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Event-Based Haptics and Acceleration Matching: Portraying and
Assessing the Realism of Contact

Abstract
Contact in a typical haptic environment resembles the experience of tapping on soft foam, rather than on a
hard object. Event-based, high-frequency transient forces must be superimposed with traditional proportional
feedback to provide realistic haptic cues at impact. We have developed a new method for matching the
accelerations experienced during real contact, inverting a dynamic model of the device to compute
appropriate force feedback transients. We evaluated this haptic rendering paradigm by conducting a study in
which users blindly rated the realism of tapping on a variety of virtually rendered surfaces as well as on three
real objects. Event-based feedback significantly increased the realism of the virtual surfaces, and the
acceleration matching strategy was rated similarly to a sample of real wood on a foam substrate. This work
provides a new avenue for achieving realism of contact in haptic interactions.
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Abstract

Contact in a typical haptic environment resembles the
experience of tapping on soft foam, rather than on a hard
object. Event-based, high-frequency transient forces must
be superimposed with traditional proportional feedback to
provide realistic haptic cues at impact. We have developed
a new method for matching the accelerations experienced
during real contact, inverting a dynamic model of the device
to compute appropriate force feedback transients. We eval-
uated this haptic rendering paradigm by conducting a study
in which users blindly rated the realism of tapping on a vari-
ety of virtually rendered surfaces as well as on three real ob-
jects. Event-based feedback significantly increased the re-
alism of the virtual surfaces, and the acceleration match-
ing strategy was rated similarly to a sample of real wood
on a foam substrate. This work provides a new avenue for
achieving realism of contact in haptic interactions.

1. Introduction

The field of haptics aims to recreate the experience of
real manipulation by stimulating the user’s complex sense
of touch. Using a pen-like interface attached to a robotic
arm, the user’s motions are mapped into a virtual world, and
appropriate reaction forces are displayed. Ideally, interact-
ing with virtual objects would be as simple and vivid as us-
ing a pen to probe items on your desk. Consider the task of
tapping on a piece of wood, as shown in Figure 1(a). Each
tapping event is described by a sudden change in velocity
with associated acceleration and force spikes, followed by
a continuous force to balance the user’s pressure. The user
determines his or her hand impedance and velocity, but it
is the mass, density, compliance, and damping of the ob-
jects that shape the details of the impact. As such, each tap-
ping response is observed by the user but not actively con-
trolled.
Most haptic algorithms attempt to re-create the expe-

rience of hard contact by measuring the user’s penetra-
tion into a virtual object and producing quasi-static restor-

Figure 1. Real and virtual contact.

ing forces. This strategy is illustrated in Figure 1(b) as
a virtual spring attached to the interface. Finite position
resolution and present computational speeds limit virtual
spring stiffnesses to about 1,000 N/m, but providing realis-
tic high-frequency feedback with this closed-loop approach
would require gains up to 1,000,000 N/m. Thus, the clas-
sic penetration-based approach to haptics is doomed to ren-
der soft, dull contacts devoid of the high-frequency tran-
sients encountered during real manipulation.
We propose the alternative paradigm of event-based hap-

tics to increase the realism of virtual interactions, as de-
scribed in Section 2. Impact transients are vital to the user’s
experience and are entirely pre-specified by the initial con-
ditions of contact, providing a unique signature for every
event.We propose to pre-compute the transients and display
them open-loop when each event is triggered. This strategy
can be executed with a lower servo rate and significantly
lower sensor resolution than would be required for closed-
loop generation of identical transients. Figure 1(c) depicts
this rendering approach, in which the event signature is dis-
played to the user at impact. Section 3 presents our method
for computing force feedback profiles that produce acceler-
ations matched to the experience of real contact.
To validate the concept of event-based haptics and the

method of acceleration matching, we studied user percep-
tion of realism during contact with real and virtual wood, as
detailed in Section 4. Asking users to tap on a range of sam-
ples, we assess several rendering techniques and show that
event-based haptics with acceleration matching can portray
hard contact with significantly more realism than traditional
methods. The results of this study are discussed in Sec-
tion 5, followed by conclusions in Section 6.
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2. Event-Based Haptics

Stylus-based haptic devices promise users the ability to
interact with and feel virtual objects as though the tip of the
pen-like handle were directly touching an equivalent real
object. Honoring the user’s sensitivity to and reliance upon
high-frequency interaction transients, event-based haptics
defines an alternative display strategy for improved realism.
Rather than trying to generate force transients using closed-
loop position feedback, this method uses discrete event trig-
gers to begin playback of pre-computed force histories.
Haptic feedback is particularly crucial when simulating

interactions with rigid virtual objects. While visual feed-
back conveys sufficient information for exploring soft en-
vironments, surface deformations of hard objects are too
small and abrupt to be seen. The dynamics of rigid con-
tact predict two distinct, superimposed forces: a character-
istic high-frequency transient that appears for a short pe-
riod after impact, and a quasi-static, low-frequency force
that opposes penetration over long durations. The shape of
the transient is determined by material properties and ini-
tial user conditions, including grasp configuration and in-
coming velocity. Impact transients generally take the form
of exponentially decaying sinusoids [6, 8], though multiple
resonant modes and intermittent contact may lead to a more
complex response. It is these signals, lasting tens of mil-
liseconds, that allow the user to infer material properties.
Fingertip mechanoreceptors detect signals up to 1 kHz,

with peak sensitivity near 300 Hz [1]. In contrast, humans
cannot move or position their fingertips above 10 Hz. The
asymmetry of human sensory and manipulation bandwidths
leads to a strategy of identifying signature force patterns and
treating them as discrete cognitive events. The human body
takes at least 100 ms to react to tactile stimuli, and higher-
level cognition takes even longer. Consequently, Daniel and
McAree separate haptic feedback into distinct power and in-
formation bands, below and above 30 Hz respectively [2].
Kontarinis and Howe used vibrotactile displays to improve
perception of remote accelerations during teleoperation [4],
and Okamura et al. improved material discrimination by
displaying virtual vibrations in the form of exponentially
decaying sinusoids that were empirically tuned to observed
signals [6]. Rigid virtual environments devoid of such high-
frequency feedback will never feel truly realistic.
Built upon the realization that high-frequency transients

are both vital and uncontrolled, event-based haptics super-
imposes proportional and transient force outputs, as de-
picted in Fig. 2. Equivalent to classic haptic rendering al-
gorithms [9], a force proportional to the user’s penetration
into the virtual object is applied, creating a linear virtual
spring. This feedback channel provides a quasi-static restor-
ing force but cannot generate high-frequency transients.
In the event-based paradigm, proportional feedback is

Proportional
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vin
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Figure 2. Open-loop forces superimpose on
traditional penetration-based feedback.

augmented by the playback of open-loop, high-frequency
force signals at contact. An event is triggered when the user
reaches the surface of a virtual object, and a pre-computed
transient is displayed. Because the shape of the transient de-
pends on material properties as well as impact velocity and
user impedance, a library of transient signals may be uti-
lized. Such a library may be built from physical measure-
ments or based on multi-modal vibration models and anal-
ysis. To achieve true realism, we believe the accelerations
experienced by the user should match real impact acceler-
ation profiles, as described below in Section 3. Regardless
of the method used to pre-determine the transient, its out-
put remains deterministic for the duration of the user’s reac-
tion time and hence does not require continual sensor feed-
back or additional computation.
Beyond providing realistic high-frequency signals,

event-based forces can quickly reduce the user’s momen-
tum into the virtual object. Because momentum scales with
velocity, the transient signal should also scale with the mea-
sured incoming velocity of the user. High-magnitude,
short-duration pulses have been shown to stop the user’s
motion, reduce maximum penetration distance, and in-
crease the perceived stiffness of a virtual environment [3,7].
These benefits are retained by transient signals contain-
ing sharp force spikes, typical of all impacts. Thermal con-
straints prevent the motors used in standard haptic devices
from being driven with high current for long durations,
but transient signals may exceed the steady-state maxi-
mum for short periods of time, enabling far more forceful
momentum cancellation than can be achieved with propor-
tional feedback alone.

3. Acceleration Matching

Event-based haptics applies high-frequency force feed-
back to the user’s hand at the start of contact with a virtual
object. These open-loop signals are played by the device’s
actuators, traveling through its structure to create high-
frequency accelerations at the endpoint. Ideally, these accel-
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erations would match the transients experienced when tap-
ping on the real object that is being emulated by the virtual
environment. In the past, researchers have used decaying
sinusoids [6] and short-duration pulses [3] for the transient
signal. These methods provide the user with high-frequency
accelerations at contact, but their parameters must be hand-
tuned for each device and target object. We have developed
an analytical method for determining the force feedback re-
quired to produce a specified acceleration profile.
The acceleration matching strategy requires hardware

capable of measuring high-frequency accelerations and pro-
ducing high-frequency forces. It centers on characterizing
and inverting the system’s transfer function from force to
acceleration. The inverse model can then be used to trans-
form desired acceleration profiles, which may be difficult
to parametrize, into force feedback commands. By record-
ing accelerations for contact with the same object at a range
of incoming velocities, a force transient library can be as-
sembled for playback to the user during event-based hap-
tic interactions. The steps required to provide acceleration-
matched feedback are detailed in the following sections,
showing results for our experimental testbed.

3.1. Hardware Selection

Systems that can transmit grounded, high-frequency
force signals to the user are most suitable for event-based
haptics. We chose an early Phantom, produced by Sens-
Able Technologies, Inc., to provide an interface for tapping
on both real and virtual objects. The Maxon motors, smooth
cable drive, and stiff linkage elements allow transmission
of high frequency signals, and the motor-shaft-mounted op-
tical encoders enable high-fidelity position measurement.
The Phantom’s distal link was reversed to point up-
ward, and a pen-based stylus was rigidly attached to its
endpoint. Contact forces were rendered with the mo-
tor on the shoulder joint. The stylus was kept vertical by
proportional control on the elbow, and the base was cen-
tered by mechanical stops.
Our setup uses linear current amplifiers from an Immer-

sion Impulse Engine 2000 rather than the lower-bandwidth
pulse-width modulation amplifiers commonly used with
Phantoms. The linear amplifiers provide excellent high-
frequency response, producing full-scale sinusoidal current
at up to 1 kHz with no attenuation or phase lag. One draw-
back of these amplifiers, however, is their 1.4 A maximum
current; the Phantom’s motors can sustain much higher cur-
rent levels for short durations, which would allow for even
stronger event-based cues.
To record endpoint accelerations, we selected an Analog

Devices ADXL150 chip with a bandwidth of 1 kHz and a
range of 50 g. Its small package was attached to the Phan-
tom’s distal link using double-stick tape, and its wires were

routed along the arm. The voltage output of the accelerom-
eter was measured using a National Instruments PCI-1200
card. A desktop computer running RTAI Linux sampled the
accelerometer signal and the Phantom’s encoders at 10 kHz,
commanding feedback forces to the current amplifier at the
same rate. This high servo frequency was chosen to allow
the system to measure and produce accelerations at many
hundreds of Hertz. Once the system was calibrated, soft-
ware gravity compensation was added to allow the Phan-
tom to hold any position during an interaction.

3.2. System Identification

After choosing the hardware, we sought to estimate the
transfer function from commanded force to measured ac-
celeration while the stylus was held by a user. The fidelity
of this model is most important at the high-frequencies
we seek to display, far above the region of intentional hu-
man motion. The multi-element transmission from motor
to endpoint makes it well-suited to non-parametric identi-
fication techniques, which treat the system as a black box.
An empirical transfer function estimate (ETFE) can be ob-
tained by applying a swept sinusoid force signal to the mo-
tor and recording the resulting endpoint acceleration. The
frequency content of these two signals is then compared by
taking the ratio of their discrete Fourier transforms (DFTs)
and examining the resulting magnitude and phase. We have
found this method to be effective at characterizing hap-
tic devices [5], because it elucidates intervening dynamics
without assuming a model structure.
A 2.5 second long swept sinusoid from 10 to 500 Hz

was applied to the system as a user passively held the sty-
lus. Four tests were performed at three force magnitudes
for two users, and results were averaged in the complex do-
main across tests. Fig. 3 presents the six resulting ETFEs,
which match well between users and across force magni-
tudes, especially at high frequency. Small variations are ob-
served between users at low frequency, most likely due to
differences in hand impedance. The device exhibits a res-
onance near 130 Hz and diminishing response thereafter.
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Figure 3. ETFE from force to acceleration.
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A linear seventh-order, relative degree four model with a
0.25 ms time delay was hand-fit to these ETFEs, and its
Bode plot is shown in Fig. 3. Though interpreting its phys-
ical significance is difficult, this empirical model aptly cap-
tures the system’s frequency response under a range of con-
ditions. It was validated in the time domain by playing a va-
riety of event-based transients as a user tapped on a virtual
object. The model’s response matches the measured values
closely, especially at high frequency, leading us to conclude
that a simple, user-invariant dynamic model is useful in de-
scribing this system’s response during haptic interactions.

3.3. Model Inversion

Inverting the system model enables us to determine the
force transient that must be applied to create a specified ac-
celeration profile at the device’s endpoint. We record ac-
celeration for 100 ms following impact between the Phan-
tom and the target substance. This signal is smoothed to re-
move high-frequency electrical noise without altering phase
and then applied to the inverse of the system model, pro-
ducing a raw version of the required force. Low-pass filter-
ing and smoothing, combinedwith high-pass filtering, elim-
inates noise and drift while preserving the force signals in
our frequency range of interest, from 10 to 500 Hz, which
constitute the sensory signature of the impact. The magni-
tude of the force transient is then tapered to zero at the start
and end to ensure smooth superposition. The model inver-
sion process is verified by applying the computed force tran-
sient to the forward model and comparing the model’s pre-
dicted response with the targeted acceleration. Further ver-
ification was obtained by testing the transients on the ac-
tual hardware, supporting the viability of model inversion
for matching virtual feedback to real accelerations.

3.4. Feedback Algorithm

The model inversion process can be used to build a li-
brary of transients for portraying contact with a specific ob-
ject. Each signal is characteristic of the real situation that
produced it, including incoming velocity, hand impedance,
and object contact location. The strongest observed effect
occurs with incoming velocity, , as magnitude increases
and frequencies shift. A velocity-scaled library can be gen-
erated by recording a series of varied contacts with the tar-
get sample. Contact events are identified as crossing of a
position threshold, and the subsequent acceleration signals
are isolated, conditioned, and applied to the inverse model
as described above. After ensuring even distribution of con-
tact velocities, we assemble the remaining transients into an
event-based haptic library.
We constructed a transient library for contact with wood

on a foam substrate, as shown in Fig. 4. Note the significant
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Figure 4. Recorded accelerations and force
transient library for wood on foam.

differences between acceleration and force signals, which
highlight the usefulness of a model-based approach. The
real-time controller loads the library and selects appropriate
transients when contact events occur. The user’s incoming
velocity is compared to those of the library transients, and
a linear combination of the closest signals is selected. This
method of acceleration-matching succeeds at creating con-
tact accelerations that closely resemble those experienced
when tapping on the real sample, but its performance is
best evaluated by comparing its feel to that of tapping on
the target sample. When transients were superimposed with
strong proportional forces, some users reported that the sur-
face felt slightly active. Attenuating the library by a factor of
0.8 eliminated these complaints; future algorithms will ac-
count for superposition during transient generation and will
also consider hand impedance at contact.

4. Assessing Contact Realism

Realism of virtual contact is inherently difficult to quan-
tify and can only be accurately assessed by perceptual tests.
A comparative user study was conducted to analyze the
effectiveness of event-based haptics and the performance
of the force feedback transients produced via acceleration
matching. Subjects rated the realism of tapping on three real
and eight virtual objects. The real objects included samples
of dense balsa wood, soft foam, and dense balsa on a foam
substrate, as shown in Fig. 5. Approximate stiffnesses for
these three real objects are given in Table 1, which con-
tains the parameters used for all test samples. The eight vir-
tual objects were chosen to represent a variety of rendering
algorithms, differentiating between steady-state and tran-
sient effects. The first two controllers provide proportional
feedback alone; the higher gain was tuned to avoid buzzing
from encoder discretization, and the lower gain was set to
half this level. The remaining six virtual samples combine
velocity-scaled transients with either the firm or soft pro-
portional controller, following the event-based paradigm.
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Figure 5. Users blindly tapped on three real
and eight virtual samples using the Phantom.

Wood K = 70,000 N/m
Wood on Foam K = 350 N/m

Foam K = 220 N/m

Firm Proportional K = 680 N/m
Soft Proportional K = 340 N/m

Fixed-Duration Pulse A = 5.7 Ns/m, d = 0.020 s
Decaying Sinusoid* A = 15.9 Ns/m, d = 0.055 s, f = 36.2 Hz

Table 1. Sample Parameters

The three chosen contact signals were a pulse, a decay-
ing sinusoid, and a library of acceleration-matched tran-
sients developed according to the methods presented in Sec-
tion 3. All threewere tuned to emulate the experience of tap-
ping on the combined wood/foam sample because the re-
sponse of wood alone contains higher frequencies that re-
quire actuation power presently beyond the capability of
our amplifiers. Even at low magnitudes, the chosen tran-
sients produced virtual contacts that felt more realistic than
those matched to wood, perhaps because the impact dynam-
ics were more consistent with the low stiffness of the under-
lying proportional controller.
While previous work investigated fixed-magnitude,

varying-duration pulses [3], we chose to use a pulse
of fixed duration and varying magnitude. The dura-
tion of the pulse was tuned to approximately match
the first half-period of the measured acceleration tran-
sient, and its nominal magnitude was tuned by hand. The
frequency of the decaying sinusoid was chosen to be
66 Hz, but unfortunately an error in the testing routine re-
duced its frequency to 36.2 Hz and was not discovered until
the completion of user testing. This parameter change pro-
duced a sinusoid that was poorly matched to the target
sample, and pertinent results are marked with an aster-
isk (*) to remind the reader of this mistake.
User testing was performed on the hardware described in

Section 3.1. A rigid stand was positioned beneath the stylus
for placement of the real samples, as shown in Fig. 5. We

began each experiment by explaining its three phases to the
subject: familiarization with the wood sample, demonstra-
tion of the eleven test samples, and repeated rating of sam-
ple realism. Users were told that they would be presented
with a number of different renderings of the hard, wooden
surface and would be asked to rate, on a scale from one to
seven, how well each sample represented the experience of
tapping on the real piece of wood. Each subject was asked
to repeat the definition of this realism metric before start-
ing the experiment to ensure comprehension.
To isolate the user’s sense of touch, extraneous stim-

uli were removed from the experimental setting. Sitting at
a computer terminal, the user passed his or her right arm
through an opening in a tall barrier to prevent observation
of the device and samples. The user rested his or her el-
bow on a padded armrest to prevent muscle fatigue. The
user was instructed to hold the stylus with a consistent grasp
and to avoid touching the table in order to prevent inadver-
tent transmission of contact vibrations. The user wore head-
phones playing white noise at a high volume to mask the
sounds caused by tapping on the different samples. Sim-
ple text commands were presented on the computer moni-
tor to guide the user through the three phases of the exper-
iment. The operator sat behind the barrier at another com-
puter, monitoring the progress of the experiment and plac-
ing samples beneath the stylus.
During the first phase of the experiment, the user had

an opportunity to tap repeatedly on the real wooden sam-
ple to become familiar with its response. When the user
was done interacting with the wooden sample, the system
transitioned into a demonstration phase, in which each of
the eleven samples, both real and virtual, were presented to
the user once in random order. This phase was included to
allow the user to learn the experimental procedure, which
was replicated in the following testing phase, and to ex-
plore the range of samples before beginning to rate their
realism. Before each tap, the system would move the sty-
lus to a home position above the sample, giving the opera-
tor space to place the next object. Two virtual placeholder
blocks were used so that the operator removed and placed
an item on the stand every trial, regardless of whether the
sample was real or virtual. When the sample was ready, the
user was instructed to tap, both by a visual command on the
monitor and by a recorded voice in the headphones.
The user would then move the stylus down to tap on the

surface of the object, which was always at the same height.
From the time of first impact, they were given five seconds
in which to tap repeatedly on the surface. If they exceeded
the device’s current limit when tapping on a virtual sample,
a low tone sounded in the headphones and the test was re-
turned to the sample pool to be randomly drawn again. Af-
ter five seconds, the device returned to the home position,
and the user was instructed to rate the realism of the sam-
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Figure 6. Realism ratings of the eleven test samples: bars and circles indicate the mean and median
across subjects and tests, and error bars extend one standard deviation from the median.

ple on a scale from one to seven using the keyboard.
Following completion of the demonstration phase, the

user proceeded to the testing phase, wherein each sample
was presented three times in random order, for a total of 33
trials, plus any repeats for saturations. The testing proce-
dure was identical to that of the demonstration phase, and
the entire experiment lasted between ten and fifteen min-
utes. A short debriefing session followed the completion of
the testing, wherein subjects were asked to specify the cri-
teria they had used to evaluate sample realism.

5. Results and Discussion

The user study included nine subjects, ranging in age
from 24 to 31, including three females and six males. Their
level of experience with haptic systems ranged from novice
to near-expert. For each trial, the system recorded the sam-
ple type, testing phase, saturation, the set of incoming tap
velocities, and the user’s realism rating.
Each sample’s average realism rating for valid tests,

pooled across users, is shown in Fig. 6. Each sample was
rated three times by each of the nine subjects, with higher
values indicating higher perceived realism. The average in-
coming velocity, pooled across subjects and valid test-phase
taps, was 0.11 m/s, with a standard deviation of 0.033 m/s.
Users saturated virtual samples an average of five times dur-
ing the testing phase, with a range from zero to eleven. Sat-
urations occurred most frequently for the decaying sinu-
soids and the acceleration-matched library, which both con-
tain large initial force spikes.
Statistically significant differences were found among

the realism ratings given to the eleven samples. The most
highly rated sample was wood, followed by wood on foam
and the acceleration-matched virtual surfaces. The foam
and the two proportional controllers were rated most poorly,
while the pulse and poorly-tuned decaying sinusoid tran-
sients fell in the center of the distribution. To evaluate these

variations, paired t-tests were conducted on user average
ratings for each sample combination, the results of which
are shown graphically in Fig. 7. The p-value gives the prob-
ability that two rating sets stem from indistinguishable pop-
ulations; therefore lower p-values indicate more significant
differences between the ratings, and higher p-values show
that user ratings on the pair of samples were similar.
While the majority of sample rating pairs showed lit-

tle correlation, there were three noticeable exceptions. The
firm and soft acceleration-matched libraries cluster with the
wood on foam sample (pfirm , psoft ); the li-
brary was constructed from transients recorded while tap-
ping on the wood/foam sample, and subjects rated its real-
ism at a level very similar to that of the target sample. This
finding supports the efficacy of the acceleration-matching
technique for mimicking real contact transients using event-
based haptics. Additionally, the strength of the underlying
proportional controller did not significantly affect the real-
ism of the two acceleration-matched samples (p ).
Also note that ratings given to the firm proportional con-
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Figure 7. Paired t-tests on the user average
realism ratings show three clusters.
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Figure 8. Accelerations for contact with sam-
ples at an incoming velocity of 0.11 m/s.

troller were similar to those assigned to foam (p ).
This appraisal of standard haptic rendering methods is con-
sistent with our experience. It is also important to remem-
ber that the frequency of the decaying sinusoids was poorly
matched to the target sample due to an implementation er-
ror; we expect that the intended transient would have been
rated more highly and plan to investigate its relative perfor-
mance in future work.
When asked to name their rating criteria, users listed sev-

eral salient metrics. First among these was whether the sty-
lus came to a sudden stop after contact; we hypothesize that
the foam and the proportional controllers were rated most
poorly because they cannot quickly cancel the user’s incom-
ing momentum. The second commonly mentioned criterion
was the presence of high frequency vibrations at contact.
We can examine the accelerations produced by tapping on
the real and virtual surfaces, as shown in Fig. 8. The three
event-based virtual samples produce high-frequency accel-
erations that are similar to those seen for the wood on foam
and wood objects. Of these three, the acceleration-matched
transient most closely resembles the real signals, which we
hypothesize contributes to its high realism ratings. Third,
users disliked samples that felt bouncy or active. We con-
jecture that some of these comments were due to the poorly
tuned decaying sinusoid, and others stem from variations in
hand inertia and grasp. These user comments and the above
findings support the case for event-based haptics and pro-
vide guidance for its future development.

6. Conclusions

Encouraged by the results of this work, we believe the
paradigm of event-based haptics has the potential to signif-
icantly improve the rendering of hard contact. Its asymmet-
ric structure naturally compliments user capabilities, gener-
ating high-frequency transients by observing low-frequency

user motions. The basic algorithm is user-independent and
does not require changes to device hardware. Meanwhile,
open-loop output precludes the need for high-gain closed-
loop feedback, potentially relaxing requirements for com-
putation rate and sensor resolution.
User evaluations validated the realism of transient over-

lays; in particular, ratings of a force display based on dy-
namic inversion and acceleration matching were rated sim-
ilarly to contact with wood on a softer substrate. We be-
lieve increasing the current available to drive the mecha-
nism will allow us to reproduce the sensation of contact
with even stiffer materials such as metal. Users also judged
classic haptic feedback to be equivalent to real foam, re-
iterating the softness of traditional haptic display. Future
work will investigate the role of hand impedance in con-
tact dynamics, adding the variables of inertia and grasp
strength to the transient generation algorithm. Extrapolat-
ing to three-dimensional surfaces and additional dynamic
effects, we hope event-based haptics will instill authentic-
ity into virtual-reality simulations.
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