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Type IV Secretion-Dependent Activation of Host MAP Kinases Induces
an Increased Proinflammatory Cytokine Response to Legionella
pneumophila

Abstract
The immune system must discriminate between pathogenic and nonpathogenic microbes in order to initiate
an appropriate response. Toll-like receptors (TLRs) detect microbial components common to both
pathogenic and nonpathogenic bacteria, whereas Nod-like receptors (NLRs) sense microbial components
introduced into the host cytosol by the specialized secretion systems or pore-forming toxins of bacterial
pathogens. The host signaling pathways that respond to bacterial secretion systems remain poorly understood.
Infection with the pathogen Legionella pneumophila, which utilizes a type IV secretion system (T4SS),
induced an increased proinflammatory cytokine response compared to avirulent bacteria in which the T4SS
was inactivated. This enhanced response involved NF-κB activation by TLR signaling as well as Nod1 and
Nod2 detection of type IV secretion. Furthermore, a TLR- and RIP2-independent pathway leading to p38
and SAPK/JNK MAPK activation was found to play an equally important role in the host response to virulent
L. pneumophila. Activation of this MAPK pathway was T4SS-dependent and coordinated with TLR signaling
to mount a robust proinflammatory cytokine response to virulent L. pneumophila. These findings define a
previously uncharacterized host response to bacterial type IV secretion that activates MAPK signaling and
demonstrate that coincident detection of multiple bacterial components enables immune discrimination
between virulent and avirulent bacteria.
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Abstract

The immune system must discriminate between pathogenic and nonpathogenic microbes in order to initiate an
appropriate response. Toll-like receptors (TLRs) detect microbial components common to both pathogenic and
nonpathogenic bacteria, whereas Nod-like receptors (NLRs) sense microbial components introduced into the host cytosol
by the specialized secretion systems or pore-forming toxins of bacterial pathogens. The host signaling pathways that
respond to bacterial secretion systems remain poorly understood. Infection with the pathogen Legionella pneumophila,
which utilizes a type IV secretion system (T4SS), induced an increased proinflammatory cytokine response compared to
avirulent bacteria in which the T4SS was inactivated. This enhanced response involved NF-kB activation by TLR signaling as
well as Nod1 and Nod2 detection of type IV secretion. Furthermore, a TLR- and RIP2-independent pathway leading to p38
and SAPK/JNK MAPK activation was found to play an equally important role in the host response to virulent L. pneumophila.
Activation of this MAPK pathway was T4SS-dependent and coordinated with TLR signaling to mount a robust
proinflammatory cytokine response to virulent L. pneumophila. These findings define a previously uncharacterized host
response to bacterial type IV secretion that activates MAPK signaling and demonstrate that coincident detection of multiple
bacterial components enables immune discrimination between virulent and avirulent bacteria.
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Introduction

Innate immunity against bacterial pathogens is initiated by

germline-encoded pattern recognition receptors (PRRs) that detect

pathogen-associated molecular patterns (PAMPs) [1]. Toll-like

receptors (TLRs) distinguish self from microbial non-self, but

cannot distinguish pathogenic from nonpathogenic microbes. Many

bacterial pathogens utilize virulence mechanisms such as active

invasion into host cells, the avoidance of endolysosomal destruction,

and the translocation of virulence factors into host cells through

specialized secretion machinery in order to modulate host cell

signaling and avoid, manipulate, or silence the immune response

[2]. However, our knowledge of how innate immune cells detect the

signatures of bacterial virulence and initiate appropriate immune

responses remains incomplete. Recent studies show that macro-

phages and DCs utilize cytosolic PRRs, such as the Nod-like

receptor (NLR) family, to detect bacterial products introduced into

the host cytosol by bacterial secretion systems or virulent bacteria

that escape to the host cytosol following host cell entry [3–5]. The

NLRs Nod1 and Nod2 sense cytosolic peptidoglycan (PG) [6–10]

and trigger NF-kB and MAPK signaling by a pathway that involves

the signaling adaptors RIP2 [11,12] and Card9 [13]. Additionally,

several NLRs participate in inflammasome formation, leading to

caspase-1 activation, processing and secretion of the cytokines IL-1b
and IL-18, cell death, and cell-autonomous restriction of bacterial

infection [14,15]. For example, the NLR Ipaf responds to cytosolic

bacterial flagellin [16,17] and the NLR Naip5/Birc1e responds to

bacterial type IV secretion [18], possibly by detection of cytosolic

flagellin as well [19–21]. Furthermore, bacteria that reside in the

host cytosol or vacuolar bacteria that translocate bacterial products

into the cytosol activate a TLR-independent, IRF3-dependent

IFNb response [22–27] by a currently unknown mechanism that

may involve host sensing of bacterial nucleic acids [25,27].

In this study, Legionella pneumophilla was used as a model organism to

dissect host responses to bacterial type IV secretion systems. L.

pneumophila is the etiological agent of the severe pneumonia

Legionnaires’ disease [28]. Upon host cell entry, virulent L.

pneumophila modulates transport of the vacuole in which it resides to

prevent fusion with early and late endocytic organelles. It then

recruits vesicles exiting the ER and fusion of these vesicles remodels

PLoS Pathogens | www.plospathogens.org 1 November 2008 | Volume 4 | Issue 11 | e1000220



the vacuole into an ER-derived compartment that supports bacterial

replication [29]. The ability to evade endocytic maturation and create

an ER-derived vacuole requires a bacterial protein secretion system

encoded by the dot and icm genes [30–33]. The Dot/Icm type IV

secretion system (T4SS) delivers effector proteins that modulate

eukaryotic cellular functions into the host cytosol [34]. L. pneumophila

mutants with a defective T4SS fail to remodel the vacuole in which

they reside and undergo rapid endocytic maturation [31,35]. Thus,

comparison of wild-type (WT) L. pneumophila and mutant strains

provides a useful model system to dissect host responses to bacteria

that differ in defined virulence properties.

Innate immunity is essential for restricting L. pneumophila infection

at the cellular and organismal level. TLRs are required for control

of L. pneumophila infection in vivo, as mice lacking TLR2 are more

susceptible to infection, and Myd882/2 mice have a profound defect

in controlling L. pneumophila infection [36,37]. The cytosolic NLRs

Naip5/Birc1e and Ipaf activate caspase 1, leading to the processing

and secretion of IL-1b and IL-18 and the cell-autonomous

restriction of L. pneumophila replication by a mechanism requiring

detection of T4S [18] and flagellin [19–21,38]. Additionally, the L.

pneumophila T4SS induces IRF-3-dependent IFNb production by an

unknown mechanism possibly involving host detection of translo-

cated bacterial DNA [25,26]. Interestingly, previous data indicate

there is a robust multi-cytokine response to virulent versus avirulent

L. pneumophila [39–41]. This cytokine response requires a functional

L. pneumophila T4SS [39–41]. The basis of this response is unknown.

Here, we compared host responses to virulent L. pneumophila and

avirulent L. pneumophila that are deficient in the Dot/Icm T4SS.

We define a previously uncharacterized TLR- and Nod1/Nod2-

independent response to L. pneumophila type IV secretion that

activates MAP kinases and is important for a robust proinflam-

matory cytokine response.

Results

The cytokine response to L. pneumophila is comprised of
TLR-dependent and T4SS-dependent, TLR-independent
responses

Previous data indicated that virulent L. pneumophila expressing a

functional T4SS induce a more robust cytokine response than

avirulent mutants expressing a defective T4SS [39–41], but the

basis for this response was unclear. Following intranasal infection,

we determined that WT L. pneumophila, but not DdotA mutant L.

pneumophila defective in the T4SS, induced robust production of

the cytokines IL-1a, IL-6, IL-12, CXCL1, and TNF (Figure 1A).

This difference was independent of bacterial replication, as the

bacteria used in these experiments were thyA mutants and fail to

replicate due to their thymidine auxotrophy [31,42]. Because

C57Bl/6 mice encode a functional Naip5 allele that limits L.

pneumophila replication [43,44], we examined cytokine responses to

flagellin-deficient L. pneumophila, which fail to activate this Naip5-

mediated pathway [19–21,38]. Infection with the DflaA strain

induced a robust cytokine response equivalent to infection with

WT L. pneumophila, indicating that this response is independent of

flagellin-dependent inflammasome activation (Figure 1A).

Bone marrow-derived macrophages also produced significantly

more IL-1a, pro-IL-1b, IL-6, IL-12, CXCL1, and TNF in

response to WT L. pneumophila compared to the DdotA mutant

independently of bacterial replication and cytosolic detection of

flagellin (Figure 1B and 1C). Similar results were obtained in A/J

macrophages (data not shown) homozygous for an allele of Naip5

that is defective in responding to L. pneumophila infection [43–45],

indicating this cytokine response is Naip5-independent.

Previous observations that L. pneumophila-infected Tlr22/2 and

Myd882/2 macrophages produce severely diminished levels of

cytokines [36] indicated that TLR signaling is required for

cytokine production in response to L. pneumophila. L. pneumophila-

infected Tlr22/2 macrophages displayed severely diminished

cytokine production (Figure 2A). However, Tlr22/2 macrophages

infected with WT or DflaA L. pneumophila still produced cytokine

levels that were higher compared to macrophages infected with the

DdotA mutant (Figure 2A). Cytokine production was undetectable

in infected Myd882/2 macrophages (data not shown and [29]).

This demonstrates that TLR signaling synergizes with T4SS-

dependent host signaling to enhance cytokine production.

We then examined cytokine mRNA transcription in L.

pneumophila-infected WT and Myd882/2 macrophages. Cytokine

mRNA levels were increased in WT macrophages infected with

WT L. pneumophila compared to those infected with the DdotA

mutant (Figure 2B). In Myd882/2 macrophages, although

transcription was diminished, there was still significantly increased

transcription of Il1a, Il1b, Il12, Cxcl1, and Tnf in response to WT L.

pneumophila, but very little transcription in response to the DdotA

mutant (Figure 2B). As previously reported [25], there was also

robust MyD88-independent, T4SS-dependent Il6 and Ifnb tran-

scription (Figure 2B). These data show that the cytokine response

to the DdotA mutant is entirely MyD88-dependent, whereas the

response to WT L. pneumophila is comprised of both MyD88-

dependent and MyD88-independent responses. Similar results

were found in macrophages lacking MyD88 as well as Trif, a

signaling adaptor for TLR4 and TLR3 that leads to IRF3

activation (data not shown). Thus, maximal cytokine responses to

L. pneumophila require both TLR detection of L. pneumophila and

TLR-independent responses to T4S.

RIP2-dependent and -independent responses to L.
pneumophila type IV secretion

The NLRs Nod1 and Nod2 are cytosolic sensors of peptido-

glycan [5,46,47]. Nod1 can detect peptidoglycan delivered by the

Helicobacter pylori T4SS into the host cytosol [48]. Additionally,

simultaneous stimulation of TLRs and NLRs induces synergistic

cytokine production [10,49,50]. The signaling adaptors MyD88

and RIP2 control NF-kB activation downstream of most TLRs

and Nod1 and 2, respectively [11,12,51]. Thus, we analyzed

Author Summary

The host immune system senses bacterial infection by
recognizing conserved bacterial components. The host can
differentiate between virulent and avirulent bacteria by
detecting the activity of bacterial secretion systems that
inject effector proteins into cells. How the host responds to
such bacterial secretion systems is not fully understood.
Using the bacterial pathogen Legionella pneumophila and
isogenic mutants that differ in defined virulence properties, a
robust immune response to L. pneumophila and its type IV
secretion system was identified. Using macrophages lacking
various aspects of the innate immune system, it was found
that this host response is comprised of signaling by
extracellular and intracellular immune receptors, as well as
host signaling triggered by the type IV secretion system.
Through genomic and biochemical analyses of L. pneumo-
phila–infected macrophages, type IV secretion was found to
activate additional host signaling pathways distinct from
known immune pathways. Our data indicate that coincident
detection of multiple bacterial components is required for a
robust immune response to bacterial infection and highlights
a key host pathway triggered by bacterial type IV secretion
that contributes to this immune response.

Host Responses to L. pneumophila Type IV Secretion

PLoS Pathogens | www.plospathogens.org 2 November 2008 | Volume 4 | Issue 11 | e1000220



MyD88- and RIP2-dependent NF-kB activation in response to L.

pneumophila. WT and Rip22/2 macrophages infected with WT or

DdotA L. pneumophila displayed robust NF-kB activation, as

determined by IkB degradation (Figure 3A) and NF-kB translo-

cation into the nucleus (data not shown). In agreement with a

previous study [52], in Myd882/2 macrophages, WT L.

pneumophila were able to induce IkB degradation (Figure 3A and

Figure S1) and NF-kB nuclear translocation (data not shown),

whereas the DdotA bacteria were not. In contrast, in Myd882/2

Rip22/2 macrophages, IkB degradation (Figure 3A and Figure S1)

or NF-kB nuclear translocation (data not shown) were undetect-

able in either WT or DdotA L. pneumophila-infected cells. Thus,

there are primarily two modes of NF-kB activation in response

to L. pneumophila, which include MyD88-dependent, T4SS-

independent detection of bacterial surface structures and RIP2-

dependent, T4SS-dependent detection of bacterial factors trans-

located into the cytosol.

We then examined whether RIP2 contributes to the T4SS-

dependent cytokine response. There was a slight decrease in

cytokine production by L. pneumophila-infected Rip22/2 macro-

phages compared to WT macrophages (Figure 3B). However,

Rip22/2 macrophages still induced significantly increased cytokine

production in response to WT L. pneumophila compared to the

DdotA mutant (Figure 3B and 3C). Nod12/2 and Nod22/2 single

knockout macrophages, and Nod12/2Nod22/2 double knockout

macrophages (Figure S2) responded similarly, indicating the

presense of other cytosolic responses to T4S.

We then compared cytokine mRNA transcription in WT,

Rip22/2, Myd882/2 and Myd882/2Rip22/2 macrophages infect-

ed with WT or DdotA L. pneumophila. There was a T4SS-dependent

Figure 1. Increased cytokine production in response to L. pneumophila containing a functional T4SS compared to dotA mutants. (A)
ELISA measurements of cytokine levels in the BALFs of WT mice 24 hours following intranasal infection with PBS vehicle control or 56106 CFUs of WT,
DflaA, or DdotA L. pneumophila on the thyA background. Each point represents an individual mouse. Lines indicate the mean cytokine levels for each
group of mice. (B) ELISA measurement of cytokine production in WT bone marrow-derived macrophages infected with WT, DdotA, or DflaA L.
pneumophila on the thyA background at an MOI = 5 for 24 hours. Data represent the mean6standard error of the mean (SEM) of the assay performed
in triplicate and are representative of at least three independent experiments. P-values derived from two-tailed student’s T test. * represents p,0.05.
** represents p,0.01. (C) Immunoblot analysis of pro-IL-1b production in WT bone marrow-derived macrophages infected with WT, DdotA, or DflaA L.
pneumophila on the thyA background at an MOI = 5 for 24 hours. Blots were reprobed for analysis of total actin (loading control). Data are
representative of at least two independent experiments.
doi:10.1371/journal.ppat.1000220.g001

Host Responses to L. pneumophila Type IV Secretion
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increase in cytokine transcription in WT and Rip22/2 macro-

phages (Figure 3D). In the absence of MyD88, mRNA

transcription was decreased one to three logs, but there was still

significant T4SS-dependent transcriptional induction of Il1a, Il1b,

Il6, Il12, Cxcl1 (Kc), and Il6 (Figure 3D). Transcription of all six

genes was reduced in Myd882/2Rip22/2 macrophages compared

to Myd882/2 macrophages, indicating that RIP2 also contributes

to T4SS-dependent gene transcription (Figure 3D). However,

there was still significant MyD88- and RIP2-independent, T4SS-

dependent gene transcription, with highly robust transcription

observed for Il1a and Il1b (Figure 3D). As reported previously [25],

we also observed robust MyD88- and RIP2-independent, Dot/

Icm-dependent Il6 and Ifnb induction. Additionally, the DflaA

mutant induced cytokine transcription to the same extent as WT

bacteria in Myd882/2Rip22/2 macrophages (data not shown).

Thus, there is an important signaling pathway that responds to the

T4SS that is activated independently of MyD88, RIP2, and the

inflammasome.

A MyD88- and RIP2-independent gene expression
program is induced in response to the L. pneumophila
T4SS

To screen for additional MyD88-independent, RIP2-indepen-

dent signaling pathways that respond to the T4SS, we analyzed

the transcriptional responses of Myd882/2Trif2/2 or Myd882/2

Rip22/2 macrophages infected with either WT or DdotA L.

pneumophila. These microarrays revealed genes whose expression

were increased or decreased two-fold or more in response to WT

L. pneumophila versus the DdotA mutant (Figure 4A and Tables S2,

S3, and S4). We then focused on differentially expressed genes

common to Myd882/2Trif2/2 and Myd882/2Rip22/2 macro-

phages (Figure 4A and Table S2), as they were likely to represent

the product of TLR- and Rip2-independent signaling induced by

the L. pneumophila T4SS. These genes are associated with a broad

spectrum of cellular functions, including immune signaling

(Figure 4B). Because the L. pneumophila T4SS stimulates Ifnb

transcription [25,26] by a proposed mechanism involving T4SS-

Figure 2. TLR-dependent signaling synergizes with TLR-independent, T4SS-dependent signaling to induce an increased cytokine
response. (A) ELISA measurements of IL-1a, IL-6, IL-12 p40/p70, CXCL1, and TNF production in WT and Tlr22/2 bone marrow-derived macrophages
infected with WT, DdotA, or DflaA L. pneumophila on the thyA background at an MOI = 5 for 24 hours. Data are represented as the mean6SEM of the
assay performed in triplicate and are representative of at least two independent experiments. (B) Quantitative RT-PCR analysis of WT or Myd882/2

macrophages infected with WT, DdotA, or DflaA L. pneumophila at an MOI = 25 for four hours. Data represent the mean fold induction6SEM relative
to uninfected macrophages of the assay performed in triplicate and are representative of at least two independent experiments.
doi:10.1371/journal.ppat.1000220.g002

Host Responses to L. pneumophila Type IV Secretion
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mediated translocation of bacterial nucleic acids into the host

cytosol [25], we compared our analysis with the microarray

analysis of the interferon stimulatory DNA (ISD) response.

Although there is a subset of overlapping genes (Figure 4A and

Table S5), many of the differentially regulated genes are unique to

the T4SS response (Table S6).

We confirmed the MyD88- and RIP2-independent, T4SS-

dependent transcription of several immune-related genes identified

in the microarray analysis (Figure 4C). Transcription of these

genes was independent of cytosolic detection of flagellin and Trif

signaling (data not shown). Collectively, the data so far

demonstrate that multiple transcriptional programs are turned

Figure 3. RIP2-dependent NF-kB signaling in response to L. pneumophila type IV secretion is not required for T4SS-dependent
cytokine production. (A) Immunoblot analysis of IkB degradation in WT, Myd882/2, Rip22/2, or Myd882/2Rip22/2 macrophages infected with WT
or DdotA L. pneumophila at an MOI = 50. Blots were reprobed for analysis of total actin (loading control). Data are representative of at least three
independent experiments. (B) ELISA measurements of cytokine production in WT and Rip22/2 macrophages infected with WT, DdotA, or DflaA L.
pneumophila on the thyA background at an MOI = 5 for 24 hours. Data represent the mean6SEM of the assay performed in triplicate and are
representative of at least two independent experiments. (C) Immunoblot analysis of pro-IL-1b production in WT and Rip22/2 bone marrow-derived
macrophages infected with WT, DdotA, or DflaA L. pneumophila on the thyA background at an MOI = 5 for 24 hours. (D) Quantitative RT-PCR analysis
of WT, Rip22/2, Myd882/2, or Myd882/2Rip22/2 macrophages infected with WT, DdotA, or DflaA L. pneumophila at an MOI = 25 for four hours. Data
are represented as the mean fold induction6SEM relative to uninfected macrophages of the assay performed in triplicate and are representative of at
least two independent experiments.
doi:10.1371/journal.ppat.1000220.g003

Host Responses to L. pneumophila Type IV Secretion
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on by macrophages in response to L. pneumophila infection: 1)

T4SS-independent, MyD88-dependent gene expression; 2) T4SS-

dependent, MyD88-independent, RIP2-dependent gene expres-

sion; and 3) T4SS-dependent, MyD88-independent, RIP2-inde-

pendent gene expression.

MyD88- and RIP2-independent p38 and SAPK/JNK MAPK
signaling in response to L. pneumophila type IV secretion

Microarray analysis and qPCR data revealed robust T4SS-

dependent transcription of dual specificity phosphatase 1 (Dusp1)

as well as other Dusp genes (Figure 4C and data not shown). Dusps

are known to downregulate MAPK signaling. This indicated there

was host MAPK activation in response to the T4SS. Therefore, we

examined the activation state of the three canonical MAPK

pathways, ERK1/2, p38, and SAPK/JNK, in response to L.

pneumophila. In WT macrophages, there was robust and rapid

activation of all three MAPKs in response to both WT and DdotA

L. pneumophila infection (Figure 5A). In contrast, in Myd882/2

Trif2/2 macrophages, there was ERK1/2 activation in response

to both WT and DdotA mutant L. pneumophila, but p38 and SAPK/

JNK MAPK activation was observed only in response to WT L.

pneumophila (Figure 5A). This indicates that ERK1/2 activation is

MyD88- and T4SS-independent. In contrast, p38 and SAPK/

JNK MAPK signaling in response to L. pneumophila can be

dissected into a MyD88-dependent, T4SS-independent pathway

and a MyD88-independent, T4SS-dependent pathway.

Nod1 and Nod2 signaling through RIP2 also activate the p38

and SAPK/JNK MAPK pathways [10,53,54]. However, T4SS-

dependent p38 and SAPK/JNK MAPK activation was RIP2-

independent (Figure 5A), and T4SS-dependent MAPK activation

was also observed in Nod12/2Nod22/2 macrophages (data not

shown). MAPK activation was also flagellin-independent

(Figure 5B). T4SS-dependent MKK3/6 and MKK4 activation

was observed, as well as activation of the transcription factors c-

Jun and ATF2 (Figure 5C and data not shown). This suggests that

a T4SS-dependent stimulus upstream of MKK3/6 and MKK4 is

responsible for p38 and SAPK/JNK MAPK activation.

Treatment of cells with bacterial pore-forming toxins such as

streptolysin O activates p38 MAPK by an unknown mechanism

[55,56]. Therefore, we considered whether p38 and SAPK/JNK

MAPK activation was due to T4SS-mediated pore formation in

the host membrane or alternatively required sustained T4SS

translocation into the host cell. To address this, we examined

DicmS and DicmW mutant L. pneumophila. IcmS and IcmW form a

T4SS chaperone complex that is not essential for T4SS function

per se, but the IcmSW complex is required for the efficient

Figure 4. L. pneumophila type IV secretion induces a MyD88- and RIP2-independent transcriptional response. (A) Venn diagram
showing genes transcriptionally induced two-fold or more in response to the T4SS in Myd882/2Trif2/2 or Myd882/2Rip22/2 macrophages infected for
four hours with WT L. pneumophila compared to those infected with the DdotA mutant on the thyA background at an MOI = 25 versus genes
transcriptionally induced two-fold or more at four hours following ISD transfection of Myd882/2Trif2/2 macrophages [25]. (B) Graph representing the
percentage of genes transcriptionally induced two-fold or more upon infection with WT L. pneumophila compared to the DdotA mutant on the thyA
background at an MOI = 25 for four hours in both Myd882/2Trif2/2 and Myd882/2Rip22/2 macrophages and that belong to various functional classes.
(C) Quantitative RT-PCR analysis of Myd882/2Rip22/2 macrophages infected with WT or DdotA mutant L. pneumophila at an MOI = 25 for four hours.
Data are representative of at least two independent experiments.
doi:10.1371/journal.ppat.1000220.g004
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Figure 5. L. pneumophila type IV secretion induces p38 and SAPK/JNK MAPK activation independently of TLR, Nod1, and Nod2
signaling. (A) Immunoblot analysis of p-ERK1/2, p-p38, and p-SAPK/JNK MAPKs in WT, Myd882/2Trif2/2, and Myd882/2Rip22/2 macrophages
infected with WT or DdotA L. pneumophila at an MOI = 50. Total p38 MAPK is shown as a loading control. Data are representative of at least three
independent experiments. (B) Immunoblot analysis of p-p38 and p-SAPK/JNK MAPKs in Myd882/2Rip22/2 macrophages infected with WT, DdotA, or
DflaA L. pneumophila at an MOI = 50. Total p38 MAPK is shown as a loading control. Data are representative of at least two independent experiments.
(C) Immunoblot analysis of p-MKK4, p-MKK3/6, p-p38, p-SAPK/JNK, and p-c-Jun in Myd882/2Rip22/2 macrophages infected with WT or DdotA L.
pneumophila at an MOI = 50. Total p38 MAPK is shown as a loading control. Data are representative of at least two independent experiments. (D)
Immunoblot analysis of p-p38 and p-SAPK/JNK in Myd882/2 macrophages infected with WT, DdotA, or DicmS L. pneumophila at an MOI = 50. Total
p38 MAPK is shown as a loading control. Data are representative of at least three independent experiments. (E) Quantitative RT-PCR analysis of
Myd882/2Rip22/2 macrophages infected with WT, DdotA, or DicmS L. pneumophila at an MOI = 25 for four hours. Data represent the mean fold
induction6SEM relative to uninfected macrophages of the assay performed in triplicate and are representative of at least three independent
experiments. (F) Immunoblot analysis of p-p38 and p-SAPK/JNK in Myd882/2Rip22/2 macrophages pretreated with or without chloramphenicol
(25 mg/mL) for 30 minutes prior to infection with WT or DdotA L. pneumophila at an MOI = 50. Total p38 is shown as a loading control.
doi:10.1371/journal.ppat.1000220.g005
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translocation of a large subset of T4SS effectors needed for

formation of the ER-derived vacuole in which L. pneumophila

replicates [57–60]. DicmS or DicmW mutants retain T4SS-

mediated pore formation in the host membrane, but vacuoles

containing these mutants fuse with the endolysosomal pathway

within a few minutes of uptake [57,61]. p38 and SAPK/JNK

MAPK activation was undetectable in macrophages infected with

the DicmS or DicmW mutant (Figure 5D and data not shown),

indicating that pore formation alone is insufficient for robust p38

and SAPK/JNK MAPK activation. Transcription of multiple

genes, including Il1a, Il1b, and Cox2, was significantly decreased in

Myd882/2 macrophages infected with the DicmS mutant com-

pared to WT bacteria (Figure 5E). Genes such as Ifnb were still

robustly transcribed (Figure 5E and data not shown), indicating

IcmS-dependent and -independent gene transcription. Examina-

tion of cytokine production in WT macrophages revealed that

although there was a slight decrease in response to the DicmS

mutant, there was still more robust cytokine production compared

to infection with the DdotA mutant (Figure S3). These data suggest

a subset of the host responses require IcmS-dependent transloca-

tion of effector proteins, whereas additional host responses are

activated by the T4SS by a process independent of IcmS function.

There was still robust p38 and SAPK/JNK MAPK activation in

macrophages infected with L. pneumophila in the presence of

chloramphenicol, which inhibits bacterial translation but not the

T4SS (Figure 5F), indicating that de novo protein synthesis of a

T4SS substrate was not required. However, many L. pneumophila

T4SS substrates are synthesized prior to infection [62]. Therefore,

we considered whether putative L. pneumophila T4SS effectors had

the potential to activate MAPK signaling. The L. pneumophila

genome contains three genes encoding putative Ser/Thr protein

kinases unique to L. pneumophila and absent from nonpathogenic

bacteria: legK1, legK2, and legK3 [63,64]. LegK1, LegK2, and

LegK3 were efficiently translocated into host cells by the T4SS

(Figure S4A). However, T4SS-dependent p38 phosphorylation

was not affected in Myd882/2Rip22/2 macrophages infected with

the DlegK1, DlegK2, DlegK3 L. pneumophila triple mutant, indicating

that these three genes are not required for MAPK activation

(Figure S4B). Taken together, these data indicate that MAPK

activation requires a fully functional T4SS and is either a direct or

indirect response to translocated bacterial proteins.

p38 and SAPK/JNK MAPK signaling is required for
optimal T4SS-dependent gene expression

Treatment of Myd882/2Rip22/2 macrophages with the p38

MAPK inhibitor SB202190 or the SAPK/JNK MAPK inhibitor

JNK II prior to L. pneumophila infection revealed that full T4SS-

dependent transcription of several genes required p38 and SAPK/

JNK MAPK signaling (Figure S5). SB202190 and JNK II

treatment did not affect L. pneumophila host cell entry or

intracellular replication (data not shown). Therefore, p38 and

SAPK/JNK MAPK signaling contributes to MyD88-independent,

Dot/Icm-dependent gene transcription in response to L. pneumo-

phila infection. Treatment of WT macrophages with SB202190

prior to bacterial infection also inhibited cytokine gene transcrip-

tion (data not shown), as optimal cytokine transcription requires

TLR-dependent p38 MAPK signaling [65,66].

A detailed analysis of the temporal kinetics of p38 and SAPK/

JNK MAPK signaling revealed that WT macrophages infected

with WT and DdotA mutant L. pneumophila infection activate

MAPKs within 30 minutes (Figure 6A). MAPK activation in

response to WT L. pneumophila peaked by 60 minutes and was

sustained for at least 4 hours, whereas MAPK activation in

response to the DdotA mutant was decreased and undetectable by

4 hours (Figure 6A). In contrast, in Myd882/2 macrophages,

MAPK activation in response to WT L. pneumophila was delayed,

detectable at 60 minutes (Figure 5A and 6A), peaked at

120 minutes, and sustained for at least 4 hours post infection

(Figure 6A). This indicates that the increased and sustained

MAPK activation in WT macrophages infected with WT L.

pneumophila represents the aggregate of T4SS-independent,

MyD88-dependent MAPK activation and T4SS-dependent,

MyD88-independent MAPK activation (Figure 6A). Inhibitors

were used to determine if this aggregate signal was responsible for

the increased cytokine transcription seen in WT macrophages

infected with WT L. pneumophila. The p38 MAPK inhibitor

SB202190, the SAPK/JNK MAPK inhibitor JNK II, or both were

added to Myd882/2 or WT macrophages at 120 minutes post-

infection, the time of peak MyD88-independent, T4SS-dependent

MAPK activation. Il1a and Il1b transcription was measured four

hours post-infection. Il1a and Il1b transcription was decreased in

Myd882/2 and WT macrophages treated singly with p38 or

SAPK/JNK MAPK inhibitors, with a synergistic decrease

observed when both p38 and SAPK/JNK MAPKs were inhibited.

This demonstrates that sustained MAPK activation in response to

the T4SS is critical for optimal cytokine transcription during L.

pneumophila infection.

Discussion

Our data support a model in which coincident detection of

multiple bacterial components and the integration of these signals

enables immune discrimination of pathogenic and nonpathogenic

microbes. This results in either a full proinflammatory response

against a pathogen or a tempered immune response to an avirulent

microbe. We show here that the robust innate immune response to

virulent L. pneumophila requires synergy between TLR-dependent

detection of L. pneumophila PAMPs and TLR-independent

detection of L. pneumophila T4SS-translocated bacterial factors in

the host cytosol. These data identify a T4SS-dependent and RIP2-

independent p38 and SAPK/JNK MAPK pathway that synergizes

with MyD88-dependent MAPK activation for optimum cytokine

transcription.

IL-1b secretion in response to L. pneumophila infection exempli-

fies this model of multifactorial control of immune responses

against a pathogen. Data shown here indicate that in addition to

TLR signaling, T4SS detection is also required for optimal pro-IL-

1b expression in response to L. pneumophila infection. The third and

final step involving inflammasome activation and caspase-1-

dependent IL-1b processing and secretion requires detection of

the T4SS and flagellin [18,21]. This demonstrates that at least

three different signaling pathways, one that is TLR-dependent and

two that are TLR-independent and T4SS-dependent, are required

for IL-1b production and secretion.

p38 and SAPK/JNK MAPK activation in response to L.

pneumophila was dissected into two distinct pathways with differing

temporal kinetics and signaling intensity: 1) temporally rapid

TLR-dependent MAPK activation and 2) temporally delayed and

sustained TLR-independent, RIP2-independent, T4SS-dependent

MAPK activation. This demonstrates that there are two distinct

modes of MAPK activity that are differentially regulated in a

temporal manner and synergize to result in increased cytokine

expression in response to L. pneumophila. This explains a previous

observation that WT macrophages infected with WT L.

pneumophila exhibited increased SAPK/JNK MAPK activation

compared to those infected with the DdotA mutant [67]. It is still

unclear, however, what aspect of the T4SS is responsible for the

MyD88- and RIP2-independent p38 and SAPK/JNK MAPK
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activation. L. pneumophila lacking the T4SS chaperone IcmS do not

induce detectable p38 and SAPK/JNK activation. This indicates

that initial pore formation induced in the host cell membrane by

the T4SS is insufficient for robust MAPK activation. Instead,

MAPK activation may require the detection of an IcmS-guided

T4SS substrate or sustained translocation to achieve a minimal

substrate concentration required for detection. This T4SS

substrate could be a PAMP such as a cell wall component.

Another possibility is that subversion of host cell pathways

important for remodeling of the L. pneumophila-containing vacuole

into an ER-derived organelle could potentially activate p38 and

SAPK/JNK MAPKs. It remains possible that a L. pneumophila

T4SS effector directly modulates p38 and SAPK/JNK MAPK

signaling or that the cell senses the biochemical activity of the

effector. This possibility led us to test whether three L. pneumophila

putative Ser/Thr protein kinases predicted to be translocated by

the T4SS into host cells were important for MAPK activation.

Indeed, the three L. pneumophila LegK proteins were found to be

type IV substrates; however, a L. pneumophila mutant deficient in all

three legK genes still induced p38 and SAPK/JNK MAPK

activation, indicating that the LegK proteins are not required

for the T4SS MAPK response. Thus, the possibility exists that

Figure 6. MyD88-dependent and T4SS-dependent p38 and SAPK/JNK MAPK signaling collaborate to induce a maximal
transcriptional response. (A) Immunoblot analysis of p-p38 and p-SAPK/JNK MAPKs in WT and Myd882/2 macrophages infected with WT and
DdotA L. pneumophila at an MOI = 50. Total p38 is shown as a loading control. Shown on the right is a graphical representation of of the immunoblot
analysis depicting the ratio of p-p38 intensity to total p38 intensity versus time. Immunoblots were quantified using ImageJ. Data are representative
of at least two independent experiments. (B) Quantitative RT-PCR analysis of WT and Myd882/2 macrophages. Macrophages were first infected with
WT and DdotA mutant bacteria at an MOI = 25, then treated two hours later with 10 mM SB202190, 10 mM JNK II, 10 mM SB202190 plus 10 mM JNK II,
or an equal volume of DMSO (vehicle control), and RNA harvested four hours after infection. Data represented the mean fold induction6SEM relative
to uninfected cells of the assay performed in triplicate and are representative of at least two independent experiments.
doi:10.1371/journal.ppat.1000220.g006
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multiple effectors with different biochemical activities could

independently activate MAPK signaling, which would not be

surprising given that this T4SS manipulates a variety of different

cellular pathways using a repertoire of over 100 different effector

proteins.

Immune pathways other than MAPK signaling were also

activated by the L. pneumophila T4SS. For example, consistent with

the defect in p38 and SAPK/JNK MAPK activation, Myd882/

2Rip22/2 macrophages infected with the DicmS mutant displayed

impaired transcriptional induction of several genes, including Il1a

and Il1b. However, the DicmS mutant still induced robust Ifnb

transcription, indicating differing signaling requirements for the

transcription of Ifnb compared to Il1a and Il1b. Interestingly, in

WT macrophages, the DicmS mutant still stimulated more cytokine

production than the DdotA mutant, indicating that additional

T4SS-dependent pathways other than p38 and SAPK/JNK

MAPKs also contribute to cytokine production.

Microarray analysis revealed a large number of genes induced

by T4S independently of MyD88 and RIP2 signaling. Although

our analysis focused on MAPK signaling, other MyD88- and

RIP2-independent signaling pathways are also likely to respond to

the T4SS. L. pneumophila T4S induces Ifnb transcription in host cells

[25,26]. It has been suggested that DNA translocated by the L.

pneumophila T4SS triggers the ISD response, which leads to Ifnb

transcription [25]. Comparison of the ISD response with the L.

pneumophila T4SS response revealed overlapping yet distinct

transcriptional programs. The ISD response differs from the

T4SS MAPK response, as the ISD response does not involve NF-

kB or MAPK signaling and instead requires IRF3. Additionally,

infection with the L. pneumophila DicmS mutant induces robust Ifnb

transcription with no detectable MAPK activation. This indicates

that the MyD88- and RIP2-independent T4SS response is

comprised of several discrete pathways, including MAPK signaling

and the IRF3-dependent Ifnb response. Identification of other

signaling pathways responsible for T4SS-dependent, MyD88- and

RIP2-independent gene expression will elucidate other mecha-

nisms of innate immune discrimination of pathogens.

Using mice either singly or doubly deficient for MyD88 and RIP2,

we showed that NF-kB activation in response to L. pneumophila is

controlled by two distinct pathways: 1) MyD88-dependent, T4SS-

independent signaling and 2) MyD88-independent, RIP2-dependent,

and T4SS-dependent signaling. This indicates that TLR-indepen-

dent, T4SS-dependent NF-kB activation is controlled by Nod1 and

Nod2 detection of a T4SS substrate, possibly peptidoglycan, in the

host cytosol. Previous observations showed that infection with a low

dose of L. pneumophila allowed for the detection of T4SS-dependent

NF-kB activation in macrophages lacking either MyD88 or Nod1

[52]. Since pharmacological inhibition of NF-kB inhibited bacterial

replication and host cell viability, it was proposed that a T4SS effector

modulates NF-kB signaling to promote host cell survival through the

upregulation of anti-apoptotic factors [52]. Our data indicate that

NF-kB activation in the absence of both MyD88 and RIP2 is

undetectable; however, L. pneumophila were able to replicate similarly

in Myd882/2Rip22/2 macrophages and control heterozygous

macrophages (data not shown), suggesting that NF-kB activation is

not essential for host cell survival during L. pneumophila infection.

Because anti-apoptotic genes are also regulated by p38 MAPK

signaling [68], it is likely that the T4SS-dependent MAPK activation

described here is sufficient to upregulate host cell survival functions in

the absence of NF-kB activity.

In conclusion, we have described multiple TLR-dependent and

-independent signaling pathways triggered by L. pneumophila and its

T4SS. In particular, we have demonstrated that the T4SS induces

MyD88- and RIP2-independent p38 and SAPK/JNK MAPK

activation. This T4SS-dependent MAPK signaling synergizes with

MyD88- and RIP2-dependent signaling, leading to increased

immune gene expression. Further identification of the host

signaling pathways that comprise the T4SS response will elucidate

how L. pneumophila manipulates host signaling pathways as well as

how the innate immune system detects bacterial secretion systems

and initiates immunity against pathogens.

Materials and Methods

Bacterial strains and reagents
Legionella pneumophila serogroup 1 strains were used. When

indicated in the figure legends or text, mice and macrophages were

infected with Lp02 (CR24; thyA), a thymidine auxotroph derived

from strain Lp01 [31] or the isogenic mutant strains CR25 (DdotA,

thyA), CR1665 (DflaA, thyA), and SS29 (DdotA, DicmS, and thyA).

Otherwise, macrophages were infected with Lp01 (CR39; WT) or

the isogenic mutant strains CR393 (DicmS), CR1668 (DflaA), or

CR58 (DdotA) [61]. For in vitro studies, L. pneumophila were cultured

for two days on charcoal yeast extract agar prior to infection. For

in vivo studies, L. pneumophila were grown as described previously

(Archer and Roy, 2006).

Mice
C57BL/6 and A/J mice were purchased from Jackson

Laboratories. Myd882/2 [51], Rip22/2 [11], Nod12/2 [6],

Nod22/2 [10], Nod12/2Nod22/2, and Tlr22/2 [69] mice have

been described. Myd882/2Trif2/2 and Myd882/2Rip22/2 mice

were provided by R. Medzhitov. Animals were maintained in

accordance with the guidelines of the Yale University Institutional

Animal Use and Care Committee (protocol 07847).

In vivo infection studies
In vivo infection studies utilized 8 week-old mice. Mice were

anesthetized by subcutaneous injection of a 0.2 mL solution

containing ketamine (12 mg/ml) and xylazine (1.2 mg/ml). Mice

were infected intranasally with 40 ml of a bacterial suspension

containing 56106 CFUs L. pneumophila. 24 h after infection,

bronchoalveolar lavage fluid was harvested. Live animal experi-

ments were approved by the Yale University Institutional Animal

Care and Use Committee (protocol 07847).

Macrophage infection conditions
Bone marrow-derived macrophages (BMMs) were cultured in

RPMI containing 30% L cell supernatant, 20% FBS and replated

one day prior to infection in RPMI containing 15% L cell

supernatant, 10% FBS. For experiments involving cytokine

production measurements by ELISA, BMMs in 24-well plates

(2.56105 cells/well) were infected with L. pneumophila at an

MOI = 5 for 24 hours. For experiments involving immunoblot

analysis of infected cells, BMMs in 24-well plate (2.56105 cells/

well) were infected with L. pneumophila at an MOI = 50 for

timepoints ranging from 0 to 180 min. For experiments involving

harvesting RNA from infected cells, BMMs in 24-well plates

(2.56105 cells/well) were infected with L. pneumophila at an

MOI = 25 for 4 hours. To assess the involvement of p38 or

SAPK/JNK MAPK in gene transcription, 10 mM of the p38

MAPK inhibitor SB202190 (Calbiochem), 10 mM of the SAPK/

JNK MAPK inhibitor (JNK II), or an equivalent volume of

dimethyl sulfoxide (vehicle control) were added to BMMs one hour

prior to infection or two hours post-infection. For all infections,

bacteria were spun down onto the macrophages at 1,000 RPM for

five minutes prior to incubation.

Host Responses to L. pneumophila Type IV Secretion

PLoS Pathogens | www.plospathogens.org 10 November 2008 | Volume 4 | Issue 11 | e1000220



RNA preparation and quantitative RT-PCR
For microarray analysis, BMMs were infected for four hours at

an MOI = 25 with Lp02 or Lp03 and harvested into RNA Bee.

Following isolation, RNA was cleaned using RNeasy Mini

columns (Qiagen). For quantitative RT-PCR, RNA was isolated

from infected BMMs, DNase-treated using the RNeasy Mini kit

and RNase-free DNase set (Qiagen), and reverse transcribed with

Superscript II (Invitrogen). Quantitative PCR was performed on a

real-time detection system (iCycler; Bio-Rad Laboratories) using

the iQ SYBR Green super mix (Bio-Rad). Gene mRNA

abundance was normalized to HPRT mRNA abundance and

compared to normalized gene mRNA abundance in uninfected

cells using the DDCT method to calculate fold induction. A list of

gene-specific primers is in Table S1.

Microarray analysis
Microarray analysis was performed using Affymetrix GeneChip

Mouse Genome 430 2.0 arrays at the Yale University William M.

Keck facility. The complete data set is available at the Gene

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under

accession number GSE13147. Lists of genes differentially

regulated two-fold or more in response to WT L. pneumophila

versus dotA L. pneumophila in Myd882/2Trif2/2 and Myd882/

2Rip22/2 macrophages are in Tables S2, S3, and S4.

Immunoblotting
Infected BMMs were directly lysed in 16 SDS-PAGE sample

buffer. Lysates were separated by SDS-PAGE and transferred to

Immobilon P membranes (Millipore). Antibodies against IL-1b
(BD Biosciences), p-p38 MAPK, p38 MAPK, p-SAPK/JNK, p-

ERK1/2, p-MKK3/6, p-MKK4, p-c-Jun (Cell Signaling Tech-

nology), IkB (Santa Cruz Biotechnology), and actin (Sigma) were

used.

ELISA
Harvested supernatants from infected BMMs were analyzed

using IL-1a, IL-6, IL-12 (BD Biosciences), KC, and TNF (R&D

Systems) ELISA antibodies.

Generation of Cya:gene plasmids and Cya translocation
assay

legK1, legK2, and legK3 were amplified from L. pneumophila

genomic DNA using primers 29–34 described in Table S1. They

were then cloned into pEC34 [60] to generate N-terminal

Cya:gene fusions. The resulting plasmids, pMMB207NT.cya

[62], and pMMB207NT.ralF [62] were transformed into WT or

DdotA mutant L. pneumophila. The Cya assays were performed as

previously described [62]. Briefly, 16105 CHO-FccRII cells per

well of a 24-well plate were infected with opsonized L. pneumophila

expressing Cya fusion proteins at an MOI = 30. After 1 hour of

infection at 37uC, cells were washed with PBS and lysed. Total

cAMP was extracted and quantified using the cAMP Enzyme

Immunoassay System (GE Healthcare).

Generation of bacterial isogenic mutant strains
The in-frame legK1, legK2, and legK3 deletions were constructed

by amplifying 59 and 39 gene fragments and then joining them by

recombinant PCR using primers 35–46 listed in Table S1. The

recombinant PCR product was digested and ligated into the vector

pSR47S. The legK1, legK2, and legK3 deletions were introduced

onto the chromosome of L. pneumophila strain Lp01 by allelic

exchange as previously described [70].

Supporting Information

Figure S1 Quantitation of IkBa degradation in Myd882/2 and

Myd882/2Rip22/2 macrophages infected with WT or DdotA L.

pneumophila.

Found at: doi:10.1371/journal.ppat.1000220.s001 (2.29 MB TIF)

Figure S2 L. pneumophila infection induces Dot/Icm-dependent

cytokine production in the absence of Nod1 and Nod2.

Found at: doi:10.1371/journal.ppat.1000220.s002 (3.95 MB TIF)

Figure S3 The L. pneumophila DicmS mutant induces slightly

decreased cytokine production.

Found at: doi:10.1371/journal.ppat.1000220.s003 (3.03 MB TIF)

Figure S4 The L. pneumophila Dot/Icm system translocates three

Ser/Thr protein kinases that are dispensable for p38 MAPK

activation.

Found at: doi:10.1371/journal.ppat.1000220.s004 (2.36 MB TIF)

Figure S5 p38 and SAPK/JNK MAPK signaling contribute to

Dot/Icm-dependent gene transcription in the absence of MyD88

and RIP2.

Found at: doi:10.1371/journal.ppat.1000220.s005 (1.83 MB TIF)

Table S1 Primers used in this study.

Found at: doi:10.1371/journal.ppat.1000220.s006 (0.04 MB XLS)

Table S2 Genes that exhibit two-fold or greater Dot/Icm-

dependent transcriptional changes in both Myd882/2Trif2/2 and

Myd882/2Rip22/2 macrophages.

Found at: doi:10.1371/journal.ppat.1000220.s007 (0.51 MB XLS)

Table S3 Genes that exhibit two-fold or greater Dot/Icm-

dependent transcriptional changes in Myd882/2Trif2/2 macro-

phages but not in Myd882/2Rip22/2 macrophages.

Found at: doi:10.1371/journal.ppat.1000220.s008 (0.07 MB XLS)

Table S4 Genes that exhibit two-fold or greater Dot/Icm-

dependent transcriptional changes in Myd882/2Rip22/2 macro-

phages but not in Myd882/2Trif2/2 macrophages.

Found at: doi:10.1371/journal.ppat.1000220.s009 (0.71 MB XLS)

Table S5 Genes that exhibit two-fold or greater Dot/Icm-

dependent transcriptional changes in both Myd882/2Trif2/2 and

Myd882/2Rip22/2 macrophages and are shared by the ISD

response in Myd882/2Trif2/2 macrophages.

Found at: doi:10.1371/journal.ppat.1000220.s010 (0.05 MB XLS)

Table S6 Genes that exhibit two-fold or greater Dot/Icm-

dependent transcriptional changes in both Myd882/2Trif2/2 and

Myd882/2Rip22/2 macrophages and are unique from the ISD

response in Myd882/2Trif2/2 macrophages.

Found at: doi:10.1371/journal.ppat.1000220.s011 (0.08 MB XLS)
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