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Workspace delineation of cable-actuated parallel manipulators

Abstract
While there is extensive literature available on parallel manipulators in general, there has been much less
attention given to cable-driven parallel manipulators. In this paper, we address the problem of analyzing the
reachable workspace using the tools of semi-definite programming. We build on earlier work [1,2] done using
similar techniques by deriving limiting conditions that allow us to compute analytic expressions for the
boundary of the reachable workspace. We illustrate this computation for a planar parallel manipulator with
four actuators.
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ABSTRACT
While there is extensive literature available on parallel ma-

nipulators in general, there has been much less attention given to
cable-driven parallel manipulators. In this paper, we address the
problem of analyzing the reachable workspace using the tools of
semi-definite programming. We build on earlier work [1,2] done
using similar techniques by deriving limiting conditions that al-
low us to compute analytic expressions for the boundary of the
reachable workspace. We illustrate this computation for a planar
parallel manipulator with four actuators.

INTRODUCTION
There is extensive literature on parallel manipulators go-

ing back to the early work on the Cauchy-Gough-Stewart plat-
form [3, 4]. The book by Merlet [5] provides an excellent re-
view. Much of this literature addresses the kinematic geome-
try of parallel manipulators and the kinematics of closed chain
mechanisms. However, the design of cable driven platforms has
received considerably less attention despite their attractive fea-
tures such as scalability.

Albus et al developed a six degree-of-freedom robot crane
design based around a parallel platform driven by cables [6].
Roberts et al addressed the kinematic analysis of such systems
by presenting a numerical approach for testing whether a given
configuration lies within the reachable workspace [1]. Oh and

�
Address all correspondence to this author.

Agrawal used a similar numerical approach to develop and test
a numerically optimized controller for planning and executing
movements [2]. Takeda and Funabashi addressed the question
of synthesizing such mechanisms to optimize force transmission
characteristics [7].

In this paper, we build on this work by explicitly delineat-
ing the reachable workspace for a cable-driven parallel platform.
Unlike [1, 2], in which the workspace is numerically computed,
we derive limiting conditions that allow us to compute analytical
expressions for the boundary of the reachable workspace, similar
in intent to the general approach used by Husty [8] when solving
the forward kinematics problem for the Cauchy-Gough-Stewart
platform. We illustrate this computation for a planar parallel ma-
nipulator with four actuators.

It is worth noting that the kinematic analysis of platforms
driven by cables is similar to the analysis of multifingered ma-
nipulation in the robotics literature [9,10]. The equilibrium equa-
tions with inequalities on cable tensions are similar to the equa-
tions of equilibrium for the grasped object with constraints on
finger forces. The static and kinematic analysis of such sys-
tems can be reduced to semi-definite programs [11]. A survey of
some of the recent work in semi-definite programming is avail-
able in [12].

In this paper, we first describe the planar parallel manipula-
tor geometry used in our example application. In the next section
we approach the analysis of cable-driven parallel platforms using
the tools of semi-definite programming and give an algorithmic
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Figure 1. GENERAL PLANAR PLATFORM GEOMETRY USED AS AN

EXAMPLE.

procedure for defining the boundary of the reachable workspace.
Finally, we conclude by applying the technique to a four-cable
planar parallel manipulator and demonstrating the flexibility of
our analytic approach.

MODELING
Consider a planar platform held in place by four cables, as

shown in Fig. 1.
The equations of motion for this system can be written as

one matrix equation:

&
ŵ1 ŵ2 ŵ3 ŵ4 ' 3x4 T4x1 ( b3x1 (1)

where the ŵi are unit-length wrench vectors describing the
effect of the forces and calculated about the spatial origin ( ) 0 * 0 +
in Fig. 1). The vector b represents dynamic terms or external
forces.

The exact form of a wrench vector for the system in Fig. 1
is found as:

ŵi ( 1
Ni

wi ( 1
Ni

,-
bix . x . ri cos ) φ / θi +
biy . y . ri sin ) φ / θi +

bix ) ri cos ) φ / θi +0/ x + . biy ) ri sin ) φ / θi +0/ y + 12
(2)

where the normalizing term is:

Ni (43 ) bix . x + 2 /5) biy . y + 2 / r2
i 6�6�6. 2ri 7 ) bix . x + cos ) φ / θi +8/5) biy . y + sin ) φ / θi +:9 (3)

An equivalent problem setup can be performed for a spatial
platform as well; spatial wrench vectors will have three transla-
tional and three rotational components.

If cables are added to the system, additional columns will
be added to the wrench matrix and the tension vector will scale
accordingly.

PROBLEM SETUP/THEORY
Unfortunately, the solution to Eqn. 1 is complicated by one

important facet of this problem: only positive tensions are possi-
ble. The updated problem statement is:

WT ( b * T ; 0 (4)

where the symbol ; denotes that ti < 0 for each component
ti of T. (Likewise, the symbol = would denote that ti > 0 for
each component of T.)

The possibility exists that there is no solution to this prob-
lem, but guidance is available in the form of Farkas’s Lemma
[13]:

Farkas’s Lemma: The system WT ( b * T ; 0 has no solu-
tion if and only if the system W T q ; 0 * bT q ? 0 has a solution.

The geometric interpretation of this lemma is to consider q
as the normal vector of a separating hyperplane. This hyperplane
separates the convex hull formed by positive combinations of the
wrench vectors that make up W from the point defined by b. In-
tuitively, this condition makes sense; the convex hull formed by
the wrench vectors is the space of all possible vectors that could
be formed by WT * T ; 0. If b does not belong to this set, as
demonstrated by the separating hyperplane, then no solution can
exist.

Note that this separation is strict; if b were to lie on the hy-
perplane, then bT q ( 0 and a solution to the first system exists
according to the lemma.

In order to find a solution to Eqn. 4, we must be able
to demonstrate that no separating hyperplane exists according
to Farkas’s Lemma. This can be accomplished using a pro-
cedure taken from Grassmann geometry [14] as applied to ca-
ble/platform systems by Roberts et al [1]. It goes as follows:

1. Extract from W the set of m wrench vectors in @ n . A can-
didate hyperplane can be formed from n . 1 linearly inde-
pendent vectors. For vectors in @ 3 , the normal is given by
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q ( wi � w j; in higher dimensions this normal is given by:

q ( det

����� e1 ����� en
w1 � 1 ����� w1 � n

...
. . .

...
w � n � 1 	
� 1 ����� w � n � 1 	
� n

�
���� (5)

where ei are the canonical basis vectors, and wi j is the ith

component of the jth wrench vector.
2. Verify that the remaining wrench vectors lie on one side

of the hyperplane while the forcing vector b lies on the
other. This is accomplished by verifying that sign � wT

i q ���(
sign � bT q � for all remaining wi not used in forming the
hyperplane. For vectors in @ 3 this procedure involves
checking that sign ��� wi � w j � � wk � �( sign ��� wi � w j � � b �
for all k �( i * j, or, equivalently, that sign � det

&
wi w j wk ' � �(

sign � det
&
wi w j wk ' � . Similarly for higher dimen-

sions, this test becomes sign � det
&
w1 ����� wn � 1 wk ' � �(

sign � det
&
w1 ����� wn � 1 b ' � .

3. Assuming that q was not a separating hyperplane, choose
another set of wrench vectors and repeat step 2. There will

be � m
n . 1 � sets to form planes from and then m . n / 2

determinants to test (m . n / 1 other wrench vectors plus the
forcing vector b).

Assuming that none of the hyperplanes tested were separating
hyperplanes, then Farkas’s Lemma tells us that Eqn. 4 has a
solution.

This procedure can be carried out using analytic forms of
the wrench vectors, such as those given in Eqn. 2, or carried
out directly using a numeric linear programming solver such as
linprog in MATLAB.

The more useful analysis is to consider what configurations
lie on the boundary between solvable and unsolvable systems. As
mentioned before, this will occur when b lies on the hyperplane
given by q since the system has just barely passed the criterion for
solvability. In the context of this hyperplane test, the hyperplane
is formed using vectors from W , and so b must be coplanar with
these vectors. This corresponds to two things happening: all of
the wrench vectors not used in forming the hyperplane lie on one
side of the hyperplane and b lies on the hyperplane (causing the
matrix determinant involving b to evaluate to zero). Since all of
the wrench vectors must non-negatively combine to form b, all of
the wrench vectors not in the hyperplane must have zero magni-
tude. Therefore, the boundaries of the valid configuration space
will correspond to the case when one or more of the tensions in
the cables becomes zero and b is coplanar with the remaining
wrench vectors.

Now consider the case when b ( 0. This could arise in the
planar platform case when gravity is orthogonal to the motion of
the platform. The problem now looks like:

W T ( 0 * T ; 0 (6)

Now, the second system in Farkas’s Lemma will never have
a solution because bT q ( 0 � 0. Therefore Eqn. 6 always has
a solution. Unfortunately, this can always be the trivial solution
T ( 0. Practically speaking, this is unacceptable since it is im-
possible to move a platform from one point to another with zero
tension. Consider a restatement of the problem:

W T ( 0 * T = 0 (7)

To handle this case, we use Stiemke’s theorem [15]:
Stiemke’s Theorem: The system WT ( 0 * T = 0 has no so-

lution if and only if the system W T q ; 0 * W T q �( 0 has a solution.
Again, the geometric interpretation is to consider q as the

normal vector of a hyperplane, but in this case, the hyperplane
is a supporting hyperplane. This means that the convex hull lies
entirely on one side of the plane. The same procedure given pre-
viously will work, but now the goal is to see if all of the vectors
not used to form the candidate hyperplane lie on one side of the
hyperplane. If this is the case, then the hyperplane is supporting
and Eqn. 7 has no solution.

Similarly to the conditions that defined the boundary of solv-
ability for Eqn. 4, the (open) boundary in this problem will oc-
cur when the system barely fails the test of solveability. If several
wrenches lie on the supporting hyperplane but one or more lie to-
gether on one side, then setting the magnitudes of those wrenches
to zero might still yield a non-negative tension solution where the
tension is not identically zero. Such a solution will not satisfy
Eqn. 7, but still provides an acceptable solution to Eqn. 6 and
thus could be considered as the boundary. Just as before, this
boundary will correspond to one or more tensions being set to
zero and then solving the reduced system.

This strict-solution result is important because it represents
a sufficient condition for the existence of a solution to the general
problem represented by Eqn. 4. To see this, consider the form of
a general solution to WT ( b:

T ( Tp / Nc (8)

where Tp is the particular (least-squares) solution and N is
the matrix of null vectors of W . If Eqn. 7 has a solution, then
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this solution represents a vector in the null space of and can be
expressed by Nc using a multiple of some unit c. Now, since this
vector is strictly positive, it can be arbitrarily scaled so that any
negative components of Tp are canceled out by the addition. The
desired solution T ; 0 is then obtained.

Since the existence of a solution to Eqn. 7 guarantees that
Eqn. 4 has a solution, the forcing term b is free to vary and the
platform can resist arbitrary wrenches.

In order to give a physical significance to all of this the-
ory, consider the consequences of Farkas’s Lemma and Stiemke’s
Theorem with the interpretation of the vector q as a twist. This
is entirely appropriate because all of this work has dealt with
wrenches, and wrenches and twists are complementary [9]. For
a wrench w and twist q, the quantity wT q represents the work
done by the wrench for the motion described by the twist. There-
fore the condition W T q ; 0 says that there is a motion described
by a twist, q, such that the work done by all of the wrenches
is non-negative. Likewise, bT q ? 0 says that the work done by
the forcing wrench for this same motion is strictly negative. The
work done cannot be both positive and negative and so the orig-
inal system has no solution. For the Stiemke’s Theorem condi-
tions, if W T q ; 0 and at least one wT

i q �( 0, then there is a motion
such that the system of wrenches does positive work. But since
there is no forcing wrench, the total work done must be zero in
order for a solution to exist.

APPLICATION TO THE PLANAR PARALLEL MANIPU-
LATOR

In order to illustrate the use of Farkas’s Lemma and
Stiemke’s Theorem, we now present an example using the planar
platform geometry introduced earlier. Beginning with an ana-
lytic form for the wrenches, as given by Eqn. 2, we apply the
separating hyperplane search procedure to form a set of analytic
conditions that a platform configuration must satisfy in order for
a positive tension solution to exist. Using these, we generate
plots to visualize the valid configuration space.

Our example platform has four cables and therefore four
wrenches to deal with. If we can use Stiemke’s Theorem to prove
that a solution exists to Eqn. 7, then we know that a solution ex-
ists to the general problem given by Eqn. 4. This proof requires
that no supporting hyperplane can be found or, equivalently, that
every hyperplane is separating.

For the planar platform geometry, each wrench looks like a
vector in @ 3 , and we can form planes using pairs of vectors. We

can form � 4
2 � ( 6 different planes and then test 4 . 3 / 1 ( 2

other wrench vectors against each plane to determine if the plane
is separating or not. For each plane, two determinants can be
formed, and the signs of the determinants must be opposite if the
plane is separating. This leads to six comparisons, but some of
these are redundant. Now, we define four determinants, one for

Table 1. SUMMARY OF THE DETERMINANT SIGN TEST AND EQUIV-

ALENT REPRESENTATION

sign ) det 7 A 9 + �( sign ) det 7B 9 + � sign ) A + �( sign ) B +
w1 * w2 * w3 w1 * w2 * w4 D4 D3

w1 * w3 * w2 w1 * w3 * w4 . D4 D2

w1 * w4 * w2 w1 * w4 * w3 . D3 . D2

w2 * w3 * w1 w2 * w3 * w4 D4 D1

w2 * w4 * w1 w2 * w4 * w3 D3 . D1

w3 * w4 * w1 w3 * w4 * w2 D2 D1

each combination of three wrench vectors:

D4 ( det
&
w1 w2 w3 '

D3 ( det
&
w1 w2 w4 '

D2 ( det
&
w1 w3 w4 '

D1 ( det
&
w2 w3 w4 ' (9)

There are two things to note: first, the subscript of D tells
which wrench has been dropped to form this submatrix of W ;
second, these wrench vectors are not normalized. Since the im-
portant information we are looking for is the relative directions
of the vectors, all we care about is the sign of the determinants;
the magnitude is irrelevant and can be ignored. This greatly sim-
plifies the analytic form of each determinant.

Now recall that swapping columns inside the determinants
has the effect of changing the sign of the determinant. Using this
fact, the full enumeration of the six tests is summarized in Tab.
1 and then rewritten using the defined determinants. It is easy to
verify that these six tests are self-consistent.

These six constraints really simplify to three: D1 and D2

must have opposite signs; D1 and D3 must have the same sign;
and D1 and D4 must have opposite signs. If all three constraints
are satisfied, then a solution exists to Eqn. 7; therefore, a solution
exists to Eqn. 4.

These three constraints can be rewritten as three inequalities:

D1D2 ? 0
D1D3 > 0
D1D4 ? 0

(10)

Once again, the magnitudes of the determinants are unim-
portant.
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It is important to realize that, for a fixed geometry, this is re-
ally an analytic set of inequalities whose functions involve pow-
ers of x * y * cos ) φ + , and sin ) φ + . In order to create polynomial
equations, a change of variable can be performed:

u ( tan ) φ
2 +

cos ) φ + ( 1 � u2

1 � u2

sin ) φ + ( 2u
1 � u2

(11)

This change will make the functions polynomials of order
12; the highest power of x and y and is 4, and the highest power
of u is 8. This can be seen from the analytic form of the quantities
D1 * D2 * D3 * D4 given in the appendix. (Each is a polynomial of
x, y, and u, with the highest power of x and y as 2 and the highest
power of u as 4–the leading terms drop out when plugged into
Eqn. 10).

So the workspace boundaries are given by an analytic system
of inequalities:

f1 ) x * y * u + ? 0
f2 ) x * y * u + > 0
f3 ) x * y * u + ? 0

(12)

The region enclosed by these inequalities is the configura-
tion space of valid configurations. The boundary of this region
is given by: D1D2 ( 0, D1D3 ( 0, and D1D4 ( 0. Clearly, at a
boundary, at least one of the determinants is zero, i.e. D1 ( 0,
D2 ( 0, D3 ( 0, or D4 ( 0. We can use this to validate the intu-
ition developed earlier. Consider Eqn. 7 with one of the tensions
set to zero (e.g. cable four):&

ŵ1 ŵ2 ŵ3 ŵ4 ' & t1 t2 t3 0 ' T ( 0
�

&
ŵ1 ŵ2 ŵ3 ' & t1 t2 t3 ' T ( 0

(13)

We still require that t1 * t2 * t3 are not zero, and so the deter-
minant of the wrench submatrix must be identically zero. Since
a zero determinant speaks only of the relative directions of the
component vectors and not the magnitudes, this determinant be-
ing zero is equivalent to D4 ( 0. Therefore the boundary is given
by setting one of the tensions to zero and solving the reduced
system, validating the earlier intuition.

These analytic functions were computed for a square plat-
form with side lengths of 1 meter and cable connections at the
corners. The locations of the cable anchors were chosen as ) 0 * 0 + ,) 0 * 5 + , ) 6 * 5 + , and ) 6 * 0 + , all in meters. The forms of the determi-
nants in Eqn. 9 were found using these dimensions and are given
in the appendix.

By evaluating the inequalities given by Eqn. 12, one can
quickly determine if a given position and angle are valid. Fur-
thermore, these inequalities can be used to visualize the space
of valid configurations. Figures 2–6 are all examples of analysis
based on plotting these inequalities. Please note that although the
jagged lines seem to suggest that these plots have been created
using a numeric routine, they are in fact based on closed-form
equations obtained by applying the theory given earlier. The
jagged lines are a plotting artifact introduced by the patching pro-
cedure of Maple’s implicit plotting function.

Visualizing Eqn. 12 in two dimensions requires fixing one of
the parameters x * y * u and then plotting the others. Each inequal-
ity will produce a valid region; the overlap of the three regions
corresponding to the three inequalities will produce the complete
valid region. For example, Fig. 2 shows the three regions cor-
responding to u ( 0 6 015. The overlap of these three regions is
shown in Fig. 3 and corresponds to the valid ) x * y + configura-
tions given this angle.

Figure 4 shows the valid region with u ( 0. Notice that if
the platform is not rotated, any configuration where the platform
corners do not cross the anchor boundaries is valid.

As the platform orientation is changed slightly, there is a
large change in the valid configuration space. To see this more
clearly, Fig. 5 shows a plot of Eqn. 12 with the position fixed at) 2 * 2 6 5 + and only varying the platform angle. The angles which
lead to solutions are shown by the highlighted portion of the u-
axis.

Parametric studies can be done as well. Suppose that one of
the cable anchors can be moved around during operation in or-
der to ensure that all tensions are positive. For a given platform
position and angle, the inequalities will become functions of bix

and biy, where i denotes which cable anchor is moveable. Figure
6 shows two examples of valid anchor placements for fixed plat-
form position and angle. Given the form of the wrench vectors
in Eqn. 2 and their linear dependence on anchor position, the
roughly linear boundaries for the valid anchor positions are to be
expected.

CONCLUSIONS
We approached the problem of evaluating the reachable

workspace for a cable-driven parallel platform by using the tools
of semi-definite programming to obtain analytic expressions for
the boundaries of this workspace. Starting with a general state-
ment of the problem, we applied Farkas’s Lemma to provide the
necessary and sufficient condition for a solution to exist. This
condition required that there was no hyperplane that separated
the convex hull formed by the cable wrench vectors and the forc-
ing wrench. In order to assess if this was the case, we presented
an algebraic procedure to find such a hyperplane. We then ex-
tended this method to finding the sufficient condition for ensuring
that the parallel platform could resist an arbitrary applied wrench.
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Figure 2. PLOTS SHOWING ) x * y + REGIONS THAT SATISFIY THE IN-
DIVIDUAL INEQUALITIES IN EQN. 12. PLATFORM ANGLE IS FIXED

AT u ( 0 6 015.
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Figure 3. PLOT SHOWING ) x * y + REGION THAT SATISFIES ALL OF

THE INEQUALITIES IN EQN. 12. PLATFORM ANGLE IS FIXED AT u (
0 6 015.
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Figure 4. PLOT SHOWING ) x * y + REGION THAT SATISFIES ALL OF

THE INEQUALITIES IN EQN. 12. PLATFORM ANGLE IS FIXED AT u (
0.

Throughout this discussion, we used geometric intuition to qual-
itatively describe the boundaries of the reachable workspace in
the context of the semi-definite programming techniques used.
Finally, we applied the hyperplane search procedure to a four-
cable planar parallel platform and obtained the analytic expres-
sions describing the boundaries of the reachable workspace. This
quantitative description of the boundaries matched the intuitive
description given earlier.
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MATELY TO u � 7 . 0 6 03 * 0 6 03 9 .
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Appendix: Analytic Form of Non-Normalized Determi-
nants

The determinants given in Eqn. 9 are quite large if left in
fully symbolic form. To reduce their size, we present them eval-
uated for an anchor placement of b1x ( 0 * b1y ( 0 * b2x ( 0 * b2y (
5 * b3x ( 6 * b3y ( 5 * b4x ( 6 * b4y ( 0 and a platform shape of
r1 ( r2 ( r3 ( r4 ( 1 ��� 2 * θ1 ( 5π � 4 * θ2 ( 3π � 4 * θ3 ( π � 4 * θ4 (
7π � 4. (See Fig. 1 as reference.)

D1 ( � 1
1 / u2 � 2 � � . 13

2
y . 11

2
x / yx / 143

4 � u4/ � 133
2

/ 59x . 10x2 / 61y . 12y2 � u3 /5) . 11 / x / y + u2/ � . 10x2 / 61x / 59y . 12y2 . 111
2 � u / � 11

2
y . yx . 99

4
/ 9

2
x ���

(14)

D2 ( � 1
1 / u2 � 2 � � yx / 1

2
x . 13

2
y . 13

4 � u4/ � . 10x2 / 59x / 143
2 . 12y2 / 59y � u3 /5) 6 / y . x + u2/ � . 121

2 . 10x2 / 61y / 61x . 12y2� u / � 11
2

y . yx / 1
2

x . 11
4 ���

(15)

D3 ( � 1
1 / u2 � 2 � � 1

2
y / 1

4
/ 1

2
x / yx � u4/ � 131

2
/ 59y / 61x . 10x2 . 12y2 � u3 /5) . x . y + u2/ � . 10x2 / 61y . 12y2 / 59x . 109

2 � u . � 1
4 . yx / 1

2
x / 1

2
y ���

(16)

D4 ( � 1
1 / u2 � 2 � � yx / 1

2
y . 11

2
x . 11

4 � u4/ � 121
2

/ 61x . 10x2 . 12y2 / 61y � u3 / ) . y / x / 5 + u2/ � 59x . 12y2 . 10x2 . 99
2
/ 59y � u / � 1

2
y . yx / 9

2
x . 9

4 ���
(17)

where u ( tan � φ
2 � and ) x * y * φ + are the position and orien-

tation of the planar platform.

8 Copyright c
�

2004 by ASME


	University of Pennsylvania
	ScholarlyCommons
	September 2004

	Workspace delineation of cable-actuated parallel manipulators
	Ethan Stump
	R. Vijay Kumar
	Recommended Citation

	Workspace delineation of cable-actuated parallel manipulators
	Abstract
	Comments


	tmp.1120681000.pdf.CHF2d

