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Pricing of Contingent Convertibles

Abstract
This paper discusses the pricing of Contingent Convertible bonds (CoCos) with
stock price triggers. CoCos are a new kind of hybrid securities that aim to provide a capital bu er for banks in
times of nancial distress. They are debt securities during periods of economic stability, but automatically
convert into equity when a predetermined trigger is breached. Therefore, CoCos are attractive from a
regulatory perspective, and several regulators have already shown an interest in using them to manage nancial
crisis. The fair values of CoCos are driven by their structures, and the goal of this paper is to price CoCos with
stock price triggers that have varying structures in terms of the trigger level, conversion ratios, and their
maturity.

This paper presents rst the general form of the price and credit spread of CoCos without modeling stock price
dynamics. Then, assuming the Black-Scholes model, we provide two explicit pricing formulas for CoCos.
Because CoCos combine debt-like and equity-like features, they are priced using the credit derivatives
(reduced form) and equity derivatives approaches. In addition to the analytical formulas presented herein,
pricing by Monte Carlo simulation is also shown. In order to examine the suitability of the Black-Scholes
assumptions, the formulas used in this study are applied to the CoCos issued by Credit Suisse. Because the
market trigger, implied by the formulas, is associated with a constant accounting trigger, it is expected to be
constant over time.

The comparative statics of the formulas show that the mathematical structures
of the formulas explain the economic structure of CoCos. However, we nd that the formula in the equity
derivatives approach is more accurate than that in the credit derivatives approach because of its more realistic
treatment of cash
ow. Its accuracy is con rmed by Monte Carlo simulation, as the estimated con dence interval includes the price
evaluated using the equity derivatives approach. If the interest rate is equal to the dividend yield, we nd that
the two analytical formulas provide the same price. The empirical analysis of the CoCos of Credit Suisse
demonstrates that the Black-Scholes assumptions are empirically unreasonable for pricing CoCos, because the
implied market trigger is volatile over time. Given that the constant volatility assumption of the Black-Scholes
model is empirically unreasonable, this paper suggests the stochastic volatility model (Heston model) to be a
suitable alternative for modeling stock price dynamics, because it produces a more realistic fat-tail distribution
of stock returns. Thus, the pricing under the Heston model is expected to show a constant implied trigger over
time.
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Abstract

This paper discusses the pricing of Contingent Convertible bonds (CoCos) with
stock price triggers. CoCos are a new kind of hybrid securities that aim to provide a
capital buffer for banks in times of financial distress. They are debt securities during
periods of economic stability, but automatically convert into equity when a prede-
termined trigger is breached. Therefore, CoCos are attractive from a regulatory
perspective, and several regulators have already shown an interest in using them to
manage financial crisis. The fair values of CoCos are driven by their structures, and
the goal of this paper is to price CoCos with stock price triggers that have varying
structures in terms of the trigger level, conversion ratios, and their maturity.

This paper presents first the general form of the price and credit spread of CoCos
without modeling stock price dynamics. Then, assuming the Black-Scholes model,
we provide two explicit pricing formulas for CoCos. Because CoCos combine debt-
like and equity-like features, they are priced using the credit derivatives (reduced
form) and equity derivatives approaches. In addition to the analytical formulas
presented herein, pricing by Monte Carlo simulation is also shown. In order to
examine the suitability of the Black-Scholes assumptions, the formulas used in this
study are applied to the CoCos issued by Credit Suisse. Because the market trigger,
implied by the formulas, is associated with a constant accounting trigger, it is
expected to be constant over time.

The comparative statics of the formulas show that the mathematical structures
of the formulas explain the economic structure of CoCos. However, we find that the
formula in the equity derivatives approach is more accurate than that in the credit
derivatives approach because of its more realistic treatment of cash flow. Its accu-
racy is confirmed by Monte Carlo simulation, as the estimated confidence interval
includes the price evaluated using the equity derivatives approach. If the interest
rate is equal to the dividend yield, we find that the two analytical formulas provide
the same price. The empirical analysis of the CoCos of Credit Suisse demonstrates
that the Black-Scholes assumptions are empirically unreasonable for pricing CoCos,
because the implied market trigger is volatile over time.

Given that the constant volatility assumption of the Black-Scholes model is
empirically unreasonable, this paper suggests the stochastic volatility model (Heston
model) to be a suitable alternative for modeling stock price dynamics, because it
produces a more realistic fat-tail distribution of stock returns. Thus, the pricing
under the Heston model is expected to show a constant implied trigger over time.
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1 Introduction

1.1 Motivation

Contingent Convertible bonds (CoCos) are debt securities that automatically convert into
equity when a predetermined trigger is breached. They are hybrid securities that for the
following reasons have emerged as a potential solution to the moral hazard problem and
as an instrument to prevent financial institutions from becoming “too big to fail”[9]. If a
certain trigger is breached, the automatic conversion of debt obligations into fresh equity
allows the issuer to improve its capital structure. This increased level of equity helps
issuers absorb future losses, while the reduced debt helps them raise private capital. In
cases where issuers are not able to obtain private funding, the subordinated bondholders
assume the liability for the losses, meaning that governments would not need to bail
them out. With no anticipation of government bailouts, issuers would be incentivized to
de-risk and de-leverage. For these reasons, several regulators have shown an interest in
adding CoCos to their supervisory tools for crisis management [9]. For instance, CoCos
or CoCo-like securities have been issued by the Lloyds Banking Group, Rabobank, and
Credit Suisse.1

CoCos combine debt-like and equity-like features as do existing hybrid securities such
as convertible bonds (CBs) and reverse convertible notes (RCNs). However, CoCos are a
new kind of securities that are attractive from the regulators’ perspective.

Conventional CBs give holders the right to exercise an option to convert, whereas the
conversions of CoCos occur automatically once the predetermined trigger is breached.
Hence, conventional CBs have limited downsides and unlimited upsides, whereas CoCos
have limited upsides and unlimited downsides. The conversions of RCNs occur at the
discretion of issuers on the maturity date, because RCNs pay holders the minimum value
of the shares and the value of the debt at maturity. By contrast, the conversions of CoCos
can occur anytime if and only if the trigger is breached.

Most existing hybrid capital instruments did not absorb losses as they were designed
to do during the recent crisis because of the reluctance of banks to send negative signals,
the forbearance of regulators, and/or capital injections by governments [9]. However, the
automatic conversion feature with no fixed maturity of CoCos makes them serve as a
regulatory capital buffer for issuers suffering financial stress.

1.2 Structure of CoCos

Designing CoCos involves deciding on the key structuring points including the type and
level of the trigger, the conversion rate, and the maturity. These points all play a role in

1Lloyds Banking Group (LLOY) Plc sold 8.5 billion pounds of CoCos in November 2009 that would
be converted to equity if core capital drops below 5 percent. Rabobank Nederland issued $2 billion of
the securities in January with an 8 percent equity capital ratio trigger. Rabobank paid an 8.375 percent
coupon. Credit Suisse Group AG (CSGN), Switzerlands sold $2 billion of Tier 2 CoCos with a 7 percent
Core Tier 1 ratio trigger in February and announced plans to issue a further $6.2 billion of Tier 1 securities
in October 2013. Credit Suisse offered investors a 7.875 percent coupon on its Tier 2 securities and plans
to offer 9 percent and 9.5 percent coupons on its Tier 1 CoCos.
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determining the value of the security and in assessing how effective it meets its objectives.
The three types of triggers that have been issued or discussed in the previous literature

are market-based triggers, regulator-based triggers, and capital-based triggers. Each has
its own benefits and drawbacks.

• Market-based Trigger
Market-based triggers use share prices or CDS spreads as the trigger variable. The
transparency of such triggers is a significant benefit because it allows investors to
model the conversion and monitor the movement of the trigger variable. Their main
drawback is that market sentiment or market manipulation can cause unnecessary
triggering.

• Regulator-based Trigger
Under regulator-based triggers, regulators decide when and how to convert; there-
fore, such triggers offer regulators a certain degree of flexibility in the face of a
financial crisis. However, regulator-based triggers can seem to be opaque and hard
to model from an investor’s perspective. Further, it is likely that regulators would
want to delay the pronouncement of a conversion event if they judge that the pre-
vailing problems will be short-lived.

• Capital-based Trigger
Capital-based triggers use accounting ratios that can indicate the viability of a bank.
Although it is possible for investors to model the likelihood of conversion based on
disclosure, ratios such as Tier 1 capital ratios are not continuously available as
stock prices are. In addition, financial statements do not always precisely reflect
reality; for example, Bear Sterns, Lehman Brothers, Wachovia, and Merrill Lynch
all had regulatory capital ratios far above the minimum level of 8%[10]. The benefits
of capital-based triggers are that they are not subject to market manipulation as
market-based triggers are and that they eliminate the uncertainty deriving from
regulatory discretion.

In addition to the types of triggers, the levels of triggers determine the nature of the
security. CoCos that have a high trigger (i.e., a trigger level that is close to the current
level) are likely to be converted sooner than those are that have a low trigger. Therefore,
high-trigger CoCos act as a preventative buffer, while low-trigger CoCos can be likened
to insurance in the wake of a catastrophic systematic crisis. High-trigger CoCos are more
expensive compared with low-trigger CoCos because their risk of conversion is higher.

Another factor that characterizes CoCos is their conversion ratio, which is the number
of shares received per converted bond. A lower conversion rate reduces the incentive for
stock price manipulation, because if the number of shares that investors receive at conver-
sion is fixed, it is not worth influencing prices in order to provoke conversion artificially
[7]. A high conversion ratio will thus incentivize shareholders and managers to prevent
conversion because it will heavily dilute the stock.

In summary, the fair values of CoCos are driven by their structures. Thus, the goal of
this paper is to price CoCos that have diverse structures.

6



1.3 Illustration of Pricing Problem

This paper covers the pricing of CoCos with a stock price trigger. Consider a zero-coupon
CoCo with face value $D and maturity T . Define a trigger event as the issuer’s stock price
falling below $S∗. If the stock price stays above $S∗ over the entire lifetime of CoCo, the
CoCo holders get $D at year T . If the stock price hits $S∗ at τ , anytime before maturity
T , CoCo holders get N shares of issuer’s equity per one unit of bond. As the stock price
on the day that trigger event happens will be $S∗, the total value of equity shares to the
holders is $S∗ ×N .

Suppose that the full amount of face value gets converted to the shares of equity with
equivalent value. These CoCos are called “full CoCos.”2 For the full CoCos, the implied
conversion price, Pc is determined as:

Pc =
D

N
(1)

If either of N or Pc is given, the other can be determined from relationship (1). The cash
flows of this CoCo are summarized in the following table:

t τ T
No Trigger Event -Cost +D

Trigger is breached @ τ -Cost +Value of Equity Shares
if the stock price falls below $S∗ =N × S∗

The goal is to find the credit spread CS, the premium over the risk-free interest rate r
that investors require as a compensation for the risk of conversion. Therefore, the credit
spread is defined as continuously compounded yield ρ of the CoCo minus the continuously
compounded risk free rate:

CS = ρ− r

Here is the summary of common notations:
D : Face value of CoCo
S : Stock price
S∗ : Trigger Price
N : Number of shares to CoCo holders at conversion
Pc : Implied conversion per share price at conversion=D/N
T : Maturity of CoCo
τ : Time of a trigger event
r : Risk free interest rate, continuously compounded
CoCo : Value of CoCo
CS : Credit Spread
ρ : Yield of CoCo, continuously compounded

2It is on debate whether CoCos should be “full CoCos”, or only a fraction of the face value should get
converted to equity shares [10].
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1.4 Pricing Methodology

CoCos combine features of fixed income and equity, and thus can be valued by using the
credit derivatives approach or the equity derivatives approach. In the credit derivatives
approach, CoCos are considered as defaultable bonds, and the final payoff is treated as
cash. In equity derivatives approach, CoCos are priced by finding the value of equity
derivatives portfolio that replicates the final payoff, which is treated as shares of equity.3

Using the two approaches, the explicit formulas for the price and the credit spread of
CoCos can be derived.

The reduced form credit derivatives approach uses an abstract random process to
match the behavior of credit derivatives prices. The credit spreads are determined by
exogenously specified trigger probabilities and recovery rates. The equity derivatives
approach prices a portfolio of knock-in-forward and bond that approximately replicates
the price of CoCos.

In addition to the analytical formulas, the price of CoCos can be estimated by simu-
lating the stock price paths that follow the geometric Brownian motion.

1.5 Outline of the Paper

The paper is organized as follows. In section 2, the general pricing formula for CoCo
with no assumption on the stock price dynamics is presented. In section 3, under the
Black-Scholes assumptions, CoCos are priced by using the credit derivatives approach
and the equity derivatives approach. To derive the two explicit formulas, we assume that
the cash flow of CoCo occurs at maturity T and not when conversion is triggered. Then,
we relax this assumption and use a Monte Carlo simulation to find the credit spread. In
section 4, we apply the pricing methods to the CoCo issued by Credit Suisse and examine
if the Black-Scholes assumptions are empirically reasonable. In section 5, we suggest an
alternative assumption for the stock price dynamics by employing Heston model.

2 General Pricing Formula

2.1 General Formula for the Price

The price of CoCo is the risk-neutral expectation of the sum of its discounted future cash
flows. The payoff of CoCo would be equal to the value of debt if conversion never happens
before maturity. If a trigger event occurs, then the payoff would be equal to the value
of shares. Therefore, without making any assumption on the stock price dynamics, the
price of CoCo at time t has the following form:

CoCot = EQ[NS∗e−
∫ τ
t r(s)ds1{τ ≤ T}+De−

∫ T
t r(s)ds1{τ > T}] (2)

3These two approaches were taken by Jan De Spiegeleer and Wim Schoutens 2011 [10].
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If we assume that the interest rate is constant, it reduces to :

CoCot = EQ[e−r(τ−t)NS∗1{τ ≤ T}+De−r(T−t)1{τ > T}] (3)

= NS∗EQ[e−r(τ−t)1{τ ≤ T}] +De−r(T−t)EQ[1{τ > T}] (4)

The term e−r(τ−t) has to stay inside the expectation because e−r(τ−t) and 1{τ ≤ T} are
not independent. To avoid this complication, we will assume that the cash flow NS∗

occurs at T for the derivation of the explicit formulas.4 Hence, the price of CoCos can be
expressed in terms of risk neutral probability of trigger event.

Denote the risk-neutral probability that a trigger event happens as:

PQ = EQ[1{τ ≤ T}].

Then, the price of CoCo is given by:

CoCot = e−r(T−t)
(
NS∗PQ +D(1− PQ)

)
(5)

Because N is equal to D/Pc for the full CoCos, (5) becomes:

= e−r(T−t)
(
D

Pc
S∗PQ +D(1− PQ)

)
(6)

and hence:

CoCot = De−r(T−t)
(

1− PQ

(
1− S∗

Pc

))
(7)

We will refer to the equation (7) as the general price formula.

2.2 General Formula for the Credit Spread

The yield of CoCo is:

ρ = − 1

T − t
ln
CoCot
D

(8)

= − 1

T − t
ln
CoCot
D

Plugging the equation (7) into (8) and rearranging the terms, the credit spread CS = ρ−r
is expressed as:

CS = − 1

T − t
ln

(
1− PQ

(
1− S∗

Pc

))
(9)

4Later in section 3.3, Monte Carlo simulation, we will assume the cash flow occurs at τ .
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We refer to this equation (9) as the general credit spread formula. By first order Taylor
series approximation,

ln(1− x) =
∞∑
n=1

(−x)n

n
≈ −x,

for |x| < 1, (9) reduces to:

CS =
1

T − t
PQ

(
1− S∗

Pc

)
(10)

Suppose the trigger τ is the first jump of a Poisson process with intensity parameter λ.
Then, the probability of a trigger event happening in the next instant dt is λdt, and the
probability that a trigger event happening in the next T years is 1− e−λT . Hence,

PQ = 1− e−λ(T−t)

and the credit spread given in equation (10) becomes:

CS =
1

T − t
(
1− e−λ(T−t)

)(
1− S∗

Pc

)
(11)

Using Taylor series approximation,

1− e−λh ≈ λh,

we get an approximating formula for the credit spread:

CS ≈ λ

(
1− S∗

Pc

)
(12)

We refer to the equation (12) as the approximating credit spread formula.
The approximating credit spread formula for CoCos (12) is analogous to that of a

defaultable zero-coupon bond, if λ is default intensity and S∗

Pc
is recovery rate of the

defaultable bond.5 If a trigger event happens, the value to CoCo holders upon a trigger
event is NS∗. Therefore, the loss is the difference between the debt value they are owed
and the value of the shares:

Loss = D −NS∗

= D −
(
D

Pc

)
S∗

= D

(
1− S∗

Pc

)
Effectively, S∗

Pc
is the amount that CoCo holders are getting as a fraction of the amount

they are owed, which is analogous to the recovery rate in case of defaultable bonds.

5This approach was taken by Jan De Spiegeleer and Wim Schoutens 2011
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3 Pricing under the Black-Scholes Model

In this section, we price CoCos under the Black-Scholes assumptions. The Black-Scholes
assumptions are that the underlying stock pays a constant known dividend yield q and
follows the diffusion process:

dS

S
= (r − q)dt+ σdBQ

where BQ is a Brownian motion under the risk-neutral measure. The volatility σ and the
continuously compounded risk-free rate r are known and constant. Assume that there
are no transaction costs or taxes, and it is possible to short-sell costlessly and borrow at
the risk-free rate.

3.1 Credit Derivatives Approach

3.1.1 Explicit Formula

We model the trigger event as the first jump of a Poisson process with intensity parameter
λ. Hence, the trigger probability is:

PQ = 1− e−λ(T−t) (13)

The probability of trigger event is the risk-neutral probability that stock price hits S∗

during the life of the CoCo. This probability is given by the first-hitting-time equation
(15) under Black-Scholes [10]. Therefore, using the general credit spread formula (9), the
credit spread is:

CS = − 1

T − t
ln

(
1− PQ

(
1− S∗

Pc

))
(14)

where PQ is specified as:

PQ = N

(
ln(S∗/S)− ν(T − t)

σ
√
T − t

)
+ (S∗/S)2ν/σ

2

N

(
ln(S∗/S) + ν(T − t)

σ
√
T − t

)
(15)

ν = r − q − σ2/2

3.1.2 Comparative Statics

Base case: Consider a 10-year (T = 10) zero coupon CoCo that converts into equity if
stock price reaches $50 (S∗ = 50). The current stock price S is $100 and the conversion
ratio is 1 share per CoCo (N = 1). Hence the implied conversion price Pc is $100.
Suppose the volatility σ of the stock is 0.3, and the stock pays dividends at continuously
compounded rate of 0.04 (q = 0.04). Assume that the risk free rate r is 0.04. The
approximating credit spread formula (12) predicts the credit spread of base-case CoCo as

11



0.0493, and the exact credit spread formula (9) gives 0.0376:

CS ≈ λ(1− S∗

Pc
) = 0.0986(1− 50

100
) = 4.93%

CS = − 1

T − t
ln

(
1− PQ(1− S∗

Pc
)

)
= CS = − 1

10
ln

(
1− (0.4602)(1− 50

100
)

)
= 3.76%

In the approximating formula (12), the credit spread is determined by the two factors,
the intensity λ and the recovery rate R = S∗/Pc, and this simple formula provides an easy
way to predict how credit spread would change as one of the parameters changes and all
other parameters are fixed. Using the approximating formula (14) and the relationship
between λ and PQ, the credit spread is:

CS ≈ λ(1− S∗

Pc
)

= − ln (1− PQ)

T − t
(1− S∗

Pc
) (16)

• Credit Spread vs. Conversion Price (Pc)
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The conversion price affects only the recovery rate R = S∗/Pc. Mathematically,
from equation (18), the credit spread is increasing function of Pc. Economically,
if the ratio S∗/Pc is 1, that means CoCo holder will receive the amount they are
owed regardless of a trigger event taking place. Therefore, the credit spread is zero.
If the ratio S∗/Pc is less than 1, credit spread is negative. This implies that the
conversion price cannot be set as being less than the stock price at conversion.
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• Credit Spread vs. Trigger Price (S∗)
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If the trigger price is very low, it is unlikely that the stock price falls below the
very low S∗, and this leads to a low spread. On the other hand, if S∗ is low, the
investors receive shares with low value, it increases the spread. The credit spread is
maximized when both the probability of trigger event happening and the loss when
trigger event occurs are significant.

• Credit Spread vs. Stock Price (S)
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The stock price affects λ. As the stock price goes up, it is less likely that it falls
below S∗. Consequently, the credit spread goes down monotonically as the stock
price goes up. Since the stock price never goes below zero, the lower bound of credit
spread is zero.

13



• Credit Spread vs. Stock Price Volatility (σ)
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As the volatility of stock price goes up, there is more chance that the stock price
falls below S∗. Therefore, credit spread increases monotonically with respect to the
volatility.

• Credit Spread vs. Maturity (T )

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

Maturity

C
re

d
it
 S

p
re

a
d

 

 

S=100, S*=50

S=200, S*=50

S=65, S*=50

Mathematically, the time to maturity affects λ, and the shape of the term structure
comes from the function,

λ = − ln (1− PQ)

T − t
,

where PQ is a monotonically increasing function with respect to the maturity.

Economically, the term structure of credit spread depends on how far the current
stock price is from the trigger. The ratio of S∗/S could represent the relative
distance. If a company is performing well, (low S∗/S ), the overall credit spread
would be low, but it increases with respect to the maturity because the longer
the time, the more the uncertainty and the risk of conversion. If a company is
on the edge of conversion (high S∗/S), the credit spread monotonically decreases
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with respect to maturity because the more time company has, the more chance of
reducing the risk it has. When S∗/S is 1/2, for the short-term CoCos, it is less
likely to be triggered in a shorter period; therefore the term structure is upward
sloping. However, for the long-term CoCos, it is less likely to be triggered in the
longer horizon as there is more chance that the company improves its performance
in the longer time horizon.

In summary, the comparative statics shows that the mathematical structure of formula
in the credit derivatives (16) match the economic structure of CoCos.

3.2 Equity Derivatives Approach

In equity derivatives approach, we price CoCos by finding a portfolio of equity derivatives
that replicates the cash flow of CoCo. If the replicating portfolio produces the same cash
flows as the CoCos’, then the cost of the replicating portfolio must be the price of CoCo.

3.2.1 Explicit Formula

The payoff of CoCo in case of conversion resembles that of knock-in-forwards (KIFs) with
barrier S∗. However, the two payoffs do not match perfectly. If the trigger is breached, the
investors of KIFs are getting the forwards (with maturity T ) at τ , whereas the investors
of CoCos are getting the shares with per share value of Sτ = S∗ at τ . Therefore, by
entering into a forward contract instead of getting the shares immediately at τ , the value
to the KIF investors is the future value of shares discounted at the cost of carry q. If a
trigger event occurs long time before the maturity (i.e. T − τ is large) or if the cost of
carry q is large, the error would be pronounced. Because the issuer is unlikely to pay out
dividends in case of conversion, the payoff of CoCo can be approximated by the cost of
portfolio with KIFs.

Assuming that the CoCo holders are receiving the forwards at conversion, the cash
flow of CoCo at T is NST , if the trigger event occurs at τ < T , and D if trigger event
does not occur.

CoCoT =

{
NST if min(St)t≤T ≤ S∗

D otherwise

The cash flow can be rewritten as:

CoCoT = D + (DST/Pc −D)1{min(St)t≤T ≤ S∗}

= D +N(ST −D/N)1{min(St)t≤T ≤ S∗}

= D +N(ST − Pc)1{min(St)t≤T ≤ S∗}

The second term is zero if the minimum stock price during the lifetime of CoCo falls below
the pre-specified trigger price S∗, and therefore it is equivalent to a long position in N
knock-in-forwards with strike Pc and barrier S∗. Since the cash flow of portfolio consists
of a long position in bond and a long position in N KIFs replicates the cash flow of CoCo,
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the price of CoCo at t must be approximately equal to the value of the portfolio at t.

CoCot = value(Bond+KIFs)t

A long position in KIF is equivalent to a long position in knock-in-call (KIC) and a
short position in knock-in-put (KIP):

KIFT = KICT −KIPT

where

KICT =

{
ST − Pc if ST > Pc, min(St),t≤T ≤ S∗

0 otherwise

KIPT =

{
Pc − ST if ST < Pc, min(St),t≤T ≤ S∗

0 otherwise

First, the value of down-and-in call (KIC) can be computed as the following.
Define x as:

x =

{
1 if ST > Pc, min(St)t≤T ≤ S∗

0 otherwise

Then the value of the down-and-in call at maturity is xS∗ − xPc, and the value at time t
is:

e−q(T−t)S0Pr
V (x = 1)− e−r(T−t)PcPrR(x = 1)

where V (t) = eqtS(t) and R(t) = ert.

PrV (ST ≤ L) = N(d1)

PrR(ST ≤ L) = N(d2)

d1 =
ln(St/S

∗) + (r − q + σ2/2)T

σ
√

(T − t)
(17)

d2 = d1 − σ
√

(T − t) (18)

PrV (x = 1) =

(
S∗

St

)2(r−q+ 1
2
σ2)/σ2

N(d′1)

PrR(x = 1) =

(
S∗

St

)2(r−q− 1
2
σ2)/σ2

N(d′2)

d′1 =
ln(S∗/St) + (r − q + σ2/2)T

σ
√

(T − t)
(19)

d′2 = d′1 − σ
√

(T − t) (20)

Therefore, the value of down-an-in call (KIC) at time t is:
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KICt = Ste
−q(T−t)

(
S∗

St

)2(r−q+ 1
2
σ2)/σ2

N(d′1)− Pce−r(T−t)
(
S∗

St

)2(r−q− 1
2
σ2)/σ2

N(d′2) (21)

In a similar way, the value of down-and-in put (KIP) is:

KIPt = Pce
−r(T−t)N(−d2)− Ste−q(T−t)N(−d1) (22)

As a result, the value of CoCo is:

CoCot = e−r(T−t)D +N × (KICt −KIPt) (23)

3.2.2 Comparative Statics

Base case: The pricing formula in equity derivatives approach (23) gives the credit spread
on the base-case CoCo (T = 10, S∗ = 50, S = 100, N = 1, $100, Pc=100, σ = 0.3,
q = 0.04, r = 0.04) of 0.0376.

In equity derivatives approach, the price of CoCo can be decomposed into the value
of bond and the value of KIFs. Since the value of bond would not change with respect to
the parameters, Pc, S

∗, S, and σ, the change in CoCo price depends solely on the value of
KIFs. The price of KIFs depend on NF , where F represents the forward price and the
probability that the stock price hits barrier S∗ during the lifetime of CoCo.

• Price and Credit Spread vs. Conversion Price (Pc)
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The conversion price determines the number of KIFs in the replicating portfolio.
As the conversion price goes up, CoCo holders will get less number of KIFs, and
therefore, the price of CoCo monotonically decreases as conversion price increases.

If the conversion price is very low, the investors get a large number of shares and it
makes the price of CoCo exceed the price of the bond.
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• Price and Credit Spread vs. Trigger Price (S∗)
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The trigger price determines the barrier of KIFs, and it affects the probability of
getting knocked in and the forward price. If the trigger is high, then it is more likely
to receive the forwards but the forwards will have low price.

• Price and Credit Spread vs. Stock Price (S)
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The stock price affects the probability of knock-in. As the stock price rises, the
probability of knock-in declines. Therefore, the price of CoCo falls and the credit
spread rises as the stock price goes up.
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• Price and Credit Spread vs. Stock Price Volatility (σ)
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As the volatility increases, the probability of knock-in goes up, and the value of KIF
becomes more negative.

• Price and Credit Spread vs. Maturity (T )
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The price of bond is downward sloping due to the flat term structure of interest
rate. The hump shape of the credit spread is produced by the value of the KIFs
with a medium level of the ratio S∗/S = 1/2. For the short-term KIFs, the stock
price is more likely to hit the barrier in the longer time horizon; for the long-term
KIFs, the probability of hitting the barrier decreases as the company has more time
to improve its performance.

In short, the comparative statics analysis demonstrates that the formula in equity deriva-
tives approach explains the economics of CoCos.

3.3 Model Comparison

Base case: The following table summarizes the prices of base-case CoCo (T = 10, S∗ = 50,
S = 100, N = 1, $100, Pc=100, σ = 0.3, q = 0.04, r = 0.04) implied by the two explicit
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formulas.

Credit Derivatives Equity Derivatives
Credit Spread 0.0376 0.0376

Price 0.4602 0.4602

If we assume that the company does not paye dividend (q = 0), the two approaches price
the same CoCo differently.

Credit Derivatives Equity Derivatives
Credit Spread 0.0276 0.0196

Price 0.5086 0.5512

The two formulas give different prices because they treat the terminal cash flow dif-
ferently. The credit derivatives (reduced form) approach assumes that if a trigger event
occurs, CoCo holders get cash amount equal to NS∗ at T , while the equity derivatives
approach assumes that the CoCo holders get forwards on the share which mature at T .
The difference between the two approaches can be interpreted in a way that the former
discounts the cash flow at the risk free rate r, while the latter tails the number of shares at
the dividend yield q. Therefore, both approaches give the same answer if r = q. If r > q,
which was the case for the base-case CoCo, the reduced form approach over-discounts the
cash flow and it leads to the lower price (and the higher credit spread) of CoCo. The
left figure below shows the credit spreads implied by the two approaches, with respect to
r, holding the dividend yield constant at 0.1. It demonstrates that the two approaches
give the same credit spread if r = q, and the reduced form approach underestimates
the spread if r < q, and it overestimates the spread if r > q, compared to the equity
derivatives approach.

The right plot shows the credit spreads as a function of q, where r is fixed at 0.1. The
non-symmetry of the two plots implies that even if |r− q| are the same, if q > r, the error
grows as the difference grows, while the error is bounded if r > q.
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More precisely speaking, the source of the difference comes from the fact that the
risk-neutral measure of the trigger probability for the stock and that of the bond are
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different. The two approaches coincide if:

S∗e−r(T−t)p∗ = Ste
−q(T−t)q∗

where p∗, q∗ are the probabilities such that satisfy:

KIF = Ste
−q(T−t)q∗ − Pce−r(T−t)p∗

The detailed computation is in appendix A.
The equity derivatives approach, which treats the cash flow as the value of the shares,

not just cash amount, is more close to the realistic CoCo. The credit derivatives approach
makes sense only if the investors cash out the shares immediately when they receive them
on the trigger event. Furthermore, in case of a trigger event taking place, q is likely to be
zero, and the error of approximation in equity derivatives approach would be insignificant.

3.4 Monte Carlo Simulation

3.4.1 Simulation by Euler Discretization

In this section, we will relax the assumption that the cash flow occurs at T . That is, the
cash flow to a CoCo holder will occur at τ if trigger event happens.

In order to generate paths of stock prices following the Ito’s process:

dSt = (r − q)Stdt+ σStdB
Q
t

d logSt = (r − q − σ2/2)dt+ σdBQ
t

with risk-neutral measure BQ
t , we use Euler discretization. The evolution of X = log S

can be approximated by:

X(tj)−X(tj−1) = µ∆t+ σ∆B(tj)

where µ = r − q − σ2/2, ∆t is a small time step increment, tj = j∆t and

∆B(tj) = B(tj)−B(tj−1) ∼ N(0,
√

∆t).

Based on the simulated paths of daily stock prices using the risk-neutral measure, the
price of CoCo can be calculated by taking expected value of payoff discounted to the
present value:

CoCot = EQ[e−rτ (NS∗)1{τ ≤ T}+ e−rT1{τ > T}] (24)

The MATLAB code for the simulation is included in Appendix B.1.3.

3.4.2 Comparative Statics

Base case: The table below compares the estimated prices and the credit spreads of the
base-case CoCo with those implied by the explicit formulas developed in the previous
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sections. For Monte Carlo simulation, the step size of 1/252 (daily) and the number of
paths generated of 5000 were used.

Credit Derivatives Equity Derivatives Simulation
Credit Spread 0.0376 0.0376 0.0258 (0.0249, 0.0267)

Price 0.4602 0.4602 0.5179 (0.5134, 0.5224)

While the two analytical formulas are based on the assumption that the cash flow occurs
at maturity T , the Monte Carlo simulation is based on the cash flow occurring at τ .
Consequently, the analytical formulas underestimate the value of CoCo.

If the dividend rate is assumed to be zero (q = 0), the CoCo is priced as follows:

Credit Derivatives Equity Derivatives Simulation
Credit Spread 0.0276 0.0196 0.0192 (0.0201, 0.0184)

Price 0.5086 0.5512 0.5562 (0.5454, 0.5576)

The price implied by the equity derivatives approach mostly lies within the confidence
interval estimated in the simulation. This implies that the timing of the cash flow does
not affect the price significantly when q = 0. In case of coupon CoCos, because the to-
be-paid coupon stream is lost once the trigger gets pulled, the earlier the trigger event
happens, the greater the approximation error would be.

The comparative statics plots below show that the Monte Carlo simulation results
explain the economics of CoCos appropriately.

• Credit Spread vs. Conversion Price (Pc)
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• Credit Spread vs. Trigger Price (S∗)
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• Credit Spread vs. Stock Price (S)
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• Credit Spread vs. Stock Price Volatility (σ)
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• Credit Spread vs. Maturity (T )
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4 Empirical Analysis

The purpose of empirical analysis is to examine if the Black-Scholes assumptions are
empirically reasonable in pricing CoCos. Since Credit Suisse has an accounting trigger,
not only volatility but also the market trigger is not observable. If we assume that the
accounting trigger can be associated with a market trigger [10], we expect the implied
market trigger to be constant over the time. As such, we construct the historical time
series of implied trigger.

4.1 CoCo Issued by Credit Suisse

The summarized information on Prospectus6 is as the following:

• Name: CS Group (Guernsey) I Limited 7.875% Tier 2 Buffer Capital Notes due
2041

• Issue Size: USD 2 billion

• Issue Date: Feb 24, 2011

• Maturity: 30 Year (T = 30)

• Callable7 after 5 years and 6 months

• Coupon is reset to a fixed rate that is 522bp over mid market swap rate after 5
years, and it will thereafter reset every five years, at the same basis over swaps.8

6https://www.credit-suisse.com/investors/doc/buffer_capital_notes_information_

memorandum.pdf
7The call feature has no effect on the pricing, as we assume that the interest rate is constant.
8We assume that the coupon rate will be fixed at 7.875%.
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• Coupon 7.875%, Semi-annual

• Trigger Event: Core Tier 1 Ratio < 7% or the Swiss regulator determines that the
CS Group requires public sector support to prevent it from becoming insolvent.

• Conversion Price (Pc)= max(USD 20,CHF 20, S∗)

4.2 Pricing of Coupon CoCos

CoCo issued by Credit Suisse has a coupon stream. We can formulate the pricing formula
for coupon CoCos by adding the value of coupon stream and subtracting the value of the
remaining coupon stream if trigger is breached.

4.2.1 Equity Derivatives Approach

When trigger is breached, CoCo holder loses remaining coupon stream. Each coupon
payment in the lost stream of coupons can be replicated by short positions in binary down-
and-in call with maturities corresponding to each of the coupon dates [10]. Consequently,
the price of coupon CoCo will be reduced by the sum of the values of binary down-and-in
calls.

CoCocoupont = CoCozerot −
∑

(Binary Down-and-In Calls)

The value of each binary option is:

Binary Down-and-In Calli =

Couponi×e−r(T−t)×
(
N(−d1i + σ

√
(Ti − t)) + (S/S∗)2(r−q−

1
2
σ2)/σ2

N(d1′i − σ
√

(Ti − t))
)

where Ti’s are the coupon dates of CoCo. Each binary option with maturity Ti will
match each coupon payment on date Ti.

4.2.2 Monte Carlo Simulation

Whereas the equity derivatives approach in the previous section assumes that the cash flow
in case of conversion takes place at T , Monte Carlo simulation accounts for the precise
timing of the cash flow. After generating the stock prices that follow the Geometric
Brownian Motion, the value of CoCo for each realized path is calculated as:

CoCot = EQ[(e−r(T−t)D + CT )1{τ > T}+ e−r(τ−t)(NS∗ + Cτ )1{τ ≤ T}]

where CT represents the coupon stream up to T, and Cτ represents the coupon stream
up to τ .

CT =
∑

i∈Time to Coupon Dates before T

Ce−ri

Cτ =
∑

i∈Time to Coupon Dates before τ

Ce−ri
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The MATLAB code is attached in appendix B.1.3.

4.3 The Implied Trigger on a Single Date

The following information was used in order to compute an implied market-trigger:

• Valuation Date: 02/24/2012

• 1 CHF = 1.1166 USD

• Pc=max(USD 20,CHF 20, S∗) = max(20, 22.332, S∗)

• Assume that S∗/Pc is 1. If S∗ > 22.332, the number of shares (N) to CoCo holders
at conversion is 1000/S∗, and if S∗ ≤ 21.6, N is fixed to 1000/22.332 = 44.7788.

Valuation Parameters:

• r = 0.0188

• q = 0.0388

• σ = 0.42

• S = 27.31

• Observed Market Value of CoCo = 98.2390

The analytic formula in section 4.2 was used to calculate the implied trigger price.
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As the left figure shows, based on an observed market value of CoCo, an implied trigger
price could be computed using the pricing formula shown in section 3.4. Using MATLAB
function, fzero, the estimated implied trigger price was computed as 5.5408. Since
CoCo price as a function of trigger price is not monotonically increasing or decreasing,
technically, there are two solutions as the right plot indicates. However, in this case, since
the trigger event has not taken place as of valuation date, the implied trigger must be
lower than the current stock price of 27.31.
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4.4 Time Series of the Implied Trigger

By repeating the single-date computation of implied trigger in the previous section since
the issuance date of CoCo, we obtained the time series of implied trigger price. Since
Black-Scholes Model assumes constant volatility, volatility of 0.42 was used for all data
points. Using daily closing market price of CoCo and share price of Credit Suisse, the
implied trigger price was computed for every trading day.
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Time Series Plot:Implied Trigger Price, % of Stock Price

The left plot above demonstrates that the implied market trigger price, corresponding
to the accounting trigger is not constant, and the implied market trigger price decreases
as the share price decreases. The right plot shows that the implied trigger price as a
fraction of share price is less volatile, and it is not constant as well. The non-constant
implied trigger indicates that the pricing under the Black-Scholes assumptions are not
empirically reasonable for pricing CoCos. As such, in section 5, we propose the Heston
model as an alternative model for the stock price dynamics.

5 Pricing under the Heston Model

Black-Scholes model is widely employed as a useful approximation, because it is easy to
calculate from the explicit closed-form formula. However, empirical evidences suggest that
the key assumption, constant volatility, of Black-Scholes model is not reasonable. The
distribution of market stock prices tends to have fatter tails than the distribution of prices
that geometric brownian motion implies. That is, Black-Scholes model underestimates
the risk of extreme events. Stochastic volatility models are based on the assumption
that the volatility of stock price follows itself a stochastic process, and the most popular
stochastic volatility model is the Heston model. (Heston 1993) proposed the following
model [5]:

dSt = St(r − q)dt+ St
√
vtdB

dv = κ(v̄ − vt)dt+
√
vtσvdBv

κ : mean reversion coefficient
v̄ : long-run mean reversion level
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σv : volatility of volatility, “volvol”
ρ : correlation between stock price and volatility

If κ is positive, the variance rate v mean reverts toward the long run level of v̄. The larger
κ, the quicker the reversion. The correlation ρ between the log-returns and the volatility
determines the skewness of the return distribution. If ρ is negative, then volatility in-
creases as the stock return decreases; as a result, it produces fat left-tailed distribution.
The volvol affects the kurtosis of the return distribution. If volvol is zero, the stock price
follows geometric Brownian motion. Positive values of volvol create fat tails in both sides.
The higher volvol, the more prominent the volatility smile.

The parameters, κ, v̄, σv are positive constants and ρ is negative, which addresses to
the empirical fact that negative shocks on stock prices have a greater impact on the future
volatility than do positive shocks.

5.1 Monte Carlo Simulation

Heston model can be simulated by discretizing the stochastic differential equation for the
log of the stock price X = lnS and the variance v using Euler scheme:

X(tj) = X(tj−1) +

(
r − q − 1

2
v(tj−1)

)
∆t+

√
v(tj−1)∆B(tj),

v(tj) = |v(tj−1) + κ (v̄ − v(tj−1)) ∆t+
√
v(tj−1)σv∆Bv(tj)|

where value of X and ∆B(tj) and ∆Bv(tj) are jointly normally distributed under risk
neutral measure with mean 0, variance ∆t and correlation ρ. Based on the paths generated
in a way described above, the value of CoCo with coupon can be computed as:

CoCot = EQ[(e−r(T−t)D + CT )1{τ > T}+ e−r(τ−t)(NS∗ + Cτ )1{τ ≤ T}]

CT =
∑

i∈Time to Coupon Dates before T

Ce−ri

Cτ =
∑

i∈Time to Coupon Dates before τ

Ce−ri

The MATLAB code for the simulation is included in Appendix B.3.1. The pricing of
base-case security is 0.5072 with number of paths generated of 5000 and the step size
of 1/252 (daily). Assumed Heston parameters were σv = 0.44, κ = 1.62, ρ = −0.76 9

, and v̄ = 0.09 =variance of base-case CoCo’s stock. As a table below shows, positive
σ, κ, v̄ = σ2 and negative ρ result in a higher credit spread and a lower price.

Black-Scholes Heston
Credit Spread 0.0258 (0.0249, 0.0267) 0.0365 (0.0352, 0.0378)

Price 0.5179 (0.5134, 0.5224) 0.4654 (0.4594, 0.4714)

9This parameters were taken from (Bakshi, Cao, and Chen 1997)[2]
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5.2 Comparative Statics with respect to Heston Parameters

In order to understand how the parameters in the Heston model affects credit spread of
CoCo, the credit spreads with respect to varying levels of the parameters were estimated
using Monte Carlo simulation. Assumed CoCo parameters were T = 1, S∗ = 50, S = 100,
N = 1, $100, Pc=100, σ = 0.3, q = 0.04, r = 0.04.
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The relationships between the credit spread and the Heston parameters are explained
as the following:

• Higher volvol means that the volatility is more volatile. Since there is more chance
for the extreme movements in the stock prices, the credit spread is monotonically
increasing function of the volvol.

• The higher mean reversion coefficient κ, the faster the volatility is reverted to the
mean. Therefore, the risk decreases as κ goes up.

• The higher the long run mean level of volatility v̄, the greater the risk of conversion.

• If the correlation ρ is strongly negative, the volatility increases as the stock price
falls. Consequently, strongly negative ρ pushes up the credit spread.
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6 Conclusion and Implication

The present study has demonstrated that the explicit formulas used in the credit deriva-
tives and equity derivatives approaches, as well as the Monte Carlo simulation under
the Black-Scholes settings, all explain the economics of CoCos appropriately. However,
when we applied them to the CoCos issued by Credit Suisse, the implied market trigger,
associated with a constant Core Tier 1 ratio of 7%, was volatile and showed a trend.
This finding implies that the Black-Scholes assumptions are empirically unreasonable for
pricing CoCos. By contrast, the Heston model can be considered to be a suitable alterna-
tive because it produces a more realistic fat-tail distribution of stock returns. Thus, the
pricing under the Heston model is expected to show a constant implied trigger over time.
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A Reconciliation of Reduced form approach and Eq-

uity derivatives approach

A.1 CoCo Price in Reduced Form Approach

In section 3.2.1, we matched PQ = EQ[1{τ ≤ t}] with the first-hitting-time probability
under the assumption that the stock price follows the Geometric Brownian Motion. As a
result,

CoCot = NS∗e−r(T−t)EQ[1{τ ≤ t}] +De−r(T−t)EQ[1{τ > t}]

= NS∗e−r(T−t)PQ +De−r(T−t)(1− PQ)

= e−r(T−t)
(
PQ +NS∗PQ +D(1− PQ)

)
(25)

where

PQ = N

(
ln(S∗/S)− ν(T − t)

σ
√
T − t

)
+ (S∗/S)2ν/σ

2

N

(
ln(S∗/S) + ν(T − t)

σ
√
T − t

)
ν = r − q − σ2/2

Using the notations in (19)-(22),

PQ =

(
S∗

St

)2λ−2

N(d′2) + N(−d2) (26)

where

λ =
r − q + σ2/2

σ2

A.2 CoCo Price in Equity Derivatives Approach

In section 3.2.1, we showed that with replication argument, the price of CoCo is:

CoCot = e−r(T−t)D +N × (KICt −KIPt)

where

KICt = Ste
−q(T−t)(

S∗

St
)2λN(d′1)− Pce−r(T−t)(

S∗

St
)2λ−2N(d′2)

KIPt = Pce
−r(T−t)N(−d2)− Ste−q(T−t)N(−d1)

Expressing explicitly, the price of Knock-in-forward is written as:

KIFt = Ste
−q(T−t)

((
S∗

St

)2λ

N(d′1) + N(−d1)

)
−Pce−r(T−t)

(
N(−d2) +

(
S∗

St

)2λ−2

N(d′2)

)
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= Ste
−q(T−t)

((
S∗

St

)2λ

N(d′1) + N(−d1)

)
− Pce−r(T−t)PQ

Denoting PQ as p∗ and

((
S∗

St

)2λ
N(d′1) + N(−d1)

)
as q∗, the expression is simplified to:

KIFt = Ste
−q(T−t)q∗ − Pce−r(T−t)p∗

As a consequence, the price of CoCo in equity derivatives approach is:

CoCot = e−r(T−t)D +N(Ste
−q(T−t)q∗ − Pce−r(T−t)p∗) (27)

The expression (22) and (24) are equal if and only if:

e−r(T−t) (NS∗p∗ +D(1− p∗)) = e−r(T−t)D +N(Ste
−q(T−t)q∗ − Pce−r(T−t)p∗)

⇐⇒ S∗e−r(T−t)p∗ = Ste
−q(T−t)q∗

⇐⇒ StN(d′2) + S∗N(d2) = S∗N(d′1) + StN(d1)

If r = q, the condition above is met, and therefore, the reduced form approach and
the equity derivatives approach give the same price of CoCo.

B MATLAB Implementations

B.1 Zero Coupon CoCos

B.1.1 Reduced Form

1 function[cs price pstar lambda RR]=reducedform exact(S,K,T,r,q,sigma,Cp)
2 mu=r−q−sigmaˆ2/2;
3 a=(log(K/S)−mu*T)/(sigma*sqrt(T));
4 b=(log(K/S)+mu*T)/(sigma*sqrt(T));
5 Na=normcdf(a,0,1);
6 Nb=normcdf(b,0,1);
7 pstar=Na+(K/S)ˆ(2*mu/sigmaˆ2)*Nb;
8 lambda=−log(1−pstar)/T;
9 RR=K/Cp;

10 cs=(1/T)*log(1/(1−(1−exp(−lambda*(T)))*(1−RR)));
11 price=exp(−r*T)*(1−pstar*(1−RR));

32



B.1.2 Equity Derivatives

1 function[price yield spread]=ed zeroc(N,S,K,T,r,q,sigma,Cp)
2 lambda=(r−q+0.5*sigmaˆ2)/sigmaˆ2;
3 Cr=N/Cp;
4 d1prime=(log(K/S)/(sigma*sqrt(T)))+lambda*sigma*sqrt(T);
5 d2prime= d1prime−sigma*sqrt(T);
6 d1=(log(S/K)/(sigma*sqrt(T)))+lambda*sigma*sqrt(T);
7 d2= d1−sigma*sqrt(T);
8 % Discounted Face value
9 Bond=exp(−r*T)*N;

10 % KIC: Down−and−in Call
11 KIC= exp(−q*T)*S*(K/S)ˆ(2*lambda)*normcdf(d1prime)...
12 −exp(−r*T)*Cp*(K/S)ˆ(2*lambda−2)*normcdf(d2prime);
13 % KIP: Down−and−in Put
14 KIP= Cp*exp(−r*T)*normcdf(−d2,0,1)−S*exp(−q*T)*normcdf(−d1,0,1);
15 %CoCo Price= Bond + Cr*( KIC − KIP)
16 price= Bond+ Cr*(KIC−KIP);
17 yield= (1/T)*log(N/price);
18 spread= yield−r;

B.1.3 Monte Carlo Simulation

1 function SPaths=AssetPaths(S0,mu,sigma,T,NSteps,NRep1)
2 dt=T/NSteps;
3 nudt=(mu−0.5*sigmaˆ2)*dt;
4 sidt=sigma*sqrt(dt);
5 Increments=nudt+sidt*randn(NRep1,NSteps);
6 LogPaths=cumsum([log(S0)*ones(NRep1,1),Increments],2);
7 SPaths=exp(LogPaths);
8 Spaths(:,1)=S0;

1 function[price LCIp UCIp yield spread LCIs ...
UCIs]=mc zeroc(N,S,K,T,r,q,sigma,Cp,NRep)

2 Cr=N/Cp;
3 %Simulation Parameters
4 NSteps=252*T;
5 dt=T/NSteps;
6 %Generate stock price paths
7 paths=AssetPaths(S,r−q,sigma,T,NSteps,NRep);
8 %Simulate tau
9 count=0;

10 tau=[];
11 for i=1:NRep
12 if min(paths(i,:)) ≤K
13 index=find(paths(i,:)≤K);
14 tau(i)=min(index*(dt));
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15 count=count+1;
16 else
17 tau(i)=T;
18 end
19 end
20 prob=count/NRep;
21 %Compute Payoff V(T)=E[eˆ(−r*tau)*(Payoff at tau)+eˆ(−r*T)*(Payoff ...

at T)]
22 V=[];
23 for j=1:NRep
24 if tau(j)==T
25 V(j)=N*exp(−r*T);
26 else
27 V(j)=(Cr*K)*exp(−r*tau(j));
28 end
29 end
30

31 alpha=0.01; % 90%CI
32 [price, sigmahat,CI] = normfit(V,alpha);
33 yield=(1/T)*log(N/price);
34 LCIp=CI(1);
35 UCIp=CI(2);
36 CIy=CI;
37 CIy(1)=(1/T)*log(N/CI(1));
38 CIy(2)=(1/T)*log(N/CI(2));
39 spread= yield−r;
40 CIs=CI;
41 LCIs=CIy(1)−r;
42 UCIs=CIy(2)−r;

B.2 Coupon CoCos

B.2.1 Equity Derivatives

1 function[price yield spread]=ed c(N,S,K,T,r,q,sigma,Cp,tvec,coupon)
2 lambda=(r−q+0.5*sigma.ˆ2)./sigma.ˆ2;
3 Cr=N/Cp;
4 d1primef= @(K,S,sigma,lambda,T) ...

(log(K./S)./(sigma.*sqrt(T)))+(lambda.*sigma).*sqrt(T);
5 d2primef= @(d1prime,sigma,T) d1prime−sigma.*sqrt(T);
6 d1f= @(K,S,sigma,lambda,T) ...

(log(S./K)./(sigma.*sqrt(T)))+(lambda.*sigma).*sqrt(T);
7 d2f= @(d1,sigma,T) d1−sigma.*sqrt(T);
8 d1prime= d1primef(K,S,sigma,lambda,T);
9 d2prime= d2primef(d1prime,sigma,T);

10 d1= d1f(K,S,sigma,lambda,T);
11 d2= d2f(d1,sigma,T);
12 % Discounted Future Cash Flow
13 Bond=exp(−r.*T).*N+sum(N.*coupon.*exp(−r.*tvec));
14 % KIC: Down−and−in Call
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15 KIC= exp(−q.*T).*S.*(K./S)ˆ(2*lambda).*normcdf(d1prime)...
16 −exp(−r.*T).*Cp.*(K./S)ˆ(2*lambda−2).*normcdf(d2prime);
17 % KIP: Down−and−in Put
18 KIP= Cp.*exp(−r*T)*normcdf(−d2,0,1)−S.*exp(−q*T).*normcdf(−d1,0,1);
19 % Lost coupon
20 d1i=d1f(K,S,sigma,lambda,tvec);
21 d1primei=d1primef(K,S,sigma,lambda,tvec);
22 Undiscounted Lost coupon=normcdf(−d1i+sigma.*sqrt(tvec))...
23 +(K/S)ˆ(2*lambda−2)*normcdf(d1primei−sigma.*sqrt(tvec));
24 Lost coupon=sum((N*coupon).*exp(−r*tvec).*Undiscounted Lost coupon);
25 %CoCo Price= Bond + Cr*( KIC − KIP) − Lost coupon
26 price= Bond+ Cr.*(KIC−KIP)−Lost coupon;
27 yield= (1/T).*log(N./price);
28 spread= yield−r;

B.2.2 Monte Carlo Simulation

1 function[price LCIp UCIp yield spread LCIs ...
UCIs]=mc c(N,S,K,T,r,q,sigma,Cp,tvec,coupon,NRep)

2 Cr=N/Cp;
3

4 %Simulation Parameters
5 NSteps=252*T;
6 dt=T/NSteps;
7 %Generate stock price paths
8 paths=AssetPaths(S,r−q,sigma,T,NSteps,NRep);
9 %Simulate tau

10 count=0;
11 k=1;
12 tau=[];
13 for i=1:NRep
14 if min(paths(i,:)) ≤K
15 index=find(paths(i,:)≤K);
16 tau(i)=min(index*(dt));
17 count=count+1;
18 else
19 p=0;
20 tau(i)=T;
21 end
22 k=k+1;
23 end
24 prob=count/NRep;
25 %Compute Payoff V(T)=E[eˆ(−r*tau)*(Payoff at tau)+eˆ(−r*T)*(Payoff ...

at T)]
26 V=[];
27 for j=1:NRep
28 if tau(j)==T %no trigger event
29 V(j)=N*exp(−r*T)+sum(N*coupon.*exp(−r*tvec));
30 else %trigger event
31 tvecnew=tvec−tau(j);
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32 index=find(tvecnew>0);
33 if isempty(index)==false
34 tvecnew=tvecnew(index(1):index(end)); %lost coupon stream
35 V(j)=(Cr*K)*exp(−r*tau(j)) ...
36 +sum(N*coupon.*exp(−r*tvec))−sum(N*coupon.*exp(−r*tvecnew));
37 else
38 V(j)=(Cr*K)*exp(−r*tau(j))+sum(N*coupon.*exp(−r*tvec));
39 end
40

41 end
42 end
43 alpha=0.01; % 90%CI
44 [price, sigmahat,CI] = normfit(V,alpha);
45 yield=(1/T)*log(N/price);
46 LCIp=CI(1);
47 UCIp=CI(2);
48 CIy=CI;
49 CIy(1)=(1/T)*log(N/CI(1));
50 CIy(2)=(1/T)*log(N/CI(2));
51 spread= yield−r;
52 CIs=CI;
53 LCIs=CIy(1)−r;
54 UCIs=CIy(2)−r;

B.3 Extensions

B.3.1 Heston Monte Carlo Simulation

1 function [ S ] = HestonPath(S,T ,sigma,k ,vbar ,sigmav ,rho ,dt ,r)
2 v0 =sigmaˆ2;
3 length = floor(T /dt )+1;
4 X = zeros(length,1);
5 X(1) = log(S);
6 vt = v0 ;
7 MU = [0 0];
8 SIGMA = [dt , dt *rho ; dt *rho , dt ];
9 dwt = mvnrnd(MU,SIGMA,length);

10 for i = 2:length
11 X(i) = X(i−1) + (r−q−0.5*vt)*dt + sqrt(vt)*dwt(i−1,1);
12 vt = abs(vt + k *(vbar − vt)*dt + sqrt(vt)*sigmav *dwt(i−1,2));
13 end
14 S = exp(X);
15 end

1 function[price LCIp UCIp yield spread LCIs ...
UCIs]=mc heston c(N,S,K,T,r,q,sigma,Cp,tvec,coupon,NRep)

2 Cr=N/Cp;
3
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4 %Simulation Parameters
5 NSteps=252*T;
6 dt=T/NSteps;
7 %Generate stock price paths under Heston
8 paths=zeros(NRep,NSteps+1);
9 for i=1:NRep

10 paths(i,:)=HestonPath(S,T,sigma,k,vbar,sigmav,rho,dt,r−q);
11 end
12 %Simulate tau
13 count=0;
14 k=1;
15 tau=[];
16 for i=1:NRep
17 if min(paths(i,:)) ≤K
18 index=find(paths(i,:)≤K);
19 tau(i)=min(index*(dt));
20 count=count+1;
21 else
22 p=0;
23 tau(i)=T;
24 end
25 k=k+1;
26 end
27

28 prob=count/NRep;
29

30 %Compute Payoff %V(T)=E[eˆ(−r*tau)*(Payoff at tau)+eˆ(−r*T)*(Payoff ...
at T)]

31 V=[];
32 for j=1:NRep
33 if tau(j)==T %no trigger event
34 V(j)=N*exp(−r*T)+sum(N*coupon.*exp(−r*tvec));
35 else %trigger event
36 tvecnew=tvec−tau(j);
37 index=find(tvecnew>0);
38 if isempty(index)==false
39 tvecnew=tvecnew(index(1):index(end)); %lost coupon stream
40 V(j)=(Cr*K)*exp(−r*tau(j))...
41 +sum(N*coupon.*exp(−r*tvec))−sum(N*coupon.*exp(−r*tvecnew));
42 else
43 V(j)=(Cr*K)*exp(−r*tau(j))+sum(N*coupon.*exp(−r*tvec));
44 end
45

46 end
47 end
48

49 alpha=0.01; % 90%CI
50 [price, sigmahat,CI] = normfit(V,alpha);
51 yield=(1/T)*log(N/price);
52 LCIp=CI(1);
53 UCIp=CI(2);
54 CIy=CI;
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55 CIy(1)=(1/T)*log(N/CI(1));
56 CIy(2)=(1/T)*log(N/CI(2));
57 spread= yield−r;
58 CIs=CI;
59 LCIs=CIy(1)−r;
60 UCIs=CIy(2)−r;

C Time Series Data of CoCo Price and Credit Suisse
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Time Series Plot:Credit Suisse Share Price

Summary Statistics (for 260 days, from 02/21/2011 to 03/02/2012):

CoCo Price Share Price
Mean 98.3311 33.0298
Stdev 5.1605 8.3042

95% CI (97.7008, 98.9613) (32.0157, 34.0440)
Min 86.7560 21.2000
Max 104.4350 47.6300
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