
University of Pennsylvania
ScholarlyCommons

Departmental Papers (MEAM) Department of Mechanical Engineering & Applied
Mechanics

October 2003

Using policy gradient reinforcement learning on
autonomous robot controllers
Gregory Z. Grudic
University of Colorado

R. Vijay Kumar
University of Pennsylvania, kumar@grasp.upenn.edu

Lyle H. Ungar
University of Pennsylvania, ungar@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/meam_papers

Copyright © 2003 IEEE. Reprinted from Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2003), volume 1, pages 406-411.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27983&page=4
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Recommended Citation
Grudic, Gregory Z.; Kumar, R. Vijay; and Ungar, Lyle H., "Using policy gradient reinforcement learning on autonomous robot
controllers" (2003). Departmental Papers (MEAM). 6.
http://repository.upenn.edu/meam_papers/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fmeam_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam_papers?utm_source=repository.upenn.edu%2Fmeam_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam?utm_source=repository.upenn.edu%2Fmeam_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam?utm_source=repository.upenn.edu%2Fmeam_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam_papers?utm_source=repository.upenn.edu%2Fmeam_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam_papers/6?utm_source=repository.upenn.edu%2Fmeam_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27983&page=4

Using policy gradient reinforcement learning on autonomous robot
controllers

Abstract
Robot programmers can often quickly program a robot to approximately execute a task under specific
environment conditions. However, achieving robust performance under more general conditions is
significantly more difficult. We propose a framework that starts with an existing control system and uses
reinforcement feedback from the environment to autonomously improve the controller’s performance. We use
the Policy Gradient Reinforcement Learning (PGRL) framework, which estimates a gradient (in controller
space) of improved reward, allowing the controller parameters to be incrementally updated to autonomously
achieve locally optimal performance. Our approach is experimentally verified on a Cye robot executing a
room entry and observation task, showing significant reduction in task execution time and robustness with
respect to un-modelled changes in the environment.

Keywords
robotics, controllers, programming, Policy Gradient Reinforcement Learning (PGRL)

Comments
Copyright © 2003 IEEE. Reprinted from Proceedings of the 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003), volume 1, pages 406-411.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27983&page=4

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/meam_papers/6

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27983&page=4
http://repository.upenn.edu/meam_papers/6?utm_source=repository.upenn.edu%2Fmeam_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages

Proceedings of the 2003 IEEWRSJ
InU. Conference on Intelligent Robots and Systems
Las Vegas, Nevada ’ October 2003

Using Policy Gradient Reinforcement Learning on Autonomous Robot
Controllers

Gregory 2. Grudic
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430

Vijay Kumar
GRASP Lab

University of Pennsylvania
Philadelphia, PA 19104-6228

USA
Lyle Ungar

Computer and Information Science

USA

University of Pennsylvania
Philadelphia, PA 19104-6389

USA

Abstracl-Robot programmers can often quickly program
a robot to approximately execute a task under specific envi-
ronment conditions. However, achieving robust performance
under more general conditions is significantly more difficult.
We propose a framework that starts with an existing control
system and uses reinforcement feedback from the environ-
ment to autonomously improve the controller’s performance.
We use the Policy Gradient Reinforcement Learning (PGRL)
framework, which estimates a gradient (in controller space)
of improved reward, allowing the controller parameters to
he incmnentally updated to autonomously achieve locally
optimal performance. Our approach is experimentally veri-
fied on a Cye robot executing a mom entry and observation
task, showing significant reduction in task execution time
and robustness with respect to un-modelled changes in the
environment

I. INTRODUCTION

Building continuous controllers with a provable global
performance is well known to be very difficult in all but
the simplest of cases. Our philosophy is to develop simple
controllers whose dynamic characteristics are well under-
stood, and switch between these controllers depending on
the task and on sensory feedback. This essentially means
that the state space is divided into discrete partitions,
and the behavior of the robot system changes when it
leaves one partition and enters another partition. This
paradigm can he viewed in a hybrid systems framework
where there are many discrete modes, each of which
represents a continuous dynamic system, and the hybrid
robot controller switches between the discrete modes [I] ,

In this context, learning can be used in two ways.
First, learning can be used to improve the performance
of the controller in each mode. This generally reduces
to a parametric learning problem: Second, learning can
be used to determine the conditions for mode-switching,
or the boundaries that characterize each partition. These
conditions are algebraic equations for the invariants cbar-

~21, [31, ~41, [51

acterizing each mode, and the transitions that characterize
switches between modes. Laming at this level can fun-
damentally change the behavior of the controller.

An attractive alternative to hand coding robot con-
trollers is to instead code learning algorithms which allow
the robot to autonomously learn to appropriately interact
with their environment. Reinforcement learning (RL) is a
paradigm by which agents learn to improve their behaviour
through interaction with their environment [61. RL starts
with the assumption that it is easy to specify under what
conditions an agent (robot) has failed or succeeded in a
specific task. For example, with a mobile robot we can
determine relatively easily when it has collided with an
obstacle, or when it has reached its goal state. Such high
level feedback from the environment is termed reinforce-
ment reward or feedback, and it is typically intermittent,
often with long periods of time passing between successive
rewards. The aim of RL is to use such intermittent
reinforcement feedback to design a controller that acts
optimally in a specific environment.

Although there have been a number of successful
applications of RL [7], these applications are typically
characterized by relatively small discrete state spaces, and
millions of learning episodes. In contrast, robotic systems
are typically characterized by large continuous state spaces
and environments where millions of learning runs are
not feasible. As a result, there have been relatively few
published examples of RL on real robotic systems. One
example is [8], where a robot’s controller is specified by
a set of behaviors, and learning is done by exploring the
order in which these behaviours are executing, then choos-
ing the ordering which gives best performance. Another is
[9], where learning is bootstrapped by demonstration runs
supplied by a human operator, effectively directing search
during learning and allowing relatively quick convergence
to successful control policies.

In both of the above examples of RL in robotics (as

0-7805786~1/03/$17.00 0 2003 IEEE 406

well as other examples [IO], [I l l , [121, [131, [141, [151,
[161), effective learning is accomplished by building prior
knowledge into the learning system. Prior knowledge can
be encoded in the choice of behaviours and an initial order
of execution 181, or it can be added by a human operator
who supplies sample robot trajectories [9].

In this paper we propose to incorporate prior knowledge
in the form of a controller specification. Our objective is
to develop a framework that can take any standard control
specification and apply RI, to improve the controller’s
performance. The motivation for this is twofold. First,
although it is difficult to code a controller that performs
robustly under a wide range of conditions, programmers
can write controllers that effectively work under limited
conditions. Second, even if a controller is theoretically
guaranteed to perform robustly, it is likely that in practice
it will not behave exactly as predicted because theory
cannot completely describe the actual dynamics of a real
robot. Therefore, much is to be gained for any real control
system, if RL techniques can be used to autonomously
improve the controllers performance on the actual task it is
meant to accomplish. Simply put, our objective is to shin
the burden of tuning and refining a complex controller
from the designer to an RL algorithm.

Our framework assumes that the controller can be repre-
sented by a set of K real parameters 0 = (O1, ... O K) , which
define how the robot acts in its environment. Changing one
of these 6, parameter values changes the robot’s controller,
thus affecting the robot’s performance. The goal is to
improve the robot’s reward as specified by some reward
function p (0) , which is also a function of the controller
parameters 0. In mobile robotics, a possible example of a
reward function is one which gives negative reward when-
ever the robot collides with an obstacle, and a positive
reward whenever it attains a goal position. Because the
robot’s control policy is completely defined by a parameter
vector 0. the Policy Gradient Reinforcement Learning
(PGRL) [171, []E], [I91 framework can be directly ap-
plied to modifying parameter values to improve controller
performance. In addition, PGRL algorithms are well suited
to continuous problem domains and are guaranteed to
converge to locally optimal policies. In F‘GRL-Ieaming
occurs by estimating a performance gradient, d p l d 0 in
the direction of increased reward. The control parameters
are updated according to gradient ascent as follows:

A

In Section U we describe the theoretical framework
used and the Deterministic Policy Gradient (DPG) algo-
rithm which is used to estimate performance gradients.
In Section UI experimental results are given on a Cye
robot executing an room entry, observation, and exit task.
Section IV concludes with a brief discussion.

11. THE REINFORCEMENT LEARNING FORMULATION

A. POMDP Formularion

We formulate the learning problem as an agent (robot)
interacting with a Partially Observable Markov Decision
Process (POMDP) [7]. Each time the robot makes a sensor
reading, it observes a set D of continuous valued readings
(or information variables) symbolized by z = (zl, ..., zd) E
D 2 Rd. Note, that these sensor readings z are not the
same as the actual physical state x of the robot, which
cannot be fully observed. However, we assume that the
actual robot’s state is partially observable because an
infinite time sequence of observations of sensor readings z
can be used to exactly infer x. At f = 0, the robot observes
an initial set of sensor values denoted by zo and continues
to interact with the environment for a maximum duration
of time T . The paths followed by the agent are continuous
in time 0 5 f 5 T and are symbolized by observations
z(f) = (zl(r) ,... ,zd(r)) . During each episode the expected
reward the agent receives at time f, after z(r) is observed
and action a, is executed, is symbolized by r (z (f) , a l) E 3.

The robot’s controller is uniquely defined by a set of
Q functions g(z, 0) = (gl (2, 0) , ..., gQ (z,O)), which are
bounded continuous functions defined on z E D such that

1 ,..., Q a n d V k = l , ..., K.

eters 0 in g to locally optimize the reward:

0 = (6 , , ..., OK)EIRK,and J $ existsandisboundedVq=

The robot’s goal is to incrementally modify the param-

where 0 < y < 1 is a discount factor and p (ZJ f, 0) is the
probability the agent enters state z at time r under the
policy specified by 0. The discount factor y in (2) implies
that the robot receives greater reward if it reaches posi-
tive values of reinforcement feedback (r (z (r) ,a ,)) more
quickly. In this sense it is similar to the the standard
discounted reward formulation in discrete state spaces [61.
We further assume that p (0) is continuous with respect
to 0.

where a is a small positive step size and specifies
the updated policy. PGRL algorithms are guaranteed to
converge to a locally optimal control policy, and are
therefore ideally suited for real world control problems
where globally optimal solutions are rarely realizable, and
any improvement in controller performance is beneficial.

B. A DPG Algorithm
We use the Deterministic Policy Gradient (DPG)_algo-

rithm (proposed in [20]) to estimate a gradient (a p / d 0
in equation (I)) in control parameter space of the reward
function given in equation (2). This algorithm is based

407

a) Robot at Start Position b) Robot Going Towards c) Robot at Goal Position d) Robot’s Internal Obstacle
(entry to room) Goal (ready to leave room) Representation

Fig. I . Robot Tark

on the following theorem which allows J p /a@ to be
estimated (proof proven in [201):

Theorem: Let V (r , @) be the remaining part of the
reward function (2) after t seconds has passed:

Then, given the assumptions in Section II-A and further
assuming that a exists and is bounded, then the
exact expressionJr the performance gradient with respect
to e,, Vq = 1, ..., Q and Vk = 1,, K, is given by:

The motivation behind the DPG algorithm is to create
an online learning framework that continuously updates
the hybrid control parameters to steadily improve perfor-
mance. We are not interested in finding an optimal control
policy because, in essence, it is not possible to do this in
the complex uncertain environments we are interested in.
Our aim is to quickly and efficiently improve performance
until a locally optimal controller has been attained. Thus,
the algorithm is designed to quickly identify those control
parameters that, if changed, will most effectively improve
performance. Using the above theorem, the relevance of
parameter e can be directly observed by evaluating the
term in (4) as the robot executes it’s task.
If this term IS zero for the entire episode, then small
changes in 0, are likely to have no affect on the policy
and need not be perturbed. Once identified in this way,
relevant parameters can be slowly modified in a direction
of increased reward, allowing the robot to quickly improve
controller performance.

111. EXPERIMENTAL RESULTS

A. The Robot and Task Definition
Our experimental setup consists of a Cye Robot con-

trolled by an on-board laptop computer through an RS232
serial link. The robot’s task is to enter a room, follow

a path to a goal position, and then exit the rmm from
where it entered. Figure l a shows the robot where it
enters the room at the initial position, Figure Ib shows
the robot navigating around the obstacles on its way to
the goal position, and Figure IC shows the robot at the
goal position. The room dimensions are 17 feet by 17
feet, and there are four obstacles within the rmm (see
Figure 2 for a representation of these obstacles): an ‘L‘
shaped obstacle behind which the goal is located (at the
right end of the room), and two square obstacle. The robot
has an internal model of the ’L‘ shaped obstacle and one
of the square obstacles as shown in Figure Id. Therefore,
the robot’s internal model differs from the real world in
two ways: the square obstacle the robot knows about has
moved, and a new square obstacle has appeared which the
robot did not know about. The task of the learning system
is to learn to compensate for these differences, as well as
to compensate for the usual un-modelled dynamics of the
robot interacting with the environment.

B. The Controller
We use a mode switching controller, with three modes:

follow potential field, avoid obstacle, and recovery from
collision. Only one of these control modes is active at any
one time. The controller begins in the followpotentialfield
mode described below.

The follow potentialfield mode assumes that there exists
a rough map of where the stationary obstacles are located,
where the goal position is, and the entry and exits of the
room. Figure Id shows the map used in this paper. Given
this information, the grassfire algorithm [21] is used to
calculate a numerical potential field which the robot can
use to navigate to the goal. Whenever the follow potential
field mode is active, the robot is directed along a direction
of lowest potential (when it reaches zero potential the
robot is at the goal position). In our implementation of
this mode, the room is divided into a 20 by 20 grid,
and the grassfire. algorithm is used to assign a potential
to each grid point. If m denotes the grid index that has
the minimum potential of all grids adjacent to the grid the
robot is currently occupying, then the desired direction
the robot is directed to more is given by @ = atan2(y,x),

408

a) Simulated Path Before b) Simulated Path After c) Actual Path Before d) Actual Path After
Learning Learning Simulator Learning Simulator Learning

Fig. 2.
dotted lines (in blue) indicate the avoid obside made. Finally, recoveg fmm collision mode is indicated by the darkest (in red) dotted tine in p m c.

Typical paths towards god. The light doned lines (in green) indicate that the conuoller is in the follow poieniinlficld made. and the darker

where x =x,. -xc, y = ym -yc , and (xm,y3.) are the grid
coordinates with the minimum potential, and (xc ,yc) is
the current estimate of the robot’s position. The follow
potential field mode uses two potential gradients: one for
going toward the goal, and one for returning the the initial
position after the goal state has been reached.

If an obstacle is detected within a polygon shaped area,
called the obstacle detection region, around the robot,
the robot switches from the follow potential field mode
to the avoid obstacle mode. Figure Id shows the shape
of the obstacle detection region used in this paper. This
mode switching policy is defined by seven parameters

These parameters define seven line segments, each starting
from the robot’s center and radiating outward in a forward
direction at 180/7 degree intervals. The avoid obstacle
mode redirects the robot around the obstacle, and once the
obstacle is no longer within the obstacle detection region,
the follow potential field mode is activated once more.

The recovery from collision mode is activated whenever
the robot detects a collision. This mode controls the robot
by applying a negative velocity v to the drive wheels and
a desired steering direction OC that will move the robot
away from obstacle it is assumed to have collided with.
The recovery from collision mode is active for a fixed
period of time (T), after wbichfollow potentialfield mode
is reactivated.

C. The Simulator
The potential path calculated by the grassfire algorithm

assumes a point robot which can holonomically move
in any direction. However, the Cye robot is rectangular
(see Figure 1) and cannot instantaneously move in any
direction. Therefore, the goal of the simulator is to roughly
model the robot’s geometry and to limit the rate of
change in the robot’s orientation to 5 degrees each time
a control signal is passed to the robot. The simulator
also uses the map containing the obstacle positions, the
goal position, and the initial position. The mode switching
controller described above is also simulated. However, the
simulator only incorporates kinematic constraints, and no

o = (e ,..., e,,) which are all initially set to 2 feet.

robot dynamics are considered. Noise in the simulator is
modeled as an uncertainty in current robot’s position, and
is calculated using a uniform distribution in x and y of 4
inches from the actual robot position.

D. Leaming Results
We investigated how RL can be used to modify the

initial potential field generated by the grassfire algorithm,
as well as the mode switching parameters between the
follow potential field mode and the avoid obstacle mode.
All other parts of the controller definitions are held fixed
(i.e. the calculation of OC in the the avoid obstacle and
recovery f ” collision modes, as well as the duration
T for which the recovery fmm collision mode is active
remains unchanged). The reward function to be maximized
is given in (2). where the discount factor is set to y =
0.99. The reward for reaching the goal, and for reaching
the initial position after the goal is attained, is r = 1.
A negative reward of r = - 1 is given for an obstacle
collision. Therefore, the robot receives most reward by
taking the shortest path between goal and initial states,
while still avoiding obstacles. Finally, if the robot doesn’t
reach the goal within a fixed period of time, then it is
given a reward of r = - 1.

The gradient field generated by the grassfire algorithm
has 1600 control parameters: 400 (x , y) grid pairs for
the gradient field towards the goal, and 400 (x , y) grid
pairs for the gradient field towards the initial position.
We denote these parameters as 0 = (xl,yI, ..., x800,y8w).
and the DPG algorithm described in Section 11-B, is used
to modify these 1600 parameters along a gradient of
increased reward. The functions g(x,O) used by the DPG
algorithm (see Section E A) are set to g, = 0, -x, for
odd m and g, = 0, -yc for even m, where e, is defined
such that 0 = (0, ,..., 0,;) = (x , ,y , ,..., x800,y8ao) and
(xc,yc) is the current estlmated position of the robot. If
the robot never uses parameter e,,, during an episode, then
g, = ,= 0. Therefore, learning occurs by warping the
grid locatlons of the potential field, and not the values of
the potential field at the grid locations.

The Mode Switching controller between the follow

409

a) Simulated Path Before b) Simulated Path After c) Actual Path Before d) Actual Path After
Learning Learning Simulator Learning Simulator Learning

Fig. 3. Typical paths fmm goal 10 SM position.. The light dotted lines (in green) indicate that the controller is h the follow potenrialfield mode. and
the darker dolled lines (in blue) indicate the avoid obmcle mode.

Fig. 4. Convergence results on the simulated Robot

potential field mode and the avoid obstacle mode is
defined by two functions (g,,,g ,).,The g,, function

is defined by: g,, = f 1 +tanh q E hi where hi =

[I + tanh(q (d, - e,,))] and d, is the minimum distance
to an obstacle along section i, 7 is a positive number(set
arbitrarily to 1.0 in this paper), and e,, are the seven
mode switching parameters as defined in Section III-B. We
define g,, = 1 -g,,. Note that g,, will only go above 0.5
if an obstacle intersects one of the seven pi sections, thus
the controller switches from the 'follow potential field'
mode, to the 'avoid obstacle' mode. Similarly, when g,,
goes above above 0.5, the obstacle has been cleared and
the controller switches from the 'avoid obstacle' mode to
the 'follow potential field' mode.

The gradient step size (i.e. a in Equation (1)) for
the policy update is a = 0.05. The DPG (Section II-B)
algorithm search step size is set to P = 0.5 feet. The cut-
off for search for a given policy parameter e, is defined by
Diu = 0.5, and in a typical robot run through the room
only about 100 of the 1607 parameters (counting both
the mode switching and grasstire controller parameters)
satisfy these conditions (and thus will be used to estimate
a performance gradient).

Figure 4 shows typical convergence of the DPG algo-
rithm on the simulation. Results given show the reward
obtained by the best learned control policy as a function

[Q i=l >I

Fig. 5. Convergence results on the acmal Cye robot.

of the number of times the robot goes through the room
(i.e. the number of episodes). The algorithm converged
to a locally optimal policy in about 200 runs through
the simulated room, learning to avoid the obstacle that
moved as well as the obstacle which it did not know
about. A typical path followed by the simulated robot
after learning in simulation is shown in Figure 2b for the
initial position to goal position phase, and in Figure 3b for
the goal position to initial position phase. Corresponding
runs of the actual robot are shown in 2d and Figure 3d
respectfully. For both the simulated and real robot's, the
control policy learned by the DPG algorithm reduces the
overall time the robot spends in the rmm by about 14
percent, completely eliminating obstacle collisions.

Figure 5 shows the convergence results of the DPG
algorithm running on the real robot for a total of 20
episodes through the room. The initial jump in the reward
between episode 1 and 2 reflects the learning done in
simulation (i.e episode 1 is before learning in simulation
and episode 2 is after learning in simulation). The best
policy continues to generally improve over the next 18
robot passes.

IV. CONCLUSION
We have demonstrated that reinforcement learning can

be used to effectively improve the performance of mode
switching hybrid controllers. Our framework simultane-
ously modifies both the control parameters within modes,
as well as the parameters that govem when the controller

410

switches between modes. The Policy Gradient Reinforce-
ment Learning (PGRL) framework is used to calculate
a gradient of increased reward in controller space, al-
lowing the robot to autonomously update its controller
to locally optimal policies. PGRL allows learning to be
seamlessly incorporated into the robot’s hybrid controller,
thus allowing the control policy to be continually refined
as conditions change.

V. ACKNOWLEDGMENTS
Thanks to Ben Southall and Joel Esposito for imple-

menting the Grassfire Algorithm. This work was funded
by the GRASP Lab, the IRCS at the University of Pennsyl-
vania, and by the DARPA IT0 MARS grant no. DABT63-
99- 1-0017. VI. REFERENCES

[I] R. Arkin and T. Balch, Artificial Intelligence and
Mobile Robots, ch. Cooperative Multiagent Robot
Systems. MIT Press, 1998.

[2] M. Mataric, “Issues and approaches in the design
of collective autonomous a gents:’ Robotics and
Autonoumous Systems, vol. 16, pp. 321-331, Dec
1995.

[31 J.Lygeros, C.J.Tomlin, and S.Sastry, “Multiobjective
hybrid control synthisis,” in Proceedings of hybrid
and realtime systems, vol. 1201 of Lecnrre Notes
in Computer Science, Grenoble: Springer-Verlag.
March 1997.

[4] D. Liberzon and A. S. Morse, “Basic problems in
stability and design of switched systems,’’ IEEE
Contml Systems, vol. 19, pp. 59-70, Oct. 1999.

[5] M. Branicky, Studies in Hybrid Systems: Modeling,
Analysis and Control. PbD thesis, MIT, Cambridge,
MA, 1995.

[6] R. S. Sutton and A. G. Barto, Reinforcement Leam-
ing: An Introducrion. Cambridge, MA: MIT Press,
1998.

[71 L. P. Kaelbling, M. L. Littman, and A. W. Moore,
“Reinforcement learning: A survey,’’ Joumal of Ar-
tificial Intelligence Research, vol. 4, pp. 237-285,
1996.

[SI E Michaud and M. J. Mataric, “Representation of
behavioral history for learning in nonstationary con-
ditions,” Robotics and Auronomous Systems, vol. 29,
no. 2, pp. 187-200, 1999.

[9] W. D. Smart and L. P. Kaelbling, “Practical rein-
forcement learning in continuous spaces:’ in Pro-
ceedings of the Seventeenth Internarional Conference
on Machine Learning, vol. 17, pp. 903-910, Morgan
Kaufmann, June 29 - July 2 2030.

[lo] S. Mahadevan, “Enhancing transfer in reinforcement
learning by building stochastic models of robot ac-
tions,” in Pmceedings of the Ninth International
Conference on Machine Learning, vol. 9, pp. 290-
299, Morgan Kanfmann, 1992.

[I I] L. J. Lin, “Self-improving reactive agents based
on reinforcement learning, planning and teaching:’
Machine Learning, vol. 8, pp. 293-321, 1992.

[I21 M. Asada, S. Noda, S. Tawaratsumida, and
K. Hosoda, “Purposive behaviour aquisition for a
real robot by vision-based reinforcement learning,”
Machine Learning, vol. 23, pp. 279-303, 1996.

[I31 W. D. Smart and L. P. Kaelbling, “Effective rein-
forcement learning for mobile robots,” in IEEE Int.
ConJ on Robotics and Automation, ICRA 02, 2002.
IEEE Intl. Conf. on Robot. and Automat.. 2002.

[14] A. S. E. Martinson and R. C. Arkin, “Robot behav-
ioral selection using q-learning,” in In the Proceed-
ings of rhe IEEURSJ Intemational Conference on
Intelligent Robots and Systems (IROS), 2002.

[15] A. H. E Y. Wang, B. Thibodeau and R. Grupen,
“Learning optimal switching policies for path track-
ing tasks on a mobile robot:’ in In the Proceedings of
the IEEURSJ International Conference on Intelligent
Robots and Systems (IROS), 2002.

[16] S. Mahadevan, “Continuous-time hierarchical rein-
forcement learning:’ in Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing, vol. 18, pp. 186193, Morgan Kaufmann, 2002.

[17] G. Z. Grudic and L. H. Ungar, “Localizing search in
reinforcement learning:’ in Proceedings of the Seven-
teenrh Natioml Conference on Artificial Intelligence,
vol. 17, pp. 590-595, Menlo Park, C A AAAI Press
I Cambridge, MA: MIT Press, July 30 - August 3
2ooO.

[18] L. Baird and A. W. Moore, “Gradient descent for
general reinforcement learning,” in Advances in Neu-
ral Information Processing Systems (M. I. Jordan,
M. J. Keams, and S. A. Solla, eds.), vol. 1 1 , (Cam-
bridge, MA), MIT Press, 1999.

[I91 R. J. Williams, “Simple statistical gradient-following
algorithms for connectionist reinforcement learning,”
Machine Learning, vol. 8, no. 3, pp. 229-256, 1992.

[20] G. 2. Grudic, V. Kumar, and L. H. Ungar, “Refin-
ing autonomous robot controllers using reinforcemnt
learning,’’ Submined, 2003.

[21] D. Lee, The map-building and exploration strategies
of a simple sonar-equipped mbot : an mperimental,
quantitative evaluation. Cambridge ; New York:
Cambridge University Press, 1996.

41 1

	University of Pennsylvania
	ScholarlyCommons
	October 2003

	Using policy gradient reinforcement learning on autonomous robot controllers
	Gregory Z. Grudic
	R. Vijay Kumar
	Lyle H. Ungar
	Recommended Citation

	Using policy gradient reinforcement learning on autonomous robot controllers
	Abstract
	Keywords
	Comments

	Using policy gradient reinforcement learning on autonomous robot controllers - Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Confer

