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Abstract 

 

This paper complements existing power analysis tools by offering tools to compute minimum 

detectable effect sizes (MDES) for existing studies and to estimate minimum required sample 

sizes (MRSS) for studies under design.  The tools that accompany this paper support estimates of 

MDES or MSSR for 21 different study designs that include 14 random assignment designs (6 

designs in which individuals are randomly assigned to treatment or control condition and 8 in 

which clusters of individuals are randomly assigned to condition, with models differing 

depending on whether the sample was blocked  prior to random assignment and by whether the 

analytic models assume constant, fixed, or random effects across blocks or assignment clusters); 

and 7 quasi-experimental designs (an interrupted time series design and 6 regression 

discontinuity designs that vary depending on whether the sample was blocked prior to 

randomization, whether individuals or clusters of individuals are assigned to treatment or control 

condition, and whether the analytic models assume fixed or random effects).  

 

Key words: sample design; power analysis, minimum detectable effect size (MDES), minimum 

required sample size (MSSR); multilevel experimental and quasi-experimental designs 
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PowerUp!:  A Tool for Calculating Minimum Detectable Effect Sizes and Minimum 

Required Sample Sizes for Experimental and Quasi-experimental Design Studies 

 

Experimental and quasi-experimental designs are widely applied to evaluate the effects of 

policy and programs. It is important that such studies be designed to have adequate statistical 

power to detect meaningful size impacts, if they occur. Some excellent tools have been 

developed to estimate the statistical power of studies with particular characteristics to detect true 

impacts of a particular size or larger—referred to as Minimum Detectable Effect Sizes 

(MDES)—for both individual and group-randomized experiments (e.g., Optimal Design Version 

2.0 (Spybrook, Raudenbush, Congdon, & Martinez, 2009 and Hedges & Rhoads, 2010; 

Konstantopoulos, 2009). This paper and the associated computational tools in the accompanying 

workbook, PowerUp!, use the framework of MDES formulae in these other tools to define and 

apply formulae to compute minimum detectable effect sizes under a variety of experimental and 

quasi-experimental study designs and to estimate the minimum required sample size to achieve a 

desired level of statistical power under various study designs and assumptions.  

The paper begins with a discussion of the various study designs included in the PowerUp! 

tool.  The second section discusses study designs and the design qualities that are associated with 

statistical power, minimum detectable effect sizes, and minimum required sample sizes for 

various study goals and designs.  The third section of the paper presents a framework for 

selecting the minimum relevant effect size (MRES) to focus on when designing a study and 

defines the basic computational formulas for determining minimum detectable effect sizes, given 

study design parameters.  The fourth section describes the use of the PowerUp! tools for 

estimating MRES;  and the fifth section discusses the use of PowerUp! tools for estimating 
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minimum required sample sizes (MRSS) for studies with particular goals and design parameters.  

 

STUDY DESIGNS 

PowerUp! focuses on two broad classes of experimental designs, individual and cluster 

random assignment designs, and two classes of quasi-experimental designs – regression 

discontinuity designs and interrupted time series designs.  In total, the PowerUp! tool covers 21 

design variants, the key features of which are summarized in Table 1. 

----- Insert Table 1 about here ----- 

Experimental Designs 

Experimental design studies involve random assignment of study units to conditions, 

generally treatment or control. If experimental design studies are well implemented and the data 

are properly analyzed, they generate unbiased estimates of both the average effects of the 

program, policy, or practice being tested and the confidence intervals around the estimated 

impacts (Boruch, 1997; Orr, 1998; Murnane & Willett, 2010).   

Individual random assignment (IRA) designs are the most common and simplest 

experimental design and involve the random assignment of individual analysis units to treatment 

or control conditions (see Table 1, model 1.0).  These are also referred to in the literature as 

“completely randomized controlled trials” or “simple random assignment” designs.  In cases 

where the treatment and control groups are equal in size, formulas found in sample design 

textbooks can be used for computing statistical power and minimum sample sizes needed to 

achieve certain minimum detectable effect sizes (e.g., see Orr 1998). However, when groups are 

unequal in size and when randomization has occurred among individuals within blocks or strata 

(i.e., blocked individual random assignment or BIRA designs), it is more complicated to find, 
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interpret, and apply the formulas for such computations (see Table 1, models 2.1 through 2.5). 

Cluster random assignment designs have been gaining popularity in education research 

(Kirk 1995).  These designs entail random assignment of clusters of analysis units (e.g., classes 

of students or whole schools of teachers) to the treatment or control condition.  In the simplest 

case, all clusters in a study sample are randomized either individually or within “blocks” (e.g., 

defined by district or state), resulting in what is referred to as cluster (or group) random 

assignment designs.  These models generally fall into one of two categories—simple cluster 

random assignment (CRA) designs (see Table 1, models 3.1 through 3.3) or blocked cluster 

random assignment (BCRA) designs (see Table 1, models 4.1-4.5).  In simple cluster random 

assignment designs, top-level clusters (e.g., schools containing teachers and students) are 

randomly assigned to the treatment or control condition (e.g., see Borman, Slavin, Cheung, 

Chamberlain, and Madden, et al., 2007; Cook, Hunt, & Murphy, 2000).  In contrast, in blocked 

cluster random assignment designs, sub-clusters of individuals within top-level clusters (blocks) 

are randomly assigned to the treatment or control condition (e.g., see Nye, Hedges, & 

Konstantopoulos, 1999).   

In order to determine the minimum detectable effects size (MDES)  for a particular sample 

size and allocation or the minimum required sample size (MRSS) to achieve a target MDES, it is 

necessary to account for both the particular qualities of the study design and the implication of 

that design for the analytic models to be used.  For example, individual random assignment 

design studies typically use simple multiple regression models, whereas blocked individual 

random assignment designs and cluster random assignment design studies generally use 

hierarchical linear models (HLM) that account for clustering of the analysis units (e.g., students 

within classrooms or students within classrooms, schools and districts).  Blocked random 
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assignment designs, whether individual or cluster level random assignment, typically entail 

meta-analyzing the results of mini-studies of each sample using a fixed or random block effect 

model.   

PowerUp! supports computation of both MDES and MRSS for a variety of individual and 

cluster random assignment designs that are distinguished by whether the study sample is blocked 

prior to assigning units to treatment or control condition, by the number of levels of clustering, 

and by the level at which random assignment occurs.  For example, Model 1.0 (IRA and N_IRA) 

entails neither blocking nor clustering, while Model 2.1 (BIRA2_1c and N_BIRA2_1c) refers to 

a blocked individual random assignment design that assumes constant effects across the 

assignment blocks.  Model 3.1 (CRA2_2r and N_CRA2_2r) pertains to a design in which there 

are two levels of sample clustering, assignment to treatment or control condition is at the second 

level (e.g., students are the units for analysis, classes of students randomized to condition), and 

impacts are estimated using a random effects model.  Model 3.3 (CRA4_4r and N_CRA4_4r) is 

similar to Model 3.1, except that it pertains to a design with four levels of sample clustering and 

random assignment occurring at the fourth level.   

The suffix of the Worksheet names in PowerU! shown in Table 1, columns 7 and 8 denote 

key characteristics of the study design and intended analytic model.  For example, for models 2.1 

through 2.4, denoted by BIRAi_jk, i takes on the values of 2 through 4 to denote the levels of 

blocking; j takes on the values of 1 through 3 to denote the level at which random assignment 

occurs (e.g., students = 1, schools = 2, and districts or states = 3);  and k takes on values of c, f, 

and r, denoting the assumptions to be used in estimating the effects of the treatment.  A “c” 

denotes the assumption of constant treatment effects across blocks, an “f” denotes the 

assumption that the block effect is fixed (i.e., each block has specific treatment effect which 
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could differ across block), and an “r” denotes the assumption that the block effect is  random (i.e., 

the treatment effects can randomly vary across blocks).  

In general, the decision about whether to use a fixed block effect model or a random block 

effect model depends on the sampling scheme used in the study and the population to which the 

results will be generalized. If the study uses a random sample drawn from a population to which 

the results are expected to generalize, the random block effect model would be appropriate. 

However, if the intent is to generalize the findings only to the study sample, a fixed block effect 

would be appropriate, with the block indicators functioning as covariates controlling for the 

treatment effects of block membership. With this model, estimates of the average treatment 

effect and its standard error are computed by averaging the block-specific treatment effects and 

computing the standard error of that average, while with the random block effect model 

estimates one average treatment effect across all blocks and one standard error. Key properties of 

these models are illustrated in Table 2.   

----- Insert Table 2 about here ----- 

The first three blocked random assignment design models in the tool kit pertain to 2-level 

designs.  Model 2.1 (used in PowerUp! worksheets BIRA2_1c  and N_ BIRA2_1c) assumes 

treatment effects are constant across blocks and that the results pertain to the population groups 

similar to the student sample;  Models 2.2  (used in BIRA2_1f  and N_BIRA2_1f) assumes that 

the treatment effects within blocks (for example, schools) are fixed, but they may differ across 

blocks, and that the estimated impacts pertain to population groups similar to the schools 

represented in the sample; and Model 2.3 (used in BIRA2_1r and N_BIRA2_1r) assumes that the 

treatment effects may vary randomly across blocks and that the estimated average effect is 

generalizable to the reference population for the study (for example, all students and schools).   
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Models 2.4 and 2.5 (used in BIRA3_1r and N_BIRA3_1r, and BIRA4_1r  and N_BIRA4_1r, 

respectively) assume that random assignment occurs at level 1 (e.g., students) and that impacts of 

the treatment vary randomly across higher levels (e.g., classrooms, schools, districts).  

 Models 4.1 through 4.5 are counterpart blocked cluster random assignment models 

(denoted as BCRAi_jk and N_BCRAi_jk).   Models 4.1 and 4.4 (BCRA3_2f and BCRA4_3f) 

assume that random assignment occurs at level 2 and level 3, respectively  (e.g., school and 

district, respectively) and that the treatment effects are fixed across blocks, as in the case of 

Model 2.2 above.  Models 4.2 and 4.3 are similar to models 2.4 and 2.5 above, except that the 

random assignment occurred at level 2.  Model 4.5 is similar to model 2.5 above, except that it 

assumes that random assignment occurred at level 3, not level 1. 

Quasi-experimental Designs 

In quasi-experimental designs, comparison groups are identified by means other than 

random assignment (e.g., students scoring just above the cut-point on the test used to select the 

treatment group, which consists of those with scores below the cut-point or students in matched 

schools not offering the treatment). Although there is a rich literature demonstrating the 

limitations of quasi-experimental methods for estimating treatment effects, quasi-experimental 

methods will continue to be used when it is not practical or feasible to conduct a study using 

random assignment to form the treatment and comparison groups.  Thus, PowerUp! includes 

tools for estimating MDES for studies that use two quasi-experimental—regression discontinuity  

designs and interrupted time series designs.   

Regression discontinuity (RD) designs compare outcomes for the treatment group (e.g., 

students with low pretest scores or schools designated in need of improvement based on the 

percent of students scoring below proficient on a state test) with a comparison group that was 
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near the threshold for selection for the treatment on the basis of some characteristic that is 

measured using an ordinal scale (e.g. the pretest score or the percent of students scoring below 

proficient on the state test), but that was not selected.  Under certain conditions, studies that 

compare groups on either side of this selection threshold will yield unbiased estimates of the 

local average treatment effect for individuals whose “score” on the selection criterion is in the 

vicinity of the selection threshold or “discontinuity” (Bloom, 2009; Cook & Wong, 2007; 

Imbens & Lemieux, 2008; Schochet, 2008b; Schochet, Cook, Deke, Imbens, Lockwood, Porter, 

& Smith, 2010; Shadish, Cook, & Campbell, 2002; Thistlethwaite & Campbell, 1960; Trochim, 

1984). In recent years, RD designs have been applied to study the effects on academic 

achievement of  a variety of policies and practices, including class size reductions (Angrist & 

Lavy, 1999), mandatory summer school (Jacob & Lefgren, 2004; Matsudaira, 2008), and the 

federal Reading First Program (Gamse et al., 2008).   

For sample design purposes, RD designs can be mapped to corresponding random 

assignment study designs in terms of the unit of assignment to treatment and the sampling 

framework (Schochet, 2008b).  PowerUp! includes tools for estimating MDES for six specific 

RD designs described in Table 1, above: 

• Model 5.1: “Students are the unit of assignment and site (e.g., school or district) effects 

are fixed” (Schochet, 2008b, p.5).  This corresponds to the 2-level blocked individual 

random assignment designs with fixed effects and treatment at level 1 (Table 1, Model 

2.2). 

• Model 5.2: “Students are the units of assignment and site effects are random” (Schochet, 

2008b, p.5).  This corresponds to 2-level blocked individual random assignment designs 

with random block effects (Table 1, Model 2.3). 
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• Model 5.3: “Schools are the unit of assignment and no random classroom effects” 

(Schochet, 2008b, p.5).  This corresponds to 2-level simple cluster random assignment 

designs (Table 1, Model 3.1). 

• Model 5.4: “Schools are the units of assignment and classroom effects are random” 

(Schochet, 2008b, p.6).  This corresponds to 3-level simple cluster random assignment 

designs with treatment at level 3 (Table 1, Model 3.2). 

• Model 5.5: “Classrooms are the units of assignment and school effects are fixed” 

(Schochet, 2008b, p.5).  This corresponds to 3-level blocked cluster random assignment 

designs with fixed effects and treatment at level 2 (Table 1, Model 4.1). 

• Model 5.6: “Classrooms are the units of assignment and school effects are random” 

(Schochet, 2008b, p.6).  This corresponds to 3-level blocked cluster random assignment 

designs with treatment at level 2 and random effects across clusters (Table 1, Model 4.2). 

Interrupted time-series (ITS) designs are used to estimate treatment impact by 

comparing trends in the outcome of interest prior to the introduction of the treatment and after 

(Bloom, 1999).   They have been used primarily in large-scale program evaluations where 

program or policy decisions did not include or allow selecting participants or sites using a lottery.  

Examples include evaluations of the Accelerated Schools reform model (Bloom et al., 2001), 

First Things First school reform initiative (Quint, Bloom, Black, Stephens, & Akey; 2005), 

Talent Development (Kemple, Herlihy, & Smith; 2005), Project GRAD (Quint, Bloom, Black, & 

Stephens; 2005), and the Formative Assessments of Student Thinking in Reading (FAST-R) 

Program (Quint, Sepanik, & Smith, 2008).   

A challenge with ITS designs is establishing a credible basis for determining the extent to 

which changes occurring after the onset of the intervention can be attributed reasonably to the 
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intervention rather than to other factors.  One strategy for improving the ability to parse out 

effects of co-occurring factors that can affect observed differences in outcomes between the pre- 

and post-intervention period is to use both before-and-after comparisons within the time-series 

(e.g., schools before and after the introduction of the treatment) and comparison of the time 

series for the treatment units with a matched group of units that never received the treatment.  

PowerUp!  includes tools for estimating the MDES  and the minimum sample size 

requirements for ITS design studies that involve up to two levels of clustering (see Table 1, 

Model 6.0).  For example, as in the applications cited above, the treatment is often delivered at 

the cohort level, while the analysis is conducted at the student level, and the school is used as 

constant or fixed effect.   

FACTORS THAT AFFECT MINIMUM DETECTABLE EFFECT SIZES AND 

MINIMUM REQUIRED SAMPLE SIZES 

Smartly designed evaluations have sample sizes large enough that, should the program, 

policy, or practice under study have a meaningful size impact, there is a high probability that the 

study will detect it.  However, knowing how large a sample is sufficient for this purpose depends 

on a number of factors, some of which can only be “guesstimated” prior to conducting the study.  

Moreover, some of these factors are discretionary (i.e., based on the evaluator’s judgment) and 

others are inherent (i.e., depend on the nature of the intervention and the study design).  Put 

another way, discretionary factors are statistical qualifications decided on by the evaluator, while 

inherent factors are characteristics of the true effect, which is not known, and of the basic study 

design, which typically is conditioned by factors outside of the evaluator’s control (e.g., the size 

and nature of the units of intervention and the properties of the outcomes of interest).   

There are six prominent discretionary factors associated with statistical power of 
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particular study samples and sample size requirements to achieve a specified statistical power. 

One is the minimum relevant size impact, by which we mean the smallest size impact it is 

important to detect, if it exists. The second is the adopted level of statistical significance (α ) or 

probability of making a Type I error (i.e., concluding there is an impact when there really is not). 

Commonly, evaluators set α equal to .05.  A third discretionary factor is the desired level of 

statistical power (1- β ), where β  is the probability of  making a Type II error (failing to detect a 

true impact if it occurs). Commonly, evaluators adopt a power level of .80.  A fourth factor 

pertains to use of one-tailed or two-tailed testing, with two-tailed testing being most common.  A 

fifth factor relates to use covariates to reduce measurement error (Bloom, 2006; Bloom, 

Richburg-Hayes & Rebeck Black, 2007), and a sixth factor relates to whether to assume fixed or 

random effects across sample blocks or clusters, which relates to the intended application of the 

study findings. 

There are five especially notable inherent factors associated with the minimum detectable 

effect size or required sample size estimates associated with particular evaluation goals:  (1) the 

size of the true average impact of the treatment or intervention (typically expressed in effect-size 

units); (2) for cluster (group) designs, the intra-class correlations (ICC) indicating the fraction of 

the total variance in outcome that lies between clusters; (3) the number of sample units within 

clusters; (4) the proportion of the sample expected to be in the treatment (or comparison) group 

(Bloom, 2006; Bloom et al., 2008; Hedges & Rhoads, 2010; Konstantopoulos, 2008a, 2008b; 

Raudenbush, 1997; Raudenbush, Martinez, & Spybrook, 2007; Schochet, 2008a); and (5) the 

minimum relevant effect size.   For blocked random assignment design studies, the variability in 

impacts across blocks  or effect size heterogeneity also affects the minimum detectable effect 

size and minimum required sample size (Raudenbush, Martinez, & Spybrook, 2007; Hedges & 
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Rhoads, 2010; Konstantopoulos, 2008b, 2009)1.   

For RD design studies, an inherent factor in determining minimum detectable effect size 

or minimum required sample size is the ratio of the asymptotic variances of impact estimators of 

RD design and experimental design, referred to as the “design effect.”  For single level RD 

design studies, the design effect can be expressed as 21
1

TSρ−
  , where TSρ  is the correlation 

between treatment status and the criterion measure used to determine whether or not the unit was 

assigned to the treatment group (Schochet 2008b).  Notably, TSρ  will vary depending on three 

factors:  (1) The distribution of the criterion measure in the population that is represented by the 

study sample; (2) the location of the cut-off score in this distribution; and (3) the proportion of 

the sample that is in the treatment group (Schochet, 2008b).  The resulting consequence of the 

design effect for the statistical power of a particular study design is detailed in the Appendix and 

described in Schochet (2008b).   

PowerUp! allows the user to compute either the minimum detectable effect size (MDES) 

or the minimum required sample size (MRSS) for studies by specifying inherent and 

discretionary factors, based on the best available information about them.  For example, the user 

can specify assumed unconditional ICCs, drawing on resources such as Hedges and Hedberg 

(2007) and the average size of clusters, based on demographic data.  S/he can then set values for 

discretionary factors, such as the desired level of statistical precision, the nature of statistical 

controls that will be used, and the relative size of the treatment and comparison groups.  Within 

each design, the user may select other design features, including the number of levels of 

clustering or blocking, the nature of the cluster or block effect, and the expected level of sample 

attrition.   

The minimum relevant effect size is both one of the most important factors and one that 
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requires considerable judgment on the part of the evaluator. It also is frequently is not explicitly 

discussed in evaluation design reports or considered in evaluating study findings. 

 

SELECTING THE MINIMUM RELEVANT EFFECT SIZE (MRES)  

Most often power analysis entails estimating and evaluating minimum detectable effect 

sizes (MDES) for specific sample sizes and designs.  PowerUp! is designed to encourage and 

facilitate designing studies with adequate power to detect impacts equal to or larger than an 

established minimum size that has relevance for policy or practice.  We refer to this as the 

minimum relevant effect size (MRES).  In some cases, there is an empirical or policy basis for 

establishing a minimum size impact that is relevant and, thus, for a “target” MRES to use in 

designing a study or as the basis for judging the adequacy of an existing study sample to estimate 

reliably whether or not a treatment has a meaningful effect.  The two obvious considerations in 

deciding on the MRES are cost and actual size of impact.  For example, a costly educational 

intervention such as lowering class size would have practical relevance only if it generates 

relatively large impacts on student achievement, whereas a low-cost intervention such as 

financial aid counseling would need to have only modest impacts on college attendance for it the 

findings to have practical relevance. Alternatively, often there may be threshold effects that are 

needed before an intervention would be judged to be important for policy.  For example, even a 

low-cost intervention that moves student achievement one or two points on a 500 point scale is 

not likely to have practical importance, regardless of whether or not the study findings are 

statistically significant.   

Educators frequently describe their goals for changes in policy or practice in terms of 

their potential to close achievement gaps (e.g., between gender or race/ethnic groups) or in 
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relation to an average year of student growth in the outcome of interest.  Importantly, these types 

benchmarks are sensitive to the metrics used (Bloom, Hill, Black, & Lipsey, 2008; Hill, Bloom, 

Black, & Lipsey, 2007). Thus, it is generally best to use natural units (like test score gains or 

percentage point reductions in dropout rates) for determining the minimum relevant size impact 

and, subsequently, convert this to effect size units (the MRES). 

 

COMPUTING THE MINIMUM DETECTABLE EFFECT SIZE (MDES) 

A convenient way to determine whether or not a completed study has adequate statistical 

power is to compute the MDES and compare this with the MRES.  A priori, the goal is to design 

the study such that the MDES is less than or equal to the MRES and, thereby, maximize the 

chance that, if no impacts are detected, it is pretty certain that any true impacts escaping 

detection were sufficiently small as to have no practical or policy significance. 

In contrast to the MRES, which is independent of the study design, the MDES depends 

on the actual sample design that was (or will be) implemented.  Specifically, it is the minimum 

true effect-size that a particular study can detect with a specified level of statistical precision and 

power.  The MDES depends on a variety of characteristics of the actual study including the study 

design, the extent and nature of clustering, the total sample size available for analysis (e.g., 

taking account of sample attrition), and the allocation of the sample to treatment and control 

conditions.   

In general, the formula for estimating the MDES (in standard deviation units) can be 

expressed as: 

σ/* SEMMDES v=   

where vM  is the sum of two t-statistics (Bloom, 1995, 2005, 2006; Murray, 1998).  For one-
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tailed tests, βα −+= 1ttM v  with v  degrees of freedom ( v  is a function of sample size and number 

of covariates) and for two-tailed tests (which are typically applied in studies designed to measure 

treatment effects), βα −+= 12/ ttM v .  SE is the standard error of the treatment effect estimate, and 

σ  is the pooled total standard deviation of the outcome.  (Throughout this paper and in the 

accompanying tools, the effect size has been defined as the difference in raw score units of the 

outcome of interest, divided by the pooled total standard deviation.) 

Figure 1 below illustrates the construct of the multiplier for one-tailed tests.  It is the 

distance in standard error (t-statistic) units such that, if the null hypothesis ( 0:0 =− CT YYH  ) is 

true, the Type I error is equal to α  and, if the alternative hypothesis  

( 0: >− CTa YYH  ) is true, the Type II error is equal to β . Put another way, the MDES is the 

smallest size true effect we expect to be able to detect with the specified power and precision.   

----- Insert Figure 1 about here ----- 

It is possible to calculate the MDES for any study design as long as the ratio of the SE to 

σ  is known and other key assumptions about the study design and analytic model have been 

specified (e.g., the sample size and its allocation across clusters and to treatment conditions, the 

level at which random assignment occurs, the number of covariates and their explanatory power, 

and the level of sample attrition).  For example, in the two-level simple cluster random 

assignment design where treatment is at level 2 (Table 1, model 3.1), the treatment effect can be 

estimated using a 2-level hierarchical linear model: 

Level 1:  ijijjjij rXY ++= 10 ββ ,    ),0(~ 2
|Xij Nr σ  

Level 2:  
101

2
|000201000 ),0(~,)(

γβ

τµµγγγβ

=

+++=

j

Wjjjjj NWTREATMENT
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Reduced form:  ijjijjjij rXWTREATMENTY +++++= 010020100 )( µγγγγ  

In this case, the MDES formula from Bloom (2006, p.17) is as follows:3  

JnPP
R

JPP
RMMDES gJ )1(

)1)(1(
)1(

)1( 2
1

2
2

2*
−

−−
+

−
−

=
−−

ρρ

 

where,  

Multiplier for one-tailed test: * 2J g
M

− −
= βα −+ 1tt  with J- g*-2 degrees of freedom;  

Multiplier for two-tailed test: * 2J g
M

− −
= βα −+ 12/ tt  with J- g*-2 degrees of freedom; 

J = the total number of clusters; 

g* = the number of group covariates used; 

 ρ = 22

2

στ
τ
+

 is the unconditional intra-class coefficient (ICC); 

2τ  = Level-2 (between group-level) variance in the unconditional model (without any 

covariates);  

2σ  = Level-1 (individual-level) variance in the unconditional model; 

)/(1 22
|

2
1 σσ XR −=   is the proportion of variance in the outcome measure occurring at 

level one that is explained by covariates, X; 

)/(1 22
|

2
2 ττWR −=  is the proportion of the within group variance (at level two) that is 

explained by the covariates, W; 

  P = the proportion of this sample assigned to the treatment group ( JJT / );  

 Sample attrition reduces statistical power by lowering the size of the analytic sample4.   

For the 2-level simple cluster random assignment design, attrition might occur at both levels. 

Suppose the sample retention rates (=1- the percent of the study sample lost to follow up) at 
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levels 1 and 2 are 1r  and 2r , respectively, the revised MDES formula containing the retention 

rates is5: 

12

2
1

2

2
2

2 )1(
)1)(1(

)1(
)1(

*
2 rJnrPP

R
JrPP

RMMDES gJr −
−−

+
−
−

=
−−

ρρ
 

 In addition to Bloom’s (1995, 2005, 2006) work on the background and computation of 

minimum detectable effect sizes, the specific formulae for SEs used in the PowerUp! tools rely 

on the work of others.  For example, formulae for the 2-level simple cluster random assignment 

design studies (Table 1, model 3.1) draw on  Raudenbush (1997);  those for 2-level blocked 

individual random assignment designs (Table 1, models 2.2 and 2.3)  draw on Raudenbush & Liu 

(2000);  those for 3-level simple cluster random assignment designs (Table 1, model 3.2) and for 

3-level blocked individual or cluster random assignment designs (Table 1, models 2.4, 3.1 and 

3.2 ) draw on Hedges & Rhoads (2010), Konstantopoulos (2008a, 2008b and 2009b), Schochet 

(2008a), and  Spybrook (2007);  those for 4-level blocked cluster random assignment designs 

with treatment at level 3 (Table 1, models 4.4 and 4.5) draw on Spybrook (2007); those for the 

various regression discontinuity  designs (Table 1, models 5.1-5.6) draw on Schochet (2008b); 

and those for the interrupted time-series designs (Table 1, model 6.0) draw on Bloom (1999, 

2003). Notably, because the SE can be expressed in terms of the pooled standard deviation of the 

outcome, it also could be expressed in terms that are related to the SE, such as the unconditional 

ICC or the R-squared.  The MDES formulae for 4-level simple cluster designs and the other 4-

level blocked random assignment designs were derived following similar logic as applied for the 

above designs. The MDES formulae for all of the designs described above and listed in Table 1 

above are presented in Appendix A.   

These MDES formulas are the basis for the PowerUp! tools in the accompanying 
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Microsoft Excel™ workbook. 

 

COMPUTING MINIMUM REQUIRED SAMPLE SIZES  

 The same formulae that are used to compute minimum detectable effect sizes can be 

manipulated to work in reverse to determine the minimum size sample required to ensure that the 

MDES for a study will be less than or equal to the minimum size that is relevant for policy or 

practice (the MRES).  For example, using the MDES formula for a 2-level cluster random 

assignment design study in the example above (Table 1, model 3.1), the sample size (J) can be 

expressed as follows:
 









−

−−
+

−
−











= −−

12
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2
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2

2

2
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)1(
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2
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R
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R

MDES
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J gJr ρρ

 

Because the multiplier,
 2*

2 −−gJrM , is a function of J, PowerUp! solves for the sample size through 

an iterative process that is illustrated below. 

 

USING THE PowerUp! TOOLS 

PowerUp! users have options to compute a minimum detectable effect size (MDES) or to 

determine the minimum required sample size (MRES) by selecting the core study design features 

from among the 21 identified in Table 1. PowerUp! is a user-friendly, flexible tool that 

complements existing power analysis software by answering one of two questions, based on 

user-supplied assumptions:  (1)  What is the minimum size of true impact that will have a 

specified likelihood of being detected (i.e., the MDES), given a specified study design, sample 

size, and allocation to treatment and control condition? and (2) for a given study design, what is 

the minimum required sample size (MRSS) to have the desired power to detect a true impact (if 
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such exists) that is at or above a minimum size that is relevant for policy or practice (i.e., the 

MRES)?   

Computing Minimum Detectable Effect Sizes (MDES)   

In general, one would want to estimate the minimum detectable effect size (MDES) in 

cases where there is an existing sample design—for example, to determine whether a completed 

study used a sufficiently large sample to expect that it would have detected impacts of a given 

size or larger, if they occurred.  Put another way, one could determine whether the study was 

likely to have uncovered true impacts that were equal to or larger than a specified minimum 

relevant effect size (MRES).   

The first step in using the tool is to determine the basic study design, using Table 1 above 

and then select the corresponding Tab in the PowerUp! tool.   For example, a study that used 

simple individual random assignment of students to treatment or control condition corresponds to 

Model 1.0 (IRA) in Table 1.  Thus, the user would to select Tab 1.0 IRA to enter the tool for 

computing the study’s MDES (see Table 3). Once in the relevant worksheet, the user has the 

opportunity to supply relevant assumptions and preferences in the highlighted cells.  These 

include the desired statistical precision and power (i.e., α, whether a one- or two-tailed test is 

being used, and 1-β); assumptions about the analytic models that were used to estimate impacts 

(i.e., the proportion of variance in the outcome explained by the model and the number of 

covariates used); and characteristics of the study sample (i.e., total size and proportion assigned 

to treatment condition).   

Table 3 shows input and output for computing the MDES for a study that randomly 

assigned 240 individuals to treatment or control condition in equal proportion. The user in this 

example specified an alpha level of .05, a two-tailed test, 80 percent power, and an R2 of .60.   
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After inputting these user-supplied assumptions, PowerUp! returned an estimate of the MDES 

equal to .230 (shown in bright green at the bottom of the worksheet).  

--- Insert Table 3 about here--- 

Estimating the MDES for a blocked individual random assignment design study is similar, only 

the user would select a Tab corresponding to the relevant version of model 2, depending on 

whether there are 2, 3 or 4 levels of clustering and whether the analytic model assumes constant, 

fixed, or random effects, respectively.  Table 4 illustrates the worksheet for model 2.3, which has 

2 levels of clustering and assumes random effects.  In general, the tools for blocked random 

assignment designs work similarly to those above, with the addition of treatment effect 

heterogeneity parameters (ω ) that denote assumptions about the variability of the treatment 

effect across certain level of blocks, standardized by the outcome variation at that level of block 

(Hedges & Rhoads, 2010; Konstantopoulos, 2008b, 2009). Furthermore, the block-level variance 

explained is the proportion of variance between blocks on the treatment effect that is explained 

by block-level covariates, not the block-mean variance explained.  

----- Insert Table 4 about here ----- 

An example of studies for which it would be appropriate to use these block random 

assignment designs is for the recently completed study of charter schools (Gleason, Clark, Tuttle, 

& Dwoyer, 2010), where lotteries were used to assign eligible charter school applicants for over-

subscribed schools to admission (treatment group) or not (control group) for the particular 

charter school to which they applied (the block).  In analyzing the data from this randomized 

block design study, it was assumed that the effects were unique to each charter school.   

For a cluster random assignment design, the user would select the relevant Model 3 or 

Model 4 tab from the PowerUP! tools.  Models 3.1 through 3.3 all pertain to simple cluster 
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random assignment designs, but differ in the number of levels of clustering.  For example, a 

study in which treatment occurred at the cluster level closest to the unit of analysis (e.g., 

randomization occurred at the classroom level and students were the unit of analysis), the user 

should select model 2.2 (CRA2_2r).  If schools were randomized to treatment or control status 

and students clustered in classrooms were the unit of analysis, the user should select model 3.2; 

and, if districts were randomized to treatment or control conditions, but students clustered in 

schools and classrooms were the unit of analysis, the user should select model 3.3.  

In addition to the input required for individual random assignment design studies, for 

cluster random assignment designs, the user also needs to provide information on the 

unconditional intra-class correlations between the analysis units and the clusters, assumptions 

about the proportion of variance in the outcome explained by the estimation model for each level 

of the data, and details about the size of sample clusters as well as the overall sample.  The 

yellow cells in Table 5 illustrate these input parameters for a design with four levels of clustering 

and where the treatment occurs at the highest level of clustering (Table 1, model 3.3, and 

PowerUp! Tab 3.3 CRA4_4r).  

----- Insert Table 5 about here ----- 

In this particular example, the user selected the same basic parameters as in the previous 

example shown in Table 3 (e.g., alpha level, two-tailed testing, power standard, and proportion 

assigned to treatment condition).  However, in this case, the user also needed to provide 

assumptions or actual data about the intra-class correlations (ICCs) at the various levels, the 

proportion of variance in the outcomes explained by covariates (Rj
2) at the various levels, the 

number of sample units randomized, and the average number of units in each of the clusters.  In 

this particular example, there are 1200 analysis units, clustered as follows:  10 level-1 units per 
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level 2 cluster; 2 level-2 units per level 3 cluster; 3 level-3 units per level 4 cluster; and 20 level-

4 units.   The user specified that covariates will be included in the levels 1-4 analyses, and that 

covariates will explain half of the variance in the outcome measured at each level.  With only 

one covariate in the level four analysis (which is the level at which randomization was 

conducted), the MDES is estimated to be .292 standard deviations (shown in the green box). 

 For blocked cluster random assignment designs, the user selects one of the model 4 tabs 

from the PowerUp! tools.  As with the blocked individual random assignment models, the 

appropriate tab depends on the level of blocking at which random assignment occurred and 

whether the analysis is designed to estimate fixed or random effects.   

 As discussed above, the PowerUp! tool uses formulas for computing the MDES and 

minimum sample size requirements for regression discontinuity designs (RD) that are 

“derivative” of those used for random assignment designs.  Essentially, in an RD design, the 

treatment and control groups are not determined by randomization, but by a specific rule for 

sorting based on a continuous criterion variable.  As a result, for any given set of study design 

parameters (e.g., alpha level, one or two tailed test, power level, and MRES), the MDES and 

MRSS are considerably larger than under an individual random assignment design.  PowerUP 

has built into the MDES formulas estimates of the “penalty” (formally referred to as the “design 

effect”) based on work by Schochet (2008b). 

 The design effect can be thought of as the multiplier on the sample size requirement 

needed for the RD design to have similar statistical power to a block random assignment design 

study.  For example, Schochet (2008b) found that, for a study in which the optimal functional 

form is linear, the criterion measure is normally distributed, the cutoff score is at the mean, and 

50 percent of the sample is in the treatment group, the estimated design effect is 2.75.   Drawing 
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on this work, PowerUp! includes this value as the default design effect in the RD design tools.      

Importantly, Schochet (2008b, p. 10) notes that “T(t)he linearity (and constant treatment effects) 

assumptions will likely provide a lower bound on RD design effects.”  Thus, PowerUp! users 

may want to modify this default.  

 Table 6 illustrates the PowerUp! tool for computing the MDES for model 5.2 (PowerUp! 

Tab 5.2 RD2_1r), which would apply to a study in which students were the units of assignment 

and school effects are random.  This model is analogous to 2-level random effect block random 

assignment designs (Table 1, model 2.3 and PowerUp! Tab 2.3 BIRA2_1r). In addition to the 

parameters required to calculate MDES for 2-level random effect blocked random assignment 

design study (e.g., the treatment effect heterogeneity,ω , and the proportion of variance between 

blocks on the treatment effect explained by the block-level covariates), the user also needs to 

accept or change the default design effect.   

----- Insert Table 6 about here ----- 

 For interrupted time-series design (ITS) studies, the user needs to specify four design 

parameters that are unique to the ITS design:  (1) the number of baseline years of data; (2) the 

follow-up year of interest; and (3) whether an additional comparison group is used; and (4) if an 

additional comparison group is used, its size relative to that of the number of treatment group 

units.  

Table 7 illustrates the MDES calculation for an ITS design study with an alpha level of 

.05, using a 2-tailed test, and 80 percent power. The ICC for the cohorts is 0.02, with 5 waves of 

baseline data, 6 program schools, and 200 students per school. The proportion of variance of 

between-cluster (cohort) explained by a cohort-level covariate is 0.2. The impact is estimated in 

the second observation period following the treatment. For this example, the MDES is estimated 
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to be 0.20 assuming the study sample does not include any no-treatment comparison units and 

0.24 if two-thirds of the sample consists of non-treatment comparison units.   The reason the 

MDES increases if some of the sample comes from no-treatment comparison units is that, 

holding sample size constant, the no-treatment comparison units increase the standard error of 

the impact estimate increases due to the need to make additional comparisons. 

----- Insert Table 7 about here ----- 

Determining the Minimum Required Sample Size to Achieve Study Goals   

The logical way to design a study is to begin by determining the most appropriate, feasible 

study design. The first step is to determine whether it is feasible to conduct an experimental 

design evaluation.  The second step is to determine the appropriate units for assignment to 

treatment condition and for analysis, considering factors like the natural unit for delivering the 

intervention, the potential for contamination of the control group, and the likelihood of gaining 

necessary cooperation from partner organizations and individuals.  The third step is to determine 

the minimum relevant effect size (see discussion above), considering factors such as the cost of 

the intervention and the nature of the target outcome (e.g., student test scores, or high school 

graduation rates), their means and standard deviations for target populations, and “normal” 

changes in the levels over time. The fourth step is to use this information in estimating how large 

the study sample needs to be to achieve the study objectives.   

Typically, design teams arrive at their target sample sizes in one of two ways.  One way is to 

figure out how large a sample can be supported by the evaluation dollars, determine the MDES 

implied by that sample size, and rationalize it.  Another common strategy is to use a trial and 

error approach to computing the MDES for various sample sizes until converging on an 

“acceptable” MDES.  The PowerUp! sample size estimation tools use variants of the formulae 
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used to calculate minimum detectable effect sizes to compute sample size requirements for user-

defined minimum detectable effect sizes (which should be the same or smaller than the minimum 

relevant effect size).  It does this through an iterative process, which we have automated through 

an Excel macro, which works as follows:   

• Step 1. An initial “guesstimate” of the sample size (individuals, clusters or blocks) has 

been set at 30.  

• Step 2. An estimate of the multiplier and the minimum required sample size is calculated 

using the formulas based on the “guesstimate” of the sample size. 

• Step 3. If the “guestimate” of the sample size differs from that calculated using the 

formula, the “guestimate” is replaced with the average of the original “guestimate” and 

the calculated sample size, and the program goes back to Step 2.  

• The process stops when the difference between the calculated sample size and 

“guestimate” is within ± 0.1.  

PowerUp! includes a tab for computing minimum required sample sizes to achieve a 

specified MRES under user-defined parameters for each of the 21 study design configurations 

specified in Table 1.  The example shown in Table 8 pertains to a simple 2-level cluster random 

assignment design study where the analysis will be conducted using a 2-level hierarchical linear 

model with student nested within schools and assuming random effects. In this example, the 

user’s desired MDES is 0.25 standard deviations.  The user also has specified an alpha of .05, 

two-tailed tests of statistical significance, and 80 percent power level.  The user has assumed an 

ICC of 0.20, that there will be an average of 60 students per school, and that 90 percent of the 

schools and 80 percent of the students in the original study sample will be retained in the 

analysis.  The analysis will include one student-level covariate that explains 50 percent of 
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student-level variance, and one school-level covariate explaining 70 percent of school-level 

variance. Using these user-supplied parameters, PowerUp! estimates that the study sample 

should include  41 schools (2,460 students).  

----- Insert Table 8 about here ----- 

Users may find the PowerUP! tools useful for exploring the implications for sample size 

requirements of varying the study design parameters.  For example, it would be relatively easy to 

assess the sensitivity of the MRSS to the ICC level, to decisions about blocking, or to a higher R2 

that would result from investing in good pretest measures.    

 
CONCLUSION  

PowerUp! is intended as a complement to, not a replacement for, other sample design 

tools. One goal in developing this tool is to encourage and enable evaluators who are planning 

new evaluations to more accurately estimate the size samples needed to ensure a high probability 

that the study will detect meaningful size impacts, should they result from the intervention. A 

second goal is to make it easier for those who are judging the findings from existing research to 

estimate how large an impact would need to be in order for the study to have a reasonable chance 

of observing a statistically significant difference between the treatment and control groups. A 

third goal is make it easy for evaluators to see how sensitive evaluation findings may be to 

factors that are inherent to the particular intervention and setting for the study (e.g., the units for 

delivering the intervention, the age and demographics of the study sample, important outcomes), 

as well as discretionary factors (e.g., study design, levels of statistical power and precision 

required, fixed or random effects, control variables).   

PowerUp! makes key assumptions study designs transparent.  It also invites users to 

examine the sensitivity of their estimated sample size requirements or minimum detectable effect 
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sizes to various assumptions and decisions of the evaluator.  For example, it would be easy for an 

evaluator to determine how much more sample would be required if the goal were to generate a 

population estimate of the impact rather than simply a sample estimate;  determine the expected 

decrease in the MDES or the minimum required sample size if sample attrition could be reduced 

by 10 percentage points; estimate the “cost” of blocking as opposed to using a simple random 

assignment design; determine how sensitive the MDES or minimum sample size requirement is 

to the assumed ICC; and estimate the difference in the MDES for a give sample size if the 

evaluator opts to use an experimental design rather than a regression discontinuity or interrupted 

time series design.  

PowerUp! makes it easy for the user to explore the implications of sample design 

decisions and user-supplied assumptions about unknowns, such as the ICC, explanatory power of 

covariates, and ultimate sample attrition rates.  By using Microsoft EXCEL™ as the platform for 

this tool, we have made it possible for others to not only use the tool as we have designed it, but 

to adapt and enhance it to meet other objectives.  . 
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FOOTNOTES 

1The authors contributed equally to this work. The paper and accompanying analytic tool 

benefitted greatly from input at various stages of the work by Spyros Konstantopoulos, Mark 

Lipsey, Larry Orr, Mike Weiss, and Kerry Hofer.  We also thank two anonymous reviewers for 

their thoughtful comments and suggestions. The PowerUp! tool that accompanies this paper may 

be accessed at:   http://peabody.vanderbilt.edu/research/pri/methods_resources.php or from the 

corresponding author.   

2The effect size variability and effect size heterogeneity have different definitions but both 

indicate the variability/heterogeneity of treatment effect vary across block. 

3When there is only one level-2 covariate, W, the variance of the main effect of treatment is 

estimated by (Raudenbush, 1997) as follows: 
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formula is 18%, 7%, 5%, 3%, and 2% smaller than what would have been estimated including 

the small sample correction.  Similarly, the standard error formulas for three-level hierarchical 

randomized assignment designs derived by other researchers did not include such as factor (e.g., 

Hedges & Rhoads, 2010; Konstantopoulos, 2008a; Spybrook, 2007; Schochet, 2008a), to be 

consistent we use the MDES formula by ignoring this factor. 

4In addition to affecting the MDES and MRSS, sample attrition also may introduce the threat of 

bias (U.S. Department of Education, What Works Clearinghouse, 2008). PowerUp! does not 

address the threat of bias due to sample attrition. 

5An alternative approach to handling attrition in power analysis is to calculate the required 

sample size to meet MDES when there is no attrition and then adjust this sample size by dividing 

(1- attrition rate).   
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Table 1:  Study Designs and Analyses Included in the PowerUp!  Tools 

 

 

 

 

 

1 2 3 4 5 6 7 8

Study Design
MDES 

Calculation
Sample Size 
Calculation

Experimental Designs

Individual Random Assignment Designs (Level of Assignment = Level of Analysis)
1.  Simple Individual Random 
Assignment (IRA)

1.0 simple 1 individual 1 N/A IRA N_IRA

2.1 2 individual 1 constant BIRA2_1c N_BIRA2_1c
2.2 2 individual 1 fixed BIRA2_1f N_BIRA2_1f
2.3 2 individual 1 random BIRA2_1r N_BIRA2_1r
2.4 3 individual 1 random BIRA3_1r N_BIRA3_1r
2.5 4 individual 1 random BIRA4_1r N_BIRA4_1r

Cluster Random Assignment Designs (Level of Assignment ≠  Level of Analysis)

3.1 2 2 random CRA2_2r N_CRA2_2r
3.2 3 3 random CRA3_3r N_CRA3_3r
3.3 4 4 random CRA4_4r N_CRA4_4r
4.1 blocked 3 cluster 2 fixed BCRA3_2f N_BCRA3_2f
4.2 blocked 3 cluster 2 random BCRA3_2r N_BCRA3_2r
4.3 blocked 4 cluster 2 random BCRA4_2r N_BCRA4_2r
4.4 blocked 4 cluster 3 fixed BCRA4_3f N_BCRA4_3f
4.5 blocked 4 cluster 3 random BCRA4_3r N_BCRA4_3r

Quasi-experimental Designs
5.1 blocked 2 individual 1 fixed RD2_1f N_RD2_1f
5.2 blocked 2 individual 1 random RD2_1r N_RD2_1r
5.3 simple 2 cluster 2 random RDC_2r N_RDC_2r
5.4 simple 3 cluster 3 random RDC_3r N_RDC_3r
5.5 blocked 3 cluster 2 fixed RD3_2f N_RD3_2f
5.6 blocked 3 cluster 2 random RD3_2r N_RD3_2r

6. Interrupted Time-Series 
Designs (ITS)

6.0 blocked 3 cluster 2

constant at 
level 3; 

random at 
level 2

ITS N_ITS

4.  Blocked (Stratified) Cluster 
Randomized Assignment 
Designs (BCRA)

5. Regression Discontinuity 
Designs (RD)

Model 
Number

Simple or Blocked 
(Stratified) 
Assignment

Levels of 
Clustering

3. Simple Cluster Random 
Assignment (CRA) simple cluster

Treatment 
Assignment 

Level
Cluster/ 

Block Effect

Unit of 
Treatment 

Assignment

Worksheet Name for:

2.  Blocked (Stratified) 
Individual Random Assignment 
(BIRA)

blocked
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Table 2:  Examples of Blocked Random Assignment Designs 
 

PowerUP! Model → BIRA2_1c BIRA2_1f BIRA2_1r BIRA3_1r BCRA3_2f BCRA3_2r BIRA4_1r BCRA4_2r BCRA4_3f BCRA4_3r

Level of Random Assignment 1 = Students
1 =

Students
2 =

Schools
Block Effects c f r r f r r r f r

Levels of Blocking

Two (students and schools)
Three (students, schools, and

districts)
Four (students, schools, districts and states)

1 = Students 2 = Schools 3 = Districts

 

Note: c = Constant block effects model; f = Fixed block effects model; r = Random block effects 

model. 
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Table 3:  Sample Tool for Computing the MDES for a Simple Individual Random Assignment 

Design Study (See Table 1, Model 1.0 and PowerUP! Tab 1.0 IRA) 

Assumptions
Alpha Level (α) 0.05

Two-tailed or One-tailed Test? 2

Power (1-β) 0.80

P 0.50

R2 0.60

k* 1

n (Total Sample Size) 240

M (Multiplier) 2.81 

    T1 (Precision) 1.97 

    T2 (Power) 0.84 

MDES 0.230

References:

Bloom, H. S., Richburg- Hayes, L. & Black, A. R. (2007).  Using Covariates to Improve Precision for Studies that Randomize Schools to 
Evaluate Educational Interventions.  Educational Evaluation and Policy Analysis , 29(1), pp. 30–59.

Deke, John, Dragoset, Lisa, and Moore, Ravaris (2010). Precision Gains from Publically Available School Proficiency Measures 
Compared to Study-Collected Test Scores in Education Cluster-Randomized Trials (NCEE 2010-4003). Washington, DC: National 
Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.  
http://ies.ed.gov/ncee/pubs/20104003/ 

Comments

Determined from alpha level, given two-tailed or one-tailed test

Percent of variance in outcome explained by covariates (See Bloom et al. 2007;  
Deke et al. 2010)

Proportion of the sample randomized to treatment:  nT / (nT + nC)

Computed from T1 and T2

Statistical power (1-probability of a Type II error)

Probability of a Type I error

Minimum Detectable Effect Size

Number of covariates used

Note: The parameters in the yellow cells need to be specified. The MDES will be calculated automatically.

Determined from given power level

START OVER
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Table 4:  Sample Tool for Computing the MDES for a 2-Level Blocked Individual Random 

Assignment Design Study with Random Effects (See Table 1, Model 2.3 and PowerUp! Tab 2.3 

BIRA2_1r) 

Assumptions
Alpha Level (α) 0.05
Two-tailed or One-tailed Test? 2
Power (1-β) 0.80
Rho (ICC) 0.35 Proportion of variance in outcome between clusters (See Hedges and 

Hedberg 2007)

0.10

P 0.50
R1

2 0.00

R2T
2 0.00

g* 0

n (Average Block Size) 80
J (Sample Size  [# of Blocks]) 480
M (Multiplier) 2.81 
    T1 (Precision) 1.96 
    T2 (Power) 0.84 
MDES 0.033

Note: The parameters in yellow cells need to be specified. The MDES will be calculated automatically.

Comments

Computed from T1 and T2

Mean number of Level 1 units per Level 2 cluster (harmonic mean recommended)

Probability of a Type I error

Statistical power (1-probability of a Type II error)

Bloom, H. S., Richburg- Hayes, L. & Black, A. R. (2007).  Using Covariates to Improve Precision for Studies that Randomize Schools to 
Evaluate Educational Interventions.  Educational Evaluation and Policy Analysis , 29(1), pp. 30–59.

Deke, John, Dragoset, Lisa, and Moore, Ravaris (2010). Precision Gains from Publically Available School Proficiency Measures 
Compared to Study-Collected Test Scores in Education Cluster-Randomized Trials (NCEE 2010-4003). Washington, DC: National 
Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.  
http://ies.ed.gov/ncee/pubs/20104003/ 

Hedges, L. V., & Hedberg, E. (2007). Interclass correlation values for planning group-randomized trials in education. Educational 
Evaluation and Policy Analysis, 29(1): 60–87.

Treatment effect heterogeneity:  variability in treatment effects across Level 2 units, 
standardized by the variability in the Level-2 outcome  

Proportion of variance in the Level 1 outcome explained by Block and Level 1 covariates 
(See Bloom et al. 2007;  Deke et al. 2010)
Proportion of between block variance in treatment effect explained by Level 2 covariates 
(See Deke et al. 2010)

Number of Level 2 covariates  

Number of Level 2 units in the sample

Determined from alpha level, given two-tailed or one-tailed test

Minimum Detectable Effect Size

Proportion of Level 1 units randomized to treatment:   nT / (nT + nC)

Determined from given power level

References:

START OVER
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Table 5:  Sample Tool for Computing the MDES for a 4-Level Simple Cluster Random 

Assignment Design Study with Treatment at Level 4 (See Table 1, Model 3.3 and PowerUp! Tab 

3.3 CRA4_4r) 

Assumptions
Alpha Level (α) 0.05
Two-tailed or One-tailed Test? 2
Power (1-β) 0.80 Statistical power (1-probability of a Type II error)
Rho4 (ICC4) 0.05

Rho3 (ICC3) 0.05

Rho2 (ICC2) 0.10

P 0.50

R1
2 0.50

R2
2 0.50

R3
2 0.50

R4
2 0.50

g4* 1

n (Average Sample Size for Level 1) 10
J (Average Sample Size for Level 2) 2 Mean number of Level 2 units per Level 3 unit (harmonic mean recommended)
K (Average Sample Size for Level 3) 3 Mean number of Level 3 units per Level 4 unit (harmonic mean recommended)
L (Sample Size [# of Level 4 units]) 20 Number of Level 4 units
M (Multiplier) 2.97 
    T1 (Precision) 2.11 
    T2 (Power) 0.86 
MDES 0.292

Note: The parameters in yellow cells need to be specified. The MDES will be calculated automatically.

Probability of a Type I error

Proportion of variance among Level 2 units (V2/(V1 + V2 + V3 + V4)) (See 
Hedges and Hedberg 2007)

Comments

Proportion of variance among Level 4 units (V4/(V1 + V2 + V3 + V4)) (See 
Hedges and Hedberg 2007)
Proportion of variance among Level 3 units (V3/(V1 + V2 + V3)) (See Hedges 
and Hedberg 2007)

Number of Level 4 covariates 

Minimum Detectable Effect Size

Mean number of Level 1 units per Level 2 unit (harmonic mean recommended)

Determined from alpha level, given two-tailed or one-tailed test
Determined from given power level

Computed from T1 and T2

Proportion of Level 4 units randomized to treatment
Proportion of explained variance in the Level 1 outcome by Level 1 covariates (See 
Bloom et al. 2007;  Deke et al. 2010)
Proportion of variance in the Level 2 mean outcome explained by Level 2 
covariates (See Bloom et al. 2007;  Deke et al. 2010)

Proportion of variance in the Level 3 mean outcome explained by Level 3 
covariates (See Bloom et al. 2007;  Deke et al. 2010)
Proportion of variance in the Level 4 mean outcome explained by Level 4 
covariates (See Bloom et al. 2007;  Deke et al. 2010)

Hedges, L. V., & Hedberg, E. (2007). Interclass correlation values for planning group-randomized trials in education. Educational 
Evaluation and Policy Analysis, 29(1): 60–87.

Deke, John, Dragoset, Lisa, and Moore, Ravaris (2010). Precision Gains from Publically Available School Proficiency Measures 
Compared to Study-Collected Test Scores in Education Cluster-Randomized Trials (NCEE 2010-4003). Washington, DC: National 
Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.  
http://ies.ed.gov/ncee/pubs/20104003/ 

Bloom, H. S., Richburg- Hayes, L. & Black, A. R. (2007).  Using Covariates to Improve Precision for Studies that Randomize Schools 
to Evaluate Educational Interventions.  Educational Evaluation and Policy Analysis , 29(1), pp. 30–59.

References:

START OVER
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Table 6: Sample Tool for Computing the MDES for RD Design Analogous to 2-Level Blocked 

Individual Random Assignment Design with Random Effects (See Table 1, model 5.2  and 

PowerUp! Tab 5.2 RD2_1r) 

Assumptions
Alpha Level (α) 0.05

Two-tailed or One-tailed Test? 2

Power (1-β) 0.80

Rho (ICC) 0.15

0.20

P 0.50

R1
2 0.50

R2T
2 0.10

g* 1

n (Average Cluster Size) 20

J (Sample Size  [# of Clusters]) 40

Design Effect 2.75

M (Multiplier) 2.88 

    T1 (Precision) 2.02 

    T2 (Power) 0.85 Computed from given power level

MDES 0.232

0.8

Estimated Design Effect
2.78

Note: The parameters in yellow cells need to be specified. The MDES will be calculated automatically.

Comments

Computed from T1 and T2

Estimated from empirical data (last two rows) or based on other assumptions (Schochet, 2008)

Proportion of individuals randomized to treatment:  nT / (nT + nC)

Treatment effect heterogeneity or variance in treatment effect across Level 2 units, standardized 
by the Level-2 outcome variation:  

Proportion of variance in the Level 1 outcome explained by the Level 1 covariates  (See Bloom et 
al. 2007;  Deke et al. 2010)

Proportion of variance in treatment effect between Level-2 blocks explained by Level-2 covariates 

Number of Level 2 covariates  

Number of Level 2 units in sample

Mean number of Level 1 units per Level 2 cluster (harmonic mean recommended)

Statistical power (1-probability of a Type II error)

Probability of a Type I error

Proportion of variance between clusters (Hedges & Hedberg 2007)

Schochet, P. Z. (2008). Technical methods report: Statistical power for regression discontinuity designs in education evaluations (NCEE 2008-4026). 
Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of 
Education.

Deke, John, Dragoset, Lisa, and Moore, Ravaris (2010). Precision Gains from Publically Available School Proficiency Measures Compared to Study-
Collected Test Scores in Education Cluster-Randomized Trials (NCEE 2010-4003). Washington, DC: National Center for Education Evaluation and 
Regional Assistance, Institute of Education Sciences, U.S. Department of Education.  http://ies.ed.gov/ncee/pubs/20104003/  

Bloom, H. S., Richburg- Hayes, L. & Black, A. R. (2007).  Using Covariates to Improve Precision for Studies that Randomize Schools to Evaluate 
Educational Interventions.  Educational Evaluation and Policy Analysis, 29(1), pp. 30–59.

Correlation between TREATMENT indicator and  the score  used for treatment assignment

Estimated multiplier on sample size for Randomized Block Design study with equal power (See 
Schochet 2008)

Computed from given alpha Level, two-tailed or one-tailed test

Minimum Detectable Effect Size

References:

Hedges, L. V., & Hedberg, E. (2007). Interclass correlation values for planning group-randomized trials in education. Educational Evaluation and 
Policy Analysis, 29(1): 60–87.
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Table 7:  Sample Tool for Computing the MDES for an Interrupted Time Series (ITS) Design 

Study:  3-Level Blocked Design with Random Effects at Level 2 and Constant Effects at Level 3 

(See Table 1, Model 6.0 and PowerUP! Tab ITS) 

Assumptions
Alpha Level (α) 0.05 Probability of a Type I error 
Two-tailed or One-tailed Test? 2
Power (1-β) 0.80 Statistical power (1-probability of a Type II error)
Rho (ICC)

0.02
Proportion of variance between cohorts (See Hedges and 
Hedberg 2007)

T (the number of baseline years) 5

n (Average Sample Size for Level 1) 200

m (Sample Size [# of program schools]) 6

R2
2 0.20

tf (follow-up year of interest)
2

g* 1
Ratio of comparison units to experimental units 2
M (Multiplier) 2.90 
    T1 (Precision) 2.05 

    T2 (Power) 0.85 
MDES (no comparison units) 0.20

MDES (with comparison units) 0.24

Comments

Minimum Detectable Effect Size

Computed from given alpha Level, two-tailed or one-tailed test. df=m*T-g-1

Minimum Detectable Effect Size

Computed from given power Level. df=df=m*T-g-1

Computed from T1 and T2.  2.5 was used in Bloom (1999). 

Percent of variance in the outcome explained by covariates at Level 2 
( h ) 

(# comparison schools / # program schools)  at block level

Year in which the outcomes are to be compared (i.e., "0" would indicate the 
year that treatment occurs; "1" would indicate the first year following the 

Bloom, H. S. (1999). Estimating program impacts on student achievement using “short” interrupted time series. New York, NY: MDRC.

References:

Hedges, L. V., & Hedberg, E. (2007). Interclass correlation values for planning group-randomized trials in education. Educational 
Evaluation and Policy Analysis, 29(1): 60–87.

The number of years prior to intervention for which the baseline, or pre-
intervention, trend is established.

The number of Level 3 units in the sample

Mean number of Level 1 units per Level 2 unit, or cohort (harmonic mean rec

Number of Level 2 (cohort-level) covariates

Note: The parameters in yellow cells need to be specified. The MDES will be calculated automatically.  This calculation assumes a design in 
which individuals are nested within successive grade cohorts in a school; cohort is a random effect; the school is constant effect.

START OVER



 

  PowerUp! - A TOOL FOR MDES AND MRES     44 

  

 
 
 
Table 8: A Sample Tool for Computing the Minimum Required Sample Size for  Simple Two-

Level Cluster Random Assignment Design with Treatment Occurring at Level 2 (See Table 1, 

Model 3.1 and PowerUp! Tab N_CRA2_2r)  

 

 

 

 

Assumptions Comments
MRES = MDES 0.25 MRES = MDES

Alpha Level (α) 0.05 Probability of a Type I error

Two-tailed or One-tailed Test? 2

Power (1-β) 0.80 Statistical power (1-probability of a Type II error)

Rho (ICC) 0.20 Proportion of variance in outcome that is between clusters (See Hedges and 
Hedberg 2007)

n (Average Cluster Size) 60 Mean number of Level 1 units per Level 2 cluster (harmonic mean 
d d)Sample Retention Rate:  Level 2 units 90% Proportion of Level 2 units retained in analysis sample

Sample Retention Rate:  Level 1 units 80% Proportion of Level 1 units retained in analysis sample

P 0.500 Proportion of  sample  randomized to treatment: JT / (JT + JC)

R1
2 0.500 Proportion of variance in Level 1 outcome explained by Block and Level 1 

covariates (See Bloom et al. 2007;  Deke et al. 2010)

R2
2 0.700 Proportion of variance in Level 2 outcome explained by Block and Level 2 

covariates (See Bloom et al. 2007;  Deke et al. 2010)

g* 1 Number of Level 2 covariates 
M (Multiplier) 2.89 Computed from T1 and T2

J (Sample Size  [Clusters #]) 41 Number of clusters needed for given MRES

References:
Bloom, H. S., Richburg- Hayes, L. & Black, A. R. (2007).  Using Covariates to Improve Precision for Studies that Randomize Schools to 
Evaluate Educational Interventions.  Educational Evaluation and Policy Analysis, 29(1), pp. 30–59.

Deke, John, Dragoset, Lisa, and Moore, Ravaris (2010). Precision Gains from Publically Available School Proficiency Measures 
Compared to Study-Collected Test Scores in Education Cluster-Randomized Trials (NCEE 2010-4003). Washington, DC: National 
Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.  
http://ies.ed.gov/ncee/pubs/20104003/  

Hedges, L. V., & Hedberg, E. (2007). Interclass correlation values for planning group-randomized trials in education. Educational 
Evaluation and Policy Analysis, 29(1): 60–87.

Note: The parameters in yellow cells need to be specified. Then click "RUN" to calculate sample size.

START OVERRUN
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Figure 1: One-tailed Multiplier ( βα −+= 1ttM v )   

 

 

 

 

 

Note: Adapted from Bloom (2006, Figure 1, page 22). The two-tailed multiplier: βα −+= 12/ ttM v  

 

αt  β−1t  

0:0 =− CT YYH  0: >− CTa YYH  
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APPENDIX: STATISTICAL MODELS, MINIMUM DETECTABLE EFFECT SIZE 

(MDES), AND SAMPLE SIZE CALCULATION FORMULA 

General Notes 

These notations apply to the below MDES formulas. P is the proportion of this sample that is 

treatment group. n is the average sample size for Level 1 (Students #). J is the average sample 

size for Level 2 (Classes #). K is the average sample size for Level 3 (School #). L is the total 

sample size for Level 4 (District #). 2ρ  (or ρ ), 3ρ , and 4ρ  are unconditional intra-class 

correlation (ICC) at Levels, 2, 3, and 4, respectively. 2
mR  is the proportion of level-m variance 

explained by covariate at level m (m could be 1 – 4). 
2
hTR  is the proportion of variance between 

level-h blocks on the treatment effect explained by block-level covariates (h could be 2 – 4).  

2

2

h

Th
h τ

τω =  indicates treatment effect heterogeneity (Hedges & Rhoads, 2010; Konstantopoulos, 

2008b, 2009) across level-h block, which is proportion of the variance between level-h blocks on 

the treatment effect to the between level-h-block residual variance. For example, in two-level 

random effect block random assignment design (the model details are below), 2
2

2
2

τ
τω T=  indicates 

treatment effect heterogeneity across block. Note that 22
2

2
2

στ
τρω
+

= T , which is effect size 

variability. The multiplier   ( vM ) for one-tailed test and two-tailed test are tα + 1t β−  and / 2tα + 

1t β− , respectively, with v degrees of freedom which is the function of the sample size and number 

of covariates depending on the study designs and analysis models. 

1. Individual Random Assignment Design (IRA) 

The treatment effect can be estimated by the ordinary least square model below: 
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MDES formula is given by Bloom (2006), p.12:  

)1(
1 2

2* PnP
RMMDES A

kn −
−
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The sample size (n = Tn + Cn ) can be derived from the above formula as below:
 









−

−








= −−

)1(
1 22

2*

PP
R

MDES
M

n Akn  

P = the proportion of this sample that is randomized treatment, i.e., Tn /( Tn + Cn ). k* = the 

number of covariates.  )/(1 22
|

2 σσ XAR −= , defined as the proportion of variance in the outcome 

predicted by covariates, X. 2σ  = variance in unconditional model (without any covariates). 

Multiplier for one-tailed test: * 2n k
M

− −
 = βα −+ 1tt  with n- k*-2 degrees of freedom. Multiplier for 

two-tailed test: * 2n k
M

− −
 = βα −+ 12/ tt  with n- k*-2 degrees of freedom. α  is the type-I error, and 

β  is the type-II error, i.e., (1- β ) is the power. 

Note that the multiplier, 2*−−knM , is a function of n, however, n can be solved through 

iterations.   

2. Blocked Individual Random Assignment Design (BIRA) 

Recall that in blocked individual random assignment design, treatment is at individual level 

(level 1). 

Model 2.1. Two-level Blocked Individual Random Assignment Design, Constant Block 

Effect Model (BIRA2_1c).   

The constant block effect model assumes that the treatment effect is constant across block. 

The statistical model only includes block dummy variables, which differentiate the intercepts. 
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The fixed block effect model assumes that each block has its own the treatment effect. The 

statistical model includes both block dummy variables and the interaction terms of block 

dummies and TREATMENT variable.  

For the constant block effect model, within 2-level hierarchical linear model framework, we 

have: 

Level 1:  ijijjijjjij rXTREATMENTY +++= 210 )( βββ ,    ),0(~ 2
|Xij Nr σ  

Level 2:  

202

101

0000

γβ

γβ

µγβ

=

=

+=

j

j

jj

            

Reduced form:  ijjijijij rXTREATMENTY ++++= 0201000 )( µγγγ  

j0µ , for },...,2,1{ Jj∈ , are associated with each block mean, constrained to have a mean of 

zero. 

Bloom (2006, p.13) derived a MDES formula for the unconditional model (without covariate 

adjustment). The adapted MDES formula with covariate adjustment is: 

)1(
)1( 2

1
1*

1 PJnP
RMMDES gJJn −

−
=

−−−
 

The level-2 sample size (J) can be derived from the above formula as below: 
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M
J gJJn  

Multiplier for one-tailed test: 
1*−−− gJJnM  = βα −+ 1tt  with 1* −−− gJJn  degrees of freedom. 

Multiplier for two-tailed test: 
1*−−− gJJnM  = βα −+ 12/ tt  with 1* −−− gJJn  degrees of freedom. 

2
1R  is the proportion of pooled unexplained variation in the outcome predicted by the blocks and 
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covariates. n is the average number of individuals per block. J is the number of blocks. *
1g  is the 

number of covariates. P is the proportion of this sample that is treatment group ( nnT / ). 

Model 2.2. Two-level Blocked Individual Random Assignment Design, Fixed Block Effect 

Model (BIRA2_1f).   

For the fixed block effect model, within 2-level hierarchical linear model framework, we 

have: 

Level 1:  ijijjijjjij rXTREATMENTY +++= 210 )( βββ ,    ),0(~ 2
|Xij Nr σ  

Level 2:  

202

1101

0000

γβ

µγβ

µγβ

=

+=

+=

j

jj

jj

            

Reduced form:  ijijjjijijij rTREATMENTXTREATMENTY +++++= )()( 10201000 µµγγγ  

j0µ , for },...,2,1{ Jj∈ , are fixed effects associated with each block mean, constrained to 

have a mean of zero; j1µ , for },...,2,1{ Jj∈ , are fixed effects associated with each block 

treatment effect, constrained to have a mean of zero. 

)1(
)1( 2

1
2 *

1 PJnP
RMMDES gJJn −

−
=

−−
 

The level-2 sample size (J) can be derived from the above formula as below: 
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n = average number of individuals per block. *
1g = number of level-1 covariates. 2

1R = 

proportion of variance in the outcome predicted by blocks and level-1 covariates. P = the average 

proportion of this sample that is treatment group ( nnT / ). 
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Model 2.3. Two-level Blocked Individual Random Assignment Design, Random Block 

Effect Model (BIRA2_1r). 

Within 2-level hierarchical linear model framework, the unconditioanl model is: 

Level 1:  ijijjjij rTREATMENTY ++= )(10 ββ ,    ),0(~ 2σNrij  

Level 2:  
jj
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Reduced form:  ijijjjijij rTREATMENTTREATMENTY ++++= )()( 101000 µµγγ .  

The variance of TREATMENT derived by Raudenbush & Liu (2000) is as follows: 

J
nVar T /4)ˆ(

22
2

10
στγ +

= .  

ρ = 22
2

2
2

στ
τ
+

, unconditional intra-class coefficient (ICC).  

2
2

2
2

τ
τω T=  indicates treatment effect heterogeneity, which is the ratio of the variance of the 

treatment effect between blocks to the between-block residual variance. Note that 22
2

2
2

στ
τρω
+

= T , 

which is effect size variability. 

The conditioanl model is: 

Level 1:  ijijjijjjij rXTREATMENTY +++= 210 )( βββ ,    ),0(~ 2
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The level-2 sample size (J) can be derived from the above formula as below: 
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The multiplier for a one-tailed test is: 1*−−gJM = βα −+ 1tt  with J- *g -1 degrees of freedom. 

The multiplier for two-tailed test: 1*−−gJM = βα −+ 12/ tt  with J- *g -1 degrees of freedom. n = 

average sample size for Level 1 (Students #). P = the average proportion of this sample that is 

treatment group ( nnT / ). *g  = number of block-level covariates. 2
1R  = 22

| /1 σσ X−  indicates the 

proportion of individual variance (at level one) predicted by covariates. 2
2TR = 2

2
2

|2 /1 TWT ττ−  

indicates the proportion of variance between level-2 blocks on the treatment effect explained by 

level-2 covariates. When it is unclear how much the block-level covariate can reduce the block-

treatment variance, it will be conservative to set 2
2TR  = 0. 

Model 2.4. Three-level Blocked Individual Random Assignment Design, Random Block 

Effect Model (BIRA3_1r).   

Within 3-level hierarchical linear model framework, the treatment effect can be estimated by: 
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Based on the standard error of treatment effect estimate formula that derived by Hedges & 

Rhoads (2010) and Konstantopoulos (2008b), the MDES for 3-level blocked individual random 

assignment design with treatment at level 1 and random block effect model is as follows: 

JKnPP
R
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R

K
RMMDES TT

gK )1(
)1)(1()1()1( 2

132
2
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The level-3 sample size (K) can be derived from the above formula as below: 









−

−−−
+

−
+−










= −−

JnPP
R

J
RR

MDES

M
K T

T
gK

)1(
)1)(1()1()1(

2
132

2
2222

333

2

1*
3 ρρωρωρ  

The multiplier for one-tailed test is: 
1*

3 −−gKM = βα −+ 1tt  with K- *
3g -1 degrees of freedom. 

Multiplier for two-tailed test is: 
1*

3 −−gKM = βα −+ 12/ tt  with K- *
3g -1 degrees of freedom. J = 

average sample size for Level 2 (Classes #). n = average sample size for Level 1 (Students #). P 

= the average proportion of this sample that is treatment group ( nnT / ). 3ρ  = 
2
3

2 2 2
3 2

τ
τ τ σ+ +

  is 

unconditional ICC at level 3. 2ρ  = 
2
2

2 2 2
3 2

τ
τ τ σ+ +

  is unconditional ICC at level 2. 2
3τ  = level-3 

variance (unconditional model). 2
2τ  = level-2 variance (unconditional model). 2σ  = individual-

level variance (unconditional model). 2
3

2
3

3 τ
τ

ω T=  indicates treatment effect heterogeneity across 

level 3, which is the proportion of the variance between schools on the treatment effect to the 

between-school residual variance (unconditional model). 2
2

2
2

2 τ
τω T=  indicates treatment effect 

heterogeneity across level 2, which is the proportion of the variance between classrooms on the 

treatment effect to the between-classroom residual variance (unconditional model). 2
|3Vτ  = level-3 
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variance conditional on level-3 covariate, V. 2
|2Wτ  = level-2 variance conditional on level-2 

covariate, W. 2
|Xσ  = individual-level variance conditional on level-1 covariate, X. 2

1R  = 

22
| /1 σσ X−  indicates the proportion of individual variance (at level one) predicted by covariates. 

2
2TR = 2

2
2

|2 /1 TWT ττ−  indicates the proportion of variance between level-2 blocks on the treatment 

effect explained by level-2 covariates. 2
3TR  = 2

3
2

|3 /1 TVT ττ−  indicates the proportion of variance 

between level-3 blocks on the treatment effect explained by level-3 covariates. *
3g  = the number 

of group covariates used at level three. When it is unclear how much the block-level covariate 

can reduce the block-treatment variance, it will be conservative to set 2
3TR = 0; 2

2TR  = 0. 

Model 2.5.  Four-level Blocked Individual Random Assignment Design, Random Block 

Effect Model (BCRA4_1r). 

Within 4-level hierarchical linear model framework, the treatment effect can be estimated by: 
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Level 4:  
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Following the same logic of 2- and 3- level block random assignment designs with treatment 

at level 1, the MDES formula for 4-level designs can be expressed as follows:  
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The level-4 sample size (L) can be derived from the above formula as below: 
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The multiplier for one-tailed test is: 1*
4−−gLM = tα + 1t β−  with L- *

4g -1 degrees of freedom. The 

multiplier for two-tailed test is: 1*
4−−gLM = / 2tα + 1t β−  with L- *

4g -1 degrees of freedom. n = 

average number of individuals per level 2. P = average proportion of this sample that is treatment 

group ( nnT / ). J = average sample size for Level 2 (Class #). K = average sample size for Level 

3 (School #). 4ρ  = 22
2

2
3

2
4

2
4

στττ
τ

+++
  is the unconditional ICC at level 4. 3ρ  = 

22
2

2
3

2
4

2
3

στττ
τ

+++
  is the unconditional ICC at level 3. 2ρ  = 22

2
2
3

2
4

2
2

στττ
τ

+++
  is the 

unconditional ICC at level 2. 2
4τ  = level-3 variance (unconditional model). 2

3τ  = level-3 variance 

(unconditional model). 2
2τ  = level-2 variance (unconditional model). 2σ  = individual-level 
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variance (unconditional model). 2
4

2
4

4 τ
τω T=   indicates treatment effect heterogeneity across level 4, 

which is proportion of the variance between level-4 clusters on the treatment effect to the 

between level-4-cluster residual variance (unconditional model). 2
3

2
3

3 τ
τω T=   indicates treatment 

effect heterogeneity across level 3, which is proportion of the variance between level-3 clusters 

on the treatment effect to the total between level-3-cluster residual variance (unconditional 

model). 2
2

2
2

2 τ
τω T=   indicates treatment effect heterogeneity across level 2, which is proportion of 

the variance between level-2 clusters on the treatment effect to the total between level-2-cluster 

residual variance (unconditional model). )/(1 22
|

2
1 σσ XR −= , defined as the proportion of 

individual variance (at level one) predicted by covariates, X. 2
2TR = 2

2
2

|2 /1 TWT ττ−  indicates the 

proportion of variance between level-2 blocks on the treatment effect explained by level-2 

covariates. 2
3TR  = 2

3
2

|3 /1 TVT ττ−  indicates the proportion of variance between level-3 blocks on the 

treatment effect explained by level-3 covariates. 2
4TR  = 2

4
2

|4 /1 TZT ττ−  indicates the proportion of 

variance between level-4 blocks on the treatment effect explained by level-4 covariates. 

3. Simple Cluster Random Assignment Design (CRA) 

Recall that in hierarchical random assignment designs, treatment is at top level. 

Model 3.1.  Two-level Cluster Random Assignment Design where treatment is at level 2 

(CRA2_2r).   

The treatment effect can be estimated by a 2-level hierarchical linear model: 

Level 1:  ijijjjij rXY ++= 10 ββ ,    ),0(~ 2
|Xij Nr σ  



 

  PowerUp! - A TOOL FOR MDES AND MRES     56 

  

Level 2:  
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Wjjjjj NWTREATMENT
   

Reduced form:  ijjijjjij rXWTREATMENTY +++++= 010020100 )( µγγγγ  

The MDES formula from Bloom (2006, p.17) is: 
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Sample attrition reduces statistical power by lowering the size of the analytic sample.  For 2-

level cluster random assignment design, attrition might occur at both levels. Suppose the 

retention rates (=1-attrition rates) at levels 1 and 2 are 1r  and 2r , respectively, the MDES formula 

containing the retention rates is: 
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The level-2 sample size (J) can be derived from the above formula as below: 









−

−−
+

−
−











= −−

12

2
1

2

2
2

2

2

)1(
)1)(1(

)1(
)1(*

2

rnrPP
R

rPP
R

MDES

M
J gJr ρρ

 

The multiplier for one-tailed test is: 2*
2 −−gJrM = βα −+ 1tt  with 2*

2 −− gJr  degrees of freedom. 

The multiplier for two-tailed test is: 2*
2 −−gJrM = βα −+ 12/ tt  with 2*

2 −− gJr  degrees of freedom. 

2τ  = Level-2 (between group-level) variance in unconditional model (without any covariates). 

2σ  = Level-1 (individual-level) variance in unconditional model (without any covariates). ρ = 

22

2

στ
τ
+

, unconditional intra-class coefficient (ICC).  )/(1 22
|

2
1 σσ XR −= , defined as the 

proportion of individual variance at level one predicted by covariates, X. )/(1 22
|

2
2 ττWR −= , 
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defined as the proportion of group variance (at level two) predicted by covariates, W. g* = the 

number of group covariates used. P = the proportion of this sample that is treatment group 

( JJT / ).  

Model 3.2. Three-level Cluster Random Assignment Design where treatment is at level 3 

(CRA3_3r).   

The treatment effect can be estimated by a 3-level hierarchical linear model: 

Level 1:   ijkijkjkjkijk rXY ++= 10 ββ ,    ),0(~ 2
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Based on the variance (or standard error) of treatment effect estimate formula that derived by 

Hedges & Rhoads (2010), Konstantopoulos (2008a), Schochet (2008a), and Spybrook (2007), 

the MDES for 3-level cluster random assignment design is: 

 

 

The level-3 sample size (K) can be derived from the above formula as below: 

 

 

 

Multiplier for one-tailed test: 
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3 −−gKM = βα −+ 1tt  with K- *
3g -2 degrees of freedom. Multiplier 

for two-tailed test: 
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3 −−gKM = βα −+ 12/ tt  with K- *
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size for Level 2 (Classes #). 3ρ  = 
2
3

2 2 2
3 2

τ
τ τ σ+ +

  is the unconditional ICC at level 3. 2ρ  = 

2
2

2 2 2
3 2

τ
τ τ σ+ +

  is the unconditional ICC at level 2. 2
3τ  = level -3variance (unconditional model). 

2
2τ  = level -2variance (unconditional model). 2σ  = individual-level variance (unconditional 

model). )/(1 22
|

2
1 σσ XR −= , defined as the proportion of individual variance (at level one) 

predicted by covariates, X. )/(1 2
2

2
|2

2
2 ττ WR −= , defined as the proportion of group variance (at 

level two) predicted by covariates, W. )/(1 2
3

2
|3

2
3 ττ VR −= , defined as the proportion of group 

variance (at level three) predicted by covariates, V. *
3g = the number of group covariates used at 

level three. P = the proportion of this sample that is treatment group ( KKT / ). 

Model 3.3. Four-level Cluster Random Assignment Design where treatment is at level 4 

(CRA4_4r).   

The treatment effect can be estimated by a 4-level hierarchical linear model: 
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Following the same logic of 2- and 3- level cluster random assignment designs, the MDES 

formula for 4-level cluster random assignment designs can be expressed as follows: 
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The level-4 sample size (L) can be derived from the above formula as below: 
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The multiplier for one-tailed test: 2*
4−−gLM = βα −+ 1tt  with L- *

4g -2 degrees of freedom. The 

multiplier for two-tailed test: 2*
4−−gLM = βα −+ 12/ tt  with L- *

4g -2 degrees of freedom. *
4g  = the 

number of Level 4 covariates.  22
2

2
3

2
4

2
4

4 στττ
τρ

+++
= , is the unconditional ICC at level 4. 

)/(1 2
4

2
|4

2
4 ττ ZR −= , defined as the proportion of level-4 variance predicted by covariates, Z. P = 

the proportion of this sample that is treatment group ( LLT / ). All the other notations are same as 

in 3-level cluster random assignment design. 

4. Blocked Cluster Random Assignment Design (BCRA) 

In blocked cluster random assignment design, treatment is at sub-cluster level. 

 

Model 4.1. Three-level Blocked Cluster Random Assignment Design (treatment at level 2), 

Fixed Block Effect Model (BCRA3_2f).   

Within 3-level hierarchical linear model framework, the treatment effect can be estimated by: 

Level 1:  ijkijkjkjkijk rXY ++= 10 ββ      ),0(~ 2
|Xijk Nr σ  
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k00ς , for },...,2,1{ Kk ∈ , are fixed effects associated with each block mean, constrained to 

have a mean of zero; k01ς , for },...,2,1{ Kk ∈ , are fixed effects associated with each block 

treatment effect, constrained to have a mean of zero. 

Based on the variance of treatment effect estimate formula that derived by Spybrook (2007), 

the MDES for 3-level blocked cluster random assignment design with treatment at level 2 and 

fixed block effect model is: 
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The level-3 sample size (K) can be derived from the above formula as below: 
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The multiplier for one-tailed test: *
2)2( gJKM −− = βα −+ 1tt  with K(J-2)- *

2g  degrees of freedom. 

The multiplier for two-tailed test: *
2)2( gJKM −− = βα −+ 12/ tt  with K(J-2)- *

2g  degrees of freedom. J 

= average sample size for Level 2 (Classes #). P = the proportion of this sample that is treatment 

group ( JJT / ). 2ρ = 22

2

στ
τ
+

, unconditional intra-class coefficient (ICC). 2τ  = Level-2 

(between group-level) variance in unconditional model (without any covariates). 2σ  = Level-1 

(individual-level) variance in unconditional model (without any covariates). )/(1 22
|

2
1 σσ XR −= , 

defined as the proportion of individual variance at level one predicted by covariates, X. 
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)/(1 22
|

2
2 ττWR −= , defined as the proportion of group variance (at level two) predicted by blocks 

and covariates, W. *
2g  = the number of Level 2 covariates. 

Model 4.2. Three-level Blocked Cluster Random Assignment Design (treatment at level 2), 

Random Block Effect Model (BCRA3_2r).    

Within 3-level hierarchical linear model framework: 
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Based on the variance (or standard error) of treatment effect estimate formula that derived by 

Hedges & Rhoads (2010), Konstantopoulos (2008a), Schochet (2008a), and Spybrook (2007), 

the MDES for 3-level blocked cluster random assignment design with treatment at level-2 and 

random block effect model is: 
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The level-3 sample size (K) can be derived from the above formula as below: 
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The multiplier for one-tailed test is: 
1*

3 −−gKM = βα −+ 1tt  with K- *
3g -1 degrees of freedom. The 

multiplier for two-tailed test is: 
1*

3 −−gKM = βα −+ 12/ tt  with K- *
3g -1 degrees of freedom. n = 
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average number of individuals per level 2. J = average sample size for Level 2 (Classes #). P = 

the proportion of this sample that is treatment group ( JJT / ). 3ρ  = 
2
3

2 2 2
3 2

τ
τ τ σ+ +

  is the 

correlation among students at the same school with different classes (unconditional model). 2ρ  = 

2
2

2 2 2
3 2

τ
τ τ σ+ +

  is the correlation among students at the same school with same classes 

(unconditional model). 2
3τ  = between group-level variance (level-3) (unconditional model). 2

2τ  = 

between group-level variance (level -2) (unconditional model). 2σ  = individual-level variance 

(unconditional model). 2
3

2
3

τ
τ

ω T=  indicates treatment effect heterogeneity across block (school), 

which is the proportion of the variance between schools on the treatment effect to the between-

school residual variance. 2
|3Vτ  = between group-level variance (level-3) (conditional model). 2

|2Wτ  

= between group-level variance (level-2) (conditional model). 2
|Xσ  = individual-level variance 

(conditional model). 2
1R  = 22

| /1 σσ X−  indicates the proportion of individual variance (at level 

one) predicted by covariates. 2
2R  = 2

2
2
|2 /1 ττ W−  indicates the proportion of variance between 

level-2 groups explained by level-2 covariates. 2
3TR  = 2

3
2

|3 /1 TVT ττ−  indicates the proportion of 

variance between level-3 blocks on the treatment effect explained by level-3 covariates. *
3g = the 

number of group covariates used at level three. 

Model 4.3. Four-level Blocked Cluster Random Assignment Design (treatment at level 2), 

Random Block Effect Model (BCRA4_2r).   

Within 4-level hierarchical linear model framework, the treatment effect can be estimated by: 

Level 1:   ijklijkljkljklijkl rXY ++= 10 ββ ,    ),0(~ 2
|Xijkl Nr σ  
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Following the same logic as in 3-level blocked individual random assignment design with 

treatment at level 1 and random block effect model: 
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 The level-4 sample size (L) can be derived from the above formula as below: 
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The multiplier for one-tailed test is: 1*
4−−gLM = tα + 1t β−  with L- *

4g -1 degrees of freedom. The 

multiplier for two-tailed test is: 1*
4−−gLM = / 2tα + 1t β−  with L- *

4g -1 degrees of freedom. n = 

average number of individuals per level 2. J = average sample size for Level 2 (Class #). P = 

average proportion of this sample that is treatment group ( JJT / ). K = average sample size for 

Level 3 (School #). L = total sample size for Level 4 (District #). 2ρ , 3ρ , and 4ρ  are the 
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unconditional ICCs at Levels 2, 3, and 4, respectively. 2
4

2
4

4 τ
τω T=   indicates treatment effect 

heterogeneity across level 4, which is proportion of the variance between level-4 clusters on the 

treatment effect to the between level-4-cluster residual variance (unconditional model). 

2
3

2
3

3 τ
τω T=   indicates treatment effect heterogeneity across level 3, which is proportion of the 

variance between level-3 clusters on the treatment effect to the total between level-3-cluster 

residual variance (unconditional model). 2
1R  = 22

| /1 σσ X−  indicates the proportion of individual 

variance (at level one) predicted by covariates. 2
2R  = 2

2
2
|2 /1 ττ W−  indicates the proportion of 

variance between level-2 groups explained by level-2 covariates. 2
3TR  = 2

3
2

|3 /1 TVT ττ−  indicates 

the proportion of variance between level-3 blocks on the treatment effect explained by level-3 

covariates. 2
4TR  = 2

4
2

|4 /1 TZT ττ−  indicates the proportion of variance between level-4 blocks on 

the treatment effect explained by level-4 covariates. When it is unclear how much the block-level 

covariate can reduce the block-treatment variance, it will be conservative to set 2
3TR = 0; 2

4TR  = 0. 

Model 4.4. Four-level Blocked Cluster Random Assignment Design (treatment at level 3), 

Fixed Block Effect Model (BCRA4_3f).  

Within 4-level hierarchical linear model framework, the treatment effect can be estimated by: 
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Level 4:  
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l000υ , for },...,2,1{ Ll∈ , are fixed effects associated with each block mean, constrained to 

have a mean of zero; l001υ , for },...,2,1{ Ll∈ , are fixed effects associated with each block 

treatment effect, constrained to have a mean of zero. 

Using the same logic as in 3-level BRD with treatment at level 2 and fixed block effect 

model (Spybrook (2007), the MDES for 4-level blocked cluster random assignment design with 

treatment at level 3 and fixed block effect model is: 
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The level-4 sample size (L) can be derived from the above formula as below: 
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The multiplier for one-tailed test is: *
3)2( gKLM −− = βα −+ 1tt  with L(K-2)- *

3g  degrees of 

freedom. The multiplier for two-tailed test is: *
3)2( gKLM −− = βα −+ 12/ tt  with L(K-2)- *

3g  degrees of 

freedom. n = average number of individuals per level 2. P = average proportion of this sample 

that is treatment group ( nnT / ). J = average sample size for Level 2 (Class #). K = average 

sample size for Level 3 (School #). P = average proportion of this sample that is treatment group 

( KKT / ). *
3g  is the number of Level 3 covariates. 3ρ  = 

2
3

2 2 2
3 2

τ
τ τ σ+ +

  is the unconditional ICC 
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at level 3. 2ρ  = 
2
2

2 2 2
3 2

τ
τ τ σ+ +

  is the unconditional ICC at level 2. 2
3τ  = level-3 variance 

(unconditional model). 2
2τ  = level-2 variance (unconditional model). 2σ  = individual-level 

variance (unconditional model). 2
1R  = 22

| /1 σσ X−  indicates the proportion of individual variance 

(at level one) predicted by covariates. 2
2R  = 2

2
2
|2 /1 ττ W−  indicates the proportion of variance 

between level-2 groups explained by level-2 covariates. 2
3R  = 2

3
2
|3 /1 ττ V−  indicates the 

proportion of variance between level-3 groups explained by block and level-3 covariates. 

Model 4.5. Four-level Blocked Cluster Random Assignment Design (treatment at level 3), 

Random Block Effect Model (BCRA4_3r).   

Within 4-level hierarchical linear model framework, the treatment effect can be estimated by: 
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Using the same logic as in 3-level BRD with treatment at level 2 and random block effect 

model, the MDES for 4-level blocked cluster random assignment design with treatment at level 3 

and random block effect model is: 
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The level-4 sample size (L) can be derived from the above formula as below: 
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The multiplier for one-tailed test is: 1*
4−−gLM = tα + 1t β−  with L- *

4g -1 degrees of freedom. The 

multiplier for two-tailed test is: 1*
4−−gLM = / 2tα + 1t β−  with L- *

4g -1 degrees of freedom. n = 

average number of individuals per level 2. J = average sample size for Level 2 (Class #). K = 

average sample size for Level 3 (School #). P = average proportion of this sample that is 

treatment group ( KKT / ). 2ρ , 3ρ , and 4ρ  are unconditional ICCs at Levels 2, 3, and 4, 

respectively. 2
4

2
4

4 τ
τω T=   indicates treatment effect heterogeneity across level 4, which is 

proportion of the variance between level-4 clusters on the treatment effect to the between level-

4-cluster residual variance (unconditional model). 2
1R  = 22

| /1 σσ X−  indicates the proportion of 

individual variance (at level one) predicted by covariates. 2
2R  = 2

2
2
|2 /1 ττ W−  indicates the 

proportion of variance between level-2 groups explained by level-2 covariates. 2
3R  = 2

3
2
|3 /1 ττ V−  

indicates the proportion of variance between level-3 groups explained by level-3 covariates. 2
4TR  

= 2
4

2
|4 /1 TZT ττ−  indicates the proportion of variance between level-4 blocks on the treatment 

effect explained by level-4 covariates. When it is unclear how much the block-level covariate 

can reduce the block-treatment variance, it will be conservative to set 2
4TR  = 0. 

 
5. Regression Discontinuity Design (RD) 
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As discussed in the text, for the regression discontinuity design (RD), Schochet (2008b) 

summarized six types of commonly used cluster design based on the unit of treatment 

assignment and sampling framework. Based on the MDES formulas for the randomized 

experiments and design effect for their corresponding RD, the MDES for six types of RD can be 

shown below: 

Model 5.1.  Blocked individual regression discontinuity design with fixed effects (RD2_1f): 

analogous to the 2-level fixed effect blocked individual random assignment design 

(BIRA2_1f). 

Within 2-level hierarchical linear model framework, the treatment effect can be estimated by: 

Level 1:  ijijjijjijjjij rZZXTREATMENTY +−+++= )()( 03210 ββββ ,    ),0(~ 2
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ijZ  is the assignment variable, and 0Z  is the cutoff score. j0µ , for },...,2,1{ Jj∈ , are fixed 

effects associated with each block mean, constrained to have a mean of zero; j1µ , for 

},...,2,1{ Jj∈ , are fixed effects associated with each block treatment effect, constrained to have a 

mean of zero. 

)1(
)1( 2

1
2 *

1 PJnP
RDMMDES gJJn −

−
=

−−
 

The level-2 sample size (J) can be derived from the above formula as below: 
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n = average number of individuals per block. *
1g = number of level-1 covariates.  2σ  = 

Level-1 (individual-level) variance (unconditional model). )/(1 22
|

2
1 σσ XR −= , indicating the 

proportion of level-1 variance explained by covariates. P = the average proportion of this sample 

that is treatment group ( nnT / ).  D is design effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for 

more information).  

Note that the model could include quadratic or cubic terms of the assignment variable as well 

as the interaction terms of the assignment variable with treatment indicator.  When higher order 

terms or/and interaction involve, the statistical power will decrease (Schochet, 2008b). This 

applies to all the below regression discontinuity designs. 

 

Model 5.2.  Blocked individual regression discontinuity design with random effects 

(RD2_1r): analogous to 2-level random effect blocked individual random assignment 

design with treatment at level 1 (BIRA2_1r).  

Within 2-level hierarchical linear model framework, the treatment effect can be estimated by: 
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ijZ  is the assignment variable, and 0Z  is the cutoff score.
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The level-2 sample size (J) can be derived from the above formula as below: 
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The multiplier for one-tailed test is: 1*−−gJM = βα −+ 1tt  with J- *g -1 degrees of freedom. The 

multiplier for two-tailed test is: 1*−−gJM = βα −+ 12/ tt  with J- *g -1 degrees of freedom. n  = 

average sample size for Level 1 (Students #). P is the average proportion of this sample that is 

treatment group ( nnT / ). *g  = number of block-level covariates.  2
2Tτ  = variance of the treatment 

effect between blocks (unconditional model). 2
2τ  = Level-2 (between group-level) variance 

(unconditional model). 2σ  = Level-1 (individual-level) variance (unconditional model). ρ = 

22
2

2
2

στ
τ
+

, unconditional intra-class coefficient (ICC). 2
2

2
2

τ
τω T=  indicates treatment effect 

heterogeneity, which is the ratio of the variance of the treatment effect between blocks to the 

between-block residual variance.  )/(1 22
|

2
1 σσ XR −= , indicating the proportion of level-1 

variance explained by covariates. 2
2TR = 2

2
2

|2 /1 TWT ττ−  indicates the proportion of variance 

between level-2 blocks on the treatment effect explained by level-2 covariates. When it is 

unclear how much the block-level covariate can reduce the block-treatment variance, it will be 

conservative to set 2
2TR  = 0.  D is design effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for 

more information). Note that the design effect only affects the level-1 term. 

 

Model 5.3.  Cluster regression discontinuity design sample with two levels of clustering and 

random effects (RDC_2r): analogous to 2-level simple cluster random assignment design 

with treatment at level 2 (model 3.1 CRA2_2r). 

The treatment effect can be estimated by a 2-level hierarchical linear model: 
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Level 1:  ijijjjij rXY ++= 10 ββ ,    ),0(~ 2
|Xij Nr σ  
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jZ  is the assignment variable, and 0Z  is the cutoff score. 

 

 

The level-2 sample size (J) can be derived from the above formula as below: 

 

 

The multiplier for one-tailed test is: * 2J g
M

− −
= βα −+ 1tt  with J- g*-2 degrees of freedom. The 

multiplier for two-tailed test is: * 2J g
M

− −
= βα −+ 12/ tt  with J- g*-2 degrees of freedom. J = the 

total number of clusters. ρ  = 
2

2 2

τ
τ σ+

, is the unconditional intra-class coefficient (ICC) . 2τ  = 

Level-2 (between group-level) variance (unconditional model). 2σ  = Level-1 (individual-level) 

variance (unconditional model). )/(1 22
|

2
1 σσ XR −= , indicating the proportion of level-1 variance 

explained by covariates. )/(1 22
|

2
2 ττWR −= , indicating the proportion of level-2 variance 

explained by covariates. g* = the number of group covariates used. P = the proportion of this 

sample that is treatment group ( JJT / ). D = design effect (see Schochet, 2008b, Tables 4.1, 4.2, 

4.3 for more information). 

Model 5.4 (RDC_3r): analogous to 3-level simple cluster random assignment design with 

treatment at level 3 (Model 3.2 CRA3_3r). 
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The treatment effect can be estimated by a 3-level hierarchical linear model: 

Level 1:   ijkijkjkjkijk rXY ++= 10 ββ ,    ),0(~ 2
|Xijk Nr σ  

Level 2:  
kjk
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The level-3 sample size (K) can be derived from the above formula as below: 

 

 

kZ  is the assignment variable, and 0Z  is the cutoff score. Multiplier for one-tailed test: 

2*
3 −−gKM = βα −+ 1tt  with K- *

3g -2 degrees of freedom. Multiplier for two-tailed test: 
2*

3 −−gKM = 

βα −+ 12/ tt  with K- *
3g -2 degrees of freedom. J = average sample size for Level 2 (Classes #). 3ρ  

= 
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  is the unconditional ICC at level 3. 2ρ  = 
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  is the unconditional ICC 

at level 2. 2
3τ  = level -3variance (unconditional model). 2

2τ  = level -2variance (unconditional 

model). 2σ  = individual-level variance (unconditional model). )/(1 22
|

2
1 σσ XR −= , defined as 

the proportion of individual variance (at level one) predicted by covariates, X. )/(1 2
2

2
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2
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defined as the proportion of group variance (at level two) predicted by covariates, W. 
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covariates, V. *
3g = the number of group covariates used at level three. P = the proportion of this 

sample that is treatment group ( KKT / ). D = design effect (see Schochet, 2008b, Tables 4.1, 4.2, 

4.3 for more information). 

 
Model 5.5 (RD3_2f): analogous to 3-level fixed effect blocked cluster random assignment 

design with treatment at level 2 (Model 4.1 BCRA3_2f). 

Within 3-level hierarchical linear model framework, the treatment effect can be estimated by: 
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jkZ  is the assignment variable, and 0Z  is the cutoff score. k00ς , for },...,2,1{ Kk ∈ , are fixed 

effects associated with each block mean, constrained to have a mean of zero; k01ς , for 

},...,2,1{ Kk ∈ , are fixed effects associated with each block treatment effect, constrained to have 

a mean of zero.
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The level-3 sample size (K) can be derived from the above formula as below: 
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The multiplier for one-tailed test is: *
2)2( gJKM −− = βα −+ 1tt  with K(J-2)- *

2g  degrees of 

freedom. The multiplier for two-tailed test is: *
2)2( gJKM −− = βα −+ 12/ tt  with K(J-2)- *

2g  degrees of 

freedom. J = average sample size for Level 2 (Classes #). P = the proportion of this sample that 

is treatment group ( JJT / ). *
2g  = the number of Level 2 covariates. ρ  = 

2

2 2

τ
τ σ+

, is the 

unconditional intra-class coefficient (ICC) . 2τ  = Level-2 (between group-level) variance 

(unconditional model). 2σ  = Level-1 (individual-level) variance (unconditional model). 

)/(1 22
|

2
1 σσ XR −= , indicating the proportion of level-1 variance explained by covariates. 

)/(1 22
|

2
2 ττWR −= , indicating the proportion of level-2 variance explained by covariates. D  = 

design effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more information). 

Model 5.6 (RD3_2r): analogous to 3-level random effect blocked cluster random 

assignment design with treatment at level 2 (model 4.2 BCRA3_2r). 

Within 3-level hierarchical linear model framework: 
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jkZ  is the assignment variable, and 0Z  is the cutoff score.
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The level-3 sample size (K) can be derived from the above formula as below: 
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The multiplier for one-tailed test is: 
1*

3 −−gKM = βα −+ 1tt  with K- *
3g -1 degrees of freedom. The 

multiplier for two-tailed test is: 
1*

3 −−gKM = βα −+ 12/ tt  with K- *
3g -1 degrees of freedom. n = 

average number of individuals per level 2. J = average sample size for Level 2 (Classes #). P = 

the proportion of this sample that is treatment group ( JJT / ). 3ρ  = 
2
3

2 2 2
3 2

τ
τ τ σ+ +

  is the 

unconditional ICC at level 3. 2ρ  = 
2
2

2 2 2
3 2

τ
τ τ σ+ +

  is the unconditional ICC at level 2. 2
3τ  = level -

3variance (unconditional model). 2
2τ  = level -2variance (unconditional model). 2σ  = individual-

level variance (unconditional model). 2
3

2
3

τ
τ

ω T=  indicates treatment effect heterogeneity across 

block (school), which is the proportion of the variance between schools on the treatment effect to 

the between-school residual variance. 2
1R  = 22

| /1 σσ X−  indicates the proportion of individual 

variance (at level one) predicted by covariates. 2
2R  = 2

2
2
|2 /1 ττ W−  indicates the proportion of 
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variance between level-2 groups explained by level-2 covariates. 2
3TR  = 2

3
2

|3 /1 TVT ττ−  indicates 

the proportion of variance between level-3 blocks on the treatment effect explained by level-3 

covariates. *
3g = number of group covariates used at level three. D = design effect (see Schochet, 

2008b, Tables 4.1, 4.2, 4.3 for more information). Note that design effect only affects Level-1 

and Level-2 terms. 

 
6. Interrupted Time-Series Design: 

The time-series design (Bloom, 2003; Quint, Bloom, Black, & Stephens, 2005) compares 

student scores before and after a school-wide intervention while modeling the underlying pre-

intervention trend over time and the departures from that trend during the post-intervention years. 

Those departures from the pre-intervention trend provide the estimates of the intervention effects.  

The analytic model for this time-series is multilevel with students nested within cohorts 

within each school. Each school provides estimates of intervention effects; schools thus 

constitute blocks in this design. Following Bloom (2003)’s suggestion, the analysis can proceed 

as follows: 

Series 1:  These time series analyses assess whether there are improvements in the scores on 

each of the performance variables for any series of grade level cohorts in the intervention schools 

after the intervention begins.  Using student-level scores on the respective performance variable 

in each cohort as the dependent variable, this analysis examines differences between the years 

prior to the intervention and those afterwards. Two cohort-level (level 2) variables model change 

over time in the analysis. One variable, denoted in the models below as T, indicates where in the 

time series each student cohort was located. The other variable, denoted in the models below as 

Dt , is a set of dummy variables that indicates that the cohort was in the intervention (Dt=1) or 

not (Dt=0) for each year after the onset of the intervention.  
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First, we present a simple model to estimate the program effect at the second implementation 

year with 4 waves of baseline information by assuming that the intervention effect is constant 

across schools: 

Level 1 (student) 

(1)  0 1ijk jk jk ijk ijkY C rβ β= + + ijkr ~ ),0( 2σN                                          

Level 2 (cohort: random effect) 
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Reduced Form: 

(4)   

2

000 00 010 020 0(3 )0 100
0

0 1

( )ijk m m jk jk t t jk ijk
m t

jk ijk jk ijk

Y S T X D C

C r

γ γ γ γ γ γ

µ µ

+
=

= + + + + +

+ + +

∑ ∑  

Yijk  = Score for student, i at time, j in school, k. ijkC  = Covariate for student, i at time, j in 

school, k. Sm  =  Dummy variable indicating School m (representing the blocking factor) . 

Xjk =  Cohort-level covariate.  Tjk = Test year for student i (ranging from - 4 through + 2). Dt =  

Dummy variables indicating the intervention status for cohort at follow-up year t = 0, 1, and 2. 

000γ  = Grand mean score for students at the baseline in the reference school. m00γ  = Difference 

in the grand mean score for students at baseline in the other schools comparing with the 
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reference school. 010γ  = Linear trend. 020γ  = Slopes of the mean cohort achievement. 0)3(0 t+γ  = 

Deviations from trend for follow-up year t = 0, 1, and 2. 100γ  = Coefficient of the student-level 

covariate. jk0µ  = Random error term for cohort at time, j in school, k.  1 jkµ  = Random error term 

in the slope of student-level covariate for cohort at time, j in school, k. ijkr  =  Random error term 

for student, i at time, j in school, k.  

The model above will estimate the program effects ( 0)3(0 t+γ ) in terms of deviations from the 

trend for the follow-up years, and it assumes that the school effect is constant. This is a strong 

assumption; and the schools could have differential effects. Bloom (2003) proposed a school 

fixed effects model by estimating the program effects separately by school, then average them by 

weighting them equally. The model above can be extended to capture Bloom’s idea by adding 

school dummies in the level-3 equation (3) above to predict level-2 parameters, i.e., adding the 

interaction terms of school dummies and the other variables in the reduced model.  The reduced 

form model can be expressed as: 

(5)     

2

000 00 010 020 0(3 )0 100
0

2

01 02 0(3 ) 10
0

0 1
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* * *( ) *

ijk m m jk jk t t jk ijk
m t
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+ + +

∑ ∑

∑ ∑ ∑∑ ∑  

m01γ  = Difference in linear trends for the other school comparing with the reference school. 

m02γ  = Difference in slopes of the mean cohort scores for the other schools comparing with the 

reference school. mt )3(0 +γ  = Difference in deviations from trends for follow-up year t = 0, 1, and 2 

for the other schools comparing with the reference school. 10mγ  = Difference in coefficient of the 
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student-level covariate for the other schools comparing with the reference school. The other 

notations are same as in Models 1 – 4. 

The estimates of the program effects in the follow-up years in terms of deviations from the 

baseline year are 0)3(0 t+γ , and ( 0)3(0 t+γ + mt )3(0 +γ ) for the reference schools and all other schools. 

The simple average of these estimates will be the estimate of the intervention effect within the 

framework of the school fixed effect model. 

Series 2:  An important limitation of the above analyses is that observed differences in the 

student performance scores before and after the intervention begins in a school do not necessarily 

indicate that the differences were due to the intervention. This issue can be addressed by 

including similar schools that do not receive the intervention as comparison schools, i.e. schools 

located in the same districts and thereby subject to the same local context as the intervention 

schools. This comparison will serve to account for differences in a school’s pattern of 

achievement that might be attributed to factors other than the intervention. Expanded from the 

models in series 1, an additional dummy variable will indicate whether the student’s cohort was 

located in an intervention school or comparison school. The interaction of intervention and 

school type will examine whether treatment cohorts in program schools outperformed cohorts in 

comparison schools in the same time period. 

Similar to the analysis in Series 1, we will start from the simple model—assuming the school 

effect is constant. By adding a dummy variable indicating if a school is a program school or a 

comparison school in equations (3) and (4), the reduced model is: 
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kINT )(  = Dummy variables indicating if school, k, is an intervention school or comparison 

school. 0)3(0 t+γ  = Deviations from trend for follow-up year t = 0, 1, and 2 for the comparison 

schools. The other notations are same as in Models 1 – 4. 

The term 1)3(0 t+γ  represents the average intervention effect in terms of the difference in 

deviations from the trend for the follow-up years between the intervention schools and 

comparison schools.  

A more complicated fixed school effects model that permits the schools to have differential 

effects extends equation (6) by adding the interaction terms of school dummies and the other 

variables. The reduced model is: 

(7)    
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∑

 

The notations in equation (7) are same as in equations (5) and (6). 1)3(0 t+γ  are the parameter 

estimates of interest representing the average intervention effect in terms of the difference in 

deviations from the trend for the follow-up years between the program schools and comparison 

schools.  

Using a cohort random effects model (with school as a constant effect), Bloom (1999, 2003) 

presented a formula to calculate the Minimum Detectable Effect Size (MDES). An adapted 

MDES formula including comparison schools and covariates is below: 
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The number of program schools which get treatment (m) can be derived from the above 

formula as below: 
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where n is the number of students per school, T is the number of baseline year, ft  is the follow-

up year of interest, t  is the mean baseline year, ρ  is the conditional intra-class correlation for 

cohorts (proportion of total variance of between years), M is multiplier, for one-tailed test: 

1* *−−gTmM = βα −+ 1tt   with 1* * −− gTm  degrees of freedom. For two-tailed test: 1* *−−gTmM = 

βα −+ 12/ tt with 1* * −− gTm  degrees of freedom, and p is the ratio of the number of comparison 

schools to the number of program schools. 
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