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Using policy gradient reinforcement learning on autonomous robot
controllers

Abstract
Robot programmers can often quickly program a robot to approximately execute a task under specific
environment conditions. However, achieving robust performance under more general conditions is
significantly more difficult. We propose a framework that starts with an existing control system and uses
reinforcement feedback from the environment to autonomously improve the controller’s performance. We use
the Policy Gradient Reinforcement Learning (PGRL) framework, which estimates a gradient (in controller
space) of improved reward, allowing the controller parameters to be incrementally updated to autonomously
achieve locally optimal performance. Our approach is experimentally verified on a Cye robot executing a
room entry and observation task, showing significant reduction in task execution time and robustness with
respect to un-modelled changes in the environment.
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Abstracl-Robot programmers can often quickly program 
a robot to approximately execute a task under specific envi- 
ronment conditions. However, achieving robust performance 
under more general conditions is significantly more difficult. 
We propose a framework that starts with an existing control 
system and uses reinforcement feedback from the environ- 
ment to autonomously improve the controller’s performance. 
We use the Policy Gradient Reinforcement Learning (PGRL) 
framework, which estimates a gradient (in controller space) 
of improved reward, allowing the controller parameters to 
he incmnentally updated to autonomously achieve locally 
optimal performance. Our approach is experimentally veri- 
fied on a Cye robot executing a mom entry and observation 
task, showing significant reduction in task execution time 
and robustness with respect to un-modelled changes in the 
environment 

I. INTRODUCTION 

Building continuous controllers with a provable global 
performance is well known to be very difficult in all but 
the simplest of cases. Our philosophy is to develop simple 
controllers whose dynamic characteristics are well under- 
stood, and switch between these controllers depending on 
the task and on sensory feedback. This essentially means 
that the state space is divided into discrete partitions, 
and the behavior of the robot system changes when it 
leaves one partition and enters another partition. This 
paradigm can he viewed in a hybrid systems framework 
where there are many discrete modes, each of which 
represents a continuous dynamic system, and the hybrid 
robot controller switches between the discrete modes [I] ,  

In this context, learning can be used in two ways. 
First, learning can be used to improve the performance 
of the controller in each mode. This generally reduces 
to a parametric learning problem: Second, learning can 
be used to determine the conditions for mode-switching, 
or the boundaries that characterize each partition. These 
conditions are algebraic equations for the invariants cbar- 

~21, [31, ~41, [51 

acterizing each mode, and the transitions that characterize 
switches between modes. Laming at this level can fun- 
damentally change the behavior of the controller. 

An attractive alternative to hand coding robot con- 
trollers is to instead code learning algorithms which allow 
the robot to autonomously learn to appropriately interact 
with their environment. Reinforcement learning (RL) is a 
paradigm by which agents learn to improve their behaviour 
through interaction with their environment [61. RL starts 
with the assumption that it is easy to specify under what 
conditions an agent (robot) has failed or succeeded in a 
specific task. For example, with a mobile robot we can 
determine relatively easily when it has collided with an 
obstacle, or when it has reached its goal state. Such high 
level feedback from the environment is termed reinforce- 
ment reward or feedback, and it is typically intermittent, 
often with long periods of time passing between successive 
rewards. The aim of RL is to use such intermittent 
reinforcement feedback to design a controller that acts 
optimally in a specific environment. 

Although there have been a number of successful 
applications of RL [7], these applications are typically 
characterized by relatively small discrete state spaces, and 
millions of learning episodes. In contrast, robotic systems 
are typically characterized by large continuous state spaces 
and environments where millions of learning runs are 
not feasible. As a result, there have been relatively few 
published examples of RL on real robotic systems. One 
example is [8], where a robot’s controller is specified by 
a set of behaviors, and learning is done by exploring the 
order in which these behaviours are executing, then choos- 
ing the ordering which gives best performance. Another is 
[9], where learning is bootstrapped by demonstration runs 
supplied by a human operator, effectively directing search 
during learning and allowing relatively quick convergence 
to successful control policies. 

In both of the above examples of RL in robotics (as 
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well as other examples [IO], [ I l l ,  [121, [131, [141, [151, 
[161), effective learning is accomplished by building prior 
knowledge into the learning system. Prior knowledge can 
be encoded in the choice of behaviours and an initial order 
of execution 181, or it can be added by a human operator 
who supplies sample robot trajectories [9]. 

In this paper we propose to incorporate prior knowledge 
in the form of a controller specification. Our objective is 
to develop a framework that can take any standard control 
specification and apply RI, to improve the controller’s 
performance. The motivation for this is twofold. First, 
although it is difficult to code a controller that performs 
robustly under a wide range of conditions, programmers 
can write controllers that effectively work under limited 
conditions. Second, even if a controller is theoretically 
guaranteed to perform robustly, it is likely that in practice 
it will not behave exactly as predicted because theory 
cannot completely describe the actual dynamics of a real 
robot. Therefore, much is to be gained for any real control 
system, if RL techniques can be used to autonomously 
improve the controllers performance on the actual task it is 
meant to accomplish. Simply put, our objective is to shin 
the burden of tuning and refining a complex controller 
from the designer to an RL algorithm. 

Our framework assumes that the controller can be repre- 
sented by a set of K real parameters 0 = (O1, ... O K ) ,  which 
define how the robot acts in its environment. Changing one 
of these 6, parameter values changes the robot’s controller, 
thus affecting the robot’s performance. The goal is to 
improve the robot’s reward as specified by some reward 
function p ( 0 ) ,  which is also a function of the controller 
parameters 0. In mobile robotics, a possible example of a 
reward function is one which gives negative reward when- 
ever the robot collides with an obstacle, and a positive 
reward whenever it attains a goal position. Because the 
robot’s control policy is completely defined by a parameter 
vector 0. the Policy Gradient Reinforcement Learning 
(PGRL) [171, []E], [I91 framework can be directly ap- 
plied to modifying parameter values to improve controller 
performance. In addition, PGRL algorithms are well suited 
to continuous problem domains and are guaranteed to 
converge to locally optimal policies. In F‘GRL-Ieaming 
occurs by estimating a performance gradient, d p l d 0  in 
the direction of increased reward. The control parameters 
are updated according to gradient ascent as follows: 

A 

In Section U we describe the theoretical framework 
used and the Deterministic Policy Gradient (DPG) algo- 
rithm which is used to estimate performance gradients. 
In Section UI experimental results are given on a Cye 
robot executing an room entry, observation, and exit task. 
Section IV concludes with a brief discussion. 

11. THE REINFORCEMENT LEARNING FORMULATION 

A. POMDP Formularion 

We formulate the learning problem as an agent (robot) 
interacting with a Partially Observable Markov Decision 
Process (POMDP) [7]. Each time the robot makes a sensor 
reading, it observes a set D of continuous valued readings 
(or information variables) symbolized by z = (zl, ..., zd)  E 
D 2 Rd. Note, that these sensor readings z are not the 
same as the actual physical state x of the robot, which 
cannot be fully observed. However, we assume that the 
actual robot’s state is partially observable because an 
infinite time sequence of observations of sensor readings z 
can be used to exactly infer x. At f = 0, the robot observes 
an initial set of sensor values denoted by zo and continues 
to interact with the environment for a maximum duration 
of time T .  The paths followed by the agent are continuous 
in time 0 5 f 5 T and are symbolized by observations 
z(f) = (zl(r) ,... ,zd(r)) .  During each episode the expected 
reward the agent receives at time f, after z(r) is observed 
and action a, is executed, is symbolized by r ( z ( f ) , a l )  E 3. 

The robot’s controller is uniquely defined by a set of 
Q functions g(z, 0) = (gl (2, 0) , ..., gQ (z,O)), which are 
bounded continuous functions defined on z E D such that 

1 ,..., Q a n d V k = l ,  ..., K. 

eters 0 in g to locally optimize the reward: 

0 = ( 6 , ,  ..., OK)EIRK,and J $ existsandisboundedVq= 

The robot’s goal is to incrementally modify the param- 

where 0 < y < 1 is a discount factor and p ( ZJ f, 0) is the 
probability the agent enters state z at time r under the 
policy specified by 0. The discount factor y in (2) implies 
that the robot receives greater reward if it reaches posi- 
tive values of reinforcement feedback ( r (z (r ) ,a , ) )  more 
quickly. In this sense it is similar to the the standard 
discounted reward formulation in discrete state spaces [61. 
We further assume that p (0) is continuous with respect 
to 0. 

where a is a small positive step size and specifies 
the updated policy. PGRL algorithms are guaranteed to 
converge to a locally optimal control policy, and are 
therefore ideally suited for real world control problems 
where globally optimal solutions are rarely realizable, and 
any improvement in controller performance is beneficial. 

B. A DPG Algorithm 
We use the Deterministic Policy Gradient (DPG)_algo- 

rithm (proposed in [20]) to estimate a gradient ( a p / d 0  
in equation (I)) in control parameter space of the reward 
function given in equation (2). This algorithm is based 
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a) Robot at Start Position b) Robot Going Towards c) Robot at Goal Position d) Robot’s Internal Obstacle 
(entry to room) Goal (ready to leave room) Representation 

Fig. I .  Robot Tark 

on the following theorem which allows J p  /a@ to be 
estimated (proof proven in [201): 

Theorem: Let V ( r , @ )  be the remaining part of the 
reward function ( 2 )  after t seconds has passed: 

Then, given the assumptions in Section II-A and further 
assuming that a exists and is bounded, then the 
exact expressionJr the performance gradient with respect 
to e,, Vq = 1, ..., Q and Vk = 1, ...., K,  is given by: 

The motivation behind the DPG algorithm is to create 
an online learning framework that continuously updates 
the hybrid control parameters to steadily improve perfor- 
mance. We are not interested in finding an optimal control 
policy because, in essence, it is not possible to do this in 
the complex uncertain environments we are interested in. 
Our aim is to quickly and efficiently improve performance 
until a locally optimal controller has been attained. Thus, 
the algorithm is designed to quickly identify those control 
parameters that, if changed, will most effectively improve 
performance. Using the above theorem, the relevance of 
parameter e can be directly observed by evaluating the 
term in (4) as the robot executes it’s task. 
If this term IS zero for the entire episode, then small 
changes in 0, are likely to have no affect on the policy 
and need not be perturbed. Once identified in this way, 
relevant parameters can be slowly modified in a direction 
of increased reward, allowing the robot to quickly improve 
controller performance. 

111. EXPERIMENTAL RESULTS 

A. The Robot and Task Definition 
Our experimental setup consists of a Cye Robot con- 

trolled by an on-board laptop computer through an RS232 
serial link. The robot’s task is to enter a room, follow 

a path to a goal position, and then exit the rmm from 
where it entered. Figure l a  shows the robot where it 
enters the room at the initial position, Figure Ib shows 
the robot navigating around the obstacles on its way to 
the goal position, and Figure IC  shows the robot at the 
goal position. The room dimensions are 17 feet by 17 
feet, and there are four obstacles within the rmm (see 
Figure 2 for a representation of these obstacles): an ‘L‘ 
shaped obstacle behind which the goal is located (at the 
right end of the room), and two square obstacle. The robot 
has an internal model of the ’L‘ shaped obstacle and one 
of the square obstacles as shown in Figure Id. Therefore, 
the robot’s internal model differs from the real world in 
two ways: the square obstacle the robot knows about has 
moved, and a new square obstacle has appeared which the 
robot did not know about. The task of the learning system 
is to learn to compensate for these differences, as well as 
to compensate for the usual un-modelled dynamics of the 
robot interacting with the environment. 

B. The Controller 
We use a mode switching controller, with three modes: 

follow potential field, avoid obstacle, and recovery from 
collision. Only one of these control modes is active at any 
one time. The controller begins in the followpotentialfield 
mode described below. 

The follow potentialfield mode assumes that there exists 
a rough map of where the stationary obstacles are located, 
where the goal position is, and the entry and exits of the 
room. Figure Id shows the map used in this paper. Given 
this information, the grassfire algorithm [21] is used to 
calculate a numerical potential field which the robot can 
use to navigate to the goal. Whenever the follow potential 
field mode is active, the robot is directed along a direction 
of lowest potential (when it reaches zero potential the 
robot is at the goal position). In our implementation of 
this mode, the room is divided into a 20 by 20 grid, 
and the grassfire. algorithm is used to assign a potential 
to each grid point. If m denotes the grid index that has 
the minimum potential of all grids adjacent to the grid the 
robot is currently occupying, then the desired direction 
the robot is directed to more is given by @ = atan2(y,x), 
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a) Simulated Path Before b) Simulated Path After c) Actual Path Before d) Actual Path After 
Learning Learning Simulator Learning Simulator Learning 

Fig. 2. 
dotted lines (in blue) indicate the avoid obside made. Finally, recoveg fmm collision mode is indicated by the darkest (in red) dotted tine in p m  c. 

Typical paths towards god. The light doned lines (in green) indicate that the conuoller is in the follow poieniinlficld made. and the darker 

where x =x,. -xc, y = ym -yc ,  and (xm,y3.) are the grid 
coordinates with the minimum potential, and (xc ,yc )  is 
the current estimate of the robot’s position. The follow 
potential field mode uses two potential gradients: one for 
going toward the goal, and one for returning the the initial 
position after the goal state has been reached. 

If an obstacle is detected within a polygon shaped area, 
called the obstacle detection region, around the robot, 
the robot switches from the follow potential field mode 
to the avoid obstacle mode. Figure Id shows the shape 
of the obstacle detection region used in this paper. This 
mode switching policy is defined by seven parameters 

These parameters define seven line segments, each starting 
from the robot’s center and radiating outward in a forward 
direction at 180/7 degree intervals. The avoid obstacle 
mode redirects the robot around the obstacle, and once the 
obstacle is no longer within the obstacle detection region, 
the follow potential field mode is activated once more. 

The recovery from collision mode is activated whenever 
the robot detects a collision. This mode controls the robot 
by applying a negative velocity v to the drive wheels and 
a desired steering direction OC that will move the robot 
away from obstacle it is assumed to have collided with. 
The recovery from collision mode is active for a fixed 
period of time (T),  after wbichfollow potentialfield mode 
is reactivated. 

C. The Simulator 
The potential path calculated by the grassfire algorithm 

assumes a point robot which can holonomically move 
in any direction. However, the Cye robot is rectangular 
(see Figure 1) and cannot instantaneously move in any 
direction. Therefore, the goal of the simulator is to roughly 
model the robot’s geometry and to limit the rate of 
change in the robot’s orientation to 5 degrees each time 
a control signal is passed to the robot. The simulator 
also uses the map containing the obstacle positions, the 
goal position, and the initial position. The mode switching 
controller described above is also simulated. However, the 
simulator only incorporates kinematic constraints, and no 

o = (e ,..., e,,) which are all initially set to 2 feet. 

robot dynamics are considered. Noise in the simulator is 
modeled as an uncertainty in current robot’s position, and 
is calculated using a uniform distribution in x and y of 4 
inches from the actual robot position. 

D. Leaming Results 
We investigated how RL can be used to modify the 

initial potential field generated by the grassfire algorithm, 
as well as the mode switching parameters between the 
follow potential field mode and the avoid obstacle mode. 
All other parts of the controller definitions are held fixed 
(i.e. the calculation of OC in the the avoid obstacle and 
recovery f ”  collision modes, as well as the duration 
T for which the recovery fmm collision mode is active 
remains unchanged). The reward function to be maximized 
is given in (2). where the discount factor is set to y =  
0.99. The reward for reaching the goal, and for reaching 
the initial position after the goal is attained, is r = 1. 
A negative reward of r = - 1  is given for an obstacle 
collision. Therefore, the robot receives most reward by 
taking the shortest path between goal and initial states, 
while still avoiding obstacles. Finally, if the robot doesn’t 
reach the goal within a fixed period of time, then it is 
given a reward of r = - 1. 

The gradient field generated by the grassfire algorithm 
has 1600 control parameters: 400 ( x , y )  grid pairs for 
the gradient field towards the goal, and 400 ( x , y )  grid 
pairs for the gradient field towards the initial position. 
We denote these parameters as 0 = (xl,yI, ..., x800,y8w). 
and the DPG algorithm described in Section 11-B, is used 
to modify these 1600 parameters along a gradient of 
increased reward. The functions g(x,O) used by the DPG 
algorithm (see Section E A )  are set to g, = 0, -x, for 
odd m and g, = 0, -yc  for even m, where e, is defined 
such that 0 = (0, ,..., 0,;) = (x , ,y ,  ,..., x800,y8ao) and 
(xc,yc) is the current estlmated position of the robot. If 
the robot never uses parameter e,,, during an episode, then 
g, = ,= 0. Therefore, learning occurs by warping the 
grid locatlons of the potential field, and not the values of 
the potential field at the grid locations. 

The Mode Switching controller between the follow 
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a) Simulated Path Before b) Simulated Path After c) Actual Path Before d) Actual Path After 
Learning Learning Simulator Learning Simulator Learning 

Fig. 3. Typical paths fmm goal 10 SM position.. The light dotted lines (in green) indicate that the controller is h the follow potenrialfield mode. and 
the darker dolled lines (in blue) indicate the avoid obmcle mode. 

Fig. 4. Convergence results on the simulated Robot 

potential field mode and the avoid obstacle mode is 
defined by two functions (g,,,g ,).,The g,, function 

is defined by: g,, = f 1 +tanh q E hi where hi = 

[ I  + tanh(q (d, - e,,))] and d, is the minimum distance 
to an obstacle along section i, 7 is a positive number(set 
arbitrarily to 1.0 in this paper), and e,, are the seven 
mode switching parameters as defined in Section III-B. We 
define g,, = 1 -g,,. Note that g,, will only go above 0.5 
if an obstacle intersects one of the seven pi sections, thus 
the controller switches from the 'follow potential field' 
mode, to the 'avoid obstacle' mode. Similarly, when g,, 
goes above above 0.5, the obstacle has been cleared and 
the controller switches from the 'avoid obstacle' mode to 
the 'follow potential field' mode. 

The gradient step size (i.e. a in Equation (1)) for 
the policy update is a = 0.05. The DPG (Section II-B) 
algorithm search step size is set to P = 0.5 feet. The cut- 
off for search for a given policy parameter e, is defined by 
Diu = 0.5, and in a typical robot run through the room 
only about 100 of the 1607 parameters (counting both 
the mode switching and grasstire controller parameters) 
satisfy these conditions (and thus will be used to estimate 
a performance gradient). 

Figure 4 shows typical convergence of the DPG algo- 
rithm on the simulation. Results given show the reward 
obtained by the best learned control policy as a function 

[ Q i=l >I 

Fig. 5. Convergence results on the acmal Cye robot. 

of the number of times the robot goes through the room 
(i.e. the number of episodes). The algorithm converged 
to a locally optimal policy in about 200 runs through 
the simulated room, learning to avoid the obstacle that 
moved as well as the obstacle which it did not know 
about. A typical path followed by the simulated robot 
after learning in simulation is shown in Figure 2b for the 
initial position to goal position phase, and in Figure 3b for 
the goal position to initial position phase. Corresponding 
runs of the actual robot are shown in 2d and Figure 3d 
respectfully. For both the simulated and real robot's, the 
control policy learned by the DPG algorithm reduces the 
overall time the robot spends in the rmm by about 14 
percent, completely eliminating obstacle collisions. 

Figure 5 shows the convergence results of the DPG 
algorithm running on the real robot for a total of 20 
episodes through the room. The initial jump in the reward 
between episode 1 and 2 reflects the learning done in 
simulation (i.e episode 1 is before learning in simulation 
and episode 2 is after learning in simulation). The best 
policy continues to generally improve over the next 18 
robot passes. 

IV. CONCLUSION 
We have demonstrated that reinforcement learning can 

be used to effectively improve the performance of mode 
switching hybrid controllers. Our framework simultane- 
ously modifies both the control parameters within modes, 
as well as the parameters that govem when the controller 
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switches between modes. The Policy Gradient Reinforce- 
ment Learning (PGRL) framework is used to calculate 
a gradient of increased reward in controller space, al- 
lowing the robot to autonomously update its controller 
to locally optimal policies. PGRL allows learning to be 
seamlessly incorporated into the robot’s hybrid controller, 
thus allowing the control policy to be continually refined 
as conditions change. 
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