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Towards a Model-Based Meal Detector for Type I Diabetics

Abstract
Blood glucose management systems are an important class of Medical Cyber-Physical Systems that provide
vital everyday decision support service to diabetics. An artificial pancreas, which integrates a continuous
glucose monitor, a wearable insulin pump, and control algorithms running on embedded computing devices,
can significantly improve the quality of life for millions of Type 1 diabetics. A primary problem in the
development of an artificial pancreas is the accurate detection and estimation of meal carbohydrates, which
cause significant glucose system disturbances. Meal carbohydrate detection is challenging since post-meal
glucose responses greatly depend on patient-specific physiology and meal composition.

In this paper, we develop a novel meal-time detector that leverages a linearized physiological model to realize a
(nearly) constant false alarm rate (CFAR) performance despite unknown model parameters and uncertain
meal inputs. Insilico evaluations using 10, 000 virtual subjects on an FDA-accepted maximal physiological
model illustrate that the proposed CFAR meal detector significantly outperforms a current state-of-the-art
meal detector that utilizes a voting scheme based on rate-of-change (RoC) measures. The proposed detector
achieves 99.6% correct detection rate while averaging one false alarm every 24 days (a 1.4% false alarm rate),
which represents an 84% reduction in false alarms and a 95% reduction in missed alarms when compared to
the RoC approach.
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ABSTRACT
Blood glucose management systems are an important class
of Medical Cyber-Physical Systems that provide vital ev-
eryday decision support service to diabetics. An artificial
pancreas, which integrates a continuous glucose monitor, a
wearable insulin pump, and control algorithms running on
embedded computing devices, can significantly improve the
quality of life for millions of Type 1 diabetics. A primary
problem in the development of an artificial pancreas is the
accurate detection and estimation of meal carbohydrates,
which cause significant glucose system disturbances. Meal
carbohydrate detection is challenging since post-meal glu-
cose responses greatly depend on patient-specific physiology
and meal composition.

In this paper, we develop a novel meal-time detector that
leverages a linearized physiological model to realize a (nearly)
constant false alarm rate (CFAR) performance despite un-
known model parameters and uncertain meal inputs. In-
silico evaluations using 10, 000 virtual subjects on an FDA-
accepted maximal physiological model illustrate that the
proposed CFAR meal detector significantly outperforms a
current state-of-the-art meal detector that utilizes a voting
scheme based on rate-of-change (RoC) measures. The pro-
posed detector achieves 99.6% correct detection rate while
averaging one false alarm every 24 days (a 1.4% false alarm
rate), which represents an 84% reduction in false alarms
and a 95% reduction in missed alarms when compared to
the RoC approach. 1

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time series analysis;
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J.3 [Life and Medical Sciences]: Medical Information
Systems

1. INTRODUCTION
Approximately 29 million people in the U.S. have dia-

betes, among which about 5% have Type 1 diabetes [14],
an auto-immune disease that destroys a person’s pancreas’
ability to release insulin. Type 1 diabetics depend on every-
day insulin infusion or injection to maintain their glucose
level within the acceptable range where too much insulin
can cause life-threatening hypoglycemia (extremely low glu-
cose level) and too little insulin can cause nerve-damaging
hyperglycemia (high glucose level) [2]. Unfortunately, meal
carbohydrates are a major disturbance to one’s blood glu-
cose level, and therefore every Type 1 diabetic faces a life-
long control challenge: he/she has to carefully titrate insulin
doses for every meal so that post-meal hyperglycemia is ef-
fectively controlled without risking hypoglycemia.

In recent years, Continuous Glucose Monitoring (CGM)
technology has become more popular, which drives a whole
class of Medical Cyber-Physical System (MCPS), most no-
tably the artificial pancreas (AP), that aims to facilitate
glucose management for Type 1 diabetics. At the AP sys-
tem’s core are a CGM sensor, a wearable insulin pump for
insulin infusion and boluses, and algorithms that control
insulin titration [8]. Reliably predicting meals is difficult
in real-life situations, thus all AP systems depend on cer-
tain kinds of meal declaration/detection mechanisms. Meal
detection is a safety critical problem, where an incorrectly
identified meal may trigger the system to either deliver too
much insulin unnecessarily or deliver too little insulin, both
of which have harmful (if not deadly) consequences.

Currently, most Type 1 diabetics who use CGM sensors
and wearable insulin pumps manually input the time and
estimated carb count of each meal into the device, which
then calculates a suggested insulin dose. Unfortunately,
self-reported meal information is inherently unreliable [12].
Thus, more dependable meal detection methods are neces-
sary to ensure patient safety. This paper proposes a novel
meal detection method that leverages a linear model of glu-



cose and insulin responses that is inspired by a first-principle
minimal physiological model [3].

The proposed detector exhibits consistent detection per-
formance in in-silico evaluations using an FDA-accepted
Type 1 diabetes physiological model across a wide range of
virtual subject parameter settings. Specifically, it achieves
a 99.6% detection rate (one miss every 90 days) with a low
false alarm rate of once every 24 days. This is a signifi-
cant improvement compared to a state-of-the-art voting al-
gorithm that detects meals based on glucose rate-of-change
(RoC) [12]: in the same in-silico experiment, the voting al-
gorithm detects 93.2% of meals (one miss every 5 days) while
raising a false alarm every 4 days.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work; Section 3 gives the problem
formulation; Section 4 presents two major classes of glucose-
insulin physiological models; Section 5 introduces the Con-
stant False Alarm Rate (CFAR) meal detector; Section 6
compares the performance of our detector with a state-of-
the-art meal detector in an in-silico evaluation using an
FDA-accepted physiological model.

2. RELATED WORK
Input detection via hypothesis testing is a mature research

area where approaches can be roughly classified as model-
driven [6, 36] or data-driven [4, 10, 23, 26, 27, 28]. When
applied to MCPS problems, model-driven approaches (e.g.,
likelihood ratio testing) suffer due to modeling nonlinearities
and unknowns. In contrast, data-driven MCPS approaches
(e.g., machine learning classification) are considered promis-
ing [1, 20], but suffer from over-fitting when accurately an-
notated real-world training data is scarce.

Specific to the problem of meal detection and estimation,
various algorithms have been proposed [12, 5, 19]. Most
existing algorithms detect meals based on the RoC of glu-
cose values, more precisely, first and/or second derivatives
derived from CGM readings [12, 19]. The RoC metrics are
estimated in real-time and are either directly compared to
pre-tuned thresholds to make a decision, or used to estimate
meal impulses. One of the most prominent RoC meal de-
tectors is described in [12]. It utilizes a voting algorithm
to detect meal disturbances using combinations of glucose
derivatives and Kalman filtering. A pilot evaluation on real
patients using the RoC detector suggests an average delay of
30 minutes between the onset of a meal and detection [12].

Although RoC-based meal detectors are easy to under-
stand and implement, they have some fundamental limita-
tions considering everyday diabetes management. The post-
meal glucose response of a Type 1 diabetic depends on many
factors and can greatly vary across different patients. Most
insulin-dependent Type 1 diabetics are instructed to take in-
sulin boluses around meal times, where both the timing and
the amount of meal boluses can change postprandial plasma
glucose responses [9]. Moreover, the exact breakdown of
protein, fat, and carbohydrates in a meal also impacts glu-
cose responses [37]. Additionally, the complex interaction
between glucose and insulin metabolism systems can trigger
RoC-based meal detection which was actually a drop in “in-
sulin on board” [13]. Therefore, threshold based RoC meal
detectors are likely to generate numerous false alarms and
can miss true meal events when the postprandial glucose rise
is not as prominent.

Other approaches to meal detection use physiological mod-
els to generate a population of possible post-meal glucose

shapes [5]. Based on a residual generated using the differ-
ence between a no-meal realization of the population models
and the actual CGM measurements, near-perfect meal de-
tection can be achieved using population-based approaches
but requires significantly longer to make an accurate deci-
sion when compared to RoC-based approaches [12, 5, 19].
Moreover, this performance is dependent on an accurate es-
timate of patient specific parameters (e.g. insulin time ac-
tion profile), which in real-world scenarios requires periodic
controlled studies on each patient where the meal events are
accurately logged.

An alternative approach to event detection that tends to
minimize the detection time while maximizing performance
in problems with scarce data and uncertain models is the
CFAR detector [30, 32]. CFAR detectors leverage parame-
terized model structure to generate sufficient statistics that
are maximally invariant to unknown parameters such that
a threshold test achieves a (nearly) constant false alarm
rate [30]. Although not previously applied to the diabetic
meal detection problem, these detectors have been shown to
work well in other CPS applications with structured dynam-
ics and unknown parameters, specifically in detecting faults
in networked systems [34, 35], building heating, ventilating
and air conditioning (HVAC) systems [31], smart grids [33],
and most recently in a MCPS application to detect critical
pulmonary shunts in infants [16].

3. PROBLEM FORMULATION
All AP systems need accurate estimates of the meal car-

bohydrate disturbances. To estimate the meal carbohy-
drate disturbances requires an accurate (and timely) esti-
mate of when meals occur. Current approaches to meal
detection lack detection accuracy (RoC-based approaches)
or lack timely detection guarantees (population-based ap-
proaches). Thus, the following summarizes our problem
statement:

3.1 Problem Statement
This paper addresses the meal detection problem, where

given recent glucose level measurements and insulin inputs,
design a run-time monitor that accurately and quickly de-
tects the ingestion of carbohydrates.

4. PHYSIOLOGICAL MODELS
First-principle models of glucose physiology broadly fall

into two categories: maximal models and minimal mod-
els [7]. Maximal models use fine-grain compartmental sub-
models to describe the dynamics of glucose and insulin.
These models are mostly used for simulation purposes, since
controller design for non-linear models with unknown pa-
rameters is difficult. On the other hand, the minimal models
use only a few coarse-grain compartments to model the phys-
iology, and they have a simple structure that is convenient
for linearization and control design [15]. This section intro-
duces an FDA-accepted maximal model, which will later be
used in in-silico evaluations, and a minimal model, which
inspires the process modeling in designing our CFAR detec-
tor.

4.1 A Maximal Model
A maximal model that describes the glucose-insulin re-

sponses with meals has been proposed [21, 22], based on
which the UVa/Padova Type 1 Diabetes Mellitus Metabolic



Simulator (T1DMS) has been developed [18]. This model is
an FDA-accepted substitute for animal testing in pre-clinical
trials when evaluating certain control algorithms [11]. It
consists of a set of continuous-time differential equations
with 13 state variables and 32 physiological parameters. The
model includes three sub-systems: the insulin subsystem,
the meal glucose absorption, and the glucose kinetics. Due
to space constraints, this section only sketches the model
equations with brief explanations of the state variables. Ex-
tensive details of the model, including the modeling rationale
and meanings of the variables & parameters, can be found
in a series of publications [21, 22, 18, 11].

The insulin sub-system describes the transportation of in-
sulin from the subcutaneous injection site to other compart-
ments of the body such as the liver, plasma, and tissues.
This subsystem has seven state variables which evolve ac-
cording to the follow equations [21, 22]:

İp(t) = −(m2 +m4)Ip(t) +m1Il(t) + ka1S1(t)

+ ka2S2(t)
(1a)

Ẋ(t) = P2U/ViIp(t)− P2UX(t)− P2U ∗ Ib (1b)

İ1(t) = ki/ViIp(t)− kiI1(t) (1c)

İd(t) = kiI1(t)− kiId(t) (1d)

İl(t) = m2 ∗ Ip(t)− (m1 +m3)Il(t) (1e)

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t) (1f)

Ṡ2(t) = kdS1(t)− ka2S2(t). (1g)

In the above equations, Ip represents the mass of plasma
insulin. X(t) is a remote insulin signal that also appears
in the glucose kinetics. I1 and Id represent a delayed in-
sulin signal that governs the endogenous glucose produc-
tion. Il represents the liver insulin. S1 and S2 represent
a two-compartment subcutaneous insulin process. u(t) is
the subcutaneous insulin injection/infusion input (wearable
insulin pumps for Type 1 diabetics inject insulin into the
subcutaneous tissue). Table 2 lists the physiological entities
that the parameters represent2. Parameters listed as “rate
parameters” in Table 2 are those simply govern the flux rate
in/out of a compartment. Details about the parameters can
be found in the maximal modeling literature [21, 22, 18].

The meal absorption sub-system models how meal car-
bohydrates pass the stomach, intestine and finally becomes
glucose appearing in the plasma [22]. The stomach is rep-
resented by two compartments: one for the solid phase and
the other for the liquid phase. The dynamics are modeled
by the following equations [22]:

Qsto(t) = Qsto1(t) +Qsto2(t) (2a)

Q̇sto1(t) = −kgriQsto1(t) +m(t) (2b)

Q̇sto2(t) = −kempt(Qsto)Qsto2(t) + kgriQsto1(t) (2c)

Q̇int(t) = −kabsQint(t) + kempt(Qsto)Qsto2(t) (2d)

kempt(Qsto) = kmin + (kmax − kmin)/2

×
(

tanh(α ∗ (Qsto − b ∗D))
− tanh(β ∗ (Qsto − d ∗D)) + 2

)
.

(2e)

α = 5/(2 ∗D ∗ (1− b)), β = 5/(2 ∗D ∗ d) (2f)

Qsto is the amount of glucose in the stomach. Qsto1 and

2Due to space, Table 2 is located on the final page.

Qsto2 represent glucose in the solid phase and liquid phase,
respectively. Qint is the amount of glucose in the intestine.
kempt(Qsto) is a non-linear function that represents the rate
of carbohydrates emptying from the stomach. D is the total
amount of ingested glucose in the last meal. m(t) is the
input of meal carbohydrates. The physiological meanings of
parameters can be found in Table 2.

The insulin and absorbed meal glucose interact through
the glucose kinetics, which is modeled by three state vari-
ables. The equations are given as follows [22]:

Ra(t) = f ∗ kabs ∗Qint/BW (3a)

Ġp(t) =− k1 ∗Gp(t) + k2 ∗Gt(t)

+ max (0, kp1 − kp2 ∗Gp − kp3 ∗ Id(t))

− Fsnc −max (0, ke1 ∗ (Gp(t)− ke2)) +Ra(t)

(3b)

Ġt(t) =− (Vm0 + Vmx ∗X(t)) ∗Gt(t)

Km0 +Gt(t)

+ k1 ∗Gp(t)− k2 ∗Gt(t)

(3c)

Ġm(t) =− ksc ∗Gm(t) + ksc/Vg ∗Gp(t). (3d)

Gp represents the plasma glucose concentration. Gt repre-
sents glucose in the rapidly equilibrating tissue. Gm repre-
sents the subcutaneous glucose. Parameters are explained
in Table 2. Note that the insulin action on glucose is mod-
eled by X(t) and Id(t) appearing in the Ġp(t) and Ġt(t)
equations, and the meal glucose rate of appearance Ra(t) is
calculated from the meal sub-system state Qint.

The maximal model of the T1DMS consists of all the
13 differential equations presented above. The insulin sub-
system is a linear model. The meal sub-system contains
a non-linear parameter kempt(Qsto). The glucose kinetics
sub-system has several non-linear terms, such as the max
operators and state product X(t)Gt(t). Most of the model
parameters, as listed in Table 2, are not easily identifiable on
patients. Because of the non-linearity and unknown param-
eters, it is very difficult to directly use the maximal model in
control design. Instead, the model is used primarily for sim-
ulation purposes. The FDA accepted 300 virtual subjects,
each of which is a realization of the entire parameter vector,
that are sampled from a joint distribution. The parameter
distribution was drawn from clinical experimental data ob-
tained from individuals who underwent a triple tracer meal
protocol [22].

4.2 Minimal Models
Minimal models represent another class of first-principle

glucose-insulin models. The basic idea is to lump together
compartments to describe the dominating dynamics of the
glucose-related physiology in a minimal number of compart-
ments. One of the most commonly accepted minimal models
is described in [3], and referred to as the Bergman model.
The Bergman model uses a single lumped compartment to
model insulin and another lumped compartment to model
glucose in plasma. Insulin governs the changes of glucose
level either directly or through another remote compart-
ment. Under this compartmentalization scheme, at most
three state variables are needed describe the glucose-insulin
physiology: plasma glucose, plasma insulin, and insulin in
the remote compartment. Seven minimal models are pro-
posed in [3], from the simple insulin-independent models
(models No. 1 to 3), to the more elaborated forms (models
No. 4 to 7). Not all the models use all of the three states.



The Bergman model No. 4, whose equations are given as
follows, has a linear form and explicitly describes insulin-
dependent glucose uptake,

Ġ(t) = p1G(t) + p2 ∗ I(t) + p3 (4)

where G(t) and I(t) represent plasma glucose and insulin,
respectively, and p1, p2, and p3 are unspecified model pa-
rameters.

While the Bergman model describes the plasma glucose-
insulin dynamics, a second order, two-compartment meal
model is presented in [15]:

ġ(t) = − 1

tG
g(t) +

AG

tG
DG(t)

ṁ(t) = − 1

tG
m(t) +

1

tG
g(t),

(5)

where g(t) represents glucose in the first compartment and
m(t) represents the plasma glucose appearance, which is an
input to the Bergman model. DG(t) is the meal carbohy-
drate input. AG is the carbohydrate bioavailability and tG
is the time of maximum glucose rate of appearance.

Lastly, the insulin pathway from subcutaneous tissue to
plasma can be modeled by the following second order pro-
cess [24, 17].

ẋ(t) = −kax(t) + u(t− τ)

İ(t) = −keI(t) +
ka
Vd
x(t),

(6)

where x(t) and I(t) are insulin in the subcutaneous com-
partment and plasma, respectively, ka and ke are rate pa-
rameters, Vd is the insulin volume, and u(t − τ) represents
the insulin input with a time delay τ .3

Combining equations 4, 5, and 6 results in a fifth-order
linear model that describes the glucose-insulin kinetics given
meal carbohydrate inputs and subcutaneous insulin inputs.
This linear model will be used in the CFAR detector design.

5. CFAR MEAL DETECTOR DESIGN
In this section, we introduce the CFAR meal detector with

a bin-counting heuristic which counts the number of de-
cisions generated using dual parameter-invariant statistics
evaluated at each time step. The remainder of this section
details the dual parameter-invariant statistics and the bin-
counting heuristic, respectively.

5.1 Parameter Invariant Design
The design of CFAR detectors utilizing parameter invari-

ant statistics originates from statistical signal processing [29].
Our previous work [32] proposes a general framework of pa-
rameter invariant design in medical systems. In this paper,
we apply the general methodology in the context of the meal
detection problem.

Our primary goal lies in designing a detector (or monitor)
that has consistent detection performance on a large popu-
lation of Type 1 diabetics given a wide range of meal and
insulin inputs. Because many of the patient-specific physio-
logical parameters (e.g., those in the maximal models) can-
not be identified, the detector is designed to be invariant
to model parameters. In addition, the amount of meal car-
bohydrates is manually reported by users in current Type

3The results in this paper were obtained assuming τ = 0.
Studying the effect of non-zero τ values is planned as future
work.

1 diabetes management systems, which can be unreliable
for a variety of reasons, e.g., the patient may forget to re-
port or miscount the meal portion. Therefore, the detector
is also designed to be invariant to the exact magnitude of
meal inputs.4 Insulin bolus times and doses are used by our
detector since those are pump logged information.

We start with the linear minimal model in equations 4, 5,
and 6. Following standard control theory techniques [25],
the state-space linear model can be transformed into a z-
domain representation and then written in a discrete time
matrix form y = Fθ + Gυ + σn, in which y represents
the outputs, F represents the process model, θ represents
model parameters, G represents input response, υ repre-
sents inputs, and σn are zero-mean Gaussian noises.

The CFAR detector runs in a sliding window fashion. It
has a few critical time windows which are illustrated in Fig-
ure 1. At each time step, the detector is given a vector of T
past measurements y ∈ RT and insulin bolus inputs within
the time window wt. To be invariant to the unknown model
parameters, the CFAR detector first eliminates the effects
of parameters θ by projecting y onto the null space of F so
that the term Fθ becomes zero.

The core of the detector is a bi-directional meal hypothesis
test. The detector first hypothesizes that a meal happened
wd steps back from the current time (meals are treated as
impulses in the detector model). wd is a detector parameter
that stays constant at run-time once it is chosen. The null
hypothesis H0 states that a meal indeed happened in a time
window around next to the hypothesized meal time (the H0

window in Figure 1). The event hypothesis H1 states that a
meal actually happened in an even earlier time window (the
H1 window in Figure 1). The sizes of H0 and H1 windows
are design parameters to be chosen. The input response
matrices G0 and G1 represent the hypothesized meal time
windows of H0 and H1, respectively. When testing H0 in the
direction ofH1, the detector eliminates the effect ofH0 input
by projecting G1 onto the null space of G0. It then calculates
a statistic t0(y) as a ratio, where the numerator represents
the remaining energy in the glucose measurements explained
by signal under H1 and the denominator represents the en-
ergy that is not explained by H1. Then the detector tests
H1 in the direction of H0 and calculates t1(y) in exactly the
same way but in the opposite direction.

The statistic t0(y) assumes H0 is true and tests H1. The
statistic t1(y) assumes H1 is true and tests H0. To guarantee
a minimum level of performance, the detector rejects H0

when t0(y) > η0, where η0 is related the probability of false
alarms. And similarly, the detector rejects H1 when t1(y) >
η1, where η1 is related to the probability of missed detection.

The detector makes a meal detection decision based on the
bi-directional hypothesis tests. When H1 is rejected and H0

is not, it claims a meal happened in the H0 zone. When H0

is rejected and H1 is not, it claims a meal happened in the
H1 zone. When both are not rejected, it means there is not
enough power in the signal to make a decision. When both
are rejected, it means there are residual energy in the mea-
surements that are explained by both hypothesises’ signals.

Figure 1 demonstrates how the CFAR detector works on
simulated scenarios generated by the FDA-accepted max-
imal model. The CGM measurements are sampled at one
minute time steps. The true meal happens around time 2160

4In our future work, we will explore how to leverage an
estimated range of the meal input for prediction and control
purposes.



Figure 1: A meal detection example of the CFAR detector.

(the pink upper triangle in the figure). As the H0 window
approaches the true meal event (the detector never knows
when a meal actually happened and runs hypothesis tests
at every step), the statistic t1(y) (testing H1 in the direc-
tion of H0; the red dashed line in the figure) starts rising
and becomes separated from t0(y). This indicates that H1

is rejected and the detector claims H0. Then as the detector
moves further ahead, the true meal enters the H1 window,
and t0(y) starts rising and t1(y) starts falling, indicating
that H0 is rejected and the detector claims H1.

5.2 Bin-Counting Meal Alarms
In the previous section, we develop a detector that gener-

ates a decision at each time step. At run-time, the detector
runs in a sliding window fashion, with the relative positions
of the windows fixed once the detector parameters are cho-
sen (see Figure 1). As the detector approaches a true meal
event (the ground truth meal times are unknown to the de-
tector), it will first pass through the H0 window and then
the H1 window. Therefore, one meal event will accumulate
a few H0 claims and then some H1 claims as the detector
windows slide through. We leverage this phenomenon and
develop a bin-counting heuristic to generate more robust

Table 1: Credit addition rules for the bin-counting process.

t0(y) > η0 t0(y) ≤ η0

t1(y) > η1
Both Rejecting
(+1 to each)

Accept H0

(+2 to H0)

t1(y) ≤ η1
Accept H1

(+2 to H1)
Insufficient Power
(assign no credits)

meal detection alarms.
The bin-counting process creates one bin per each sample

time and registers a number of “meal hits” under it. Table 1
presents the credit adding rules. At every step, if the de-
tector claims H0, then two credits are added to every bin
in the H0 window; similarly, if the detector claims H1, two
credits are added to every bin in the H1 window. If both H0

and H1 are rejected, then one credit is added to every bin in
both H0 and H1 windows. If both H0 and H1 are accepted,
it means neither H0’s nor H1’s statistic is greater than the
threshold, and thus no credit is assigned. The credit adding
rules are also highlighted in Figure 1.

A peak in the bin-count signal means that the detector
makes a number of decisions at different time steps that all
point to the same meal time, indicating a strong positive



hit of a meal. On the other hand, if a bin only receives
one or two counts (a typical width of H0 and H1 windows
is 5 sample steps), it means the detector did not generate
consistent decisions as the bin passed through the H0 and
H1 windows, indicating a possibility of false positive.

Two design parameters, a threshold t and a minimum
width w, are used to define positive peaks in the bin-count
curve: a peak is characterized by at least w consecutive bin
counts that are above t. At each time step, the detector ex-
amines the bin-count signal (up until the current step) and
raise a meal alarm if a new peak emerges. In Figure 1, the
bin-count curve crosses the threshold of t = 12 around time
2170 (the widths of wd, H0 and H1 windows are all set to 5
sample periods) and stays above it for at least w = 3 steps,
therefore, a meal alarm is declared by the CFAR detector
around the time 2182. The bin-count peaks emerge with
a time lag from the detector’s perspective because of how
the CFAR detector works: it adds bin counts to past time
windows, H0 and H1, according to current hypothesis test
results. The example also demonstrates that the alarming
sensitivity of our detector can be tuned by varying t and w:
the detector may raise the meal alarm sooner with smaller
t and w, at the cost of more false alarms. We also note
that there is a few steps delay between the actual meal time
and when the bin-count curves starts rising. This delay phe-
nomenon is consistently observed in the simulation studies
and we believe this is related to the fact that there is a de-
lay from the onset of eating to CGM starts changing, which
makes sense physiologically: in the maximal model, meal
carbohydrates have to pass several digestion compartments
before affecting the plasma glucose. In our future work we
will incorporate the meal delay into the detector design in
order to accurately identify the onset of a meal.

6. CASE STUDY
We evaluate the CFAR meal detector on an in-silico dia-

betes database that is generated by the FDA-accepted max-
imal model described in Section 4.1. We compare the per-
formance of our detector with a state-of-the-art RoC-based
voting meal detection algorithm published in [12].

6.1 In-Silico Diabetic Database
The academic version of the FDA-accepted Type 1 Dia-

betic Simulator [18] (T1DMS) comes with ten virtual sub-
jects that are drawn from the same parameter distribution
with the FDA-accepted virtual subject population. Each
virtual subject is realization of the 32 parameters of the
physiological model (see Table 2 for the complete list of pa-
rameters). To thoroughly test the performance of our de-
tector across a wide range of possible patient parameters,
we randomly sampled 10, 000 virtual subjects from the pa-
rameter space spanned by the ten T1DMS virtual subjects.
The 10, 000 virtual subjects are sampled from an indepen-
dent uniform distribution in the hypercubes spanned by the
T1DMS subjects. Because real patients’ parameters are
actually from a joint distribution based on clinical study
data [22], we over-sample the parameter space by assuming
no knowledge about the joint distribution, which is good for
testing the robustness of the detectors.

We run simulations of the FDA-accepted maximal model
(with the virtual subjects’ parameters) by feeding meals and
insulin inputs that mimic the real-life scenario of a Type
1 patient. Three meals with random amounts of carbo-
hydrates are fed to a virtual subject every simulation day.

Whenever a meal is given, a meal bolus that is calculated
based on a randomized meal insulin ratio is also fed into
the simulator. In addition, we set a checkpoint once every
hour except overnight time (22PM - 6AM) to mimic the sce-
nario that a patient may check his/her own blood sugar and
take correction insulin boluses when the glucose reading is
too high. The dose of each correction bolus is calculated
based on a randomly drawn insulin sensitivity value. The
simulation settings, including the amount of carbohydrates
in each meal, meal insulin ratio, and insulin sensitivity are
independently and randomly sampled from ranges that are
consistent with de-identified clinical data on over 60 Type 1
diabetics’ CGM readings and pump logs, which are collected
in a collaboration study with the Penn Diabetes Center.

The complete in-silico database consists of simulated glu-
cose data sampled at a one minute period and the corre-
sponding insulin & meal inputs. The database currently in-
cludes two sets of experimental data: 3-day simulation data
of 10, 000 virtual subjects (data set No. 1) and 15-day sim-
ulation data of 1, 000 virtual subjects (data set No. 2). The
first set is to test a detector’s performance across a large
number of virtual subjects and the second set can be used
to test a detector’s performance for a prolonged per-subject
simulation period.

6.2 In-Silico Experimental Results
We test the CFAR meal detector and the RoC-based three

out of four voting meal detector [12] on the in-silico diabetic
databases described before. The two detectors are ran on the
exactly same set of virtual subjects’ simulated data and the
CGM measurements are sampled at a one-minute period. A
receiver operating characteristic (ROC) curve is generated
for each detector by changing the detection sensitivity. For
the CFAR meal detector, the bin-counting threshold t is
varied from 16 to 11 to change its sensitivity. The rest of
the CFAR detector parameters are chosen as follows: the
training data window width wt is 300 samples (or 5 hours),
the lengths of the wd, H0 and H1 windows are all 5 samples,
and the bin-counting w is set to be 3. For the three out of
four RoC voting meal detector, the RoC threshold is varied.

Figure 2 shows the ROC curves of two detectors when
evaluated on the first experiment data set of 10, 000 virtual
subjects (the ROC curves of two detectors running on the
second data set of 1, 000 virtual subjects are highly consis-
tent with the results on the 10, 000 data set; the two are al-
most identical). The CFAR detector’s best operation point
(circled out in Figure 2) is at the 99.6% detection rate and
1.4% false alarm rate. That is on average about one missed
detection every 90 days and one false alarm every 24 days.
To achieve the same detection rate, the RoC voting detec-
tor has a 39.6% false alarm rate, which is two false alarms
every day, 48 times higher than our detector. To achieve
the same false alarm rate, the RoC voting detector has a
78.5% detection rate, which is about one missed detection
every 1.5 days, 60 times higher than our detector. At one of
its best operation points (circled out in Figure 2), the RoC
voting detector has a 93.2% detection rate and a 8.4% false
alarm rate; that is on average about one miss every 5 days
and one false alarm every 4 days, i.e., 18 times more missed
detection and 6 times more false alarms than our detector.
The CFAR detector significantly outperforms the RoC vot-
ing detector. In practice, a false alarm made by the meal
detector may trigger an AP system to unnecessarily deliver
insulin boluses, putting the patient at a greater risk of hypo-



Figure 2: False Alarm Rate vs. Detection Rate of the two
detectors on 10, 000 virtual subjects.

Figure 3: Cumulative detection rates over time from the
onset of meals on 10, 000 virtual subjects.

glycemia; on the other hand, a missed detection may result
in insufficient insulin to compensate post-meal glucose rises
and leave the patient suffer from hyperglycemia.

Figure 3 shows the cumulative detection percentage over
the time delay since the onset of a meal, a measure of how
soon each detector raises an alarm after a true meal. The
curves in Figure 3 are obtained when both detectors are
running at their operating points marked in Figure 2. Ini-
tially, the CFAR detector’s detection time is about less than
one minute (that is less than one sample time) late than
the rate-of-change voting detector, an insignificant differ-
ence given that the glucose physiology changes slowly on a
minute scale (most commercial CGM sensors transmit one
reading every 5 minutes). After the crossing point at around
70%, the CFAR detector quickly reaches its 99.6% detection
rate before the 30 minute delay, whereas the RoC voting
detector reaches its maximum 93.2% detection rate around
the 40 minute delay mark.

Figure 4 compares the number of per-subject missed meals
of the two detectors. The results demonstrate the consis-
tency of detection performance on different subjects, i.e.,
whether the detector performs particularly bad for certain

Figure 4: Distribution of per-subject misses on 1, 000 virtual
subjects.

subjects. In this test we used the data set No. 2 (1, 000
subjects, 15 simulation days on each) since we want to ex-
amine the per-subject performance of each detector. Over
15 simulation days, each subject has 44 meals to be tested
(3 meals a day; the very first meal is excluded as the simu-
lator is still warming up). The CFAR detector has 137 total
misses on 98 subjects, out of which 74 subjects (or 76%)
have only one miss. The maximum number of per-subject
misses is 5. The RoC voting detector has 2063 total misses
on 298 subjects, out of which 79 subjects (or 26%) have one
miss, and 21 subjects have over half of the meals missed,
including 2 subjects on whom all meals are missed. The re-
sults clearly demonstrate the power of parameter invariant
design: the detector exhibits a much more consistent per-
formance over a large virtual population, comparing to the
RoC voting detector.

The in-silico evaluation shows that the CFAR detector
achieves a high detection rate with a low false alarm rate
across a large virtual patient population and a wide range
of meal/insulin simulation settings. It significantly outper-
forms the existing RoC voting detector in the same evalua-
tion, and it also has a much more consistent performance in
terms of per-subject missed detections.

7. CONCLUSION
In this paper, we develop a CFAR meal detector based

on an augmented version of the Bergman minimal model.
In-silico evaluation using the FDA-accepted maximal phys-
iological model shows that the detector significantly outper-
forms the existing RoC based voting meal detector. The
new detector achieves a near-perfect 99.6% detection rate
across a wide range of physiological parameters and simu-
lation settings, with a low average false alarm rate of once
every 24 days.

This preliminary work is intended to motivate the study of
providing guarantees regarding meal (disturbance) detection
and ultimately the prediction of near future glucose values
to inform critical actions that aim at preventing unsafe con-
ditions such as hypoglycemia. Our future work includes ex-
tensive evaluation of the meal detector on clinical data and
developing techniques to formally bound the performance of
the detector.
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Table 2: Physical meanings, units, and a typical Type 1 diabetic value of the parameters in the T1DMS maximal model

Parameters Physical Meaning Units Typical Type 1 value

m1 Rate parameter min−1 0.20

m2 Rate parameter min−1 0.28

m3 Rate parameter min−1 0.30

m4 Rate parameter min−1 0.11

ki Rate parameter min−1 0.0084

P2u Rate parameter min−1 0.0034
Vi Insulin volume liter/kg 0.053
Ib Basal insulin level pmol/liter 108
BW Body weight kg 86

k1 Rate parameter min−1 0.063

k2 Rate parameter min−1 0.13
kp1 Extrapolated EGP mg/kg/min 4.6

kp2 Liver glucose effectiveness min−1 0.0042
kp3 Insulin action on liver mg/kg/min per pmol/liter 0.0095
Vm0 Model parameter mg/kg/min 4.9
Vmx Model parameter mg/kg/min per pmol/liter 0.054
Km0 Model parameter mg/kg 237
Vg Glucose volume dL/kg 1.8

ka1 Rate parameter min−1 0.0034

ka2 Rate parameter min−1 0.016

kd Rate parameter min−1 0.016

ksc Rate parameter min−1 0.095

kgri Rate of grinding min−1 0.039
b Meal related parameter unitless 0.79
d Meal related parameter unitless 0.18

kmax Rate parameter min−1 0.039

kmin Rate parameter min−1 0.074
f Meal related parameter unitless 0.9

kabs Rate parameter min−1 0.21

ke1 Glomerular filtration rate min−1 0.0005
ke2 Renal threshold of glucose mg/kg 339
Fsnc Insulin-independent glucose utilization mg/kg/min 1
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