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Early detection of seizure with a sequential analysis approach 

Xin Wan 
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I. Introduction 

 

A. Epilepsy 

Epilepsy has been one of the most prevalent diseases worldwide. It is the second most common 

neurological disorder after stroke, effecting roughly 0.6-0.8% of the global population (Hauser et 

al., 1996). Therefore, controlling major negative consequences of epilepsy is of great interest and 

importance to many researchers and clinicians.  

Traditionally, there are two main ways of controlling epilepsy: anti-convulsive medication and 

resective surgery. However, these methods do not provide a complete solution to the problem. 

For about 25% of epilepsy patients, seizures cannot be controlled by these traditional methods. 

(Mormann et al., 2007)  This shortcoming has motivated new research into trying to find 

alternative methods. One such approach, which has gained momentum recently, is through 

implantable devices. Micro-devices are implanted in the patient’s brain with the aim of 

predicting and preventing seizures through intervening by releasing a tiny dose of medicine or a 

tiny electric shock. As the New York Times article documented, this method functions as a 

“pacemaker for the brain” – “…research has shown that seizures start with a tiny spark of 

activity and that they take hours to build to surge”. This approach is motivated by the hope that 

characteristic features can be extracted from continuous EEG recordings and can be used to 

predict seizure. (Mormann et al., 2007)  

The algorithm with which seizures can be predicted from EEG data is the main concern of this 

paper. We test a seizure prediction algorithm developed by Krieger and Pollak on a period of 

EEG recording of a dog which had a seizure during the recording, and found that the algorithm is 

promising because it detects a clear peak about 2.5 hours prior to seizure. We further tested this 

algorithm on six other recordings from dogs without seizure, and found mixed results. In some 

datasets there are peaks of about the same magnitude as when there are seizures thereby 

producing false positives. A more detailed description of the data can be found in section II. A 

description of the algorithm is presented in section III.  

B. Detecting Algorithms 

Historically, many different algorithms have been proposed by scientists in order to address this 

issue. Mormann et al. (2007) provides us with a good review of the development of these 

algorithms: in early stages, focus was directed to the pre-ictal period, the period that is known to 

be followed by an onset. For example, Rogowski et al. (1981) and Salant et al. (1998) used 

autoregressive modelling and identified pre-ictal changes in the modelled parameters up to 6 



seconds prior to seizure onset; Le Van Quyen et al. (1999, 2000, 2001a)  found that dynamical 

similarity decreases before seizures in both intracranial and scalp EEG recordings. However, 

these studies focus on the pre-ictal period and thus lack specificity – we never know when we are 

in the pre-ictal period in advance. 

Several studies were thereafter conducted to address this issue. Cohen et al. (2002) showed from 

selected examples of five patients that, before seizures, similarity measure drops more frequently 

than during inter-ictal periods. Mormann et al. (2000) found that some changes in phase 

synchronization between distinct brain areas before seizures cannot be found in exemplary 

seizure-free recordings.  

While these studies were promising, skepticism rose soon afterwards when a number of studies 

found that the previous results were not reproducible. For example, studies done by De Clercq et 

al. (2003) and Winterhalder et al. (2003) questioned the reliability of the results reported for the 

similarity index (Le Van Quyen et al., 2001a). Many other previous results (Litt et al., 2001; 

Lehnertz and Elger, 1998; Iasemidis et al., 1990; Martinerie et al., 1998) were challenged or 

found to be not reproducible. (Maiwald et al., 2004; Harrison et al., 2005a; Aschenbrenner-

Scheibe et al., 2003; Harrison et al., 2005b; McSharry et al., 2003). Collectively, these studies 

pointed to the problem of applying highly optimized algorithms to small, selected data sets, 

because the results cannot be reproduced on unselected, larger dataset, which is the real 

challenge that we need to overcome in order to predict seizure in real-time from continuous EEG 

recordings.  

As technologies advanced at the turn of the millennium and mass storage capacity became 

available, testing on complete, unselected pre-surgical monitoring datasets became possible. In 

2005, the First International Collaborative Workshop on Seizure Prediction (Lehnertz and Litt, 

2005) held in 2002 yielded a series of studies. D’Alessandro et al. (2005), Esteller et al., (2005), 

Harrison et al. (2005a) and Mormann et al. (2005) all showed a poor performance of univariate 

measures. On the other hand, Iasemidis et al. (2005), Le Van Quyen et al. (2005) and Mormann 

et al. (2005) showed better performances of bi- and multi-variate measures. However, the studies 

up to this point were still retrospective in nature. In real life, an algorithm can only be clinically 

beneficial if it can raise a warning prior to seizure, rather than give a summary afterwards. 

Hence, seizure-prediction algorithms in a prospective manner are the necessary next step.  

Several studies have been conducted to test various prospective prediction algorithms. However, 

some are not sensitive or specific enough for clinical implementation (Iasemidis et al., 2003; 

D’Alessandro et al., 2005) while others are inconclusive (Mormann et al., 2006b; 

Chaovalitwongse et al., 2006; see also Winterhalder et al., 2006).  

A special motivation of our research is a paper by Pearce et al. (2013). High Frequency 

Oscillations (HFO) data from patients were divided into four time epochs and three clusters 

(ripples, fast ripples, and mixed events).  This study observed patient-specific changes in relative 

rates of ripples, fast ripples, and mixed frequency events. These changes in relative rate occurred 

in pre- and post-ictal periods up to thirty minutes before and after seizures. Evidence also 

suggested that the distribution of HFOs during these different time periods varied greatly 



between individual patients. Hence, we know that at least in retrospect, EEG data behaves 

differently in time periods that are close to seizure relative to time periods long before seizure. 

This provided hope that algorithms to predict seizures are   plausible. The question is then how to 

create these algorithms prospectively.  

Our research tests a new algorithm which predicts seizure prospectively from unselected, 

continuous EEG recordings. A detailed description of the algorithm can be found in Section III. 

 

 

II. Data 

The data for this research are EEG brainwave filtered at certain frequencies. The EEG is usually 

recorded by electrodes placed on a patient’s scalp; in our experiment, the EEG is recorded from 

dogs. These data are collected over time. There are 16 electrodes placed at different locations in 

the brain (16 different channels). Measurements are recorded every ten seconds hence we have 

time-spatial data of fine granularity.  Features of the data are extracted (e.g., the amplitude of the 

brainwave or the power of the spectrum) – at each location, in our data we extract four features, 

namely the power of the spectrum filtered and four different frequencies. The technique of 

extracting features from raw recordings is out of the scope of this paper. Therefore we will take 

the extracted features as given. Hence, at any given point in time, we have 64 data points, 

coming from 16 channels each having 4 features (frequencies). The graph below illustrates the 

process of EEG recording, with a seizure illustrated in plotted EEG in Figure 1B.  

 

Source: Litt Lab, University of Pennsylvania 

Specifically, we test our algorithm on 7 different datasets. Each dataset has 64 columns. The first 4 

columns are channel 1, feature 1-4 in order, and columns 5-8 are channel 2, feature 1-4 in order, and so 

on. Column 61-64 would then be channel 16, feature 1-4 in order.  



The datasets varies in numbers of rows. Each rows represents a point in time – the sequences are recorded 

at intervals of 10 seconds. Therefore, if Row 1 is time 0, then Row 2 is 10 seconds after, and so on. Hence 

the length of the recording would be 10 times the number of rows in seconds. For example, Row 15 

Column 12 of the first dataset would be feature 4 of channel 3 at 150 seconds after time 0.  

The first dataset is 1620 by 64, with a seizure occurring at observation 1441 (row 1441). The rest of the 

datasets are 7200 by 64 each, recorded from another dog without the occurrence of seizure during 

recording. We will test the algorithm on the dataset with seizure to assess its predictive power, and then 

test it on the other datasets to assess the possibility of false positives (alarms not followed by an actual 

seizure). 

 

 

III. Algorithm  

Our algorithm is inspired by the sequential analysis method commonly used in statistical process control. 

The main tool is a Shiryaev-Roberts statistic, calculated from the sequence of EEG recordings. The 

statistic, generally speaking, gives us the likelihood that a change point has occurred prior to a given point 

in time. The change can be in terms of mean or variance. Specific to our analysis, we only test the change 

of mean. Our null hypothesis would be that, under normal conditions, when there is no seizure, the 

distribution of EEG data should be close to identically distributed, or at least somehow consistent in time. 

Thus, when we identify a change in one of the parameters (the mean in our case), we can raise an alarm 

that a seizure might be imminent.  

For any one of the dataset we have, we use the following algorithm to process and obtain the series of 

Shiryaev-Roberts statistics over time: 

1. First we take log of the data. If any row contains any missing value or NA after logging, we 

throw out the entire row. Data should be positive and thus logged data should have valid values. 

Only two rows are missing in the dataset with seizure; 

2. Then we arrange logged data by feature, and take the first principal component of each feature 

(logged) over the sixteen channels. For convenience, we take the mean of the 16 channels for 

each feature as a surrogate for the first principal component. Therefore, we end up having four 

time series, one sequence for each feature. To illustrate this, for each row, we take the mean of 

column 1, 5, 9, 13…61 as the first principal component of feature 1, and that of 2, 6, 14… 62 for 

feature 2, etc. Hence for any point in time, we have four data points, one for each feature. We plot 

the first principal component for each feature.  

3. We run an AR-3 process on a period of each of the sequences to train our model. The length of 

the training period can be adjusted; in our model, we run the AR-3 on the first 720 data points. 

Coefficients of the fitted model is saved. It has been found empirically that these pre-preparation 

processes organize our data so that they are close to normal IID.  

4. We use the fitted coefficients to predict the rest of the observations, and obtain the residual at 

each point in time. For example, in the first dataset, we will predict the next 878 observations 

from the 721st time point onwards, and subtract the predicted values from the actual values to 

obtain the residuals. For the first 720 observations, we can get residuals from our fit. This process 

is separately applied to each feature’s sequence. Therefore, we obtain four sequences of residuals, 

one for each feature. We eliminate the first three points in time, as our AR process has a lag of 3. 

We plot the residuals here. 



5. We apply the statistic to the sequences of residuals, we plot the sequence of statistics in time. The 

formula for the statistic is: 

,  

where b = 1 as a default.  

 

Hence, Rn will be a sequence in time. G is the set of features, and in our case, we calculate Rn for 

each feature, so there is no multiplication to be made. Ω values can be calculated with the 

following formula:  

,  

where Zig denotes the ith residual of feature g (g can be 1, 2, 3, or 4), and 1/η^2 is taken to be ½ in 

our case. Often, a prior is placed on 1/η^2, often taken to be Γ(α, β), with typical values of the 

parameters of  α = 10 and β = 20.  

6. The series of Rn is eventually plotted as the output of this algorithm. The hope is that when a 

seizure is about to occur, the Rn values will show an abnormal peak that can be distinguished 

from normal conditions.  

 

This algorithm, if proven to be significantly better than chance, will be an advancement over existing 

algorithms. Its main advantage is it predicts a seizure in a prospective manner, and we can thus build 

a close-loop device based on it. More detailed discussion regarding the methods of implantable 

devices can be found in Section V.  

 

IV. Results 

 

The algorithm is first applied to the dataset with seizure. First we show the first principal components of 

each feature.  

 



 
It is very hard to tell any pattern from these graphs, as the data are very noisy. It would not be reasonable 

to base prediction decisions on these data. We need something more sophisticated. Hence, we apply the 

AR-3 process to these data and obtain the residuals for them.  

 



 

Compared to the first principal components, the residual values demonstrate smaller variances. However 

although slightly better, the residuals are still noisy enough to prevent reasonable prediction of seizure. 

Hence, we need a mechanism to smooth out the “normal” part of the data, and only amplify the changing 

part of it. Also, we need an approach that will show small changes overtime. 

The Shiryaev-Roberts (SR) statistic provides us with such a tool (Pollak, 2009). It is designed to detect 

changepoints in a sequence of observations whose baseline distribution might change to a new one, once 

the process goes “out of control”. The formula for the statistic is introduced in Section III, step 5. Due to 

limited scope of this research, the details of this statistic will not be discussed. It suffices to know that our 

specific formula is designed to find a potential change in the mean of the underlying distribution. Below 

is the log of the series of SR statistics we obtained from the residuals for each feature. 



 

 

 

As we can see clearly from the data, there is a high peak around the time of seizure onset – at observation 

1440 in the sequence. More importantly, there is another peak that occurs in all four features prior to the 

seizure, around observation 440 in the sequence. This can be seen as a potential precursor to seizure, 

although much more testing is needed. If this is indeed a signal of immenent seizure, then we would be 

able to raise an alarm 1000 observations in advance, which is almost 3 hours in advance. The algorithm 

can then be programmed into a chip to intervene and hence prevent the subsequent seizure. 



 

 

Here we attached the same sequences, although we focus on the first 1020 values for each sequence, 

which is 300 terms after the training period, so we can better see the details. It can be seen that there is no 

immediate peak occurring at observation 721, signaling that the training length might be sufficiently long. 

However, there is a consistent but small peak around 800. This might be due to low out-of-sample 

predicting power of the fitted model, or specific to the dataset. We need further testing on other datasets 

to decide.  

After applying the algorithm to the dataset with seizure, we apply the same algorithm to datasets without 

seizures. The goal is to compare the performance of this algorithm on a control sample to investigate the 

probability of false positives – the probability of raising false alarms when no seizure is going to occur. 

Appendix II has graphs of the log of SR statistics from six different EEG recordings without seizure 

occurrences. Here we only include the following two for illustration purposes.  



The graph to the left is the log of SR statistics for the 3rd feature in the second control data sample. As we 

can see, during the 7200 recorded data (about 20 hours of recording), the series remained below 20. If we 

refer back to the series from the dataset with seizure, we could have set a threshold at 30, and therefore 

this algorithm would give an alarm when there will be seizure, and not give an alarm according to the 

control dataset.  

The graph to the right illustrates an occasion of false positives – the log of SR statistics goes all the way 

to 200, even higher than the one we calculated for the actual seizure onset – this will certainly lead to an 

alarm being raised, but we know that no seizure symptoms occurred in the actual clinical observations.  

 

Many cases in Appendix II show false positives. This result is less optimal than previous results obtained 

by Professor Krieger and Professor Pollak in their analysis, and several factors that could have 

contributed to it are included in Section V: Discussion. 

 

V. Discussion 

 

1. The Algorithm 

We demonstrated the potential benefit of this algorithm by showing that more naïve methods would 

not have satisfactory predicting capabilities that can be used in real life applications. Specifically, we 

examined the possibility of using the first principal component, or the residuals of AR-3 process on 

the first principal component, and found that both would not work well enough.  

 
Similar issues are often encountered in the realm of statistical process control, into which we can 

look for ideas. Indeed, we borrowed the idea of Shiryaev-Roberts statistics. We showed that the SR 

statistic can give us much better understanding of the EEG recordings by smoothing out noise during 

normal conditions and amplifying changes that occur. This method effectively detects the change in 

some parameters in the transformed EEG data sequenced over time, thus making the prediction of 

seizures possible if we have knowledge about what kind of characteristic changes are signals of 

imminent seizures. 



 
From the analysis that we have done, we found that with the graphs from the dataset with seizure, we 

can manually pick a cutoff line for each feature – for example, 25, 20, 25, 40 for feature 1, 2, 3, 4 

respectively. We can hypothesize that, in normal conditions, the log of statistics we get won’t go past 

this threshold; they increase beyond this point suggests strongly that a seizure is coming. Hence, we 

can set the algorithm to raise an alarm at this threshold – whenever the algorithm calculates a log of 

SR statistic above the threshold. However, by testing this algorithm on datasets without seizure, we 

found that this threshold can be passed even in control data samples – meaning that we are faced with 

the problem of false positives. This will be discussed in detail below. Moreover, some consistent 

patterns are displayed such as that the statistics began to pick after around 100 observations after the 

training period ends, which might be related to training sufficiency, discussed below. 
 

2. Training length and sufficiency 

We are tasked with finding the optimal training length for the algorithm. A longer training length will 

theoretically yield more sufficient training and better predicting power, but it also gives less time left 

for the algorithm to gather data before the next seizure. In our case, we used the first 720 data points 

as the training period. In the dataset with seizure, the “precursor” was found at observation 440, 

within the training period. This raises the question of in-sample vs. out-of-sample prediction. 
 

We also tested training the algorithm on the first 180 data points, and graphs of the log of SR 

statistics are attached. As we can see, there is not a clear peak prior to seizure that can be used as the 

alarm threshold, potentially due to insufficient training on the short time periods. 

 
3. The issue of false positives 

 

False positives occur when the algorithm raises an alarm based on real data, but no seizure occurs 

afterwards. We are concerned with false positives, but the degree of our concern depends largely on 

the consequences of false positives. As introduced earlier, the ultimate realization of this algorithm 

will be a close-loop, implantable device capable of intervention and “pace-making”. Thus, the device 

will “unnecessarily” intervene by sending out electronic signals to deflect the potential upcoming 

seizure   but no such seizure actually occurred. . If the intervention will not have serious negative 

impact on the patients, then we will not worry as much – in fact, we might just let the device 

constantly “intervene” to prevent seizure altogether, since there is no harm anyway. However, if the 

intervention can have significant side effects – for example, an electric shock or release of medicine 

might cause uncomfortable feeling or dysfunction of the brain – then we need to be really cautious, 

and try to reduce false positives to a minimal level. After all, it is a cost-benefit analysis – will the 

harms avoided by effective interventions outweigh the harm caused by all interventions, whether true 

or false? 

 
From our testing on the dataset from quiet periods – during which no seizure occurred – we found the 

problem of false positives is still present in our algorithm, despite the promise that it showed in the 

dataset with seizure. Feature 3 performed in general better than other features, but still we observed 

some cases of false positives. In other features we saw more false positives. This result is less 

promising than the previous analysis done by Krieger and Pollak, in which false positives occurred in 

only a small fraction of all the tests. I hypothesize that two simplifications in my algorithm could 

have contributed to the difference.  
 



First, I did not assume a prior distribution on eta, the constant used in calculating the SR statistics. 

Krieger and Pollak assumed a gamma distribution for 1/eta^2, and used Monte Carlo simulation to 

compute the expected value of the statistics. For simplification, I simply fixed 1/eta^2 to be the 

expected value of the gamma distribution -- 0.5 -- and proceeded with it throughout. Second, for each 

feature, Krieger and Pollak used the principal component function in JMP software to find the first 

and second principal components, while I only took the mean of each feature’s 16 locations to be the 

first principal component. By cross-checking the processed dataset, I found the two methods to have 

slightly different results. 

 

It should be noted that the data with seizure and data without seizure are on different dogs. Perhaps it 

is necessary to calibrate the SR statistic for each dog separately, as suggested by evidence from 

Pearce et al. (2013). One artifact of the data is that the dog data that was used without seizure tends 

to produce higher SR values and if we had seizure data for that dog the peak might be much higher. 
 

4. Future research directions 

There are some direct extensions of our research that we were not included due to limited scope of 

the paper. , The main ones are simple modification of the algorithm.  
 
First, our algorithm does not have to be applied to all channels at once. In fact, running our algorithm 

on a selected set of channels can bring two benefits. It could potentially refine our algorithm and 

improve the predictive performance of it; it could also help to locate the area of the brain that is 

responsible for seizure, and increase the precision of surgery. As we know, in many cases seizures 

are focal, that is only caused by a certain location of the brain. Channels that are in our near the focal 

area might have better predictive power of the occurrence of seizures.  
 
Second, more principal components could possibly improve the performance of the algorithm. As 

documented by Krieger and Pollak, the inclusion of the second principal component improved the 

performance of the algorithm in their testing. We have to be cautious about including too many 

principal components, however, as this increases computing burden quickly. Furthermore, since 

currently our alarm is raised within the training period, there could potentially be risk of over fitting. 
 
Last but not least, researchers could consider processes more complicated than AR-3 to capture the 

variation of the principal components. From the graphs we plotted of the first principal components, 

there seems to be seasonal variations in the data, and therefore we could consider adding a seasonal 

component to the AR model to improve it. However, this observation is casual and subject to further 

statistical testing. 
 

 

VI. Conclusion 

 

In this paper, we tested the seizure prediction algorithm proposed by Krieger and Pollak on datasets from 

dogs. The testing on the dataset with seizure shows that this algorithm is promising, because it 

successfully captured the change in distribution of the data more than two hours before seizure onset, 

signaling that it is possible to predict seizure in a prospective manner. However, the testing on the control 

datasets without seizure shows the possibility of false positives. Specifically, my algorithm produced 

significantly more false positives than the previous analysis done by Krieger and Pollak, and I 

hypothesized that two simplifications in my algorithm might have contributed to the difference. Finally, I 



discussed three possible extensions of this algorithm which can be easily tested in the future, namely 

channel selection, more principal components, and more comprehensive processes. 

 

VII. Notes 

Appendix I contains the graphs plotted for the dataset with seizure; Appendix II contains the graphs 

plotted for the datasets without seizure; Appendix III contains the R-code used for testing. 

In fact, because different dataset has slightly different structure, there are two versions of the code. One is 

for dataset with seizure, and one is for the ones without.  
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