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Design of Body-Grounded Tactile Actuators for Playback of Human
Physical Contact

Abstract
We present four wearable tactile actuators capable of recreating physical sensations commonly experienced in
human interactions, including tapping on, dragging across, squeezing, and twisting an individual’s wrist. In
seeking to create tactile signals that feel natural and are easy to understand, we developed movement control
interfaces to play back each of these forms of actual human physical contact. Through iterative design,
prototyping, programming, and testing, each of these servo-motor-based mechanisms produces a signal that is
gradable in magnitude, can be played in a variety of temporal patterns, is localizable to a small area of skin,
and, for three of the four actuators, has an associated direction. Additionally, we have tried to design toward
many of the characteristics that have made high frequency vibration the most common form of wearable
tactile feedback, including low cost, light weight, comfort, and small size. Bolstered by largely positive
comments from naive users during an informal testing session, we plan to continue improving these devices
for future use in tactile motion guidance.
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Design of Body-Grounded Tactile Actuators
for Playback of Human Physical Contact

Andrew A. Stanley∗ Katherine J. Kuchenbecker†

Haptics Group, GRASP Laboratory
Department of Mechanical Engineering and Applied Mechanics

University of Pennsylvania, Philadelphia, USA

ABSTRACT
We present four wearable tactile actuators capable of recreating
physical sensations commonly experienced in human interactions,
including tapping on, dragging across, squeezing, and twisting an
individual’s wrist. In seeking to create tactile signals that feel nat-
ural and are easy to understand, we developed movement control
interfaces to play back each of these forms of actual human phys-
ical contact. Through iterative design, prototyping, programming,
and testing, each of these servo-motor-based mechanisms produces
a signal that is gradable in magnitude, can be played in a variety
of temporal patterns, is localizable to a small area of skin, and,
for three of the four actuators, has an associated direction. Addi-
tionally, we have tried to design toward many of the characteristics
that have made high frequency vibration the most common form of
wearable tactile feedback, including low cost, light weight, com-
fort, and small size. Bolstered by largely positive comments from
naive users during an informal testing session, we plan to continue
improving these devices for future use in tactile motion guidance.
Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Haptic I/O

1 INTRODUCTION
Since Frank Geldard first suggested using tactile stimulation as a
means of communication in 1960 [6], the sense of touch has devel-
oped into a valuable tool in the advancement of technology. While
auditory and visual cues remain the most conventional methods
of conveying information to a user, a handful of advantages have
propelled the incorporation of tactile cues into various aspects of
human-machine interfaces. The sense of touch allows private com-
munication with a user via contact with the skin, whereas any visual
or auditory events that a user could experience would also be per-
ceptible to anyone else in close proximity. The sense of touch is also
bidirectional in its ability to transmit information about both the
user’s actions on and perceptions of his or her surroundings. Fur-
thermore, overuse of auditory and visual communication is likely to
cloud the user’s awareness and sensitivity to additional cues through
those modalities, making tactile displays more salient and effective
in complex environments [8].
Body-grounded tactile actuators collectively represent a partic-

ularly useful method for the presentation of tactile cues. On the
continuum of haptic system design, they lie between classically
grounded devices, which attach to a static object like a table as
an inertial support, and ungrounded devices, which require no
attachment to generate loads [4]. Devices grounded to the user’s
body apply equal and opposite forces at two separate locations,
generating the illusion of directional torques or forces. In some
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Figure 1: Various forms of human physical contact: tapping, drag-
ging, squeezing, and twisting.

cases, a small, body-grounded actuator with a large enough strap
or grounding region can present the illusion of a single, unbal-
anced force acting at the contact point of the actuator. Thus, the
mechanical design of these actuators is paramount to the creation
of a salient and localizable cue.
Many possible applications of body-grounded tactile actuators

exist, some of which have already been explored in depth by other
researchers. Baumann et al. created prototypes of tapping and
squeezing actuators that successfully emulated human attention-
getting practices in appropriately intrusive manners [3]. These par-
ticular tactors use servo motors to rotate a foam contactor into con-
tact with the user’s wrist or to contract a strap around the user’s
wrist. A system of body-grounded tactors has also been used to cre-
ate a whole-arm tactile display of a virtual or remote environment
to facilitate teleoperation of a robotic arm [12]. This system used
an array of servomotor-actuated paddles along the length of the arm
to indicate contact in the virtual environment. One could also use
tactile signals to help position players on a sports field or soldiers
on a battlefield, utilizing the privacy of these signals in compari-
son to auditory or visual cues in order to gain a competitive advan-
tage [1]. Rotational skin stretch represents an additional interesting
method for tactile displays [2]. One application of this wearable
device would allow an amputee to feel the location or movement of
a prosthesis rather than relying on vision alone [14].
The idea of tactile motion guidance may be the most compelling

application of body-grounded actuators; a set of tactile cues from
a wearable device could help a user learn, relearn, or perfect a
vital or complex motion. The tactile interaction for kinesthetic
learning (TIKL) system combines a Vicon motion capture system
with Tactaid vibrotactile actuators to replace an instructor’s tactile
guidance for learning new motor skills [10]. While the TIKL
system generated noticeable performance gains in hinge joint
movements, the researchers noted that the vibrotactile stimulation
created little to no improvement in performance in rotational joints,
and they suggested further research to find adequate methods of



feedback on these joints. Another project in our own lab has
combined magnetic tracking with vibrotactile feedback in a sleeve
aimed at helping stroke patients rehabilitate any upper-body motor
skills they may have lost [9]. The user attempts to follow basic
arm movements and receives both visual feedback on a monitor
and tactile feedback from eccentric mass motors vibrating on
specific locations of the arm based on the calculated position
error. Vibration and rotational skin stretch have also been used in
combination to train walking movements [11].
Ideally, the perception and comprehension of any of these tactile

cues would come easily to the user. To this end, cues that are natu-
ral or that a user experiences regularly, such as the examples shown
in Fig. 1, may hold particular value. Some work has already been
done to facilitate tactile interactions like these between humans and
humanoid robots, for example allowing a robot to identify and even
verbalize the type of physical contact that it receives [7]. An ac-
tuator movement based on real physical human contact could also
help maintain the sensation of another person being present with
an unaccompanied user. For example, the Tap-Tap employs a set
of solenoids and vibration motors integrated throughout a wearable
scarf-like garment [5]. By recording patterns of humans tapping
on momentary switches and activating the solenoids and vibration
motors at these recorded intervals, this garment can simulate the
presence and touch of a therapist, family member, or loved one. In
the broader context of human-computer interfaces, recording and
playing back actions that attempt to convey a certain emotion, such
as urgency or comfort, could allow easier transmission of human
communications in teleconferencing, games, or virtual worlds, e.g.,
[13]. This goal of creating natural touch sensations inspired our ob-
jective of creating a variety of actuators that could play back actual
human physical contact, expanding upon Baumann et al.’s work of
emulating human attention-getting practices [3].
The next section overviews more traditional approaches to tactile

feedback, and Section 3 presents our design paradigm for body-
grounded tactile actuators. Sections 4 through 7 detail our tapping,
dragging, squeezing, and twisting devices. After a brief evaluation
with user comments in Section 8, we conclude and discuss avenues
for future work in Section 9.

2 BACKGROUND
Current wearable haptic systems most commonly use vibrotactile
stimulation to transmit information to a human. Here we highlight
important aspects of this category of tactile actuator, based on the
excellent recent review by Jones and Sarter [8]. The human skin
has an optimal sensitivity for vibration ranging from 150 to 300 Hz
and some sensitivity for vibration from 0.4 to 1000 Hz . Amplitude
thresholds at 200 Hertz range from 0.7 microns on the fingertips
to 14 microns in the abdominal region, making it relatively easy to
mechanically create perceptible tactile stimuli at this frequency. To
communicate information via vibration, one can create both spatial
and temporal patterns based on the varying durations of sequen-
tial vibrations in different motors, with increased duration correlat-
ing with increased perceptibility up to bursts of 500 ms. The most
common vibrotactile actuators in use are eccentric mass motors and
voice coil actuators. Both shafted and shaftless eccentric mass mo-
tors rotate an offset mass to create vibrations at a frequency that is
coupled with the magnitude, while voice-coil-based tactors such as
C2s and Tactaids are typically operated at a single frequency near
200 Hz. A variety of characteristics account for the popularity of
these devices, including their relatively low cost, small size, ease of
mounting, and high perceptibility.
Despite the widespread use of vibration as a haptic cue in every-

thing from cell phones to video game controllers, it has a variety
of limitations that inspire research into alternative sensations. The
mechanoreceptors that detect vibrations have large receptive fields,
and the vibrations themselves tend to propagate through the region

of skin surrounding the actuator. Thus, tactors need to be spaced
far from one another for a user to be able to identify which tac-
tor is vibrating. The localizability of these tactors can be improved
by placing them near natural reference points like the elbow, wrist,
or navel. Furthermore, a change in vibration intensity could affect
the human perception of both amplitude and frequency, limiting the
effectiveness of varying either as a means of communication.
Another potential disadvantage of the use of vibration as a tactile

signal results from the fact that sustained high-frequency vibration
is not a phenomenon commonly encountered in the natural world.
Sustained single frequency vibration cues can thus feel artificial and
annoying. In addition, a masking effect may occur in which a stim-
ulus might not be perceived due to the introduction of another stim-
ulus immediately preceding or following it or at a different location.
While vibrations continue to play an important role in tactile feed-
back systems, these factors encouraged us to seek other methods of
communicating information to a human via the skin.

3 PARADIGM
This project aspired to explore a variety of ways to stimulate the
human sense of touch beyond the traditional vibrotactile approach.
We aimed to create devices that can deliver detectable sensations
without overly compromising the characteristics that have made
high frequency vibration such a universal form of tactile feedback.
By approaching the topic of tactile feedback with an open mind,
we also sought to find ways to improve on some of the shortcom-
ings of vibrotactile feedback, including poor localization and arti-
ficiality. Our approach entailed building actuator modules that are
lightweight, comfortable to wear, reliable, inexpensive, and do not
interfere with basic movements. We wanted the sensations they cre-
ate to be pain-free, localizable, quickly varying, and to cause a fast
temporal response from the user.
We hoped to create signals that could vary in both intensity and

frequency without the grading of one affecting the perception of
the other. Inspired by the application of tactile motion guidance,
we preferred signals that had a direction that would be easy for the
user to interpret and that would cause a natural movement response
of a body part such as an arm or a leg. These factors led us to
focus on mechanical stimulation that could be felt on hairy skin
rather than the fingertips. Furthermore, we did not pursue thermal
or electrocutaneous stimulation because we were concerned about
the naturalness and safety of these cues. Thermal stimulation has
the added drawback of a low temporal bandwidth.
To facilitate fast prototyping and keep costs low, we chose to

design all of our tactile actuators around the Futaba S3114 Micro
Servo. Its favorable characteristics include its small mass of 7.8 g,
small size of 5.59 cm3, low cost of fifteen US dollars, and high
strength with a maximum torque output of 0.167 Nm. This servo
has a maximum velocity of 600 ◦/s when powered at 6.0 V. As this
servo operates in position tracking mode based on a 50 Hz pulse-
width modulation signal, its target position can be updated every
twenty milliseconds, which is fast compared to human motion out-
put capabilities but slow compared to the high-frequency vibrotac-
tile sensitivity described above.
The auditory noise from these actuators is one of their main dis-

advantages when compared to vibration motors. While the physical
contact of an end-effector against the user’s skin does not produce
much noise, the servos themselves do, as also noted by [3]. The
noise of the servos varies with their speed and torque, occasionally
creating auditory cues that are more salient than the haptic cues.
This issue could most likely be resolved in future versions by using
higher quality DC motors or by adding sound dampening material
around the servos.
We controlled these servos using a Phidget Advanced Servo 8-

Motor USB board with a Matlab interface. By sending the servo a
new position command incrementally every twenty milliseconds,



we achieved relatively smooth, highly controllable motions over
longer intervals. Furthermore, this servo controller includes a func-
tion to read the current it supplies to the servo at any given time,
allowing us to write calibration scripts for some of the actuators so
they could better fit a variety of users. A sudden increase in cur-
rent indicates that the servo is encountering resistance and there-
fore has probably either just come into contact with the user’s skin
or reached its maximum position. One should note, though, that
the provided servo current readings are unitless and noisy. We also
used a Phidget 8/8/8 Interface Kit with eight analog inputs, eight
digital inputs, and eight digital outputs, allowing us to record volt-
ages from a variety of potentiometers and force sensing resistors in
Matlab. By combining the capabilities of these two Phidget boards,
we could monitor the analog inputs during the twenty millisecond
periods between each servo update, allowing real-time responses in
the servo movement trajectories based upon these readings.
With this infrastructure in place, we created four distinct tac-

tile actuators with a versatile set of functions. Our design process
included significant efforts in informal user testing and iterative de-
sign. While these actuators can all be controlled to track hand-
programmed trajectories, we wanted them to be easy for lay people
to test out so that we could start exploring some of our envisioned
applications. Thus, for each one we also designed a unique move-
ment control interface to allow the playback of actual human mo-
tion as a tactile sensation.

4 TAPPER
The first actuator we designed was the tapper, as shown in Fig. 2.
It consists of two crank-slider linkages, one attached to each end
of the white plastic piece that interfaces with the motor shaft, also
known as the servo horn. The two pointed pistons move up and
down in their cylinders to make contact with the user’s skin. The
acrylic linkage elements were manufactured on a Universal Laser
Systems laser cutter. All other custom parts for our actuators were
designed using SolidWorks and printed in ABS plastic on a Dimen-
sion Elite 3D Printer. The servo attaches to the mounting piece via
press fit and was further secured with magnet wire. We make these
attachments with twisted magnet wire rather than more typical fas-
teners because magnet wire can hold parts together where screws
either would not fit or would not be readily accessible. Magnet
wire is also inexpensive and can hold its form under large loads
despite being very malleable. An elastic strap holds the mounting
piece onto the user’s wrist.
The resulting one-degree-of-freedom (one-DOF) system allows

equal and opposite linear motion of the two pistons through the ro-
tation of the servo horn. The pistons come into and out of contact
with the user’s skin with varying intensity. The two contact loca-
tions are separated by 30.5 mm. A calibration script allows the sys-
tem to find an appropriate maximum amplitude for each side of the
tapper to accommodate different wrist shapes. When run, the script
commands the servo to move back and forth from its starting posi-
tion to positions at incrementally increasing amplitudes. The servo
holds its position for 1 second at each of the amplitudes while mea-

Figure 2: Left: The tapper on a user’s wrist. Right: A SolidWorks
rendering showing the mechanism by which it functions.
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Figure 3: Current readings at each servo position during a sample
calibration of the tapper. Positive and negative servo positions in-
dicate tapping with the left and right pistons, respectively. Regions
shaded green indicate holding positions.

suring the required current at a rate of 50 Hz. If the average value of
these fifty current readings is above an empirically tuned threshold,
and if a high enough percentage of these readings surpass a separate
threshold, then the script records that amplitude as the maximum.
The script then repeats for the other piston due to the asymmetry
of the human wrist. A sample plot of servo positions and current
readings from one of these calibrations is shown in Fig. 3.
We used a camera-based motion capture system to measure and

play back human physical contact with the tapper. We recorded
footage of sample users tapping their finger on their own opposite
wrist. To improve visibility, the user wore a black glove with a
small white dot on the fingertip in front of a black background. We
recorded movies in AMCap with a Sentech STC-C33 USB 2.0 color
camera at sixty frames per second (fps). The movies were analyzed
frame by frame in Matlab using the image processing toolbox to
obtain a list of the xy-positions of the white dot’s centroid in each
frame, as demonstrated in the video that accompanies this paper.
We scaled the y-coordinates of these positions to fit the ampli-

tude range of the tapper in degrees, and we temporally interpolated
the data points to fit the 60 fps video to the 50 Hz timing of the
servo’s motion commands. Our program can then play back the
human tapping motions and patterns by commanding the tapper’s
servo to a new position at each pulse of the PWM signal to match
the position of the dot at that time in the movie. With some mod-
ifications, our system could even drive the servo in real time by
visually analyzing the human tapping motion as it occurs.

5 DRAGGER
The second body-grounded tactile actuator we designed is called
the dragger and is shown in Fig.4. It was originally designed to
simulate someone dragging his or her fingertip across a user’s skin,
but it can actually do more than drag. This two-DOF system con-
sists of a pair of servos mounted in series. The first servo enables
vertical motion of the contacting piece, and the second servo en-
ables horizontal motion. The first servo on its own could provide
a single tapping motion. An elastic strap holds a 3D-printed base
against the user’s wrist, and the first servo press-fits into this piece.
The second servo press-fits into a separate 3D-printed part that at-
taches rigidly to the horn of the first servo, secured with magnet
wire. A third 3D-printed piece attaches to the horn of the second
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Figure 4: Left: The dragger on a user’s wrist. Right: A SolidWorks
rendering of its mechanism with coordinate axes.
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Figure 5: Top: Overlaid frames from a sample video to be played
back on the dragger; a green dot marks the centroid of the white dot
on the fingertip in each frame. Bottom: a plot of the resulting servo
angles from the x-y positions found in the video.

servo and serves to contact the user with its rounded tip.
We mounted the servos with their axes orthogonal to one an-

other, allowing the tip to reach a range of positions in 3D that lie
on the surface of an ellipsoid. The coordinate system is centered
along the axis of the first servo at the point closest to the axis of
the second servo, as shown in Fig. 4. The x-axis coincides with the
axis of the first servo, and the z-axis runs parallel to the axis of the
second servo in its starting position. The equations that govern the
dragger’s kinematics in the xy-coordinate plane are as follows:

x= l2 sin 2 (1)

y=−l2 cos 1 cos 2+ l1 sin( 1+ offset) (2)

The angles 1 and 2 represent the rotation of the first and second
servos, respectively. The lengths l1 = 22.9 mm and l2 = 20.4 mm
are the distances in the z and y directions, respectively, from the
origin to the center of the contacting tip. The value of offset is
4.34◦, as a result of the geometry of the design of the dragger, in
which the axes of the two servos do not intersect.
To make the path of the dragger tip programmable, we wrote a

Matlab script that uses inverse kinematics to calculate the necessary
servo angles to place the tip of the dragger at any xy-position within

Figure 6: The master device for real-time control of the dragger.

its range. The desired value of 2 can be found analytically by
solving equation (1) above. Due to its trigonometry, equation (2)
does not have a simple analytic solution, so we wrote an iterative
algorithm that finds a value for 1 that places the tip within 0.25 mm
of the desired position.
We used a setup very similar to the one used for the tapper to

record and play back human motion on the dragger. For these
videos, both of the user’s arms were covered in black sleeves and
gloves, and the finger with the white dot played out trajectories
across the opposite wrist. By scaling and interpolating both the
x- and y- positions to fit into the x-coordinate range of the dragger
and then moving the y-positions to line up with the user’s wrist, we
were able to play back trajectories of someone dragging a finger
across the user’s wrist in either direction and of someone tapping
sequentially at multiple points across the wrist, as demonstrated in
Fig. 5 and shown in the video that accompanies this paper.
We devised a second method that allows real-time play back of

human motion on the dragger. This setup involved a master-slave
pairing to control the dragger through teleoperation. We designed
and 3D-printed the master device shown in Fig. 6. It has the same
geometry as the dragger, but with long-stemmed potentiometers in
place of the servos. As one user moves the tip of the master around
its workspace, the voltage readings at the wipers of the potentiome-
ters change. These readings are then scaled into corresponding
servo angles, which are commanded to the dragger’s servos at each
pulse of the 50 Hz PWM signal. The dragger tip then moves around
its workspace in the same manner that the master tip is moving.

6 SQUEEZER
We continued our exploration of body-grounded tactile actuators by
creating a squeezer, shown in Fig. 7. The inspiration to build an ac-
tuator that could squeeze the user’s wrist stemmed largely from the
research of Baumann et al. [3]. Our squeezer functions in a sim-
ilar manner to theirs: one servo is mounted onto the user’s wrist
to lengthen and shorten a fixed-length wristband. However, the
mechanisms by which the two devices contract the wristband differ
greatly. Whereas Baumann et al. designed a wire linkage system to
connect each end of the servo horn to either end of the wristband so
that both sides contract with the servo rotation, we chose a simpler
solution: one end of the strap is fixed to the squeezer’s base, and
the other end is connected rigidly to the top of the servo horn.
As with the tapper, the servo press-fits into a 3D-printed mount-

ing piece that straps onto the user’s wrist. A separate 3D-printed
piece connects the servo horn to the other end of the strap. With
this mounting technique, the servo has roughly a sixty degree range
of motion. To achieve the maximum squeezing force, we focused
on locating the strap connection as close to the axis of the servo as
possible. Decreasing this distance shortens the moment arm, lead-
ing to a larger force per unit of torque from the servo. We made the
strap out of a generic hook and loop fastening material. The code
behind the functioning of the squeezer is the simplest programming
of the four actuators we designed, with the angular position of the
servo corresponding directly to the tightening or loosening of the
strap for the servo’s range of motion.
One of the challenges that arose while designing the squeezer



Figure 7: Left: The squeezer attached to a user’s wrist. Right: A
SolidWorks rendering of its mechanical design.
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Figure 8: Sample squeezer data from replaying human motion.

was ensuring that the strap fit correctly on a variety of users, so that
the servo’s range of motion corresponded to the varying degrees
of tightness. Ideally, the end of the range of motion would match
up with the maximum torque of the servo. To accomplish this, we
used a force sensing resistor (FSR) to calibrate the squeezer. This
square-shaped FSR is placed between the user’s wrist and the strap
of the squeezer during the calibration. We created a voltage divider
circuit and used an analog input on the Phidget board to measure
the voltage across the FSR, which was connected between +5V and
a standard 2k resistor to ground. The FSR decreases in resistance
with increasing applied force, resulting in an increase in output volt-
age. We calibrated the FSR using a digital balance.
With this FSR in place, we created a script to calibrate the forces

the squeezer applies for any given strap tightness. The servo in
the squeezer incrementally tightens the strap through its range of
motion, and the script records the force readings through the Phid-
get. If the force applied at the full squeeze is too low, the user is
instructed to tighten the strap by repositioning the hook and loop
fastener. Conversely, if the servo reaches its maximum torque too
early, indicated by the applied force leveling out at the end of the
calibration, the user is instructed to loosen the strap.
We used a second, dot-shaped FSR to record and play back hu-

man physical contact on the squeezer. The script that runs the
squeezer in Matlab reads this analog input value from this FSR dur-
ing the twenty-millisecond periods between each position update of
the servo. It then scales the value onto the range of motion of servo
positions and adjusts the target position accordingly. As a result,
the actuator creates a gradable squeeze that follows the human’s
squeezing motions, strengths, and patterns in real-time. To test the
accuracy and gradability of the squeezer, we ran this script to play
back human contact while simultaneously monitoring the readings
of the square FSR between the squeezer strap and the user’s wrist.
The video that accompanies this paper shows the squeezer in use,
and Fig. 8 shows the readings from the FSR being squeezed, the
resulting servo angle in real-time, and the resulting force from the
squeezer on the user’s wrist.

Figure 9: Left: The twister on a user’s wrist. Right: A SolidWorks
rendering of its mechanical design.

7 TWISTER
The final actuator we built is the twister, as shown in Fig. 9. It
stretches the skin on the underside of the user’s wrist back and forth
with a two-DOF system. Orienting the forearm with the hand palm-
down, two thin elastic bands secure the 3D-printed mounting piece
onto the top of the wrist, permitting the center strap on the under-
side of the forearm to stay loose while the user puts on the twister.
The two servos press fit into the mounting piece on either side of
the wrist, with the servo axes running along the length of the fore-
arm. Our mechanical design allows a range of motion of about 120
degrees for each servo.
In the neutral position, each of the servo horns points outward

from the wrist, holding the center strap up against the underside of
the user’s wrist. The strap fastens around a connection piece on the
end of each servo horn. To twist the user’s wrist clockwise about
the axis of the forearm, both servos rotate clockwise. This moves
the strap connection pieces upward on the left side and downward
on the right, stretching the skin on the underside of the wrist from
right to left. To ensure that the strap does not slide across the user’s
wrist, a layer of foam that has a high coefficient of friction with
skin was sewn into the strap. Since the twister has two degrees of
freedom, it also has the capability to tighten or loosen around the
user’s wrist at any point by rotating both servos upward or down-
ward, respectively.
We created a handle attached to a rotary potentiometer to capture

human twisting motions for playback on the twister. The script em-
ployed in this task functions in a manner very similar to the script
used to play back motion on the squeezer. When wired to the Phid-
get board, the analog reading from the potentiometer correlates lin-
early to the angular position of the handle. The script scales this
value to fit the range of motion of the twister to play back twisting
motions in real time. The video accompanying this paper demon-
strates the twister in use.

8 EVALUATION
All four of our wearable tactile actuators were demonstrated to a
diverse set of users at the University of Pennsylvania Haptics Labo-
ratory Open House on December 10, 2010, to collect informal eval-
uations. Approximately fifty individuals tested the devices and pro-
vided verbal feedback, and fourteen people provided written com-
ments as well. Most users experienced and compared the tactile
sensations from all four devices, but some felt only one or two.
Users were prompted to comment on the quality of the prototypes
in relation to both their comfort and the sensations they create.
Most users focused on the positive aspects of the actuators in

their comments. The tapper was praised for delivering a “strong”
sensation and for being “probably the most effective” of the four
devices. Multiple users found the dragger to be “very intuitive”
and the squeezer to be “very nice.” The squeezer received partic-
ular praise for its playback of human motion, with “good correla-
tion between how hard I was squeezing and how hard I was being
squeezed,” and that “this was a very realistic and comfortable de-
vice. The sensation is very noticeable and not tight or unpleasant.”



For the twister, users found that the “movement on this device is
more subtle but still noticeable and natural considering its inten-
tion,” and that it “really grabs my skin and twists.” With the play-
back of human twisting, users “could really tell which direction the
handle was turning based on the twisting.”
A few users offered criticism and design suggestions for the actu-

ators, sometimes for the same qualities that other users had praised.
Some felt that the tapper was not easy to understand and needed to
be stronger, and some mentioned that the direction of the dragger
was not intuitive to them. Others said that the squeezer “could use
higher pressure,” and that the twister “sensation was weak, [and]
didn’t provide [a] strong impression of the twisting action.” One
user suggested replacing the plastic tip on the dragger “with some-
thing more soft [because it is] harsh on your skin.” Users provided
contrasting opinions regarding which side of the wrist would pro-
vide clearer sensations for the various forms of tactile feedback.
Some comments also proposed a wide range of possible applica-

tions for the tactile actuators, including using the tapper in a video
game or using the dragger and squeezer in conjunction with online
video conferencing to simulate human touch. One user suggested
the devices were promising for motion guidance, stating that the
tapper would be a “great tool to facilitate supination of the fore-
arm,” that the dragger provided “nice feedback for reciprocal fore-
arm rotation,” and that the twister would be a “good way to increase
forearm pronation.” Another user proposed that the dragger could
be used “in respiratory therapy to help pace breathing rate,” drawing
from experience using a similar dragging motion across the wrist of
a recovering heart attack patient in the hospital.

9 CONCLUSIONS AND FUTURE WORK

The iterative design, prototyping, and testing of our tactile actua-
tors has further proven the feasibility of creating tactile sensations
beyond the common, established vibrotactile stimulation. Our four
actuators maintain many of the advantages of vibration for use as
a signal while also improving upon some of its shortcomings, as
discussed below. Though further improvements are necessary, all
of these actuators are relatively small, inexpensive, non-intrusive,
and localizable. In addition, all of the sensations these actuators
produce are gradable in magnitude and can be activated in a variety
of temporal patterns. While vibration motors and voice-coil actua-
tors have only varying degrees of intensity, the tapper, dragger, and
twister produce signals that also have an associated direction, a trait
which could be particularly useful for certain applications, such as
motion guidance. In addition, the signals produced by these actu-
ators do not seem to propagate throughout an entire region of the
user’s skin as vibration does.
The sensations created by each of these actuators also seem to

feel more natural than vibration. While the high-frequency vibra-
tions typically created by eccentric mass motors and voice coil ac-
tuators are rarely encountered in any other situation, tapping, drag-
ging, squeezing, and twisting all represent sensations that humans
experience on a regular basis, even in a world without technology.
By playing back actual human physical contact on each of these
actuators, we have created a set of tactile user experiences that one
could not replicate with vibration.
Along with the noise disadvantages discussed in Section 3, main-

taining the correct form fit for a variety of users throughout a va-
riety of physical motions remains another challenge for the further
development and successful implementation of these actuators. We
noticed that for many users, simply turning or bending the wrist
disrupts the calibration of and sensation from an actuator. Building
actuators to play these sensations on other parts of the body would
require further design and prototyping, and it could potentially fur-
ther interfere with basic user motions.
Looking forward, we hope that these sensations will prove effec-

tive in a variety of motion guidance applications, from stroke pa-

tients rehabilitating their motor skills to athletes refining their form
for a golf swing or weight room exercise. To this effect, we plan
to run a human subject study to compare the effectiveness of these
devices against vibration cues during motion guidance. Finally, we
hope that other valuable applications for these types of tactile sen-
sations and playback of human physical contact will arise as tech-
nology continues to progress.

ACKNOWLEDGEMENTS
The authors thank Karlin Bark for her guidance on designing skin-
stretch actuators as well as her help with the photos and videos
for this paper. This material is based upon work supported by the
National Science Foundation under grant 0915560.

REFERENCES
[1] A. U. Alahakone and S. M. N. A. Senanayake. Vibrotactile feedback

systems: Current trends in rehabilitation, sports and information dis-
play. In Proc. IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, pages 1148–1153, July 2009.

[2] K. Bark, J. Wheeler, P. Shull, J. Savall, and M. Cutkosky. Rotational
skin stretch feedback: A wearable haptic display for motion. IEEE
Transactions on Haptics, 3(3):166–176, July–Sept 2010.

[3] M. A. Baumann, K. E. MacLean, T. W. Hazelton, and A. McKay.
Emulating human attention-getting practices with wearable haptics.
In Proc. IEEE Haptics Symposium, pages 149–156, 2010.

[4] S. J. Biggs and M. A. Srinivasan. Haptic interfaces. In K. Stanney,
editor, Handbook of Virtual Environments: Design, Implementation,
and Applications, Human Factors and Ergonomics, chapter 5, pages
93–115. Lawrence Erlbaum Associates, 2002.

[5] L. Bonanni, J. Lieberman, C. Vaucelle, and O. Zuckerman. TapTap: A
haptic wearable for asynchronous distributed touch therapy. In Proc.
ACMComputer Human Interaction Conference, pages 580–585, April
2006.

[6] F. A. Geldard. Some neglected possibilities of communication. Sci-
ence, 131(3413):1583–1588, May 1960.

[7] H. Iwata and S. Sugano. Human-robot-contact-state identification
based on tactile recognition. IEEE Transactions on Industrial Elec-
tronics, 52(6):1468–1477, December 2005.

[8] L. A. Jones and N. B. Sarter. Tactile displays: Guidance for their de-
sign and application. Human Factors, pages 90–111, February 2008.

[9] P. Kapur, M. Jensen, L. J. Buxbaum, S. A. Jax, and K. J. Kuchen-
becker. Spatially distributed tactile feedback for kinesthetic motion
guidance. In Proc. IEEE Haptics Symposium, pages 519–526, March
2010. Finalist for Best Poster Award.

[10] J. Liebermann and C. Breazeal. TIKL: Development of a wearable
vibrotactile feedback suit for improved human motor learning. IEEE
Transactions on Robotics, 23(5):919–926, October 2007.

[11] P. Shull, K. Lurie, M. Shin, T. Besier, and M. Cutkosky. Haptic gait
retraining for knee osteoarthritis treatment. In Proc. IEEE Haptics
Symposium, pages 409–416, March 2010.

[12] R. Tadakuma and R. D. Howe. A whole-arm tactile display system. In
Proc. IEEE World Haptics Conference, pages 446–451, April 2009.

[13] D. Tsetserukou and A. Neviarouskaya. Innovative real-time commu-
nication system with rich emotional and haptic channels. In A. M. L.
Kappers, J. B. F. van Erp, W. M. B. Tiest, and F. C. T. van der
Helm, editors, Haptics: Generating and Perceiving Tangible Sensa-
tions, Proc. EuroHaptics, Part I, volume 6192 of Lecture Notes in
Computer Science, pages 306–313. Springer, July 2010.

[14] J. Wheeler, K. Bark, J. Savall, and M. Cutkosky. Investigation of ro-
tational skin stretch for proprioceptive feedback with application to
myoelectric systems. IEEE Transactions on Neural Systems and Re-
habilitation Engineering, 18(1):58–66, February 2010.


	University of Pennsylvania
	ScholarlyCommons
	6-2011

	Design of Body-Grounded Tactile Actuators for Playback of Human Physical Contact
	Katherine J. Kuchenbecker
	Andrew A. Stanley
	Recommended Citation

	Design of Body-Grounded Tactile Actuators for Playback of Human Physical Contact
	Abstract
	Comments


	tmp.1341502161.pdf.wfypq

