
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IV. THE STOCHASTIC SIMULATION

We simulate the stochastic model (4) using a numerical
scheme similar to the explicit tau-leaping method for Gille-
spie simulation [16], [32]. We pick a constant integration step
δ and discretize equation (4). We use the following notation

M [k] := Mt=kδ, B[k] := Bt=kδ, P [k] := Pt=kδ,

A[k] := At=kδ, L[k] := Lt=kδ.

Since we also have to discretize the time delay, we define

kM :=
⌊τM

δ

⌋
, kB =

⌊τB

δ

⌋
, kP :=

⌊
τB + τP

δ

⌋
, (6)

where

∀x ∈ R+, �x� := max{n ∈ Z | n ≤ x}.

M [k + 1] = M [k] + ∆M̂ [k] − ∆M̃ [k], (7)

B[k + 1] = B[k] + ∆B̂[k] − ∆B̃[k], (8)

A[k + 1] = A[k] + δ

[
LαA

(KL + L)

B[k]

CN

−
βAA[k]

(KA + A[k])

B[k]

CN

− γ̃AA[k]

]
, (9)

L[k + 1] = L[k] + δ

[
αLLe[k]P [k]

KLe
+ Le[k]

−
βLP [k]L[k]

KL1
+ L[k]

−
βL2

B[k]L[k]

KL2
+ L[k]

− γ̃LL[k]

]
, (10)

P [k + 1] = P [k] + δαP e−µ(τP +τB) M [k − kP ]

CN

− δγ̃P P [k]. (11)

The terms ∆M̂ [k], ∆M̃ [k], ∆B̂[k], ∆B̃[k] are the approx-
imation of the increments of the Poisson processes in (4).
For example,

∆M̂ [k] ≈

∫ (k+1)δ

kδ

dM̂t. (12)

In the approximation, these terms are modeled as Poisson
random variables with expectations

E
[
∆M̂ [k]

]
= δCNαM

1 + K1(e
−µτM A[k − kM ])n

K + K1(e−µτM A[k − kM ])n

+ δCNΓ0, (13)

E
[
∆M̃ [k]

]
= δγ̃MM [k], (14)

E
[
∆B̂[k]

]
= δαBe−µτBM [k − kB ], (15)

E
[
∆B̃[k]

]
= δγ̃BB[k]. (16)

One run of the simulation is shown in Figure 2. Here we
begin with the initial condition

M [0] = 2 molecules, B[0] = 2 molecules,

P [0] = 2 · 10−4 mM, A[0] = 0.04 mM, L[0] = 0.35 mM.

Initially we set the level of external lactose concentration
at Le = 2·10−2mM, which will drive the system to the stable
low state (see Figure 1). After 200 minutes, we set the level

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

Time (min)

m
R

N
A

 (
m

ol
ec

ul
es

)

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

Time (min)

β−
ga

la
ct

os
id

as
e 

(m
ol

ec
ul

es
)

0 1000 2000 3000 4000 5000 6000 7000
0

0.005

0.01

0.015

0.02

Time (min)

P
er

m
ea

se
 (

m
M

)

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

Time (min)

A
llo

la
ct

os
e 

(m
M

)

0 1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

Time (min)

La
ct

os
e 

(m
M

)

0 500 1000 1500 2000 2500 3000
0.02

0.03

0.04

0.05

0.06

Time (min)

E
xt

er
na

l L
ac

to
se

 (
m

M
)

Fig. 2. One simulation result. In this plot, we observe that spontaneous
induction occurs 500 minutes after the level of lactose is increased.

Low state High state

λ1(Le)

λ2(Le)

Fig. 3. The two-state continuous time Markov chain model.

of external lactose concentration at Le = 5.5 · 10−2mM.
This will bring the system to the bistability zone. The
deterministic model (1) predicts that the system will remain
in the stable low state. Our simulation shows that indeed this
is the case, however, around 500 minutes later the system is
spontaneously induced to the high state.

V. FINITE STATE ABSTRACTION OF THE STOCHASTIC

MODEL

In this section we discuss a finite state abstraction of the
stochastic model (4). Our goal is to construct an abstraction
of the stochastic model that is simple enough to allow for
fast computation. This is particularly desirable, for example,
when we want to simulate the behavior of a colony of
bacteria. Without the abstraction, we would have to run
multiple copies of the stochastic simulation described in the
previous section which can be computationally expensive.

The abstraction that we choose is a two-state continuous
time Markov chain [24]. The states of the Markov chain
correspond to the low and high stable equilibria of the
systems. The rates of switching between the two states are
given as a function of the external lactose concentration Le.
See Figure 3 for a diagram of the system1.

Although this model is seemingly very simple, we have
a strong reason behind its adoption. We run the simulation
of the full model (given in the previous section) 100 times,
to simulate a colony of 100 cells. The macroscopic behavior
of the colony, which is computed as the average across the

1A method for approximately abstracting stochastic hybrid systems is
presented in [33]. The nonlinear dynamics in this paper makes the im-
plementation of the method computationally challenging. However, it is
noteworthy that there are more systematic ways of abstracting stochastic
hybrid systems.
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Fig. 4. The macroscopic behavior of the colony with 100 bacteria. The
plotted values are taken as the average across 100 samples. The exponential
curve is plotted to show that the macroscopic behavior can be fitted quite
well with a first order dynamics.

100 samples are plotted in Figure 4. We observe that the
behavior can be closely matched with a first order behavior
(an exponential curve).

Given the continuous time Markov chain model as in
Figure 3, we can compute the probability distribution of the
states as follows. Define plo(t) and phi(t) as the probability
of finding the system at time t in the low and high state re-
spectively. The probability distribution satisfies the following
differential equation.

d

dt

[
plo

phi

]
=

[
−λ1(Le) λ2(Le)
λ1(Le) −λ2(Le)

] [
plo

phi

]
. (17)

For the value of Le that we use in the simulation, Le =
5.5 · 10−2mM, the transition from the low state to the high
state is much more likely to happen than the opposite way.
This can be explained by referring to Figure 1. At this value
of Le, in order to transit from high state to low state, the
system has to overcome a much wider potential barrier than
the opposite way. This results in λ2(L2) ≈ 0. Thus, the
solution to (17), assuming that all the cells start in the low
state (plo(0) = 1) is given by (hereafter we do not write
explicitly the dependance of λ1 on Le)

plo(t) = e−λ1t, phi(t) = 1 − e−λ1t. (18)

Let the concentration of one of the substances, the allo-
lactose (A), in the low state and high state be denoted by
Alo and Ahi respectively. Further, let the random process
Aav

t be the average of the value of the allolactose concen-
trations in the colony of 100 cells. Denote the concentration
of allolactose in the i-th cell by Ai

t. Since the processes{
Ai

t

}
, 1 ≤ i ≤ 100 , are mutually independent and iden-

tically distributed, Aav
t is an unbiased estimator for E[Ai

t],
which is given as follows.

E[Ai
t] = Aloe

−λ1t + Ahi

(
1 − e−λ1t

)
, (19)

which tells us that it converges exponentially from Alo to
Ahi. This is what we observe in Figure 4.

Furthermore, the rate of the exponential curve, λ1, should
match 1/τ , which is the mean time to transit from the low
stable state to the high stable state. We compute this time
average from the 100 samples and use its value to compute
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Fig. 5. A block diagram summarizing our approach. Our stochastic hybrid
model and its finite state abstraction qualitatively reproduce experimental
observations. These stochastic models are based on the biochemically
founded deterministic model of Yildirim-Mackey.

the exponent of the curves in Figure 4. We can observe that
the fit is good.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a hybrid stochastic model for the
lactose regulation system in E. coli bacteria. The model is
based on the assumption that when the number of molecules
involved in a reaction is low, the reaction can be modeled as a
Poisson random process, whose rate depends on the number
of molecules. We construct a stochastic simulation for our
model and show that we can reproduce some stochastic
phenomena that are absent in the deterministic model.

Further, we construct a finite state abstraction of the
stochastic hybrid model. The abstraction is in the form of a
two-state continuous time Markov chain, with variable rate.
We show that this is a good abstraction, based on the fact
that the macroscopical behavior of the system is preserved.

Our contribution in this paper can be summarized as
Figure 5. Our stochastic hybrid model matches experimental
data qualitatively, in the sense that it reproduces the spon-
taneous transitions between stable equilibria in the bistable
zone. This is not possible in the deterministic model [14].
The proposed finite state abstraction is faithful to the stochas-
tic hybrid model, in the sense that it exhibits a first order
behavior, which is observed in the macroscopic simulation
of the stochastic hybrid model. Moreover, a similar first order
behavior is also observed in experiments, as reported in [10],
[11], [26].

Our model does not yet reproduce the experimental data
quantitatively. The average switching time computed in
the simulation is one order of magnitude higher than that
consistent with experiments. We hypothesize the following
explanation for this gap.

As it stands now, the kinetics of our stochastic hybrid
model are identical to that of the deterministic Yildirim-
Mackey model [14]. This model describes the bulk behavior
of a population of cells. This is different from the behav-
ior of an individual cell. Consider an experiment where a
population of uninduced cells is placed in a medium with
high inducer concentration. As the results of [10], [11],
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[26] show, the bulk activity will gradually increase over a
timescale of 1-3 hours. The Yildirim-Mackey model correctly
reproduces this phenomenon, with a comparable rise time.
However, this can not be correct for individual cells, which
must be induced significantly faster, since the global increase
of activity reflects increasing numbers of fully induced cells.
An order-of-magnitude estimate of the individual induction
time is the lag between the initial nutritional shift and
the beginning of the quasi-linear increase in bulk activity
observed experimentally which is close to 5-10 minutes.

Based on this hypothesis, we consider reconciling the bio-
chemically founded structure of the Yildirim-Mackey model
with the phenomenology of induction at the single cell level
(as observed in [10], [11], [26] as well as recent results in
[22]), as an interesting future research direction. Our strategy
is to (1) adjust some of the model parameters to reduce
deterministic transition time (2) identify and incorporate
other sources of noise into the stochastic hybrid model.

The simple finite state model obtained in this paper can
be thought of as a building brick for system design and
synthesis in the higher level. Suppose that one is interested
manipulating the macroscopic behavior a colony of bacteria,
then each cell can be modelled as a finite state system. A
control architecture that is oriented for macroscopic behavior
and robust against individual variation can be derived. We are
also interested in studying whether such design paradigm is
relevant for networked engineering systems such as sensor
networks and robotic swarms [35].
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