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Stochastic Modeling and Control of Biological Systems: The Lactose
Regulation System of Escherichia Coli

Abstract
In this paper, we present a comprehensive framework for stochastic modeling, model abstraction, and
controller design for a biological system. The first half of the paper concerns modeling and model abstraction
of the system. Most models in systems biology are deterministic models with ordinary differential equations
in the concentration variables. We present a stochastic hybrid model of the lactose regulation system of E. coli
bacteria that capture important phenomena which cannot be described by continuous deterministic
models.We then show that the resulting stochastic hybrid model can be abstracted into a much simpler model,
a two-state continuous-time Markov chain. The second half of the paper discusses controller design for a
specific architecture. The architecture consists of measurement of a global quantity in a colony of bacteria as
an output feedback and manipulation of global environmental variables as control actuation. We show that
controller design can be performed on the abstracted (Markov chain) model and implementation on the real
model yields the desired result.
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Abstract—In this paper, we present a comprehensive framework
for stochastic modeling, model abstraction, and controller design
for a biological system. The first half of the paper concerns mod-
eling and model abstraction of the system. Most models in systems
biology are deterministic models with ordinary differential equa-
tions in the concentration variables. We present a stochastic hy-
brid model of the lactose regulation system of E. coli bacteria that
capture important phenomena which cannot be described by con-
tinuous deterministic models. We then show that the resulting sto-
chastic hybrid model can be abstracted into a much simpler model,
a two-state continuous-time Markov chain. The second half of the
paper discusses controller design for a specific architecture. The ar-
chitecture consists of measurement of a global quantity in a colony
of bacteria as an output feedback and manipulation of global envi-
ronmental variables as control actuation. We show that controller
design can be performed on the abstracted (Markov chain) model
and implementation on the real model yields the desired result.

Index Terms—Abstraction, biological control systems, simula-
tion, stochastic hybrid system, systems biology.

I. INTRODUCTION

I N THIS paper, we present a framework that consists of
modeling, abstraction, and control of a biological system,

namely, the lactose regulation system of the Escherichia coli
bacteria. The conceptual idea behind the paper is captured
in Fig. 1. The paper addresses two challenges regarding the
lactose regulation system: 1) to develop a model that is struc-
turally correct, based on the known biochemical processes
in the system, and 2) to develop a control framework for
manipulation of large-scale behavior of the system. Roughly
speaking, the paper can be divided into two parts. The first part
corresponds to the lower half of the hourglass in Fig. 1 that
discusses modeling of the regulation system as a stochastic
hybrid system. The model presented in this paper is a slight
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Fig. 1. Hourglass paradigm presented in this paper.

modification of the one presented in our earlier work [1]. We
also discuss how the stochastic hybrid model can be abstracted
into a two-state continuous-time Markov chain and demon-
strate how this abstraction is consistent with the macroscopic
behavior of a colony of bacteria.

The second part of this paper pertains to the upper half of the
hourglass, as it discusses feedback controller synthesis with the
abstract model (two-state continuous-time Markov chain) as the
plant model. We also demonstrate that the controller designed
for the abstract model yields the desired behavior when imple-
mented on the actual system, which is a colony of bacteria. The
control goal, in this case, is to drive a certain amount of bacteria
to an induced state by manipulating some chemical concentra-
tion in the environment.

The first part of the paper thus resides in the domain of bi-
ology/biophysics, where modeling is performed. The second
part of the paper is of a control/engineering nature, where the
problem of controller design and synthesis for a particular con-
trol problem is discussed. The abstract model can be viewed as
an interface between the two domains, where controller design
can be done with the abstract model, without the control engi-
neer having to know about the biology/biophysics aspect of the
system.

The extensive variety of species of living organisms makes it
impossible for biologists to study every one of them extensively.
The fact that many organisms actually share the same opera-
tional principles has enabled biologists to focus on just a handful
of model organisms. The lactose regulation system in E. coli [2]
is one of the most extensively studied examples of positive feed-
back in a naturally occurring gene network. In synthetic biology,
the operon, which encodes the lactose control system, is
often used as a switch to control genes in genetically engineered
systems [3], [4]. The lactose regulation system can thus be con-
sidered as a model for molecular biological systems that exhibits

/ © 2008 IEEE
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multistability. Therefore, the modeling and control framework
that we develop in this paper is meant as a model system for
other biological systems with similar properties. Other impor-
tant phenomena that can be attributed to random behavior of
multistable biomolecular systems include the bacterial persis-
tence to antibiotics [5] and the trigger mechanism of pathogenic
behavior in yeast [6].

A. Control and Cell Biology

Biological systems exhibit many features of complex engi-
neering systems. The origin of system complexity is generally
the presence of multiple regulatory mechanisms such as feed-
back. Among several possible control strategies, feedback
seems to be favored in biological systems [7]. Hierarchies
of feedback loops result in system robustness, performance,
and noise rejection, which are the properties of almost every
biological system. Another key feature of biological systems is
emergence, aggregate behaviors that may not be predicted by
only investigating the individual components or subsystems.
This is the case in the system discussed in this study. The
existence of emergent properties can also be explained by the
presence of control mechanisms [8].

Khammash and El-Samad [7] reviewed models for two dif-
ferent biological systems and showed the necessity of control
actions in order to explain their behavior. Tomlin and Axelrod
[9], referring to [10], stated that, if the heat shock mechanism
can be described and understood in terms of engineering con-
trol principles, it will be informative to apply these principles to
other cellular regulatory mechanisms. Indeed, Yang and Iglesias
[11] showed that a possible source for the biphasic response in
the chemotaxis pathway of Dictyostelium is the presence of a
positive feedback loop.

Synthetic biologists use similar molecular feedback mecha-
nisms to construct toggle switches [3], [12] and oscillators [13].

Feedback theory and other control systems concepts play
an increasing role in personalized medicine, where external
controls are used to influence cellular processes. The need for
treatment procedures that are widely applicable and give satis-
factory clinical results for a variety of individuals with different
steady-state and dynamic responses to the same treatment
emphasizes the use of feedback mechanisms [14]. For every
treatment policy, there is an inevitable tradeoff between cost
function weighting of pathogens, organ health, and the use of
therapeutics. This makes optimal control solutions attractive.
Souza et al. [15] and Kirschner et al. [16] offer an optimal
control approach to HIV treatment. Jung et al. [17] applies
optimal control theory to the treatments in a two-strain tuber-
culosis model. Stengel et al. [18] demonstrated optimal control
solutions to the innate immune response. Another control
method, model-based predictive control, is also advantageous
if accurate models are used in controller synthesis. This is so
because predictive control provides us an estimate of future
behavior. For instance, Parker et al. [19] made a review of
control algorithms for noninvasive monitoring and regulation in
type-I diabetic patients and showed that model-based predictive
control is an attractive choice for blood glucose concentration
regulation. There is a recent attempt to apply external control
to neuropharmacology [20]. Finally, we also find applications

Fig. 2. Lactose network (top) and its modification with the gratuituous inducer
thio-methyl galactosidase (TMG) (bottom).

of control laws to build effective strategies in gene therapies
and tissue engineering [21].

B. Lactose Metabolism Control Network

Refer to the diagram in the upper panel of Fig. 2. Two of the
operon’s component genes encode enzymes ( -galactosi-

dase and permease) which contribute to lactose uptake respec-
tively to the synthesis of allolactose. In turn, allolactose acts as
an inducer for the operon itself.

Hysteresis and bistability on the level of the entire bacterial
population was identified early on by Monod and Pappenheimer
[22]. Novick and Weiner [23] discovered bistability at the level
of individual cells by studying the expression of -galactosi-
dase in a population of identical E. coli cells. They showed that
cells were essentially in one of two discrete states: either fully
induced, with enzyme levels close to maximum, or uninduced,
with negligible enzyme levels. The observation of intermediate
activity on the level of the entire population reflects comparably
sized subpopulations of induced and uninduced bacteria. The
population heterogeneity was interpreted by Novick and Weiner
as a result of a bistability of the gene expression mechanism of
individual cells combined with stochastic fluctuations inherent
to biomolecular processes involving few molecules.

The notion of positive feedback in a genetic network in the
form of autocatalytic gene expression in the system has mo-
tivated significant work in the context of dynamical models,
starting from the early sixties (see the review in [24]). It was
well known that positive feedback and delays can result in mul-
tiple stable equilibrium points and limit cycles, as is the case
in many other biological models. Different models were pro-
posed to study the conditions for stability, the possibility of os-
cillations, and the effect of time delays due to transcription and
translation in the system (see [25] for a review). However,
a significant fraction of this early work would now be catego-
rized as theoretical, as authors were modeling the interactions
with functional dependencies and parameter values that were
not grounded in measurements. As the quality and scope of
available experimental data improved, this direction of research
gradually led to more detailed dynamical models, which explic-
itly incorporated all relevant biochemical processes along with
experimentally motivated kinetic constant values. The work of
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Yildirim and Mackey [26] is an example of this new generation
of experimentally grounded dynamical modeling.

While much of the modeling of biochemical reactions
is based on deterministic models with ordinary differential
equations (ODEs), it is well known that these models do not
satisfactorily explain the behavior of systems with very low
concentrations in which the continuum model is not applicable.
Methods for stochastic simulations of biochemical reactions
have been developed [27]–[29]. Autocatalytic gene expression
has also been studied in the stochastic context for example
[30], [31]. In the past few years, it has been recognized that
stochastic phenomena may have a crucial role in the fate of
individual cells [32]. Multistability and stochastic transitions
between equilibrium states were found to have a role in the
phenomenon of bacterial persistence [5] and, more generally,
are seen as an evolutionary strategy for survival in varying
environments [33].

The motivation for a detailed stochastic model of the lac-
tose induction mechanism comes from the work of the group
of van Oudenaarden [34], [35], in which they used fluorescent
labeling techniques allowing in vivo observation of individual
cells. They showed a distinct bimodal distribution of the ac-
tivity of the lac operon in individual cells. Thus, population-av-
eraged continuous changes with inducer concentration reflect
changes in the relative size of the induced and uninduced popu-
lations, reinforcing the conclusions of Novick and Weiner [23].
The experimental results of Mettetal et al. were well summa-
rized by a simple empirical model. A more elaborate model,
highlighting the role of individual biochemical processes, is de-
sirable. A promising starting point is the model by Yildirim and
Mackey [26]. While it predicts bistability and explains the hys-
teretic switching between steady states, it does not explain the
bimodal distribution of -galactosidase [23] and lactose operon
activity [34] that have been experimentally observed.

This experimental picture raises questions about the meaning
of ODE-based models such as the Yildirim–Mackey model.
This model accounts for the molecular processes responsible
for the observed bistability of the lac operon and consequently
predicts bistability which is indeed exhibited, but on the level
of individual cells. However, for intermediate lactose concen-
trations, both induced and uninduced cells were observed in
hysteresis experiments. This indicates that cells are never truly
confined to either of the two available steady states, but can
“spontaneously” escape and transition into the other equilib-
rium. This calls for taking into account the stochastic nature of
molecular processes in the Yildirim–Mackey model if it is to
be applied to individual cells.

However, the parameter values of the Yildirim–Mackey
model are not necessarily the correct ones to describe the
behavior of individual cells, as the authors themselves caution
at the end of their paper. While some model parameters were
taken from independent measurements, others were fitted
to experimental results. These results, similarly to some of
the independent parameter measurements, were obtained on
large populations of cells. Therefore, the Yildirim–Mackey
model (with its original parameter values) was meant to be
a model of bulk behavior rather than of individual cells.
This bulk interpretation is also problematic. Due to the fact
that cells transition spontaneously between available steady

states, bulk cell populations do not in fact exhibit true
bistability; rather, the two populations eventually equilibrate,
leading to a unique stable bulk steady state for any external
lactose concentration, in stark disagreement with the original
Yildirim–Mackey model.

We are interested in obtaining a model that is consistent with
both the cell-level and the macroscopic phenomenology. This
is a current topic that attracts many systems biologists. See, for
example, the recent work reported in [36]. In this paper, we
construct a stochastic hybrid model for the lactose regulation
system using the work of Yildirim and Mackey as a starting
point. Stochasticity in the system naturally arises due to the low
copy numbers of molecules involved in the reaction within the
cell [10], [37]. In this situation, a model where the reactions are
viewed as discrete Poisson random processes is more accurate
than a deterministic one [27]. However, due to the incurred com-
putational cost, we choose to use a model in which only those re-
actants with small copy numbers are modeled as discrete quanti-
ties, while the others are modeled as continuous concentrations.

We show that our stochastic hybrid model is able to reproduce
the spontaneous transitions that are impossible to capture in
any deterministic model. Further, the steady-state behavior of a
bulk of cells simulated with our model demonstrates agreement
with the predicted equilibria of the Yildirim–Mackey model.
Furthermore, we extract a finite-state abstraction of the hybrid
stochastic model, which is structured as a two-state continuous
time Markov chain [38]. We demonstrate that, despite the sim-
plicity of the abstraction, it can describe the average (macro-
scopic) behavior of a colony of E. coli bacteria, each of which
is simulated with the hybrid stochastic model.

It has been shown experimentally [39] that, by manipulating
the glucose concentration, the bistable regime can be swapped
for a graded response. Investigation of a mathematical model of
the lactose system [40] revealed that changes in the basal tran-
scription rate of the operon can also modify the bistable
behavior. Increased basal transcription leads to a graded re-
sponse, but, perhaps more interestingly, a reduced basal rate
leads into a regime where an induced state exists but is “clas-
sically” unreachable, that is, the threshold for induction by lac-
tose is infinite.

The possibility of converting the bistable response into
a graded one by manipulating the kinetic properties of the
switching mechanism may not be satisfactory in all synthetic
biological applications. We would like to investigate whether
we can fix the percentage of induced cells at the level of a
bacterial population by a macroscopic controller design while
maintaining the underlying bistable behavior on the level of
individual cells. Here, to satisfy the design criteria, we would
like to adjust the amount of external TMG concentration as if it
was a therapeutic agent.

The remainder of this paper is organized as follows. In
Section II, we present the deterministic and stochastic mathe-
matical models of the lactose regulation system. In Section III,
we discuss the construction of the finite-state abstraction of the
full model presented in Section II. The feedback control archi-
tecture is presented in Section IV, followed by the proposed
control algorithms and their simulation results. We conclude
the paper with Section V, where we present a few potential
future research directions.
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II. MODELING THE LACTOSE REGULATION SYSTEM

A. Deterministic Continuous Model

Our starting point is a model of the lactose system due to
Yildirim and Mackey [1], [26]. Briefly, the mRNA tran-
scribed from the lactose operon is translated into three different
gene products, among them permease and -galactosidase

. Permease facilitates the influx of lactose from the ex-
terior and also an opposing process, equilibrating the concen-
tration of lactose inside the cell with the external lactose. The
enzyme -galactosidase has a dual role; it converts lactose to
allolactose and converts allolactose further to glucose and
galactose. The control loop is closed by the effect of allolactose

on the transcription of the lac operon. This complicated re-
lationship involves substances not explicitly considered in the
Yildirim–Mackey model and results in the nonlinear activation
function summarized by the first and second terms in (1a).

The available experimental results, including those used to
validate the Yildirim–Mackey model, refer to “gratuitous” in-
duction by substances similar to lactose such as TMG. Such gra-
tuitous inducers, which are not processed by the cell, are often
preferred in experimental settings because their presence does
not lead to increased growth rate. From a modeling perspective,
using TMG instead of lactose also breaks one of the feedback
loops in the Yildirim-Mackey model, since -galactosidase does
not act on TMG, and TMG itself can play the inducer role played
by allolactose in the full Yildirim–Mackey model, as ilustrated
in the lower panel of Fig. 2. The equations of motion for induc-
tion by TMG are as follows:

(1a)

(1b)

(1c)

(1d)

We take into account time delays due to transcription and trans-
lation. Variables without an argument are taken at time , and
time delays are indicated by an explicit argument, e.g.,

is the value of the variable delayed with .
The symbol in (1c) signifies the external TMG concen-

tration. If the system is to be viewed as an input-state system,
then can be thought of as an input to the system, while the
other four concentrations are the state variables. The variable ,
which represents -galactosidase, is effectively decoupled from
the equations of motion and has no effect on the dynamics of the
remaining three variables. However, it is the experim ental quan-
tity that is traditionally used as the observable, for example, in
[23]. The other symbols in the equation are constant parameters
given by Table I, together with the following relations:

(2)

(3)

where is the growth rate. The values of the constants are based
on those in [26] but have been modified to give consistent be-

TABLE I

CONSTANT PARAMETER VALUES

Fig. 3. Equilibria of the system given by (1). The middle range of T has three
branches of equilibria.

havior to the TMG model in the limit of a large but finite cell
population.

When the value of is maintained between 1.4–32 M, the
system has three equilibria. Two of these equilibria are stable,
giving rise to bistability of the system. Also, varying the value of

causes a hysteresis behavior. See Fig. 3 for the illustration.
The model equation (1) qualitatively reproduces the observed
experimental behavior. The higher dimensional version defined
in [26] and discussed in [1] very closely approximates that be-
havior. However, that model (with its original parameter set)
is correct only as a description of the bulk behavior of a large
number of cells described as a single “reactor.” This is because
stochastic behavior on the level of individual cells is ignored
both in its construction and in its validation.

It has been recognized early on that the observed concentra-
tions on the level of a very large number of cells is actually an av-
erage over two distinct subpopulations of cells, whose -galac-
tosidase level takes one of two extreme values. This microscopic
bistability was termed the “all-or-none” phenomenon [23].

There is an apparent discrepancy between the macroscopic
and microscopic behavior in the system. Hysteresis ob-
served on the macroscopic level is indicative of an underlying
bistability. However, a closer examination of traditional induc-
tion experiments reveals that the observed two extreme states,
completely induced and uninduced, are in fact transient, and
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only an intermediate concentration can be maintained indefi-
nitely on the bulk level. Bistability is the determining feature on
the level of individual cells, which spend relatively little time
in intermediate induction states. The observed macroscopic
timescale of switching reflects the rate of occurrence (low
probability density) of fast stochastically triggered transitions
of individual cells rather than the time spent en route between
the two microscopic steady states.

To reconcile the discrepancy, we need to take into account the
stochastic nature of the behavior of individual cells. The macro-
scopic model needs to be modified in two respects: 1) introduce
stochastic phenomena and 2) adjust the kinetic parameters of the
model to obtain the correct macroscopic phenomenology. A sim-
ilar program has been carried out by Mettetal et al. [35], without
connecting the resulting model to kinetics of individual biochem-
ical processes in the way the Yildirim–Mackey model does.

B. Stochastic Model

While stochasticity is sometimes thought of as leading to
small deviations from the ODE prediction, it actually may often
lead to qualitatively different behavior [41]. There are several
sources of stochasticity in the biochemistry of individual cells
[42]. In this paper, we will focus on one major source, intrinsic
noise generated by low copy numbers of molecules. The deter-
ministic ODE model relies on continuously varying concentra-
tions, which is a good approximation when the substances are
available in huge molecule numbers. If we consider chemical
reactions within a cell, whose volume is of the order of l
[43], the number of molecules involved in the reaction may not
be too large. This is especially the case if the concentration of
the chemical substances is low.

Chemical reactions, at the microscopical level, amount to cre-
ation and breaking up of chemical molecules. These processes
can be modeled as Poisson random processes [27], [30], whose
rates depend on the state of the system, i.e., the number of
molecules in the reaction. In fact, the reaction rates given by
the ODE can be considered as the rates of the Poisson pro-
cesses. This is not the only way to introduce stochasticity to
the system. Another approach is to use an ordinary differential
model perturbed by stochastic noise [44]. However, we argue
that modeling the chemical reactions as Poisson processes is
more physically founded. There has also been previous work
where stochasticity is introduced by modeling chemical reac-
tion as Poisson processes [45]. However, the underlying reac-
tion model is based on empirical observation rather than phys-
ical modeling as ours.

Construction of stochastic models for biochemical processes
is a well-established procedure supported by a large amount of
literature [46].

We develop a hybrid stochastic model for the system. The
model is based on the idea that the messenger RNA and
the -galactosidase are expressed as molecule counts that
evolve following some Poisson processes, while the other sub-
stances, internal TMG and permease , are expressed
as chemical concentrations that evolve following deterministic
ODE. A similar approach, i.e., part stochastic and part determin-
istic simulation for chemical processes, is reported in [37]. The
reason behind this idea is that a fully stochastic model is compu-

tationally expensive, while a hybrid model already demonstrates
the stochastic noise that is lacking in the deterministic model.

We are interested in the phenomenology of a model with the
structure of that in [47], incorporating the presence of realistic
level of noise. The relative importance of stochastic fluctuations
of one concentration will be the largest for the species with the
lowest concentrations. We choose to discretize and , the
two species with the lowest steady-state concentrations. This
computationally less expensive approach allows us to perform
quasi-simultaneous simulations for many cells. The connection
between the ODE and the stochastic description is through the
conversion constant as

molecules
mole

M
mM

molecules
mM

In terms of stochastic differential equations, our hybrid sto-
chastic model can be written as follows:

(4a)

(4b)

(4c)

(4d)

Here, the processes and are the Poisson processes that
are responsible for the creation and breaking up of the mes-
senger RNA molecules, respectively. Similarly, and are
the Poisson processes that are responsible for the creation and
breaking up of the –galactosidase molecules, respectively. The
rates of these processes are state dependent and are given as fol-
lows:

(5a)

(5b)

(5c)

(5d)

C. Stochastic Simulation Algorithm

We simulate the stochastic model (4) using a numerical
scheme similar to the explicit tau-leaping method for Gillespie
simulation [28], [48]. We pick a constant integration step and
discretize (4). We use the following notation:
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Since we also have to discretize the time delay, we define

(6)

where

(7)

(8)

(9)

(10)

The terms , , , and are the approx-
imation of the increments of the Poisson processes in (25). For
example

(11)

In the approximation, these terms are modeled as random vari-
ables with Erlang distribution, whose expectations are given as
follows:

(12)

(13)

(14)

(15)

The probability density function of a random variable with
Erlang distribution and expectation is given as

Algorithm 1: The simulation algorithm can be summarized as
follows.
Step 1) Initialize with initial conditions

, .
Step 2) Draw the independent Erlang random variables

, , , and from the
distribution (12)–(15).

Step 3) Compute using
(7)–(10).

Step 4) Increase the counter . Return to step 2).

Fig. 4. Simulation results of two cells. In this plot, the external concentration
of TMG is increased at t = 200 min (marked by the arrows). We observe that
spontaneous inductions occur approximately 200 and 400 min later.

A pair of typical simulation traces for individual cells are
shown in Fig. 4. In the simulation, we initialize the system at
the low equilibrium of . For the first 200 min
of the simulation, the external TMG concentration is kept
at 1.4 M. At min, is increased to 2.0 M. We
can observe that the time it takes for each cell to induce varies
significantly. The aggregate for many simulations of individual
cells under the same circumstances shows a gradual increase
of average enzyme activity extending over a much longer time
interval.

III. FINITE-STATE ABSTRACTION OF THE STOCHASTIC MODEL

Here, we discuss a finite-state abstraction of the stochastic
model (4). Our goal is to construct an abstraction of the sto-
chastic model that is simple enough to allow for fast computa-
tion. This is particularly desirable, for example, when we want
to simulate the behavior of a colony of bacteria. Without the ab-
straction, we would have to run multiple copies of the stochastic
simulation described in the previous section, which can be com-
putationally prohibitive.

Our choice of abstraction is guided by the fact that the system
dwells in one of the stable equilibria in the time intervals be-
tween spontaneous transitions. Assuming that the transitions
take place in a shorter time scale than the dwell time, we choose
an abstraction in the form of a two-state continuous-time
Markov chain [38]. The states of the Markov chain correspond
to the low and high stable equilibria of the systems. The rates
of switching between the two states are given as a function of
the external TMG concentration . See Fig. 5 for a diagram
of the system.1

This simple model can closely reproduce the bulk behavior of
a large number of cells. We run the simulation of the full model
[given in (4)], where the system is initialized at the low equilib-
rium of M. The external concentration of TMG is
kept at M. We simulate a colony of 1000 cells. The
macroscopic behavior of the colony, which is computed as the
average across the 1000 samples are plotted in Fig. 6. It is this

1A method for approximately abstracting stochastic hybrid systems is pre-
sented in [49]. The nonlinear dynamics in this paper makes the implementation
of the method challenging. However, it is noteworthy that there are more sys-
tematic ways of abstracting stochastic hybrid systems.
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Fig. 5. Two-state continuous-time Markov chain model.

Fig. 6. Average behavior of a colony with 1000 bacteria from stochastic simu-
lations. The exponential curve is plotted to show that the macroscopic behavior
can be fitted quite well with linear dynamics [given in (16)].

colony-level average behavior that is observed in macroscopic
experiments such as that of Novick and Weiner.

Given the continuous-time Markov chain model as in Fig. 5,
we can compute the probability distribution of the states as fol-
lows. Define and as the probability of finding the
system at time in the low and high state, respectively. The prob-
ability distribution satisfies the following differential equation:

(16)

The switching rates and are the inverse of the average
switching time from uninduced to induced and vice versa. In
this paper, we compute these rates by running a large number
of Monte Carlo simulations described in the previous section.
From these simulations, we compute the average switching
times and take the inverse to obtain the switching rates.

Let the concentration of one of the substances, for example,
the mRNA , in the low state and high state be denoted by

and , respectively. Further, let the random process
be the average of the value of the mRNA concentrations in the
colony of 1000 cells. Denote the concentration of mRNA in the
th cell by . Since the processes , ,

are mutually independent and identically distributed, is an
unbiased estimator for , which is given as follows:

(17)

Fig. 7. Block diagram summarizing the models presented in this paper. Our
stochastic hybrid model and its finite-state abstraction qualitatively reproduce
experimental observations. These stochastic models are based on the biochem-
ically founded deterministic ODE model of Yildirim and Mackey.

which tells us that it is a linear combination of two exponential
functions.

In Fig. 6, we compare the simulated average curves and
the computed expectation based on (17). We observe that the
average of many individual simulations is well matched by the
two-exponential behavior. This is a strong argument for the va-
lidity of our abstraction.

The models that we have constructed in this paper can be
summarized in Fig. 7. Our stochastic hybrid model matches ex-
perimental data qualitatively, in the sense that it reproduces the
spontaneous transitions between stable equilibria in the bistable
zone. This is not possible in the deterministic model [26]. The
proposed finite-state Markov chain abstraction is faithful to the
stochastic hybrid model, in the sense that it captures the macro-
scopic dynamics of the stochastic hybrid model. Moreover, a
similar exponential-like behavior is also observed in experi-
ments, as reported in [23], [50], and [51].

Remark 2: Notice that we begin the discussion in this paper
with an ODE model (1). We then proceed by arguing that the
small size of the cells requires stochasticity in the model and
proposed a stochastic hybrid model (4). Subsequently, we pro-
pose another model that results in another ODE model (16),
which is suitable for modeling the macroscopic behavior of the
system. To avoid any confusion, we would like to clarify that
we do not return to the starting point of the discussion. Indeed,
the ODEs (1) and (16) are fundamentally different. While (1)
basically describes the dynamics of concentration in a single
large cell and thus unable to explain the spontaneous transitions
between the stable equilibria, the model (16) described the dy-
namics of a large colony of small cells and use the spontaneous
transitions to account for the dynamics.

As mentioned earlier, the goal of having the abstraction is to
have a model simple enough to be used for computation and de-
sign for a large-scale system, that is, a system involving a large
number of bacteria. In this macroscopic point of view, a bac-
terium is represented as a simple Markov chain (Fig. 5) rather
than the complicated stochastic hybrid model (4). This idea is
captured in Fig. 1.
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Fig. 8. Control block diagram.

We will rely on the two-level abstraction (16) to design a con-
trol strategy for obtaining a graded response from a colony of
individual bacteria by modulating the external TMG. We will
use simulation on the full model for validation.

IV. CONTROLLING THE SYSTEM

A. Control Architecture

The architecture of the control system that we discuss in this
paper is illustrated in Fig. 8. The plant to be controlled is a large
colony of E. coli bacteria. The controller affects the plant by
adjusting of the external concentration of TMG in the environ-
ment. Feedback information is read from the plant in the form
of a global quantity, which we consider as the output of the con-
trol system. By this, we mean the controller does not have any
information about the individual cells in the colony. Rather, the
controller relies on sensing a global quantity, for example, the
fraction of induced cells in the population. The control goal is to
make the output track a given reference trajectory or attain a de-
sired level. Similar control architecture, where feedback control
of a group of Markov chains by adjusting the transition rates has
been studied, for example in [52]. There, the plant is a group of
artificial muscle cells that can switch between contracting and
noncontracting states.

Control actuation by means of adjusting the external con-
centration of TMG in the environment can be realized as fol-
lows. Increasing the concentration can be done, for example,
by injecting the enzyme into the plant. There are a number of
limitations associated with this method. First, the concentration
cannot be made arbitrarily high since it can only be as high as the
concentration of the injected enzyme. Second, the concentra-
tion cannot evolve arbitrarily fast. Decreasing the external con-
centration can be done, for example through dilution of the en-
zyme in the plant. Real state-of-the-art implementation of such a
controlled environment can be done on a microfluidic chip (see
[53]).

Sensing activity level of the colony can be done through
sensing of certain protein concentrations in the cells. A cer-
tain protein called the (green fluorescent protein) can be
encoded in the operon. When the genes in the operon are
expressed, is also produced. Thus, the concentration of

in the cell can be used as an indicator for the activity of
the cell. The protein emits green light. Therefore, we can
use the luminescence of the cells as a way to measure its level

of activity. This is actually a standard procedure in synthetic
biology [3], [39].

Recall the two state Markov chain model of the bacteria. We
denote the probability of finding the cell at time in the induced
state as , and in the uninduced state as The evo-
lution of the variables and satisfies differential equation
(16).

Suppose that we have cells, and, for each cell, we introduce
an output/observation map

if the th cell is induced at time
if the th cell is uninduced at time

(18)

where and are both fixed real numbers. Obviously,
are random processes. Furthermore, we denote

the average output across the population as another random
process , defined as

Notice that we explicitly write down the dependency of the av-
erage output on the size of the population.

Suppose that we are given a control problem, namely, we
want to make track a certain given trajectory . We pro-
pose the following solution. Consider the following model of
control system:

Suppose that we have an output feedback law

(19)

such that the closed-loop system

(20)

(21)

produces the output trajectory

(22)

We can state the following theorem about the effect of a feed-
back control law on the behavior of the system.

Theorem 3: If we apply the following feedback:

on a colony of cells with independent and identically dis-
tributed (i.i.d.) initial states

then the expected value of satisfies

(23)
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Proof: Denote the state of the th cell at time as , i.e.,

which correspond to the cell being in the induced and uninduced
states, respectively. The evolution of the probability densities
for each cell satisfies

.

Now, let be the random processes that correspond to the frac-
tion of population that is induced at time . The output can
then be written as a function of as

(24)

and, for brevity, we shall express the dependence of and
on as and , respectively. Since the transition of
the cells are independent, it can be proven that

Moreover, the transition densities are given by

Define a probability density function as

Obviously, can be nonzero only if
. From the transition densities,

we can compute the evolution of as follows:

By rearranging the equation, we obtain

By taking the limit of approaching infinity, we can interpret
as continuous density function, and we obtain

(25)

Seeing (25) as a diffusionless Fokker–Planck equation, we can
infer that the fraction of induced cells evolves according to

(26)

Now, we are going to bring (26) to a form similar to (20). By
introducing an auxilliary variable , which is the
fraction of uninduced cells, we have

Since we also have

and, by the construction of the feedback law, we can obtain
(23).

Theorem 3 provides us with a guarantee that if we design a
suitable output feedback law based on the model (16), imple-
menting the feedback law on the colony of cells will make
the expected value of the average output as tends to
infinity.

B. Controller Design and Simulation Results

In the remainder of this paper, we shall address the following
control problem. Given the control architecture in (8), we want
to design a controller such that the fraction of induced cells at-
tains a certain level, for example, 50%. In order to achieve this
task, we first design and implement the controllers on the ab-
stract model and evaluate their performance. Subsequently, we
implement the controllers on the stochastic model. Theorem 3
provides us with a guarantee that, if we design a suitable output
feedback law based on the model (16), implementing the feed-
back law on the colony of cells will make the expected value
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Fig. 9. Control design is performed for the abstract model. The resulting con-
troller is then implemented for the stochastic system.

of the average output as the number of cells become larger.
The general procedure may be summarized in Fig. 9.

Before we proceed to propose a feedback control algorithm,
first notice that the state space model of the abstraction is given
in (16) and the fraction of induced cells is given by

. In addition, the equilibria of (16) is given by

such that the fraction of induced cells at the equilibria is given
by

(27)

Fig. 10 captures the relation between the transition rates
and and the external concentration of TMG. Notice that
is a monotonously increasing function of , while is mo-
notonously decreasing. Also notice that, at , is
about nine times larger than , while at M is about
4.5 times larger than . Therefore, if the external concentration
of TMG is kept at 1.4 M, the fraction of induced cells is going
to converge to around 10%, while, if the external concentration
of TMG is kept at 2 M, the fraction of induced cells is going
to converge to around 80%.

Based on this knowledge, we can design our controller to
work in the region where the external concentration of TMG
is between 1.4 and 2 M. To identify the functions and

in the whole interval, we take fifth-order polynomial in-
terpolations of the data points for both the induction and dein-
duction rates. The interpolated curves are shown in Fig. 11. The

Fig. 10. Relationship between the external concentration of TMG (T ) and the
average transition rates (induction (� ) and deinduction (� )). The points are
data obtained from Monte Carlo simulations.

Fig. 11. Polynomial interpolation of the transition rates as functions of the ex-
ternal concentration of TMG in the interval between 1.4 and 2 �M.

number of data points used is a clear limitation on the order of
interpolating polynomial. As a rule of thumb, more data points
will result in better approximation. On the other hand, obtaining
those points from Monte Carlo simulations is time consuming,
which results in a tradeoff.

Now we can proceed to the design and implementation of the
controllers.

On–Off Controller: The on–off controller is a basic switching
controller with deadzone, where we assume that the control
input (the external concentration of TMG) can assume only two
values M and M. If the fraction of in-
duced cells is higher than 0.52, then . If is less
than 0.48, then . If is between 0.48 and 0.52, then

is kept at its current value. The scheme of the dynamics is
shown in Fig. 12. We therefore create a deadzone that will pre-
vent the controller from switching indeterminately around the
desired level of .

Using the abstract model, we can predict that, when ,
the fraction of induction is going to converge exponentially to-
wards 10%. Similarly, when , the fraction of induction
is going to converge exponentially towards 80%. Obviously, the
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Fig. 12. Hybrid automaton representing the on–off controller.

Fig. 13. Simulation results using the on–off controller. Top: fraction of induced
cells. The dashed lines are the results obtained from the abstract model. The solid
lines are the results from the stochastic model with 5000 cells. Bottom: the level
of T for both simulations (in mM).

proposed on–off controller is able to steer and keep the output
of the abstract model in the deadzone range, that is, 48%–52%.

Fig. 13 shows the comparative simulation results of both the
abstract model and the stochastic model of the colony of bacteria
with 5000 cells for two initial conditions, fully induced and fully
uninduced, when the on–off controller is used. We can see that
the desired fraction of activation of 50% can be attained and
maintained within the deadzone. On the bottom of Fig. 13, we
can see the level of switches between and in both
simulations.

Although the general behavior is the same, the closed-loop
abstract model and closed-loop stochastic model do not match
as well as their open-loop counterparts (see Fig. 6). The source
of the mismatch is the error in the identified transition rates.
Recall that the transition rates in the abstract model are con-
structed from polynomial interpolation of the data points ob-
tained through Monte Carlo simulations of the stochastic model.
Therefore, there are two sources of error: the interpolation error
and the statistical deviation in the Monte Carlo simulation itself.

In Fig. 14, we can see a dynamic histogram that shows the
distribution of the internal concentration of TMG in the cells,
when the on–off controller is used with fully uninduced initial
condition. We can see that initially (at time ) the distribu-
tion is concentrated at the bottom level. As time progresses, a
second cluster, which corresponds to the induced cells, appears.
After min, we can see that the higher cluster moves up
and down because of the modulation of , as it is also shown
in Fig. 13.

Flow Controller: The on–off controller algorithm assumes
that the external concentration of TMG can change between

Fig. 14. Dynamic histogram of the distribution of the internal concentration of
TMG in the cells when the on–off controller is used.

Fig. 15. Hybrid automaton representing the flow controller. The value of k is
chosen such that the time constant of the exponential is 10 min (k = 0:1).

and instantaneously. This is not physically feasible if the
controller is to be actually implemented. We therefore propose
another controller that is more feasible, where changes its
value gradually.

The controller that we propose is essentially a hybrid system
with two modes of dynamics. The continuous dynamics of the
first mode, high, is such that the concentration of con-
verges exponentially to , while in the other mode, low,
converges exponentially to . The scheme of the dynamics is
shown in Fig. 15. If the fraction of induced cells is higher
than 0.52, then the controller is switched to the low mode. If
is less than 0.48, then the controller is switched to the high
mode. If is between 0.48 and 0.52, then is kept at its
current value. Again, here we create a deadzone that will pre-
vent the controller from switching indeterminately around the
desired level of .

The flow controller basically realizes the same idea as the
on–off controller. The main difference here is that the external
concentration of TMG is assumed to change gradually. It con-
verges to the desired level ( or ) exponentially, with a time
constant of 10 min. We believe that this is a realistic assumption.

We implemented the flow controller on the abstract model
and the stochastic model. The simulations results are shown in
Fig. 16. As expected, in the abstract model, we can see that
the desired fraction of activation of 50% can be attained and
maintained close to the deadzone. We can also observe that the
stochastic model behaves similarly to the abstract model.

Fig. 17 shows a dynamic histogram of the internal concentra-
tion of TMG in the cells, when the flow controller is used with
fully uninduced initial condition.

Both Figs. 16 and 17 show that the output variation of the
flow controller is larger than that of the on–off controller. This
result is expected, because the flow controller is more sluggish
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Fig. 16. Simulation results using the flow controller. Top: fraction of induced
cells. The dashed lines are the results obtained from the abstract model. The
solid lines are the results from the stochastic model with 5000 cells. Bottom:
the level of T for both simulations (in mM).

Fig. 17. Dynamic histogram of the distribution of the internal concentration of
TMG in the cells when the flow controller is used.

than the on–off controller. In order to decrease the steady-state
tracking error and the output variation, we propose another con-
trol algorithm.

Hybrid PI Controller: In order to improve the performance of
the system in the deadzone, we propose a change in the control
algorithm. In particular, we propose new controller dynamics
for the deadzone range. We introduce integral action as a new
controller, which is active only in the deadzone range. There-
fore, we now have three modes of dynamics. If the fraction of in-
duced cells is higher than 0.52, then the controller is switched
to the low mode. If is less than 0.48, then the controller is
switched to the highmode. However, if is between 0.48 and
0.52, then the controller is switched to the PI mode where we
activate the PI controller. The block diagram of the hybrid au-
tomaton is shown in Fig. 18.

We argue that, for the abstract model, the hybrid PI controller
is robust against modeling error in terms of errors in the identifi-
cation of the transition rates and . In fact, we only
need the fact that, in the interval M M,
is monotonously decreasing and is monotonously in-
creasing.

The integral action basically works by increasing the control
input if the fraction of induction is less than the desired value

Fig. 18. Hybrid automaton representing the hybrid PI controller. The value of
the integral gain k = 0:01 is chosen such that the steady-state error is small
and the actuation of the controller is feasible.

Fig. 19. Simulation results using the hybrid PI controller. Top: fraction of in-
duced cells. The dashed lines are the results obtained from the abstract model.
The solid lines are the results from the stochastic model with 5000 cells. Bottom:
the level of T for both simulations (in mM).

and by reducing if the fraction of induction is higher than the
desired value. If this adjustment is done sufficiently slowly (
has to be small enough), we can assume that the output of the
system has a much faster dynamics. Consequently, we can per-
form a quasi-steady-state analysis by assuming that the system
is always at its equilibrium and that adjusting the control input
effectively means adjusting the equilibrium. We then use the fact
that the fraction of induction at the equilibrium of the abstract
model is given by , which is a mo-
notonously increasing function of control input if
is monotonously decreasing and is monotonously in-
creasing. Therefore, the controller can drive the output to the
desired value.

In the implementation on the stochastic system, cannot
be arbitrarily small, since the adaptation of the control input
must be fast enough to react against the stochastic fluctuation
of the system. We solve the problem of choosing the value of
through simulation using the abstract model. As the result, we
pick .

The results of the simulations of the implementation of the
hybrid PI controller are shown in Fig. 19. Compared with the
flow and on–off controller, the tracking error is much smaller as
expected.

In Fig. 20, we can see a dynamic histogram that shows the dis-
tribution of the internal concentration of TMG in the cells, when
the hybrid PI controller is used with a fully uninduced initial
condition. By looking at the histogram, we can again conclude
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Fig. 20. Dynamic histogram of the distribution of the internal concentration of
TMG in the cells when the hybrid PI controller is used.

that the hybrid PI controller is superior to the other two strate-
gies, as the oscillations in the distribution of cells is smaller.

For all of the histograms shown above, the colony size is 5000
cells. At each time instant, the classes in the histogram are con-
structed using 15 equal-length intervals of internal TMG con-
centration between 0 and 40 M.

As a last remark, we reiterate that actuation in the flow and
hybrid PI controller is physically feasible, since we assume that
the change in the external concentration of TMG is done grad-
ually in the order of minutes. Sensing of the fraction of induc-
tion can be implemented by monitoring the luminescence of the
cells, due to the production of in the cells.

V. CONCLUDING REMARKS

In this paper, we present a comprehensive framework for ab-
straction and controller design for the lactose regulation system
of the E. coli bacteria. The abstraction framework is based on
the idea that two stable equilibria of the systems can be thought
of as states of a continuous-time Markov chain and that the tran-
sition rates of the Markov chain can be obtained through Monte
Carlo simulations of the actual system.

Because of the simplicity of the abstract model and its demon-
strated accuracy in predicting the average behavior of a colony
with a large number of cells, we can use the abstract model as
a building block for designing, for example, a feedback control
system for the biological systems. By feedback control, here we
mean influencing the average behavior of the colony using an
environmental variable (external concentration of TMG) as con-
trol actuation.

We presented three control algorithms: the on–off controller,
the flow controller, and the hybrid PI controller. The flow con-
troller is an improvement over the on–off controller in terms of
implementability. The hybrid PI controller is an improvement
over the flow controller in terms of tracking performance. In ad-
dition, we also show that the hybrid PI controller is robust with
respect to plant model identification error. In the future, we plan
to explore other feedback control methodologies, such as model
predictive control (MPC).

In the (future) implementation, the role of the controller may
be played by another genetically engineered module, such as a
toggle switch [3], that results in the production or consumption
of the inducer. This may be implemented in the same organism

or in another strain which is present in the same bioreactor.
Thus, one might be able to construct a network using specifi-
cally engineered organisms as circuit elements. A related idea,
constructing a feedback motif in a synthetic genetic network,
has been pursued and reported in the recent work by Guido et al.
[54].

The control architecture that we propose in this paper, which
is based on control of a large number of Markov chains by ad-
justing the transition rates, is a versatile framework. Another
application of this control architecture in controlling artificial
muscle fibers is reported in [52]. Considering the generality
of the framework, we see potential application of it in other
fields such as active materials and networked engineering sys-
tems with a large number of autonomous agents such as sensor
networks and robotic swarms [55].
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