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Visual Servoing of a UGV from a UAV using Differential Flatness

Abstract
In this paper the problem of controlling the motion of a nonholonomic vehicle along a desired trajectory
using observations from an overhead camera is considered. The control problem is formulated in the image
plane. We show that the system in the image plane is differentially flat and use this property to generate
effective control strategies using only visual feedback. Simulation results illustrate the methodology and show
robustness to errors in the camera calibration parameters.
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Abstract-In this paper the problem of contmlling the 
motion of a nonholonomic vehicle along a decired trajectory 
using observations from an overhead camera is considered. 
The control problem is formulated in the image plane. We 
show that the system in the image plane is differentially Rat 
and use this property to generate effective control strategies 
using only visual feedback. Simulation results illustrate the 
methodology and show robustness to errors in the camera 
calibration parameters. 

1. INTRODUCT~ON 

Visual servoing, i.e. the use of feedback from a camera 
or a network of cameras, has been used increasingly in the 
last few years for the development of control algorithms 
such as motion control for mobile robots [7], robot ma- 
nipulation tasks [ I l l  and remote surveillance tasks [131. 
Visual servoing is particularly relevant for the control of 
Eye-in-hand systems in manipulation tasks. The work in 
this area can be classified into one of two approaches 
- position based and image based control systems [l], 
[6] .  In a position based (or 3D visual servoing) control 
system features are extracted from the image and used in 
conjunction with a geometric model of the target and the 
known camera model to estimate the target’s pose with 
respect to the camera. Control inputs are computed based 
on the errors in the estimated pose space thus making 
camera calibration necessary for reliable control. In the 
image based (or 2D visual servoing) approach, controls 
are computed directly on the basis of image features, 
thus reducing errors due to sensor modeling and camera 
calibration. However the design of the controller in this 
case is harder since the plant is highly nonlinear [61. 
Taking advantage of 2 0  and 30 visual servoing techniques 
is the approach called 2-IR D visual servoing. This 
approach is claimed to be more robust with respect to 
calibration errors, though it is also more sensitive to image 
noise if image features are used to compute control inputs 

In contrast to the papers mentioned above which mostly 
deal with kinematic models, visual feedback can also be 
combined with systems with second order dynamics. Ma, 
KoSeFkl and Sastry [7] used visual servoing techniques 
to control the motion of a car based on information 

[SI. 

obtained from a camera mounted on the vehicle. Zhang 
and Ostrowski’s [13] used visual servoing techniques for 
the control of an unmanned blimp. Finally, Cowan and 
Koditschek [3] used navigation functions on the image 
plane to design image-based servo algorithms to guide a 
planar convex rigid body to a static goal for all initial 
conditions within the camera’s workspace. 

This paper is motivated by applications where one 
may want to control a UGV or a fleet of UGVs from 
overhead cameras, possibly mounted on UAVs. This is 
in contrast to the work discussed above in which the 
camera is physically attached to the robot. Specifically, 
we address the visual servoing of car like robots from 
an overhead camera that may be mounted on a UAV. We 
exploit the well-known property of dierential &mess for 
nonholonomic car-like robots [lo]. Roughly speaking, any 
system is differentially flat if one can find a set of outputs 
(which is equal in number to the set of inputs) such that all 
the states of the system and all the inputs for the system 
can be expressed in terms of these outputs and their higher 
derivatives. In other words, all the states and inputs of 
the system can be expressed in terms of the flat outputs 
without integration. In our system, the inputs are the usual 
angular and linear velocities for the robot but the feedback 
is provided via the positions of a reference point on the car 
seen in the image of an overhead camera. We show that 
the system is differentially flat with the flat outputs being 
the image coordinates of the reference point. We show tbat 
the visual-servoing problem can be easily solved using this 
framework and provide simulation results to illustrate our 
methodology. 

We briefly describe the visual servoing problem and 
the paradigm of differential flatness in Section U. We 
establish in Section III that the system dynamics, when 
transferred to the image plane, possesses the property of 
differential flatness. Thus, a controller can be designed in 
the flat space using methods from linear systems theory 
and then mapped back into the real world. These ideas are 
demonstrated in Section IV. Some results from simulation 
both for systems with and without parametric uncertainties 
are presented in Section V. Finally, Section VI discusses 
the advantages and limitations of our approach and our 
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future work in this area 

11. BACKGROUND 

This paper addresses a strategy for image- based control 
of the position and orientation of a moving vehicle (or 
vehicles) based on images obtained from remotely located 
vehicles. Figure 1 shows an example of such a situation. 

In Figure 1, the camera C is attached to an overhead 
blimp such that it is able to see two objects on the ground, 
namely the robot and its target. The robot kinematics are 
subject to non- holonomic constraints. It has no on-board 
cameras that enable it to see the world around it. In tbis 
framework of motion planning and control, a controller 
is designed for the robot in the image plane and these 
controls are then transferred into the world frame in order 
to enable the robot to follow the desired trajectory. In 
Section III we show that the visual servoing problem can 
be formulated as a differentially flat system. 

The basic idea of a differentially flat system was in- 
troduced by Fliess et. al [5]. A differentially flat system 
is suited for trajectory generation tasks [I21 including 
real time feasible trajectoq generation in the presence 
of inequality constraints [4]. Mathematically, a nonlinear 
system 

2 = f(z,u) (1) 
2/ = Ms) (2) 

Zf = Zf("," ,C, i i , . . .  , U @ ) )  (3) 

is differentially flat if we can find flat outputs 

such that 

z = "("f,if,if,... ,@) (4) 

U = U ( Z f , i f , Z f , . . .  ,Zr t P) ) ( 5 )  

zf is called the flat output which might or might not be 
the same as y, the tracking output. As represented above 
in Eqs. (4) and (51, the states and the input variables of 
the system are expressed in terms of the flat outputs and 
their higher derivatives. Murray et. al [lo] provide many 
examples of mechanical systems that are differentially 
flat. As shown by Nieuwstadt and Murray [12], it is 
relatively simple to generate trajectories for differentially 
flat systems, even when there are inequality constraints on 
the state [41. 

111. VISUAL SERVOING AND DIFFERENTIAL FLATNESS 

A. Imaging Model 
Let w e ( ~ , y , l ) ~  denote the homogeneous coordi- 

nates of a point on tbe ground plane and c = (u,v, l)T 
denotes the coordinates of the projection of w in the 
image. It is easy to show that w and c are related by 
a projective transformation G. This can be expressed as 

Fig. 1. 
by a remote observer 

A representation of a vehicle k i n g  guided dong a desired path 

c 0: Gw, GeGL(3)  (6) 
J W  0: Hc (7) 

where H = G-l. 
Let the matrices G and H be represented in terms 

of their columns as G = (G' G2 G3)  and H = 
(H' H2 H 3 )  respectively. similarly, let the rows 
of G and H be represented as (GI GZ G3)T and 
(HI Hz H3) respectively. Replacing the proportion- 
ality signs in (7) by equalities we get 

T 

w = XHc (8) 

where X = &. Similarly, from (6) we obtain 

G1 .w 
G3.w 
GZ.W 
G3.w 

U = -  

v = -  

Differentiating (9) with respect to time yields 

Using the expression for w from (8) we get 
. (G3.(XHc))(Gi .W) - (Gi.(XHc))(Gs.W) 
U =  . (12) 

(Gs.(XHC))~ 
From (6) and (7) it can be shown that G3.(Hc) = 

. c = 1. Using this fact, the expression for A, 
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and simplifying (12) we get 

h = (H3 .c)(Gi.W - u(G~.W)]  

Similarly 

ir = (H3 . c)[Gz.W - ZI(G~.W)]  

These expressions can be written compactly as 

where w = ( z , y , O ) T .  This can be rewritten as 

Note that H3, the third row of H, can be expressed in 
terms of the columns of G as 

G' x GZ 
(G3) .  (G' x G z )  

H3 = 

Also, it must be noted that f = (H3 . c)  is a scalar 
that varies with U and U. The expression for image frame 
velocities, h and ir, given in Equation 17 is bilinear in U 

and D and linear in j. and y. 

B. The Vehicle Model 
The kinematic car or the unicycle is represented by 

x = U'COSQ 

y = ulsin$ 

i = U 2  (19) 

where u1 and u2 are the forward and angular velocities of 
the robt  respectively. It can be shown to be a differentially 
flat system with the coordinates of the center of the rear 
axle, (x,y) 1 (yi,y2), being the flat outputs. We next 
show that if the image coordinates of the center of the 
rear axle, ( . ,U) ,  are chosen as the flat outputs, we can 
express the states of the system, (I, y, 6) and the system 
inputs, (u1,uZ) in terms of ( . ,U) .  (&,6) and (ii,u). This 
enables ns to transfer the original control problem into 
the image plane, obtain a flat space representation for the 
control problem in the image plane, solve the trajectory 
tracking control problem in the flat space using linear 
control techniques and then use the inverse mapping to 
obtain red world control inputs to enable the rohot to 
track the desired trajectory. 

To establish the propeay of differential flatness, first 
notice that the states (x,y) can be expressed in terms of 
(.,U) using (8). Next, note that (17) can be written in a 
drift-free form in the image plane as 

(?) = F  (i) 

where 

(21) 
1 
x F E - M (G' G 2 )  

Thus, ( 9 )  = F-' (t) (23) 

This enables us to write the third state Q as the ratio of 
the expressions for 8 and y. Specifically, 

&(-M*G') + B(M1G') 
u ( M ~ G ~ )  - 6(MiG2) tan$= , (24) 

Thc inpurs u1 and uz can also be expressed in terms of 
U ,  U and their higher derivatives (npto the second order). 
Squaring and adding the expressions for x and 8, we get 

where 

6' = (pi(-MzG1) fd(MiG'))' + (U(MzG2) - U(MiG2))' 
(26) 

and u(u,v)  is a nonzero polynomial term. Similarly, 
differentiating (24) and simplifying the resulting ex- 
pression gives us an expression for the other input 
uz = -1. Thus, the variables (2, y, 6, el, uz) 
are expressed m terms of the flat outputs (U, U) and their 
higher derivatives, except at u1 = 0. Thus the system 
given by (9, 10, 19) is differentially flat, except for the 
singularity at UI = 0. 

U1 

IV. THE CONTROL SCHEME AND SIMULATIONS 
As a consequence of the previous flamess result, the 

system is fully linearizable by dynamic feedback [9] in 
the image plane. Differentiating (17) with respect to time 
once again so that the second input uz also appears in the 
dynamics of the system, we obtain 

or 
(!) = T e) + (al) a2 (::) (27) 

where.v = ( U ~ , V Z ) ~  are the inputs to the system in the 
flat space. T is a (2x2) matrix whose elements, like ai 
and as. are scalars dependent on the position, (u,u), of 
the robot in the image, the calibration matrix G, the input 
u1 and the orientation Q of the robot in the real world, as 
obtained from (24). The system (28) can further be written 
in a compact form as 

i = A s + B v  (29) 
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where z I (Z1rZ2,Z3,Zp)T = (u ,G ,~ ,c )~ .  Further, the 
structure of the system (29) looks l i e  

21 = 22 

22 = U1 (30) 
23 = Zq 

2 4  = U2 (31) 

Thus, given a desired trajectory of the form 
( Z l d ( t ) , Z g ! ( t ) )  in the flat space, one can choose the 
controller in the flat space to be of the form 

U l ( t )  = i l d ( t ) - k l ( i l d ( t )  - i l ( t ) ) - k O ( Z l d ( t ) - Z l ( t ) )  

uz(t) = n , ( t ) - - k ~ ( i , ( t ) - t 3 ( t ) ) - k Z ( a d ( t ) - z 3 ( t ) )  (33) 

From (17) it can be observed that ( t l d ( t ) , i 3 d ( t ) )  a 
( & d ( t ) , & ( t ) )  Can be expressed aS 

sm- 

ulI. - 
i - ~~ 

W .  

,m 

where ( Z d ( t ) , Y d ( t ) )  is the desired real world trajectory, 
and c d  = ( u d ( t ) , V d ( t ) , l )  is the homogeneous desired 
i m g e  coordinates. Once these controls are chosen, (27) 
can be used to compute the controls in the real world, i.e. 
the controls, in terms of forward and angular velocities 
that will be required to drive the robot along a desired 
trajectory. Specifically, it leads to 

. . . . . . . . . . . . .  

. . . :  ...I . : .. : 

. . .  . . . . . . .  

. . . . . . . . . . . . . . . . . . .  ..:.. . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 ,m zm 9m &m sm Em 7m sm 

It must be noted, however, that while the control laws 
(32) involve the states (zl,z2,z~,zq), only the states 
( ~ 1 ~ 2 3 )  are directly measured by the camera. Thus, in 
order to use these controllers to control the robot's motion 
a partial state observer or a full state observer will also 
have to be designed in order to estimate the states zz (= 
il) and zq (= &). Having transformed the problem from 
its original nonlinear structure to a linear framework, the 
task of designing a linear state observer in the flat space 
can be accomplished using linear system theory. The rate 
of convergence of the estimator can be controlled so that 
the estimated state approaches the actual state at a desired 
rate by a proper choice of the observer gain matrix [2]. 

V. SIMULATION RESULTS 
In this section we present some results obtained by 

simulating the controller described earlier controlling the 
motion of a robot along desired trajectories. Though the 
desired trajectoly is specified (such as a circle or an 
ellipse or a path generated by a motion planner), the 
starting position and orientation of the robot in the real 
world is chosen arbitrarily, the only constraint being that 
it should lie within the camera's field of view. The full 
state observer described briefly above is used to establish 
the state vector. 

. . . . . . . . . . . . . . . . . . . . . . . .  7 

Figure 2 shows the path traced by the robot, as seen in 
the image, under the influence of the controller designed 
using the procedure described earlier. The starting position 
of the robot is indicated by a cross-hair and it can be seen 
that the robot does not start on the desired trajectory but 
converges to the desired trajectory. 

Another example is shown in Figure 3. In this case 
too, the robot's initial position and orientation in the real 
world are indicated by the line and the cross- hairs. The 
forward and angular velocities of the robot as computed 
by the estimator are shown in Figure 4 for the time that 
the robot is in motion. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-2 
4 -IS -t 4 6  0 0 5  I 3.5 2 

Fig. 3. 
in the real world 

The robot path (dol-dash) and the desired elliptical trajectory 

By introducing uncertainties in the calibration matrix 
we can analyze the robustness of the visual feedback con- 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . i  . . .  

Fig. 4. 
the desired trajectory in Fig. 3 

The forward and angular velocities of the m b t  while tracltlng 

Jm. 

troller. We simulate uncertainties by errors in the intrinsic 
parameters such as the camera focal length and the offsets 
in the retinal coordinate system. Figure 5 shows the path 
traced by the robot as seen in the image along with the 
desired path. The figure shows that the controller tries to 
track a desired trajectory inspite of a 10% uncertainty in 
these intrinsic parameters. 

Simulations were also canied for robot control in the 
presence of motion of the camera with respect to the 
ground plane. The camera motion was characterized by ro- 
tation of 10' in camera orientation (relative to the camera's 
original frame with respect to the world) caused by rota- 
tions about random unit vectors T j  generated continuously 
during simulation while the robot was moving. Figure 6 
shows the results of a sample experiment which illustrates 
controller convergence to the desired path despite camera 
motion. 

VI. DISCUSSION AND FUTURE WORK 

We have formulated the problem of controlling a mobile 
robot with feedback from overhead imagery that can be 
obtained from a UAV. The resulting system is shown 
to be differentially flat, with the flat outputs being the 
coordinates of a reference point on the image plane. 
This allows us to formulate the trajectory generation and 
control problem in the image space, and leverages the 
results of ([4], [SI, [12]) on differentially flat systems. 
Further simulation results show that the system performs 
reasonably well in the presence of uncertainties. For ex- 
ample, Figure 5 shows reasonably good performance even 
when the calibration matrix is inaccurate, while Figure 
6 shows that the path traced by the robot is fairly good 
inspite of errors in the estimate for the overhead camera's 
orientation, as described in Section V. 

. . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  

- :  . . . . . . . .  : . .  .. . . . . . . . .  i: 

c rj 

Jm. 

. . . . . . . . . . . .  . . . . . .  " . '  " :  ' '  :'" 

z m 3 m " a a n o s m  

-~ '" ~ = e !  ..... i . . . . . . . . . .  j 
. . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  

" (Pua.1 

Fig. 5. The robt path solid as seen in the image and the desired image 
plane trajectory in the presence of calibration matrix uncertainties 

. . . . . . . . . . . .  . . . . . . . .  . . . . . . . .  
:;Mtmr,&p.m "" 

: 

xo 1 ; .  . ?$i; .. ;-.. . . .  ' . .  . . ,  

,m . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PJ ua yo em na am 
Y CIA.1 

Fig. 6. The robot path (solid) as seen in the image and the desired 
image plane trajectory in the presence of uncertainties in the eminsic 
parameter matrix 

While simulation results do appear to be encouraging, it 
is important to note that we have not explicitly accounted 
for camera motion. A camera on the UAV will be subject 
to continuous rotations and translations. This will nut only 
result in unknown calibration parameters, hut in addition, 
the calibration parameters will change with camera mo- 
tion. Even if we assume that the dynamics of the camera 
motion is slow compared to the dynamics of the UGV, it 
is necessary to develop an online scheme that will enable 
the estimation of the homography, G .  Our future work 
involves the use of this paradigm in a multi-robot setting, 
where estimates of relative positions of UGVs can be 
shared with the UAV to provide the required information 
for estimating G. 
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