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Haptography: Capturing and Recreating the Rich Feel of Real Surfaces

Abstract
Haptic interfaces, which allow a user to touch virtual and remote environments through a hand-held tool, have
opened up exciting new possibilities for applications such as computer-aided design and robot-assisted
surgery. Unfortunately, the haptic renderings produced by these systems seldom feel like authentic re-
creations of the richly varied surfaces one encounters in the real world. We have thus envisioned the new
approach of haptography, or haptic photography, in which an individual quickly records a physical interaction
with a real surface and then recreates that experience for a user at a different time and/or place. This paper
presents an overview of the goals and methods of haptography, emphasizing the importance of accurately
capturing and recreating the high frequency accelerations that occur during tool-mediated interactions. In the
capturing domain, we introduce a new texture modeling and synthesis method based on linear prediction
applied to acceleration signals recorded from real tool interactions. For recreating, we show a new
haptography handle prototype that enables the user of a Phantom Omni to feel fine surface features and
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Haptography: Capturing and Recreating the
Rich Feel of Real Surfaces

Katherine J. Kuchenbecker, Joseph Romano, and William McMahan

Abstract Haptic interfaces, which allow a user to touch virtual and remote envi-

ronments through a hand-held tool, have opened up exciting new possibilities for

applications such as computer-aided design and robot-assisted surgery. Unfortu-

nately, the haptic renderings produced by these systems seldom feel like authen-

tic re-creations of the richly varied surfaces one encounters in the real world. We

have thus envisioned the new approach of haptography, or haptic photography, in

which an individual quickly records a physical interaction with a real surface and

then recreates that experience for a user at a different time and/or place. This pa-

per presents an overview of the goals and methods of haptography, emphasizing the

importance of accurately capturing and recreating the high frequency accelerations

that occur during tool-mediated interactions. In the capturing domain, we introduce

a new texture modeling and synthesis method based on linear prediction applied to

acceleration signals recorded from real tool interactions. For recreating, we show a

new haptography handle prototype that enables the user of a Phantom Omni to feel

fine surface features and textures.

1 Introduction

When you touch objects in your surroundings, you feel a rich array of haptic cues

that reveal each object’s geometry, material, and surface properties. For example,

the vibrations and forces experienced by your hand as you stroke a piece of fabric

or write on a sheet of corrugated cardboard are easily identifiable and distinct from

those generated by gripping a foam ball or tapping on a hollow bronze sculpture.

Humans excel at eliciting and interpreting haptic feedback during such interactions,

naturally leveraging this wealth of information to guide their actions in the physical

world (Klatzky and Lederman, 2003).
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Motivated by the richness and usefulness of natural haptic feedback, we have

envisioned the new approach of haptography. Like photography in the visual do-

main, haptography enables an individual to quickly record the feel of an interesting

object and reproduce it at another time and/or place for someone to interact with as

though it was real. The idea for haptography was first articulated by Kuchenbecker

in 2008, and this paper provides an overview of its goals and methods. Haptographic

technology involves highly sensorized handheld tools, haptic signal processing for

model synthesis, and uniquely actuated haptic interfaces, all focused on capturing

and recreating the rich feel of real surfaces.

Once these capabilities are available, a wide variety of practical applications will

benefit from haptography. For example, it will provide a fast, simple way to store

the current feel of a physical object (such as a unique marble statue or a dental pa-

tient’s tooth), compare it with a database of other recordings, and analyze surface

changes over time. Haptographs will also allow a wide range of people to touch

realistic virtual copies of objects that are not directly accessible, such as archaeo-

logical artifacts and merchandise being sold online. Furthermore, haptography has

the potential to significantly increase the realism of medical simulators and video

games by incorporating object models built from quantitative contact data captured

during real interactions. Beyond virtual environments, haptography can have a ben-

eficial impact on teleoperation, where the operator uses a haptic interface to control

the movement of a remote robot and wants to feel the objects being manipulated as

though they were locally present. Finally, the haptographic focus on recording, an-

alyzing, and recreating everything felt by the human hand will probably yield new

insights on the sense of touch, which may help robotic hands achieve human-like

dexterity and sensitivity in interactions with real physical objects.

Enabling the art and science of haptography requires us to answer two main

questions: How can we characterize and mathematically model the feel of real sur-

faces? and How can we best duplicate the feel of a real surface with a haptic in-

terface? Building on knowledge of the human haptic sensory system, haptography

research uses measurement-based mathematical modeling to derive perceptually rel-

evant haptic surface models and dynamically robust haptic display methods. The

following sections of this paper explain the envisioned system paradigm, our initial

work on capturing the feel of surfaces, and our continuing work on recreating such

surfaces realistically.

2 Overview of Haptography

Despite its ubiquitous importance in human life, we currently lack a formal method

for analyzing and understanding the feel of touch-based interaction with physical

objects. Furthermore, fundamental surface modeling and device design choices pre-

vent the vast majority of existing haptic interfaces from compellingly duplicating

the feel of real objects.

Target Interactions Direct-touch haptography would enable an individual to cap-

ture natural interactions between their fingertip and an interesting surface and then

recreate that exact feel with a programmable tactile interface that can be freely
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Table 1 The user experience of haptography can be understood via an analogy to photography.

Photography Haptography

digital SLR camera highly sensorized handheld tool

interchangeable lenses interchangeable tool tips

framing a shot and focusing the camera exploring an object’s surface

planar distribution of light intensities stream of positions, forces, and accelerations

optics and the human eye haptics and the human hand

LCD monitor uniquely actuated handheld tool

viewing the digital image freely exploring the digital model

spatial resolution and focus high frequency accelerations

explored. While fascinating and useful, there are currently many technological

challenges that preclude the realization of such an ambitious objective; it will

take many years for today’s most promising noninvasive tactile sensors, e.g., (Sun

et al, 2007), and high resolution tactile displays, e.g., (Koo et al, 2008), to ma-

ture to the level needed for such an approach. Thus, we focus our research on

tool-mediated contact, where the user touches the target surface through an in-

termediate tool such as a metal probe, a ball-point pen, or a surgical scalpel.

Restricting haptography to tool-mediated interactions is not as limiting as it

might initially seem. First, many everyday activities are conducted with a tool in

hand, rather than with bare fingertips; tools extend the hand’s capabilities for a spe-

cific task and protect it from damage. Second, humans are surprisingly good at dis-

cerning haptic surface properties such as stiffness and texture through an intermedi-

ate tool (Klatzky and Lederman, 2008; Yoshioka and Zhou, 2009). This acuity stems

partly from the human capability for distal attribution, in which a simple hand-held

tool comes to feel like an extension of one’s own body (Loomis, 1992).

Haptographic Process Haptography intentionally parallels modern photography,

but the interactive nature of touch sets the two apart in several ways. To help clarify

the differences, Table 1 lists analogous elements for the two domains, and Fig.1

depicts an overview of the haptic capturing and recreating processes.

A haptographer begins by identifying an object with a unique or important feel; a

museum curator might select an interesting historical relic, and a doctor might target

an in vivo sample of tissue or bone. Working in his or her standard surroundings, the

haptographer attaches a chosen tool tip to a highly sensorized hand-held instrument.

hoak block.jhg

Capturing the Feel

of a Real Surface with

a Sensorized Tool

Recreating the Feel

of the Real Surface with

an Active Stylus

Haptograph

Fig. 1 The envisioned approach of haptography will enable individuals to quickly capture, analyze,

and recreate the exquisite feel of any surface they encounter in the real world.
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For real-time haptography in teleoperation, the slave robot’s tool is instrumented in

the same way as a hand-held haptography tool. The operator then uses the tool to

explore the object’s surface via natural motions. The system collects multiple data

streams throughout this interaction—all of the touch-based sensations that can be

felt by a human hand holding a tool—including quantities such as the translation and

rotation of the stylus and the object, the forces and torques applied to the object’s

surface, and the three-dimensional high frequency accelerations of the tool tip.

In teleoperation, the haptic interface held by the user seeks to recreate the mea-

sured sensations as they occur, and the challenge lies in perfecting this connec-

tion. In non-real-time applications, the haptographic processor needs to distill the

recorded data into a general surface model so that future users can explore the vir-

tual object in a natural way. Because the global shape of an object can be captured

efficiently with optical sensors or reconstructed via computer-aided design (CAD)

tools, haptography focuses on capturing surface attributes that are not readily appar-

ent by sight, such as friction, texture, stiffness, and stickiness. Section 3 describes

this identification problem in more detail, along with our preliminary work on tex-

ture modeling. We plan to store haptographs of different surface-tool interactions

in a public online database so that virtual environment designers can apply hapto-

graphic surface swatches to chosen areas of synthetic objects.

An acquired haptographic model can be explored via any kinesthetic haptic inter-

face, but the flexibility of the interaction and the quality of the haptic response will

greatly depend on the mechanical, electrical, and computational design of the cho-

sen system. Commercially available haptic devices generally struggle to duplicate

the full feel of real surfaces. Thus, the second major aim of haptography research

is to discover and refine high fidelity methods for rendering haptographs. As de-

scribed in Section 4, tool-mediated haptography centers on the use of a dedicated

high frequency vibration actuator, and we have tested this approach through creation

of a prototype system. We want any individual to be able to use this “haptography

handle” to explore 3D virtual surfaces and feel rich, natural sensations that are in-

distinguishable from those one would experience when touching the original item.

The Key to Haptographic Realism Researchers studying virtual and remote envi-

ronments have long sought to replicate the feel of real objects with a haptic interface.

Arguably, the most important advance toward this goal came in 1994 when Massie

and Salisbury presented the Phantom haptic interface. The design of this device

evolved from three essential criteria, namely that “free space must feel free,” “solid

virtual objects must feel stiff,” and “virtual constraints must not be easily saturated”

(Massie and Salisbury, 1994, p. 296). Prioritization of these goals and clever me-

chanical design yielded a lightweight, easily backdrivable, three-degree-of-freedom

robot arm actuated via base-mounted brushed DC motors equipped with high reso-

lution optical encoders and smooth capstan cable drives. This invention inspired a

wave of similar impedance-type haptic interfaces, many of which are now widely

available as commercial products. Such systems are typically programmed to gen-

erate interaction forces via one-sided linear springs: when the measured device tip
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Fig. 2 Sample data from interactions with two real materials through a stylus instrumented with

an accelerometer. One can quickly observe that the plastic is stiffer and smoother than the foam.

position intersects a region occupied by a virtual or remote object, the device outputs

a restoring force that is proportional to the penetration vector.

While haptic interfaces designed and programmed in this way do succeed at con-

veying the global shape of virtual and remote items, the surfaces of these objects

typically have only a weak haptic resemblance to real objects. Instead, haptically

rendered shapes tend to feel soft and undefined, strangely slippery or peculiarly

active and vibratory, and largely devoid of the coherent dynamic cues that one as-

sociates with natural surface properties. In one study targeted at this problem, hu-

man subjects used a Phantom to blindly tap on the stiffest possible spring-based

virtual surface, among other real and virtual samples (Kuchenbecker et al, 2006).

The spring-based surface received a realism rating of two on a scale from one to

seven, where a seven denotes the feel of a real wooden block. Clearly something

important is missing from these traditionally rendered haptic surfaces: we believe

this deficiency stems from a reliance on haptic object models and interface hard-

ware that prioritize low-frequency behavior over the naturalistic high frequency

accelerations that give real objects their distinctive feel.

Human haptic capabilities are inherently asymmetric, allowing motion at just 8 to

10 Hz (Loomis and Lederman, 1986) and vibration perception up to 1000 Hz (Bell

et al, 1994). As illustrated in Fig. 2, tool-mediated interactions with hard and tex-

tured objects create vibrations that strongly excite the Pacinian corpuscle mechanore-

ceptors in the glabrous skin of the human hand (Bell et al, 1994). It is clear that high

frequency accelerations are a rich source of feedback during tool use, encoding in-

formation about surface material, surface texture, tool design, downward force, and

tool velocity; a user naturally expects a haptic virtual environment to provide these

same cues, but they are generally absent. When appropriate acceleration transients

were added to the spring-based virtual surfaces in (Kuchenbecker et al, 2006), sub-

jects responded with realism ratings of five out of seven, a significant improvement.

Haptography is thus founded on the belief that only a haptic interface that authenti-

cally recreates these salient accelerations will be able to fool a human into believing

that a virtual object is real, or a remote object is present.
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3 Capturing the Feel of Real Surfaces

The first aim of haptography is to enable an individual to quickly and easily capture

the feel of a real surface through a hand-held or teleoperated tool. This process

yields a stream of interaction data that is distilled into a mathematical model of the

surface’s salient haptic properties for further analysis and subsequent re-creation.

Prior Work Haptography takes a nontraditional approach to modeling object sur-

faces. The most carefully controlled attribute of a typical haptic virtual object is its

global shape (Salisbury et al, 1995, 2004). As in computer graphics, these geometric

models are usually composed of a polygonal mesh that defines the surface of the ob-

ject. Contact with this mesh is then rendered as a spring force that seeks to push the

user’s virtual tool perpendicularly out of the surface. The high computational load

incurred by fine meshes is avoided by blending the orientation of larger adjacent

facets so that the normal force varies smoothly across the surface. The behavior of

the coupling impedance can be modulated somewhat to change the feel of the sur-

face, although nonidealities (e.g., position sensor quantization) cause instability at

high stiffness and damping values. The additional surface properties of texture and

friction are included in such models as a parametric relationship between the vir-

tual tool’s motion (position and velocity) and an additional force that is added to

the spring response. For example, (Salisbury et al, 1995) use a sum of cosines for

synthetic texture, (Minsky and Lederman, 1996) simulate roughness with a variety

of lateral-force look-up tables based on surface location, and (Basdogan et al, 1997)

create height-field textures inspired by the “bump map” approach from computer

graphics. Numerous other hand-tuned surface representations have been developed,

but most struggle to capture the rich variety of sensations caused by contact with

real objects because they are not based on physical principles.

Rather than relying on hand-tuned parametric relationships, haptography derives

virtual object models from real-world data. The idea of using a stream of physi-

cal measurements to create a haptic virtual environment is not new, but the cen-

tral involvement of the human haptographer and the focus on high frequency ac-

celerations are significant departures from previous work. The first discussion of

a measurement-based modeling approach occurs in MacLean’s 1996 paper on the

“Haptic Camera,” a fully automated one-degree-of-freedom probe that interacts with

a mechanical system while recording position and force data to enable automatic

fitting of a piecewise linear dynamic model. Autonomous interaction and identifica-

tion techniques have since been applied to several other simple mechanical systems,

such as switches and buttons (Colton and Hollerbach, 2005), and also to whole

object contact through ACME, the robot-based Active Measurement Facility (Pai

et al, 2000). In contrast to a robot, a human haptographer holding an instrumented

tool can quickly and safely explore the surfaces of almost any physical object with

natural motions that are fine-tuned in real time. However, there have been only a

few previous efforts to generate haptic surface models from data recorded with a

hand-held tool, typically involving either simple parametric relationships or direct

playback (Okamura et al, 2008). For example, (Okamura et al, 2001) fit a decay-

ing sinusoid model to acceleration transients recorded from a series of taps, while
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(Kuchenbecker et al, 2006) explicitly stored such recordings. Others have created

hand-held tools fitted with sensors, e.g., (Pai and Rizun, 2003), but little has been

done to distill the resulting data into surface models.

Our Approach Given the limitations of traditional models and the success of sev-

eral previous data-driven studies, we believe a sensorized hand-held tool and a so-

phisticated signal processing algorithm can be used to create very accurate models

of the tool-mediated feel of any real surface. Haptographic probes are designed to

record high bandwidth haptic data (tool position, velocity, acceleration, force, etc.)

during natural human exploration of a surface. The recorded signals must then be

segmented by interaction state (e.g., no contact, stationary contact, and sliding con-

tact) and analyzed to yield mathematical models for the characteristic feel of each

state, as well as for the transitions between states. The high sensory bandwidth of

the human hand makes us believe that the realism of a haptographic surface model

will strongly depend on its ability to encapsulate the high frequency accelerations

of tool–surface contact. A full suite of haptographic capturing tools and algorithms

will require a significant body of research, such as the physics-based modeling of

tapping in (Fiene and Kuchenbecker, 2007); here, we present a new, general method

for modeling the response of real textured surfaces felt through a tool.

Texture Modeling We have developed a new method for using recorded data to

obtain a predictive model of the tool accelerations produced during real texture ex-

ploration. As one can determine through quick experimentation, dragging a certain

hand-held tool across a given surface creates vibrations that vary with both normal

force and scanning velocity, as well as contact angle, hand configuration, and grip

force. We are beginning our characterization of this complex dynamic system by an-

alyzing the vertical acceleration experienced by a hand-held stylus as it is dragged

across a variety of surfaces under different conditions. Our data set was recorded

using a custom designed data collection apparatus from (Yoshioka, 2009) in well-

controlled human subject trials where mean contact force, scanning velocity, and

the other relevant variables were all held constant. The data collection system al-

lows for precision recording of probe–texture interaction data including all contact

forces and torques, three-dimensional tool acceleration, tool velocity, and the sub-

ject’s grip force at a rate of 5000 Hz. For each recorded trial, we start by seeking a

model that can generate an optimal prediction of the next real value in the acceler-

ation time series given the previous n data points. We have found that this problem

is best addressed with forward linear prediction, a common technique from system

identification.

Forward Linear Prediction The speech synthesis community has known for over

thirty years that the complex dynamic vibrations created by the human vocal tract

can be modeled by a form of the Wiener filter, the forward linear predictor (Atal

and Hanauer, 1971). The standard procedure in speech synthesis is to treat the vocal

tract response as an unknown filter that shapes a white noise excitation signal, which

comes from air passed through the system by the glottis. The output is the spoken

sound wave, which can be recorded with a microphone. Similarly, we record contact
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vibrations with an accelerometer and treat the dynamic response of the tool–texture

interaction as a filter we wish to identify.

Fig. 3(a) shows the block diagram used for this system identification process,

and the following mathematical analysis follows the conventions of (Benesty et al,

2008) as closely as possible. Our input signal a(k) is the original recorded time

series of accelerations. The filter’s output vector is defined as â(k), which represents

the forward linear prediction. H(z) is assumed to be an IIR filter of length n of the

form H(z) = [−h1z−1 − h2z−2... −hnz−n]. The residual of these two signals is the

error vector e(k), and the transfer function P(z) is:

E(z)

A(z)
= 1−H(z) = P(z) (1)

We define the vector of filter coefficients as h = [h1 h2 h3 ... hn]
T , and the n-length

time history of our input signal as a(k− 1) = [a(k− 1) a(k− 2) ... a(k− n)]. We

then write the residual at each step in time with the following difference equation:

e(k) = a(k)− â(k) = a(k)−hT a(k−1) (2)

Optimal filter values of h can be found by defining a suitable cost function. We

use the standard choice of mean-square error, J(h) = E{e2(k)}, where E{·} denotes

mathematical expectation, as defined by (Benesty et al, 2008). When the gradient of

J(h) is flat, h is at an optimal value, ho. By algebraic manipulation we can derive

the following result for the gradient:

∂J(h)

∂h
= −2E{(e(k)a(k−1))} (3)

When the gradient is flat at ho, the error is at a minimum eo(k), and we can simplify

the problem to:
E{eo(k)a(k−1)} = 0nx1 (4)

By substituting values for the cross-correlation matrix (R = a(k−1)aT (k−1)) and

the cross-correlation vector (p = a(k − 1)a(k)) into (4), we arrive at the Wiener-

Hopf equation:
R ho = p (5)

Assuming non-singular R, the optimal forward predictor coefficients can be found

by simply inverting the cross-correlation matrix, such that ho = R−1p. Alternatively,

we can use a more efficient recursive method, such as the Levinson-Durbin algo-

rithm (Durbin, 1960), to solve for ho from (5). For demonstration, Fig. 4 shows a

sample plot of a(k), â(k), and e(k) for the optimal filter H(z) of order n = 120.

Signal Generation The previous section details a process for finding the linear

transfer function H(z) that is best able to predict the acceleration response of a tex-

ture based on its previous n acceleration values. Subtracting the predicted response

from the recorded signal removes almost all its spectral components, leaving only

the noise signal e(k), which is ideally white and Gaussian. This section describes

how to reverse this process and obtain a completely new (but spectrally similar)

acceleration signal based on a white noise input, given an identified filter H(z).
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substrate and touched with

a plastic probe at a velocity

of 4.0 cm/s and a downward

force of 1.5 N. The linear

prediction filter H(z) includes

120 coefficients (n = 120).
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As seen in Fig. 3(b), the input signal eg(l) is a white noise vector that we generate

in real time. The output vector is ag(l), a synthesized acceleration signal with spec-

tral properties that are very close to those of the real data signal a(k) for which the

filter H(z) is tuned; higher order filters generally result in a better spectral match.

By rewriting (1), we can formulate this new transfer function as follows:

Ag(z)

Eg(z)
=

1

1−H(z)
=

1

P(z)
(6)

We now observe that the difference equation for the synthesized acceleration is:

ag(l) = eg(l)+hT ag(l −1) (7)

During texture synthesis, we generate white noise with a Gaussian distribution of

amplitudes and apply it to (7). One should note that the signal power of the white

noise input is important for creating an acceleration signal ag(l) with the proper

magnitude. The power of the generated noise signal P{eg(l)} must be equivalent to

that of the power remaining in the residual signal, P{e(k)}, after filter optimization.

We have achieved good results when applying this acceleration modeling technique

to data from many surfaces and at many levels of downward force and translational

velocity. Fig. 5 shows one such sample in both the time and frequency domains.

Future Work We are encouraged by the expressiveness and versatility of linear

prediction for synthesizing realistic texture acceleration waveforms, and we are in

the process of investigating many additional aspects of this approach. For example,

how many filter coefficients are required to capture the haptically salient proper-

ties of an individual texture trial? And how should one synthesize accelerations for

values of downward force and scanning velocity that were not explicitly tested?

Currently, we fit data sparsely sampled from this parameter space and then use two-
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Fig. 5 Time- and frequency-domain views of a recorded acceleration and a signal synthesized

to emulate that interaction using our novel texture-modeling techniques. The real setup and the

synthesis filter are the same as those used in Fig. 4.

dimensional linear interpolation to choose coefficients of H(z) for unique combina-

tions of these parameters. In the future we intend to look into interpolating between

filter poles or cepstral coefficients, both of which are directly related to the filter co-

efficients h. More generally, we need to develop methods for processing data from

interactions that are less controlled and for making models that go beyond texture

to include other salient surface properties. In addition to increasing our knowledge

of tool–surface contact, we hope that these haptographic modeling methods can be

used to provide sensations that closely mirror those of real interactions, and also to

evaluate the fidelity of virtually rendered haptic surfaces.

4 Recreating the Feel of Real Surfaces

The second aim of haptography is to enable an individual to freely explore a virtual

or remote surface via a haptic interface without being able to distinguish its feel from

that of the real object being portrayed. Realistically recreating haptographic models

requires haptic device hardware and control algorithms that excel at delivering high

frequency tool accelerations without impeding free-space hand motion.

Prior Work During contact with a virtual or remote object, traditional haptic sys-

tems employ the device’s actuators (usually base-mounted DC motors) to apply a

force to the user’s hand based on tool tip penetration, which is inherently a slowly

changing signal. The mechanical elements that connect the motor to the hand would

ideally be massless, frictionless, and infinitely stiff, but no real device can meet

these requirements; instead, the dynamics of the intervening linkages, joints, and

cables distort the output of the motors, which especially interferes with the display

of any high frequency vibrations (Campion and Hayward, 2005; Kuchenbecker et al,

2006). Still, some previous work has shown that vibrations displayed with such ac-

tuators can improve the perceived realism of spring-based virtual surfaces, but these

approaches require either extensive human-subject tuning (Okamura et al, 2001) or

exhaustive device characterization (Kuchenbecker et al, 2006). Furthermore, high

frequency base motor actuation is susceptible to configuration-based and user-based
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changes in the system’s high-frequency dynamics, so it cannot achieve the consis-

tent, high fidelity feel needed for haptography.

A viable alternative can be found in (Kontarinis and Howe, 1995)’s approach to

teleoperation, where high frequency slave tool accelerations were overlaid on stan-

dard low frequency force feedback via an inverted speaker mounted near the user’s

fingertips. The slave acceleration was amplified by an empirically determined gain

to drive the actuator, and the system’s acceleration output was reported to vary by a

factor of 2.24 across the frequency range of interest. Human subject tests indicated

that this simple dual-actuator feedback strategy increased user performance in sev-

eral tasks and also improved the “feel” of the interface, one of the main goals of

haptography. Since this encouraging early work, several groups have created inter-

esting active styli meant to be used without a force-feedback device, e.g., (Yao et al,

2005). The only project closer to our interests is that of (Wall and Harwin, 2001),

who made a vibrotactile display stylus to study the effect of device output bandwidth

on virtual grating perception. Their system uses a voice-coil actuator between the

stylus and the end-effector of a desktop haptic device, with a controller that seeks to

regulate actuator displacement using high-resolution measurements from a parallel

LVDT sensor. The associated human-subject study found that the additional actua-

tor between the hand and the haptic device significantly improved the rendering of

virtual gratings but also reduced the system’s ability to render stiff springs.

Our Approach Considering the limitations of base-mounted motors and the results

others have achieved with auxiliary actuators, we believe that haptographic models

can be excellently recreated by attaching a high bandwidth bidirectional linear actu-

ator to the handle of a typical haptic interface. This “haptography handle” should be

designed and controlled to enable the system to significantly accelerate the user’s

hand at high vibrotactile frequencies (20–1000 Hz) in real time, while it is being

held and moved around by the user. Imposing a grounded force at the handle is very

challenging, so instead we attach an additional mass to the handle through a spring

and a sliding joint. The auxiliary actuator applies equal and opposite forces on the

handle and this mass, thereby pushing and pulling them relative to one another. Such

a system can be carefully controlled only by understanding its mechanical dynamics

and their impact on the user’s experience. One final benefit to this approach is that

we believe it will require only one linear actuator (rather than three) because the hu-

man hand is not particularly sensitive to the direction of high-frequency vibrations

(Bell et al, 1994).

Sample Implementation: Haptography Handle for the Phantom Omni To eval-

uate the merits of our approach, we developed the prototype shown in Fig. 6 to act

as an interchangeable handle for the Phantom Omni, a widely available impedance-

type haptic device from SensAble Technologies, Inc.

Prototype At the heart of our design is an NCM02-05-005-4JB linear voice coil

actuator from H2W Technologies. We have installed this actuator in a moving coil

configuration, where the permanent magnet core is rigidly attached to a handle and

the coil is free to slide relative to this core along internal jeweled bearings. Addi-
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(a) Haptography handle in use (b) Handle interior

mc

ks bs

yc

yh
mh

ku bu
yu

fa

fo

Actuator
Coil

Spring &
Bearing

Handle &
Magnet

User’s
Hand

(c) Dynamic model

Fig. 6 A prototype haptography handle for use with the SensAble Phantom Omni. The voice coil

actuator applies a high frequency force fa between the coil and the magnet to accelerate the handle.

tionally, we place compression springs at both ends of the coil to center it within the

actuator’s travel limits. The actuator is driven with a high bandwidth linear current

amplifier, and it can output a peak force of 6.6 N. For more details on this actua-

tor and our experimental procedures, please consult (McMahan and Kuchenbecker,

2009b), which describes an earlier prototype. Mounting this haptography handle to

an Omni allows for measurement of the position and velocity of the handle, as well

as the exertion of low-frequency forces, via the Omni’s base-mounted encoders and

DC motors. The addition of a dedicated voice coil actuator gives this low cost haptic

device the capability of providing the high frequency contact accelerations that are

essential to haptography.

System Dynamics In order to accurately control the handle accelerations felt by

the user, we must characterize the dynamics of our system. We use the lumped-

parameter model shown in Fig 6 to represent our system: mc is the mass of the

actuator coil, ks is the combined stiffness of the centering springs, bs represents

viscous friction in the linear bearings, fa is the electromagnetic force exerted by the

actuator, mh is the effective mass of the handle and magnet, and fo represents the

forces provided by the Omni. The user is modeled as a parallel spring and damper

(ku and bu) that connect the handle mass to the hand’s set-point position, yu. We can

then derive the transfer function from actuator force to handle acceleration:

Ah(s)

Fa(s)
=

mcs4

(mcs2 +bss+ ks)(mhs2 +(bs +bu)s+(ks + ku))− (bss+ ks)2
(8)

Note that the Omni force fo and the hand set-point yu are both low frequency and

thus will not affect the high frequency accelerations felt by the user.

We empirically validate and tune this transfer function by sending a repeating 10–

200 Hz swept sinusoid force command to the linear voice coil actuator and recording

the resulting accelerations at the handle with an accelerometer. We performed three

trials of this test with five different users, each lightly holding the stylus with their

right hand in a three-fingered pinch grip. Frequency-domain analysis of these tests

guides the selection of model parameters. Fig. 7 shows the empirical transfer func-
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Experimental Grip Data

Full Dynamic Model

Approximate Model

Full Dynamic Model

Parameter Value

mc 0.018 kg

ks 399 N/m

bs 1.2 N/(m/s)

mh 0.145 kg

ku 1000 N/m

bu 20 N/(m/s)

Fig. 7 Frequency-domain system identification validates the structure of our dynamic model and

enables the selection of appropriate values for parameters that cannot be directly measured.

tion estimates from the grip experiments, as well as the parameters chosen for the

full dynamic model and its frequency-domain response.

This model enables us to design a dynamically compensated controller targeted

at good acceleration tracking; our present controller consists of a feedforward term

that inverts our estimate of the transfer function Ah(s)/Fa(s) in order to determine

the proper actuator force needed to achieve a desired handle acceleration. A careful

look at (8) shows that naively inverting this transfer function will result the place-

ment of four poles at the origin, which corresponds with a quadruple integrator in the

controller. A controller with a quadruple integrator has infinite gain at steady-state

and very high gain at low frequencies. These large gains pose a problem because

they will immediately saturate the maximum force and deflection capabilities of

our linear actuator. As a result, we approximate this transfer function with one that

has finite DC gain, but still manages to capture the magnitude response of the full

dynamic model in the important frequency range of 20-1000 Hz. The frequency-

domain response of this approximate model is also shown in Fig. 7.

Teleoperation Testing We tested our handle’s performance at recreating realistic

contact accelerations by conducting master-slave teleoperation experiments; the op-

erator (grasping the haptography handle) uses a master Omni to command a slave

Omni to perform exploratory tapping and dragging motions on a remote piece of un-

finished plywood through a position-position controller. This configuration allows

us to obtain real contact accelerations from an accelerometer mounted to the slave

Omni’s end effector and to render these accelerations to the user in real-time via the

haptography handle. This experiment also serves as a proof-of-concept demonstra-

tion for haptography’s potential use in teleoperation applications.

Attempting to recreate only the high frequency accelerations measured along the

longitudinal axis of the slave’s tool tip, we ran the experiment twice: once without

using the voice coil actuator and once driving it with our dynamically compensated

controller. In both cases, the operator tapped twice on the surface and then laterally

dragged the tool tip five times. Fig. 8 shows time domain plots of the slave (de-

sired) and master (actual) accelerations recorded during these experiments, as well

as spectrograms of these signals. Visual inspection of these plots shows that the
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Fig. 8 Time- and frequency-domain results for the teleoperation experiments.

Omni’s native motors and the implemented position-position controller do a poor

job of transmitting high frequency accelerations to the user. However, augmenting

the system with our dedicated vibration actuator and dynamically compensated con-

troller provides a substantial improvement. Without this actuation, the normalized

RMS error between actual and desired acceleration spectrograms is 100%, while

auxiliary actuation brings this strict error metric down to 48%. Still, there is room

for further refinement of the controller, as one can observe a general trend of under-

actuation and also some phase lag at lower frequencies.

Hands-On Demonstration To obtain qualitative feedback about the feel of this sys-

tem, we demonstrated the haptography handle in bilateral teleoperation at the 2009

IEEE World Haptics Conference (McMahan and Kuchenbecker, 2009a). Confer-

ence attendees were invited to use the master–slave Omni system to remotely ex-

plore textured samples both with and without acceleration feedback from the ded-

icated actuator. The demonstration was well received and participants provided a

great deal of positive feedback, especially that the accelerations allowed them to feel

small details and surface textures that were not detectable with only the position-

position controller. Several participants thus commented that their hand felt “numb”

when they explored the samples without haptographic feedback. The contact accel-

erations were also noted to make the surfaces feel “harder” even though the normal

force provided by the Omni remained constant. This demonstration was honored to

be selected by a panel of experts for the conference’s Best Demonstration award.

Future Work As we continue this research, we hope to improve the fidelity of

our haptographic rendering by investigating more sophisticated acceleration con-

trollers. We are also working to determine the perceptually correct mapping of three-

dimensional accelerations to a one-dimensional actuator. Lastly, we are preparing to

run human subject experiments to study the perceptual requirements for discrimina-

tion of realistic contact accelerations, as well as the potential benefits the approach

of haptography may have on common applications for haptic interfaces.
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