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Causal and Design Issues in Clinical Trials

Abstract
The first part of my dissertation focuses on post-randomization modification of intent-to-treat effects. For
example, in the field of behavioral science, investigations involve the estimation of the effects of behavioral
interventions on final outcomes for individuals stratified by post-randomization moderators measured during
the early stages of the intervention (e.g., landmark analyses in cancer research). Motivated by this, we address
several questions on the use of standard and causal approaches to assessing the modification of intent-to-treat
effects of a randomized intervention by a post-randomization factor. First, we show analytically the bias of the
estimators of the corresponding interaction and meaningful main effects for the standard regression model
under different combinations of assumptions. Such results show that the assumption of independence
between two factors involved in an interaction, which has been assumed in the literature, is not necessary for
unbiased estimation. Then, we present a structural nested distribution model estimated with G-estimation
equations, which does not assume that the post-randomization variable is effectively randomized to
individuals. We show how to obtain efficient estimators of the parameters of the structural distribution model.
Finally, we confirm with simulations the performance of these optimal estimators and further assess our
approach with data from a randomized cognitive therapy trial.

The second part of my dissertation is on optimal and adaptive designs for dose-finding experiments in clinical
trials with multiple correlated responses. For instance, in phase I/II studies, efficacy and toxicity are often the
primary endpoints which are observed simultaneously and need to be evaluated together. Accordingly, we
focus on bivariate responses with one continuous and one categorical. We adopt the bivariate probit dose-
response model and study locally optimal, two-stage optimal, and fully adaptive designs under different cost
constraints. We assess the performance of the different designs through simulations and suggest that the two-
stage designs are as efficient as and may be more efficient than the fully adaptive deigns under a moderate
sample size in the initial stage. In addition, two-stage designs are easier to construct and implement, and thus
can be a useful approach in practice.
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ABSTRACT

CAUSAL AND DESIGN ISSUES IN CLINICAL TRIALS

Rongmei Zhang

Marshall Joffe

The first part of my dissertation focuses on post-randomization modification of

intent-to-treat effects. For example, in the field of behavioral science, investigations

involve the estimation of the effects of behavioral interventions on final outcomes for

individuals stratified by post-randomization moderators measured during the early

stages of the intervention (e.g., landmark analyses in cancer research). Motivated

by this, we address several questions on the use of standard and causal approaches

to assessing the modification of intent-to-treat effects of a randomized intervention

by a post-randomization factor. First, we show analytically the bias of the estima-

tors of the corresponding interaction and meaningful main effects for the standard

regression model under different combinations of assumptions. Such results show

that the assumption of independence between two factors involved in an interaction,

which has been assumed in the literature, is not necessary for unbiased estimation.

Then, we present a structural nested distribution model estimated with G-estimation

equations, which does not assume that the post-randomization variable is effectively

randomized to individuals. We show how to obtain efficient estimators of the param-

eters of the structural distribution model. Finally, we confirm with simulations the

performance of these optimal estimators and further assess our approach with data
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from a randomized cognitive therapy trial.

The second part of my dissertation is on optimal and adaptive designs for dose-

finding experiments in clinical trials with multiple correlated responses. For instance,

in phase I/II studies, efficacy and toxicity are often the primary endpoints which are

observed simultaneously and need to be evaluated together. Accordingly, we focus on

bivariate responses with one continuous and one categorical. We adopt the bivariate

probit dose-response model and study locally optimal, two-stage optimal, and fully

adaptive designs under different cost constraints. We assess the performance of the

different designs through simulations and suggest that the two-stage designs are as

efficient as and may be more efficient than the fully adaptive deigns under a moderate

sample size in the initial stage. In addition, two-stage designs are easier to construct

and implement, and thus can be a useful approach in practice.
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Chapter 1

Introduction

1.1 Post-randomization analyses and causal infer-

ence

In clinical trials, randomization is the gold standard for evaluating the efficacy

and effectiveness of intervention. Because of the random assignment to the treatment

and control groups, the covariates across the groups are balanced. Therefore, the dif-

ferences between the outcomes for the treatment and control groups can be attributed

to the treatment, i.e., treatment is the cause. Post-randomization variables are mea-

sured after the treatment assignment and before the assessment of final outcomes of

interest. These variables can potentially modify the effect of treatment assignment

of the outcome.

Recently, there have been interest for assessing how post-randomization variables

modify the effects of the randomized intervention on the outcome. For example, in the

1



field of behavioral science, investigations involve the estimation of the effects of behav-

ioral interventions on final outcomes for individuals stratified by post-randomization

moderators measured during the early stages of the intervention. In the area of

cancer, there are landmark analyses where the effect of baseline randomized cancer

treatments on an endpoint outcome such as survival or a reduction of continuous mea-

sures of cancer severity is stratified by an early response to the treatment in terms

of a non-mortality measure of cancer severity (e.g.,Normand, 2007). More recently,

in randomized HIV therapeutic vaccination trials of patients on anti-retroviral ther-

apy, the focus is on the effect of the vaccine therapy on reducing viral load among

those who stop anti-retroviral therapy after randomization to the therapy or control

condition (Mogg et al. 2010).

In some biomedical sciences, intermediate post-randomization variables are often

called mediators or surrogate markers. Information on post-randomization factors are

often used to evaluate direct versus indirect effects. In a randomized trial comparing

the effect of high-dose vs. low-dose 3-azido-3-deoxythymidine (AZT) for patients with

HIV disease, subjects in the high-dose AZT group are less likely to receive prophylaxis

therapy for Pneumocystis Carinii Pneumonia(PCP), a post-randomization treatment.

A direct effect is the effect of AZT holding the same level of post-randomization

treatment to a given level, e.g., receiving PCP prophylaxis therapy, and an indirect

effect is the part of the effect of AZT mediated by PCP (Robins and Greenland,

1994).

Motivated by the wide interest of the post-randomization analyses in clinical trials,

2



the goal of the first part of my dissertation is to investigate the use of standard

and causal approaches to assessing the modification of intent-to-treat effects of a

randomized intervention by a post-randomization factor.

Standard approaches such as standard regression models with Ordinary Least

Squares (OLS) are commonly used in post-randomization mediation or moderation

analyses (Baron and Kenny, 1986). A crucial assumption is that there are no unmea-

sured confounders for the randomized intervention on post-randomization variables,

i.e., a sequential ignorability assumption in causal inference. The no unmeasured

confounding assumption holds for the randomized intervention due to the random

assignment. However, post-randomization variables are usually not randomized and

affected by treatment assignment. Therefore, there are often unmeasured confounders

for post-randomization variable, and thus it introduces bias when we estimate the

joint and main effects of the randomized intervention and the post-randomization

variables.

Because of the vulnerability of standard approaches, a number of causal ap-

proaches have been developed based on the potential outcomes framework (Rubin,

1974). One popular causal approach is Principal Stratification (PS)(Frangakis and

Rubin, 2002), where we stratify individuals into latent classes: compliers, defiers,

never-takers and, always-takers. Robins (1992, 1994, 1998, 1999) developed a num-

ber of innovative approaches, which include Structural Nested Models (SNM) with

G-estimation.

Chapter 2 of this dissertation focuses on the use of standard approaches in post-

3



randomization modification analyses. Based on the standard linear regression model

with main effects of randomized intervention, post-randomization moderator, and

their interaction, we show analytically the bias of the estimators of the corresponding

interaction and meaningful main effects under different combinations of assumptions.

Such assumptions involve the equality of the unmeasured confounding between the

randomized intervention groups and the absence of an effect of the randomized in-

tervention on the post-randomization moderator. We show that even in the presence

of the unmeasured confounding for post-randomization moderator, less stringent as-

sumptions are sufficient for unbiased OLS estimation of the randomized intervention

effect conditional on the post-randomization moderator under the linear interaction

model. In addition, our results show that the assumption of independence between

two factors involved in an interaction, which has been assumed in the literature, is

not necessary for unbiased estimation.

In Chapter 3, we present a Structural Nested Distribution Model(SNDM) es-

timated with G-estimation. Our causal approach does not assume that the post-

randomization variable is effectively randomized to individuals (i.e., sequential ignor-

ability). Under the working assumption of sequential ignorability and when sequential

ignorability does not hold, we show how to obtain efficient estimators of the param-

eters of the SNDM. We use simulations to examine and verify the performance of

these optimal estimators. The working assumption of sequential ignorability leads to

simpler estimators, which are efficient under that assumption, but the more complex

estimator not assuming sequential ignorability can substantially improve efficiency

4



when sequential ignorability does not hold. We use data from a randomized cognitive

therapy trial to illustrate and further assess our approach.

1.2 Dose-finding experiments and optimal designs

The second part of my dissertation is on optimal and adaptive designs for dose-

finding experiments. The primary goal in dose-finding studies is to establish the dose-

response relationship or to find the target dose, e.g. Maximum Tolerated Dose(MTD).

A number of statistical designs have been proposed and studied in dose-finding ex-

periments. From the statistical view, we can divide them into two classes: non-

parametric and parametric approaches. The traditional 3+3 design and Group-Up-

and-Down design (Ivanova 2004, Gezmu and Flournoy, 2006) are often referred to

as non-parametric designs, where the patient assignments are based on specific de-

cision rules. They are usually intuitive and do not involve complicated calculations.

Therefore, non-parametric designs are attractive because they are easy to understand

and implement by a practitioner. However, non-parametric designs may require too

many escalations to reach the target dose and get non-robust estimate for the target

dose. For parametric designs, under a parametric framework, we specify a model

for the dose-response relationship and estimate the unknown parameters. Therefore,

parametric designs are also called model-based approaches, which include designs

such as Best-intention designs (Wu, 1985), Continual Reassessment Method (CRM)

(O’Quigley et al., 1990) and Optimal experimental design (Kiefer 1959, Fedorov,

5



1972). In Best intention design, researchers estimate the unknown parameters and

the target dose in each step. The next patient will be assigned at the estimated

target dose. In CRM, the parameters in the response model are continually updated

and some dose escalation rules are applied. Bayes theorem is usually used in the

CRM. Optimal designs are a class of designs where the optimality of the design de-

pends on the statistical model and is assessed with respect to some statistical criteria.

These statistical criteria are related to the variance-covariance matrix of the unknown

parameters for the model.

In this dissertation, we focus on the study of Optimal designs because of three

major advantages. First, optimal designs are mathematically rigorous and theoreti-

cally efficient. Second, they can be optimized under constraints, such as ethical and

cost concerns, which are very important in dose-finding experiments. Third, opti-

mal designs can accommodate multiple type of factors involving in the experiments

(Atkinson, Donev, and Tobias, 2007).

The history of optimal designs can be traced back to the early twentieth century

in a paper by Smith (1918). The core of the theory of optimal experimental design

was developed during the fifties to the seventies. Kiefer (1959, 1960) contributed

significantly to the development of optimal design theory. The first comprehensive

book on the theory of optimal designs was written by Fedorov (1972). Silvey (1980)

wrote a compact book to introduce the theory of optimal design, especially for linear

models. Another introductory and popular book of the theory of optimal design

was written by Atkinson and Donev (1992). Although optimal designs have a long
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history, they are not very commonly used in the dose-finding experiments due to

their complicated nature. The goal of the second part of my dissertation is to use

optimal design framework to build an efficient design in dose-finding experiments,

particularly, for those with correlated multiple responses.

In clinical trials, it is common that multiple endpoints are of interest. For instance,

in phase I/II studies, efficacy and toxicity are often the primary endpoints which are

observed simultaneously and need to be evaluated together. Motivated by this, we

confine ourselves to bivariate responses and focus on the most analytically difficult

case: a mixture of continuous and categorical responses. In Chapter 4, We show how

to adopt the bivariate probit dose-response model to the use of mixutre responses and

how to quantify the study goal by a utility function. Locally optimal designs, two-

stage optimal designs, and fully adaptive designs are studied under different ethical

and cost constraints in the experiments. We assess the performance of two-stage

designs and fully adaptive designs via simulations. Our simulations suggest that the

two-stage designs are as efficient as and may be more efficient than the fully adaptive

designs if there is a moderate sample size in the initial stage. In addition, two-stage

designs are easier to construct and implement, and thus can be a useful approach in

practice.

Chapter 5 is the appendices, which include the technical proofs in previous chap-

ters.
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Chapter 2

Post-randomization Interaction

Analyses in Clinical Trials with

Standard Regression

2.1 Introduction

In the context of understanding how post-randomization moderators impact ran-

domized interventions in randomized trials, this paper shows that even with unmea-

sured confounding of post-randomization moderators and outcome, Ordinary Least

Squares Regression (OLSR) under a linear interaction model still leads to unbi-

ased estimators of important effects involving the randomized intervention and post-

randomization moderators if other less restrictive assumptions are hold. While these

results pertain to any investigation of the interaction between the randomized factor
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and post-randomization moderators on subsequent outcomes, the results are particu-

larly important for assessing how post-randomization moderators measured early in

a randomized intervention modify the effects of the randomized intervention later in

or after the intervention. That is, we are interested in estimating the main effect of

the randomized intervention on outcome that is modified by factors measured after

randomization but early in the intervention. Such investigations are performed in

such areas as cancer, HIV, and psychiatry. In the area of cancer, landmark analyses

are done, where the effect of baseline randomized cancer treatments on an endpoint

outcome such as survival or a reduction of continuous measures of cancer severity is

stratified by an early response to the treatment in terms of a non-mortality measure

of cancer severity (e.g., Normand, 2007). In randomized HIV prevention vaccination

trials of participants at high risk for HIV, the focus is on the effect of the vaccine

therapy on reducing viral load among those who become infected (The rgp120 HIV

Vaccine Study Group, 2005; Gilbert, Bosch and Hudgens, 2003; Shepherd et al., 2006;

Jemiai et al., 2007). More recently, in randomized HIV therapeutic vaccination trials

of patients on anti-retroviral therapy, the focus is on the effect of the vaccine therapy

on reducing viral load among those who stop anti-retroviral therapy after random-

ization to the therapy or control condition (Mogg et al. 2010). Finally, in the field

of behavioral science, investigations of one aspect of “personalized medicine” involve

the estimation of the effects of complex behavioral interventions on final endpoint

outcomes for individuals stratified by post-randomization moderators measured dur-

ing the early stages of the intervention (Faerber et al., 2010). Such early intervention
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factors involve “common treatment factor” underlying personality (Lambert et al.,

2003).

In addition to the scientific reasons for assessing post-randomization moderation,

testing such an interaction has been proposed for the mediation context (see e.g.,

Vansteelandt 2009). More specifically, the strategy for modeling whether the inter-

vention operates through the mediator or through other unmeasured factors depends

on the presence or absence of the the interaction between the intervention and medi-

ator. Consequently, the results of this paper pertain to both the scientific questions

above and the methodological strategy for mediation analysis.

A number of causal approaches have been proposed for estimating randomized

treatment effects on outcome stratified on a post-randomization moderator. Frangakis

and Rubin (2002) proposed a general causal strategy called Principal Stratification

(PS) where the post-randomization stratification factor is expressed as a combination

of potential outcomes. Mogg et al. (2010) implemented such an approach for the HIV

therapeutic context. Others have relied on less parametric approaches for stratifying

on potential outcome variables for the post-randomization moderator (Gilbert, Bosch

and Hudgens, 2003; Shepherd et al. 2006; Jemiai et al. 2007). Finally, Joffe, Small,

and Hsu (2007) specify causal interaction models without stratifying on the potential

outcomes of the post-randomization moderators, but still controlling for unmeasured

confounding using weighted G-estimation techniques.

These causal approaches have been proposed because of the vulnerability of Or-

dinary Least Square (OLS) estimation of the linear interaction model to unmeasured
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confounding of the post-randomization moderator vs. outcome relationship. How-

ever, we show that even in the presence of such confounding, less stringent assump-

tions are sufficient for unbiased OLS estimation of the randomized intervention effect

conditional on the post-randomization moderator under the linear interaction model.

Some of these less stringent assumptions are assessable with the observed data and

thus preferable to work with than the no unmeasured confounding assumption.

To address these assumptions, we parameterize the linear interaction model such

that the main effect for the randomized intervention represents the effect of this

intervention on outcome for a given level of the post-randomization moderator, which

can be binary or continuous. The interaction then represents the change in the

effect of the randomized intervention on outcome given a change in level of the post-

randomization moderator. The main effect for the post-randomization moderator and

corresponding change represented by the interaction term are interpreted similarly

with the roles of the randomized intervention and post-randomization moderator

reversed. Such a parameterization is implemented in Joffe, Small, and Hsu (2007),

but estimated causally using G-estimation.

Under this parameterization of the linear interaction model, less rigorous assump-

tions than no unmeasured confounding are sufficient for unbiased OLS estimation of

the main effect for the randomized intervention and its interaction with the post-

randomization moderator. Such assumptions involve the equality of the unmeasured

confounding between the randomized intervention groups and the absence of an ef-

fect of the randomized intervention on the post-randomization moderator. However,
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if the post-randomization moderator is related to baseline covariates, these assump-

tions are not sufficient, in which case the assumptions of no unmeasured confounding

of both the post-randomization moderator vs. outcome and the baseline covariates

vs. outcome relationships are required for unbiased OLS estimation of all parameters

of the linear interaction model.

The remainder of the paper is organized as follows. In Section 2, we present the

linear interaction models and analytic bias results for OLS estimation of the model

parameters under different sets of assumptions. To confirm the analytic results, we

conduct simulations under different assumptions in Section 3. In Section 4, we use

the randomized Cognitive Therapy (CT) trial as an illustrative example. The paper

concludes in Section 5 with a summary and discussion.

2.2 Statistical Models and Bias Results

To present bias results for OLS estimation of the linear interaction model, we

present two versions of this model: 1) a “true” model that explicitly adjusts for

an unmeasured confounder; and 2) an “analysis” model that does not adjust for

the unmeasured confounder. We evaluate the bias of the OLS estimators of the

parameters of the analysis model in terms of the parameters of the true model. By

adjusting for the unmeasured confounder, the true model yields causal effects of the

randomization intervention for a given level of the post-randomization moderator

by adjusting for an unmeasured confounder. These results are presented with and
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without effects for observed baseline covariates.

2.2.1 Notation

First, we define notation that is summarized graphically in Figure 2.1. The di-

chotomous randomized intervention is defined as R where R = 1 for assignment to the

intervention group and 0 for assignment to the comparison group. We assume equal

probability for each subject being assigned to the treatment and control groups. If

this were not the case, the probability of randomization would explicitly appear in the

formula, although the conclusions would remain the same. The continuous outcome

is defined as Y , and the continuous or dichotomous post-randomization moderator is

M . The vector of baseline covariates as X̃ = (X1, · · · , Xp)
T . Finally, U represents

the unmeasured confounder for post-randomization moderator M on the outcome Y .

Note that all variables are defined for subject i, while we suppress the index i to

simplify the notation.

2.2.2 Linear interaction model with unmeasured confounder

The targets of estimation are the parameters of the true linear interaction model

that adjusts for the unmeasured confounder (U) of the outcome vs. post-randomization

relationship. Figure 2.1 provides relationships among the variables underlying the

true linear interaction model. These relationships characterized by the arrows are

composed of those that explicitly correspond to parameters of the linear interaction

model and those arrows that do not. The latter arrows represent relationships among
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the randomized intervention (R), the post-randomization moderator (M), and the

unmeasured covariate (U). In analyzing the bias of OLS estimation of the analysis

model, we consider different sets of assumptions involving the arrows in Figure 2.1

for these three variables.

Figure 2.1: A graph example of the moderation analysis.

The true linear interaction model is now defined as:

Y = θ0 + θRR + θMM + θRMRM + θuU + ω, (2.2.1)

where ω is the random error. As the true model in which we account for all unmea-

sured confounding with U , it follows that ω is independent of all covariates in the

model, i.e., E(ω|R,M,U) = 0. Accordingly, the θ parameters can be interpreted in

terms of as causal effects. Specifically, θR is the effect on the outcome due to assign-

ing the randomized intervention to a patient relative to assigning the same patient to
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the comparison group given the patient’s post-randomization moderator is observed

to be zero (M = 0). Similarly, θM represents the effect on Y due to changing the

post-randomization moderator by a unit for a given patient assigned to the random-

ized comparison group (R = 0). Finally, θRM represents the interaction effect, and

can be interpreted as the change in the effect of R on Y due to a unit change in M

for an individual patient; or the change in the effect of M on Y when switching a

patient’s randomized intervention assignment from the comparison group (R = 0) to

the intervention (R = 1). We note that this parameterization is equivalent to the

one under a causal structural mean model provided by Joffe, Small, and Hsu (2007).

Other parameterizations of the linear interaction model provide main effect param-

eters for R and M with different interpretations than the one we present. However,

these parameterizations are all linearly dependent such that the model fit is the same.

Causal interpretation of the θ parameters in (2.2.1) requires the stable unit treat-

ment value assumption (SUTVA) that applies to all estimation methods (Angrist,

Imbens, and Rubin, 1996), regardless of the additional unique assumptions these

methods make to yield such causal intepretations. It requires that a patient’s treat-

ment assignment and post-randomization moderator determination are not impacted

by the assignments and determinations for other patients. Additionally, there is a

single outcome for a given pair of levels for the intervention assignment and determi-

nation of the post-randomization moderator, regardless of the method of administra-

tion of the randomized intervention or the determination of the post-randomization

moderator.
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2.2.3 Analysis model without unmeasured confounder

To estimate the θ parameters in the true model in (2.2.1), we propose OLS esti-

mation of the following analysis model:

Y = β0 + βRR + βMM + βRMRM + ε, (2.2.2)

where ε = θUU + ω is the random error composed of the error of the true model, ω,

and the unmeasured confounder, U . Consequently, unbiased estimation of the causal

θ parameters in the true model in (2.2.1) with OLS estimation of the β parameters

in the analysis model in (2.2.2) is not ensured due to not adjusting explicitly for U in

the analysis model. We now examine the assumptions that are necessary for ensuring

such unbiased estimation of each of the θ parameters in (2.2.1).

2.2.4 Assumptions for unbiased estimation with analysis model

For unbiased estimation of the θ parameters in the true model in (2.2.1) with the

estimators of the β parameters in the analysis model in (2.2.2), we start with the

following assumptions:

(A1) Random error ε’s are independent;

(A2) No unmeasured confounding for both randomized intervention and mod-

erator on the outcome, i.e., E(ε|R, M) = 0, no arrow from U to M or R in Figure

2.1;

(A3) Finite variance of random error, i.e., Var(ε|R,M) = σ is finite.

Note that Assumption (A2) is a sequential ignorability assumption, which is im-
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plied by the following stronger sequential ignorability assumption:

(A2.1) R ⊥ Y rm and (A2.2) M ⊥ Y rm|R.

Here Y rm is the potential outcome (Rubin 1974; Neyman 1990), representing the

outcome that would be observed if a subject was assigned to treatment level r with

post-randomization moderator level m. We note that the causal θ parameters in the

true model (2.2.1) can be expressed in terms of these potential outcomes.

Under Assumptions A1, A2, and A3, the OLS estimators of all β parameters in the

analysis model in (2.2.2) are unbiased with respect to the corresponding θ parameters

in the true model in (2.2.1).

We now consider the bias of the OLS estimators of the β parameters with respect

to the true model θ parameters when we relax the sequential ignorability assumption

(Assumption A2) by not assuming that M is independent of U (arrow from U to M in

Figure 2.1). Randomization guarantees the independence between R and U , so that

E(ε|R) = 0, which we refer to the baseline randomization assumption (Assumption

A2.1).

Such bias is presented in term of asymptotic bias as defined by the bias that

exists after taking the limit in probability of sample moments for M and ε in the

function for finite bias. We take this approach rather than obtaining the expectation

of finite bias and then taking the limit of terms with increasing sample size, because

the probability limits under the former approach offer informative limits representing

moments of M given ε. This is not feasible with the latter approach of obtaining

the expectation with respect to Y and M , an then taking the limit. Accordingly,
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we express bias as Bias(β̂) = (β̂ − θ) as a function of M and ε plus notation for

convergence in probability, op(1).

Theorem 1. Under P (R = 1) = P (R = 0)=1/2 as in a randomized trial with

1:1 randomization, and (A1) and (A3) with E(ε|R) = 0 (A2.2), the asymptotic bias

of the OLS estimators of the β parameters in the analysis model in (2.2.2) relative to

the θ parameters in the true model is

Bias




β̂R

β̂M

β̂RM




=




−E(M |R=1) E(Mε|R=1)
Var(M |R=1)

+ E(M |R=0) E(Mε|R=0)
Var(M |R=0)

E(Mε|R=0)
Var(M |R=0)

E(Mε|R=1)
Var(M |R=1)

− E(Mε|R=0)
Var(M |R=0)




+ op(1) (2.2.3)

where op(1) = (op(1), op(1), op(1))T .

A proof of Theorem 1 is shown in the appendix. Here, we present results for

β̂R, β̂M , and β̂RM)T but not β̂0, because this estimator of the intercept is not of

interest in the analysis.

2.2.5 Alternate assumptions for unbiased estimation with

analysis model

We now consider the assumptions beyond Assumptions A1, A2.1, and A3, that are

necessary under which the asymptotic bias in (2.2.3) of the estimators β with respect

to the θ parameters converges to zero. Accordingly, the bias equations in (2.2.3) show

that the following equalities impact the asymptotic bias for the OLS estimators of
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the β parameters with respect to the θ parameters:

(A2.2) E(Mε|R = 1) = E(Mε|R = 0) = 0 (A4) E(M |R = 1) = E(M |R = 0)

(A5) E(Mε|R = 1) = E(Mε|R = 0) (A6) Var(M |R = 1) = Var(M |R = 0)

Assumption A2.2 is no unmeasured confounding for M and Y . Assumption A4

is no correlation between R and M , i.e., no ITT effect of R on M . Assumption A5

specifies that the confounding for the M vs. Y relationship is the same between

randomized groups. Assumption A6 is no difference in the variance of M between

randomized groups.

Given that Assumptions A1, A2.l, and A3 hold, different combinations of As-

sumptions (A2.2), (A4)-(A6) lead to the following results:

1. Assumption A2.2 implies no asymptotic bias for all three estimators, β̂R, β̂M ,

and β̂RM .

2. Assumptions A4, A5, and A6 imply no asymptotic bias for β̂R and β̂RM , but

not for β̂M .

3. Assumptions A5 and A6 imply no asymptotic bias only for β̂RM .

In summary, given that Assumptions A1, A2.1, and A3 hold:

1. Unbiased β̂RM requires the least restrictive additional assumptions involving

the equal confounding and equal variance of in the randomized groups (A5 and

A6).
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2. Unbiased β̂R requires an additional assumption involving equal mean of M in

the randomized groups in addition to the assumptions for β̂RM to be unbiased

(A4, A5, and A6).

3. Unbiased β̂M requires no unmeasured confounding of the post-randomization

vs. outcome relationship (A2.2).

We note it is possible to assess with observed data Assumptions A4 and A6, which

entail estimating and testing the intervention-specific mean and variance of the post-

randomization moderator. While we cannot assess with observed data Assumption

A5 (equal confounding in the intervention groups), we can substitute observed con-

founders (e.g. baseline covariates) at least assess how much the three-way relation-

ships of the baseline covariates with the post-randomization moderator and outcome

differ between the randomized intervention groups. With less restrictive assumptions

for unobserved confounder and relaxing the no confounding assumption A2.2 does

provide a benefit some of which can be assessed from the observed data for the es-

timators of the main effect for the randomized intervention and the interaction (β̂R

and β̂RM).

Relationship between distribution properties and assumptions for unbiased

estimation

We now consider the distributional properties for the joint distribution of R, M ,

and ε that lead to the above assumptions for unbiased estimation of θR and θRM .

These properties involve the symmetry of this joint distribution. We begin with
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Lemma 1 of Theorem 1 and proceed to Theorem 2, which addresses the relationships

between the bias of the OLS estimators and the factors in Assumptions A2.2, A4,

A5, and A6.

Lemma 1. Let f(r,m, ε) be the probability density function for the joint

distribution of R, M , and ε. If f(r,m, ε) = f(1 − r,−m,−ε), then Assumptions

(A5) and (A6) hold, i.e., E(Mε|R = 1) = E(Mε|R = 0) and Var(M |R = 1) =

Var(M |R = 0).

Theorem 2. Under P (R = 1) = P (R = 0)=1/2, E(ε|R) = 0 , if f(r,m, ε) =

f(1− r,−m,−ε), the asymptotic bias of the OLS estimator in (2.2.2) is: Bias(β̂R) =

−4E(RM)E(Mε)
Var(M)

+ op(1), Bias(β̂M) = E(Mε)
Var(M)

+ op(1), and Bias(β̂RM) = op(1).

Proofs for Lemma 1 and Theorem 2 are shown in the appendix.

Theorem 2 tells us that when the joint symmetric condition holds, there is no

asymptotic bias of the estimator of the interaction term even without sequential

ignorability or correlation between R and M . In addition, under the symmetric dis-

tribution, the magnitude of asymptotic bias of the estimator of the main effect of R

is proportional to the strength of the unmeasured confounding for M and Y , propor-

tional to the strength of correlation between R and M , and inversely proportional to

the variability of M . The magnitude and direction of the relationship between the

asymptotic bias of two main effects depend only on the correlation between R and

M . If E(M) = 0 (or M is centered by its means), without loss of generality, the

direction of the relationship between the asymptotic bias of the two main effect esti-

mators is inversely related to the direction of the correlation between R and M . The
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impact of Assumptions A2.2, A4 to A6 and the symmetry of the joint distribution is

summarized into Table 2.1.

Table 2.1: Impact of conditions for asymptotic bias of OLS estimator in the non-

covariate model.

Assumptionsa

(A2.2) (A4) (A5) (A6) Bias(β̂R) Bias(β̂M ) Bias(β̂RM )
√

- - - op(1) op(1) op(1)

× √ √ √
op(1) E(Mε)

V ar(M) op(1)

× × √ √ [E(M |R=0)−E(M |R=1] E(Mε)
V ar(M)

E(Mε)
V ar(M) op(1)

Symmetric distributionb

× × √ √
-4E(RM)E(Mε)

V ar(M)
E(Mε)
V ar(M) op(1)

NOTE: (a) Assumptions are (can also be found in Section 2.1.1) :

(A2.2) E(Mε|R = 1) = E(Mε|R = 0) = 0, (A4) E(M |R = 1) = E(M |R = 0),

(A5) E(Mε|R = 1) = E(Mε|R = 0), (A6)Var(M |R = 1) = Var(M |R = 0).

(b) The assumption of “Symmetric distribution” is f(r, m, ε) = f(1− r,−m,−ε).

Bias relationships between estimators of R and R ∗M effects

Because the main effect for the randomized intervention and its interaction with

the post-randomization moderator are of clinical interest, we compare the asymptotic

bias of the estimators of these two parameters The assumptions A4 and A6, which

impact the comparison of bias between these the estimator of the R and R ∗ M

parameters, can be assessed with observed data. However, the difference between

randomization groups with respect to the confounding of the M on Y relationship

(Assumption A5) cannot be assessed with observed data. Consequently, we assess

how the bias equations in (2.2.3) for R and R ∗M change with respect to the ratio,
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E(Mε|R = 1)/E(Mε|R = 0) = α:

[Bias(β̂RM)]2 − [Bias(β̂R)]2

=

[
α− 1 + E(M |R = 0)

1 + E(M |R = 1)

Var(M |R = 1)

Var(M |R = 0)

] [
α− 1− E(M |R = 0)

1− E(M |R = 1)

Var(M |R = 1)

Var(M |R = 0)

]

· E2(Mε|R = 0)Var2(M |R = 1)
1

E2(M |R = 1)
+ op(1). (2.2.4)

Given that moments for M conditional on R are estimable from the data, the

function in (2.2.4) is a quadratic function of α, for which the solution can be inverted

to produce bounds for the ratio α = E(Mε|R = 1)/E(Mε|R = 0). One can then

compare resulting bounds for the separate asymptotic bias function for the estimators

of R and R ∗ M . In deriving such bounds, we provide an example (see Section 4.

Data Analysis) for why it is informative to compare the bias between the estimators

of R and R ∗M effects in practice.

2.2.6 Model with baseline covariates and bias of OLS Esti-

mator

In this section, we extend the previous results to accommodate baseline covariates

under different conditions depending on combinations of associations between these

covariates and the post-randomization moderator, the confounding of the covariate

vs. outcome, and post-randomization moderator vs. outcome relationships. In Figure

2.2, these relationships correspond to the arrows between X and M ; between X and U ,

and M and U , respectively. These additional arrows involving X result in additional

sources of bias, which are presented analytically in this section.
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Accordingly, we start with the true model with the baseline covariates:

Y = θ0 + θRR + θMM + θRMRM + δ1X1 + · · ·+ δpXp + θuU + ω, (2.2.5)

where ω is the random error with E(ω|R,M, X1, · · · , Xp, U) = 0. The effects of θR,

θM , and θRM have the same interpretations as in the case without covariates in (2.2.2)

except that the interpretations are now conditional on the observed values of baseline

covariates. In addition, we assume that the effects of θR, θM , and θRM do not vary

with baseline covariates.

As with the θ effects in the true model without baseline covariates relative to

arrows in Figure 2.1, the θ and δ effects correspond to analagous arrows in Figure 2.2

with the baseline covariates added.

Adding baseline covarites to the analysis model in (2.2.2) results in the following

analysis model:

Y = β0 + βRR + βMM + βRMRM + γ1X1 + · · ·+ γpXp + ε, (2.2.6)

where ε = θUU + ω is the random error composed of the error of the true model, ω,

and the unmeasured confounder, U .

For simplicity of notation, we rewrite the true model (2.2.5) and the analysis

model (2.2.6) with matrix and vector expression as follows respectively:

Y = Zθ + Xδ + Uθu + ω, (2.2.7)

and

Y = Zβ + Xγ + ε, (2.2.8)
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Figure 2.2: A graph example of the moderation analysis with baseline covariates.

where Zn×4 is the design matrix for R, M , and RM , Xn×p is the design matrix

for X̃ = (X1, · · · , Xp)
T , θ = (θ0, θR, θM , θRM)T , and β = (β0, βR, βM , βRM)T . Our

parameters of interest in the analysis model in (2.2.8) are β, but not γ.

Similarly to (2.2.2), the OLS estimators of β and γ for the analysis model in (2.2.6)

are asymptotically unbiased with respect to the θ parameters in the true model in

(2.2.5) under Assumptions (A7) to (A9):

(A7) Random error ε’s are independent;

(A8) No unmeasured confounding for the randomized intervention, moderator,
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and baseline covariates on the outcome, i.e., E(ε|R, M, X̃) = 0;

(A9) Finite variance of random error, i.e., Var(ε|R,M, X̃) = σ is finite.

Similar to Assumption (A2), Assumption (A8) is a sequential ignorability assump-

tion, which is implied by the following stronger sequential ignorability assumption

with the potential outcomes expression:

(A8.1) R ⊥ Y rm|X̃ and (A8.2) M ⊥ Y rm|R, X̃.

We then consider the bias of the OLS estimators of the β with respect to θ when

we relax the sequential ignorability assumption (Assumption A8) by not assuming no

unmeasured confounding for the moderator M on the outcome Y , i.e., an arrow from

U to M allowed in Figure 2.2. The assumption of no unmeasured confounding for

the randomized intervention R on the outcome Y , i.e. E(ε|R)=0, is guaranteed by

randomization and referred to the randomization assumption (Assumption A8.1). In

addition, there may be unmeasured confounding for baseline covariates X̃ on outcome

Y , i.e., an arrow from U to X̃ allowed in Figure 2.2. We present the bias by using

the similar approach stated in the previous section.

Theorem 3. Under (A7) and (A9) and assuming E(Rε|X̃) = 0, the asymptotic

bias of the OLS estimator of β under the analysis model in (2.2.2) is

Bias(β̂) = {plim(ZT Z)}−1plim(ZT ε) + plim(L){plim(F)}−1plim((ZL− X)T ε) + op(1)

(2.2.9)

where L4×p = (ZT Z)−1ZT X, and Fp×p = XT X− XT Z(ZT Z)−1ZT X.
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The proof for Theorem 3 is shown in the appendix. Theorem 3 suggests that

the asymptotic bias of OLS estimator β̂ under the analysis model in (2.2.6) consists

of two terms. The first term, {plim(ZT Z)}−1plim(ZT ε), is the asymptotic bias as

if we exclude the baseline covariates in the regression, which was discussed for the

analysis model in (2.2.2) in the previous section. We can call this term “unmeasured

confounding bias” (UM bias) since it is due to the unmeasured confounding of the

moderator vs. outcome relationship. In the second term, L = (ZT Z)−1ZT X, can be

considered as the OLS estimator in the pseduo multivariate regression of baseline

covariates X̃ on R, M , and their interaction R ∗ M . Note that this regression is

“pseduo” because baseline covariates are measured before the post-randomization

moderator. In addition, (X − ZL) is the residual, and F is the sum of residual

square of this pseudo multivariate regression. Hence, the second term in the bias,

plim(L){plim(F)}−1plim((ZL−X)T ε), can be called “the omitted variable bias” (OM

bias) following Hosman, Hansen, and Holland (2009), which represents the part of

bias of β̂ due to the omission of baseline covariates in (2.2.6).

We now consider the assumptions beyond Assumptions A7, A8.1, and A9 shown

by the bias equations in (9) to impact the asymptotic bias if the OLS estimators of

the β parameters in terms of the θ parameters of the true model:

(A8.2) E(Mε|R = 1, X̃) = E(Mε|R = 0, X̃) = 0

(A10) E(M |X̃) = E(M)

(A11) E(ε|X̃) = 0.
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Assumption A8.2 is no unmeasured confounding for M and Y given X̃. Assump-

tion A10 is no correlation between M and X̃. Assumption A11 is no unmeasured

confounding for X̃ and Y . We summarize the impact of these assumptions in Table

2.2.

Given that Assumptions A7, A8.1, and A9 hold, different combinations of As-

sumptions A8.2, A10 and A11 lead to the following results:

1. There is no overall asymptotic bias for all estimators β̂ = (β̂R, β̂M , β̂RM) when

Assumptions A8.2 and A10, or A11 hold.

2. The overall asymptotic bias for the estimator β̂ is equivalent to the asymptotic

omitted variable bias when Assumption A8.2 holds.

3. The overall asymptotic bias for the estimator β̂ is equivalent to the asymptotic

unmeasured confounding bias when Assumption A10 holds.

Table 2.2: Impact of conditions for asymptotic bias of OLS estimator in the covariate

model.
Assumptionsa

(A8.2) (A10) (A11) UM Bias OM Bias Overall Bias
√ √

- op(1) op(1) op(1)
√ × √

op(1) op(1) op(1)
√ × × op(1) plim(LF−1(ZL−X)T ε) plim(LF−1(ZL−X)T ε)

× √
- plim((ZT Z)−1ZT ε) op(1) plim((ZT Z)−1ZT ε)

NOTE: (a) Assumptions are (can also be found in Section 2.6) :

(A8.2) E(Mε|R = 1, X̃) = E(Mε|R = 0, X̃) = 0, (A10) E(M |X̃) = E(M), (A11)E(ε|X̃) = 0

Therefore, the asymptotic unmeasured confounding bias relies only on Assumption

8.2 - the relationship between M and Y . When there is no unmeasured confounding

between M and Y , there will be no asymptotic unmeasured confounding bias. In
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contrast, the asymptotic omitted variable bias may rely on all three assumptions

above. When there is no association between M and X̃, there will be no asymptotic

omitted variable bias. When there is an association between M and X̃, but no

unmeasured confounding between M and Y , and no unmeasured confounding between

X̃ and Y , there will be no asymptotic omitted variable bias.

If none of the above combination holds, the overall asymptotic bias will be the

sum of the unmeasured confounding bias and omitted variable bias. The direction of

the former depends on the sign of plim{ZT ε}, which can be approximately considered

as the sign of the effect of unmeasured confounding for M and Y . The direction

of the latter depends on the sign of the correlation between M and X̃, and the

sign of plim{(ZL − X)T ε}, i.e., the sign of effect of unmeasured confounding for the

residual of projecting X̃ on Z and Y as n → ∞. When these two biases have the

opposite directions, adjusting for baseline covariates will reduce the magnitude of the

asymptotic bias of β̂; while if they have the same direction, adjusting for baseline

covariates will unfortunately increase the magnitude of the asymptotic bias of β̂.

2.3 Simulations

Simulation results are first presented for the non-covariate analysis model in

(2.2.2), followed by simulation results for the covariate analysis model in (2.2.6).

The true simulation models correspond to the relaxation of analysis Assumptions

(A1) to (A3) for the non-covariate model and (A7), to (A9) for the covariate model.
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All simulations were based on the following conditions. First, the true values

for the model parameters that were estimable were obtained from the actual CT

data analysis presented in Section 4. Second, the baseline CT data (randomization

intervention R and baseline covariates X̃) were used to simulate M based on the

regression models of M on X̃ and the random error within each of the randomization

groups (τ if the subject is in the treatment group, and ξ if the subject is in the

control group). The outcome Y was generated given R, simulated M , (the observed

X̃ if under the covariate model), and the random error ε. Hence, the sample size of

the data analysis for each simulation was that of the CT data (i.e., 94). The random

errors (τ , ξ, ε) were assumed to be multivariate normal random variables with means

zero, variances (σ2
1, σ2

0, σ2), and covariances (ρσ1σ0, ρ1σ1σ, ρ0σ0σ), where σ2
1 and σ2

0

were specified as the estimated variance of the observed M within randomized groups,

σ2 was specified as the estimated variance of observed Y , ρ was fixed to zero, while ρ1

and ρ0 were specified as different combinations of values (i.e., different confounding

relationships for the moderator within each of the randomization groups).

The number of simulation iterations under each combination of model assump-

tions was 5000. We present the bias, coverage rate of 95% confidence intervals (the

percentage of simulations for which the interval covered the true parameter), and

Mean Squared Error (MSE).

Under the non-covariate model in (2.2.2), Table 2.3 presents the simulation re-

sults for four different values of ρ1 and ρ0 with the other model parameters spec-

ified as described above. Using the estimated quantities from the CT data, i.e.,
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E(M |R = 1) = 0.468, E(M |R = 0) = −0.430, V ar(M |R = 1) = 117.86, and

V ar(M |R = 0) = 96.68, (Note that M was centered by its mean before the data

analysis was conducted.), we found the condition that if ρ1/ρ0 falls into the inter-

val of [0.4, 3], then |Bias(β̂RM)| < |Bias(β̂R)|, otherwise |Bias(β̂RM)| > |Bias(β̂R)|

(from expression (2.2.4) in Section 2.1.3). Therefore, four scenarios were considered

to represent different unmeasured confounding relationships. The simulation results

presented in Table 2.3 are consistent with our expectation. For the first two sce-

narios with ρ1/ρ0 = 5 or 0.2, |Bias(β̂RM)| are greater than |Bias(β̂R)|, and for the

scenario with ρ1/ρ0 = 1, |Bias(β̂RM)| is less than |Bias(β̂R)|. For the scenario with

ρ1 = ρ0 = 0 (i.e., with sequential ignorability), very small bias were detected for all

three estimates, implying that they are asymptotically unbiased. The coverage rates

for β̂R and β̂RM are higher than that for β̂M among all four scenarios.

Table 2.3: Simulation results for the non-covariate model in (2.2.2) based on the CT data.
(N=94, θR = −5.39, θM=0.74, θRM = −0.59. )

Under Sequential Ignorability Effect Bias(%) Coverage MSE
Randomization -0.181(3%) 95.7% 6.63

No Moderator 0.102(14%) 73.9% 0.04
ρ1 = 0.5, ρ0 = 0.1 Interaction -0.315(53%) 90.4% 0.16

Randomization -0.199(4%) 95.5% 6.69
No Moderator 0.503(68%) 18.3% 0.28

ρ1 = 0.1, ρ0 = 0.5 Interaction 0.420(-71%) 64.2% 0.23
Randomization -0.175( 3%) 96.1% 6.75

No Moderator 0.205(28%) 79.2% 0.07
ρ1 = 0.2, ρ0 = 0.2 Interaction 0.097(-16%) 94.4% 0.06

Randomization -0.035(0.6%) 95.8% 7.26
Yes Moderator 0.002(0.3%) 95.0% 0.03

ρ1 = 0, ρ0 = 0 Interaction 0.004(0.7%) 95.7% 0.06
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Table 2.4: Simulation results for the covariate model in (2.2.6) based on the CT data. UM
and OM represents unmeasured confounding bias and omitted variable bias respectively.
(N=94, θR = −5.85, θM=0.48, θRM = −0.35.)

Under Sequential

Ignorability Effect UM Bias OM Bias Overall Bias(%) Coverage MSE

Randomization -0.250 -0.378 -0.628(11%) 94.3% 7.31

No Moderator 0.099 0.031 0.130(27%) 89.9% 0.06

ρ1 = 0.5, ρ0 = 0.1 Interaction 0.317 0.063 0.380(-109%) 71.7% 0.22

Randomization -0.262 0.217 -0.045(0.8%) 95.1% 6.81

No Moderator 0.503 0.125 0.628(131%) 12.2% 0.43

ρ1 = 0.1, ρ0 = 0.5 Interaction -0.420 -0.100 -0.520(149%) 52.1% 0.34

Randomization -0.173 -0.051 -0.224(4%) 94.8% 7.55

No Moderator 0.200 0.052 0.252(53%) 76.9% 0.11

ρ1 = 0.2, ρ0 = 0.2 Interaction -0.034 -0.012 -0.046(13%) 94.8% 0.08

Randomization -0.006 0.007 0.001(0.02%) 94.8% 7.75

Yes Moderator -0.001 -0.001 -0.002(0.4%) 97.5% 0.05

ρ1 = 0, ρ0 = 0 Interaction 0.001 -0.001 < 0.001(< 0.01%) 95.0% 0.08

Under the similar setting of Table 2.3, Table 2.4 presents the simulation results for

covariate model in (2.2.6). Under no sequential ignorability, the bias for the estimates

of the three effects is the combined effects from unmeasured confounding bias and

omitted variable bias, and the omitted variable bias cannot be ignored. Recall that

the observed baseline covariates were used to generate the outcome, and they are

not correlated with the random error ε, implying that no unmeasured confounding of

X̃ and Y are assumed in this simulation setup. Therefore, from (2.2.9), when there

is no unmeasured confounding of X̃ and Y , and under sequential ignorability, all

three estimates should be asymptotically unbiased. The simulation results in Table

2.4 confirms this. Under sequential ignorability, the unmeasured confounding bias,

omitted variable bias and overall bias for three estimates are all very small. Among

all four scenarios, the coverage rates for the estimates for the randomization effect are

always high (94.3% - 94.8%), the coverage rates for the estimates for the interaction
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effect are fair (52% - 95%), and the coverage rate for the estimated for the moderator

effect may be very low (12.2% - 97.5%).

2.4 Data Analysis

The motivation for assessing post-randomization moderators of treatment arose

from the randomized trial of a cognitive therapy intervention for suicide attempters

(Brown et al. 2005). The sample consisted of 120 suicide attempters who received

medical or psychiatric evaluation at the Hospital of the University of Pennsylvania

within 48 hours of the attempt and were recruited from the hospital emergency de-

partment from the original study. In this study, subjects were randomized to either

receive or not receive 10 sessions of Cognitive Therapy (CT) for suicidal behavior

and depression. Regardless of randomization assignment, everyone received usual

care CT for suicidal behavior. In treating these outcomes, CT focuses on negative

thinking (i.e. hopelessness and self-criticism), behavior problems (i.e. avoidance and

passivity), strategies to instill hope (i.e. helping patient get a job), reducing suicide

ideation, and needs related to the recent suicidal crisis. Under the common treat-

ment factor hypothesis that intervention effects for behavioral outcomes are stronger

in early responders to initial treatment (Haas et al. 2002; Lambert 2005), early sui-

cide ideation targeted by CT will be examined as a post-randomization moderator of

treatment on subsequent depression severity as an outcome given that CT impacts

depression severity in addition to reducing the risk of suicide attempts.
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For the purposes of illustrating the analytic results, the data analysis will focus on

the moderation of the effect of CT on 6-month depression by 1-month suicide ideation.

Because of drop-out the sample size is 94. Depression was measured by BDI-II, and

suicide ideation was measured by Scale for Suicide Ideation-Worst (SSIW).

We used two analysis models described in previous sections on CT data for the

outcome BDI-II at 6 months. They are: (1) the standard regression model with

CT, SSIW and their interaction; (2) the standard regression model with CT, SSIW

and their interaction, and baseline covariates such as gender, baseline BDI-II, Beck

Hopelessness Scale (BHS), number of suicide attempts, physical health, etc., as the

predictors. The analysis results are presented in Table 2.5.

Table 2.5: Data analysis results for the CT trial: non-covariate and covariate models of
the standard regressions with OLS.

Non-covariate model Covariate Model
Effect Estimate Std t-value P-val Estimate Std t-value P-val

Randomization -5.39 2.73 -1.97 0.0515 -5.85 2.70 -2.17 0.0330
Moderator 0.74 0.19 3.81 0.0003 0.48 0.22 2.25 0.0269
Interaction -0.59 0.27 -2.21 0.0297 -0.35 0.29 -1.18 0.2414

The covariate and non-covariate models yielded similar inference but the mag-

nitudes of estimates differed. The two models agreed on the direction but not the

significance of the interaction between CT and 1-month suicide ideation on 6-month

depression. Under the common treatment factor model, one would expect some ef-

fect of CT on suicide ideation. The corresponding observed ITT effect size (mean

group difference divided by the standard deviation of 1-month suicide ideation) for
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this potential effect modifier suggests that 1-month suicide ideation may not corre-

spond to the common treatment factor, as the effect size is very small (< 0.1). In

turn, the estimator of the interaction may be unbiased in the presence of unmeasured

confounding at least in the non-covariate case.

Among the eight baseline covariates included in the study, five of them are signifi-

cantly correlated with the 1-month suicide ideation (p-value < 0.05), and four of them

are significantly correlated with the 6-month depression (p-value < 0.05). Therefore,

the omitted variable bias may not be ignored in (2.2.9).

The negative estimate for the interaction effect implies that the CT intervention

alleviates the depression symptoms more for the patients with less suicide ideation

than those with severe suicide ideation. Although one needs to be careful in inter-

preting main effects in the presence of interaction, the covariate and non-covariate

models yielded estimates with same signs for both the main effects for CT and for

suicide ideation. In the presence of the interaction, the significant main effect for

CT is interpreted as the reduction of 6-month depression for those with no suicide

ideation at 1-month. The significant increase in 6-month depression due to 1-month

ideation pertains to the non-CT group. Although the parameter estimates in the

two models have same signs, their values are somewhat different. This implies that

adjusting for the measured baseline covariates in the regression model reflects con-

founding by them. One may conclude that there may be unmeasured factors that

are also confounders of the effects in the regression models. Under such unmeasured

confounding or departures from one of the other Assumptions in (A1)-(A3) or (A7)-
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(A9) are violated, the two sets of estimates using covariate and non-covariate models

are biased.

2.5 Discussion

In the context of assessing the modification of randomized intervention effects on

outcome by early post-randomization moderators impacted by the intervention, we

have investigated the bias of OLS estimators for the parameters of a standard re-

gression interaction model. More specifically, we have presented bias results for the

standard regression model with main effects and interaction for the randomized inter-

vention and post-randomization moderator under departures from the assumptions

for OLS estimation. Our results have several implications for assessing how post-

randomization moderators modify the effect of randomized intervention on outcome

in randomized trials.

First, the bias of the estimators of the different parameters with respect to the

respective causal parameters depends in different ways on assumptions involving un-

measured confounding and differences between the randomization groups with respect

to the moderator and unmeasured confounders. The OLS estimator of the main effect

for the moderator is unbiased only when there is no unmeasured confounding of the

moderator vs. outcome relationship, regardless of the other assumptions. In contrast,

even in the presence of unmeasured confounding, the estimator of the randomized in-

tervention main effect is unbiased when the magnitude of unmeasured confounding
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and the mean and variance of the moderator are the same between the randomization

groups. Further, in the presence of unmeasured confounding, the estimator of the in-

teraction term is unbiased only when the magnitude of unmeasured confounding and

variance of the moderator is the same between the randomization groups. We have

shown that the symmetry of the joint distribution of the randomized intervention,

moderator, and outcome can guarantee this condition.

In the presence of observed baseline covariates, the bias due to the above conditions

(“unmeasured confounding bias”) may be augmented by “omitted variable bias”, due

to the relationships among baseline covariates, moderator, outcome, and unmeasured

confounder. Even without unmeasured confounding of the moderator and outcome,

all OLS estimators under the regression interaction model may be biased due to these

relationships. Figure 2.2 shows that either in the presence of unmeasured covariates or

the baseline covariates, the moderator becomes a collider thus inducing confounding

by its presence in the model.

The above results indicate that even in the presence of unmeasured confounding,

unbiased inference may still be possible at least with respect to the randomized in-

tervention main effect and its interaction with the moderator. The less of an impact

of the randomized intervention on the distribution of the post-randomization moder-

ator and its relationship with unmeasured confounders, the less bias there is for the

estimators of the randomized intervention main effect and interaction terms. Such

a result suggests more flexibility with OLS estimation in terms of the need of no

unmeasured confounding assumptions. Apart from the scientific reasons for assess-
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ing post-randomization moderation, testing such interaction has been proposed for

the mediation context (see e.g., Vansteelandt 2009) in the absence of no unmeasured

confounding assumptions, the reliance on the assumption of no relationship between

the randomized intervention and the post-randomization moderator conflicts with the

mediation context where the post-randomization factor is the mediator. Mediation re-

quires that the randomized intervention-mediator interaction not be significant. One

would then think that the reliance on the assumption of no relationship between the

intervention and mediator in the absence of the no-unmeasured confounding assump-

tion conflicts with the assumption for mediation that such a relationship does exist.

However, the test for the interaction requires the no-unmeasured confounding as-

sumption regardless of the relationship between the intervention and mediator. That

is, there is no conflict between assessing treatment-post-randomization moderator

interaction and assessing mediation.
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Chapter 3

Optimal G-estimation Mediation

Analyses under departure from

Sequential Ignorability

3.1 Introduction

In clinical trials, especially for trials in behavioral intervention studies, the re-

sponse for treatments may be very poor. Researchers are interested in not only the

average treatment effect, but also how the effects vary among the subject groups.

Conceptual theory in the behavioral science literature suggests that the treatment

effect may depend on post-randomization factors. Therefore, there has been focus

on treatment effect modification using post-randomization variable as moderators or

mediators; one purpose is to identify early in the study patients who will respond
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more efficiently or who will respond earlier to the treatment.

An example in a psychiatry study that motivates our research is a cognitive ther-

apy trial (Brown et. al., 2005). The purpose of this trial is to evaluate the effect of

cognitive therapy for recent suicide attempters. In this trial, at baseline, each patient

is randomly assigned to either receive or not receive 10 sessions of Cognitive Therapy

specifically developed for preventing suicide attempters. Regardless of randomization

assignment, everyone received usual care from clinicians in the community as well as

tracking and referral services from the study case managers. The outcome, the Beck

Depression Inventory-II (BDI-II), is a score of depression severity, which was mea-

sured at 6 months after randomization. The post-randomization variable, the Scale

for Suicide Ideation Worst (SSIW), was measured at 1-month after randomization but

before the measurement of the final outcome. The scientific question is then whether

the SSIW at 1-month modifies the treatment effect on the 6-month depression score

BDI-II.

Post-randomization factors may mediate the effects of the treatment on the out-

come in addition to moderating the effects; in the presence of possible mediation,

information on post-randomization factors in often used to evaluate direct versus in-

direct effects in biomedical studies. In a randomized trial comparing the effect of

high-dose vs. low-dose 3-azido-3-deoxythymidine (AZT) for patients with HIV dis-

ease, subjects in the high-dose AZT group are less likely to receive prophylaxis therapy

for Pneumocystis Carinii Pneumonia(PCP), a post-randomization treatment. A di-

rect effect is the effect of AZT holding the same level of post-randomization treatment
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to a given level, e.g., receiving PCP prophylaxis therapy, and an indirect effect is the

part of the effect of AZT mediated by PCP. To assess the benefits associated with

AZT and the benefits of receiving PCP, Robins and Greenland (1994) used Structural

Nested Failure Time models. Although the main question in this example was about

mediation and not moderation as in the first example, a similar statistical approach

may apply.

In this study, using the data from the first example, we investigate two types of

statistical methods.

we consider and compare two methods that have been proposed to estimate the

joint effects of the main treatment and the mediator/moderator. First, we consider

standard regression, which has been widely used for investigating the joint effects of

a randomized treatment and post-randomization variables (Baron and Kenny, 1986).

It is a crucial assumption that the post-randomization variable is effectively random-

ized to individuals in addition to the randomized baseline intervention. In our data

example, this assumption is dubious. The second approach is based on formal causal

reasoning involving the potential outcomes framework (Rubin, 1974). Although the

potential outcome framework has been set up for a long time, causal models that are

appropriate for post-randomization modification analysis became available during the

last two decades (Robins, 1992, Robins and Greenland, 1994). In this paper, we con-

sider inference using Structural Nested Models and G-estimation without assuming

the sequential ignorability.

The paper is organized as follows: Section 2 presents statistical methods and
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analytical approaches, Section 3 presents a case-study, Section 4 provides the results

of a simulation experiment, and Section 5 provides a discussion.

3.2 Statistical Models and Analytical Methods

We define all the observed and potential variables for subject i, while we generally

suppress the index i to simplify the notation. For the observed variables, Y is the

observed continuous outcome; R is the observed randomized intervention, 1 for sub-

jects assigned treatment, 0 for control; M is the observed post-randomization factor,

either continuous or binary; X is the vector of the observed baseline covariates other

than randomization. We define Y rm as the outcome variable that would be observed

if subject i were randomized to level r of the intervention and then were to receive or

exhibit level m of the post-randomization factor. Therefore, Y 00 can be considered

as the reference potential outcome, which is the outcome that would be observed for

the subject to receive levels 0 for both R and M .

Causal effects are contrasts between different potential outcomes. Y R0 − Y 00 is

the causal (manipulated) direct effect of the randomized intervention holding post-

randomization factor M constant as 0 for the subject who receives the treatment R.

Y RMR − Y 0MR
is the causal (natural) direct effect of the randomized intervention

holding post-randomization factor M to the level it would have attained had the

subject received treatment R. Y 0MR − Y 0M0
is the causal (natural) indirect effect

of the randomized intervention holding the intervention constant as 0 and manipu-
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lating the post-randomization factor M to the level it would have attained had the

subject received treatment R. In addition, Y RM − Y R0 is the causal effect of post-

randomization factor M for the subject who receives the treatment R and at the level

M of the post-randomization variable.

3.2.1 Models

Structural Nested Distribution Model SNDM

Robins(1992, 1999) developed a number of innovative methods to eliminate the

bias of standard methods for estimating the causal effect of treatment. Following his

idea, we define the baseline potential outcome Y 00 in which the interaction between

the randomized intervention and the post-randomization factor is allowed:

Y 00 = Y − ψRR− ψMM − ψRMRM, (3.2.1)

where ψR, ψM , and ψRM are the causal parameters. Loosely speaking, ψR is the main

effect for the randomization factor R, ψM is the main effect for the post-randomization

factor M , and ψRM is their interaction effect.

Standard Regression Model

To compare with the causal model in (3.2.3), we consider the corresponding stan-

dard linear regression model:

Y = βXX + βRR + βMM + βRMRM + εS, (3.2.2)
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where (βR, βM , βRM) are parameters for the association model, βX is a vector of effects

for baseline covariate values x, and εS is a mean zero error term with fixed variance.

In this model, it is assumed that ε is uncorrelated with all the regressors. Note that

in the absence of sequential ignorability, this assumption does not hold.

The parameters βR, βM , and βRM are defined as comparisons of observed outcome

expectations from different sample subgroups defined by R and M (Ten Have et

al. 2007).Therefore, they are not casual contrasts of expectations under different

conditions defined by R and M for the same individual. The comparisons of such

subgroups will in general only equal the causal contrasts for an individual under

certain conditions:

1. Sequential ignorability of both the baseline intervention and mediator given

baseline covariates;

2. Independence among subjects;

3. Model assumptions including the correct association between baseline covari-

ates X and outcome Y .

4. Finite variance of random error.

3.2.2 Assumptions for G-estimation of SNDMs

The necessary assumptions to obtain the unbiased estimators in the SNDMs are:

1. Stable Unit Treatment Value Assumption (SUTVA). This assumption consists

of two sub-assumptions. First, there is a single value for each of the potential outcome

variables (Y rm) for a given subject i regardless of the randomization assignment or
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mediation behavior of any other subject i′. Second, there is a single value for each of

the potential outcome random variables (Y rm) for a given subject i regardless of the

method of administration of the randomized baseline intervention or the administra-

tion or occurrence of the mediator.(Angrist, Imbens, and Rubin, 1996; Ten Have et

al. 2007; VanderWeele and Hernan, 2011)

2. Randomization Assignment or the ignorability of baseline assignment of in-

tervention. Mathematically, this means that Y rm⊥R|X. This assumption implies

stochastic independence between the randomized baseline intervention, R, and po-

tential outcomes, i.e., P (Y rm|R = r,X = x̃) = P (Y rm|X = x). It also implies no

imbalanced between randomization groups with respect to unmeasured confounders.

3. Model assumptions includes no interaction assumptions of R∗M ∗X, R∗X, and

M ∗X. However, the SNDM model relaxes the assumption of the correct association

of X and Y 00.

4. Independence of observations for standard error estimation.

3.2.3 Estimation for SNDM

We do not know what Y 00 is. Under a causal theory, we can compute a putative

value for Y 00 from observed quantities as

Y 00(Ψ) ≡ Y − ψRR− ψMM − ψRMRM, (3.2.3)

where Ψ = (ψR, ψM , ψRM).

If the putative value of the causal parameter Ψ is true, Y 00(Ψ) can be viewed as
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the potential outcome Y 00 and will be independent of R given X. Estimation may be

based on testing this independence for an assumed value of the causal parameter Ψ,

which is the basic idea of G-estimation.

Under the assumptions for SNDM stated previously, we can obtain consistent es-

timators for ψR, ψM , and ψRM by solving appropriate unbiased estimating equations.

Let q = Pr(R = 1) be the randomization probability (also the propensity score),

and let g(Y 00(Ψ), X) be a known function of potential outcomes Y 00(Ψ) and X. The

randomization assumption implies that g(Y 00(Ψ), X) is independent of R conditional

on X. Under the SNDM (3.2.3), we can obtain the correct Ψ through solving the

following estimation equation.

E(U(Ψ)) = E

{∑
i

(R− q)g{Y 00(Ψ), X}
}

= 0 (3.2.4)

A consistent estimator Ψ can be obtained by solve the empirical version of (3.2.4):

U(Ψ) =
∑

i

(R− q)g{Y 00(Ψ), X} = 0. (3.2.5)

This method is known as G-estimation. The choice for g{Y 00(Ψ), X} will not

impact the consistency of the estimator, while some choices for g{Y 00, X} will lead

to attaining semi-parametric information bound, and other choices will lead to ineffi-

cient estimators. The optimal choice that produces the most efficient estimation for

dichotomous randomized intervention R is (Robins(1992)):

gopt(Y 00, X) = E{SΨ(Ψ, θ; X,R,M, Y )|X,R = 1, Y 00}

−E{SΨ(Ψ, θ; X, R, M, Y )|X, R = 0, Y 00} (3.2.6)
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where SΨ(Ψ, θ; X,R, M, Y ) is the score function with respect to Ψ, computed from

the full likelihood. θ represents the nuisance parameters.

In the framework of our post-randomization analyses, The full likelihood function

is

L(Ψ, θ; X, R, M, Y )

= L(Ψ, θ; X, R, M, Y 00(Ψ))
∂Y 00(Ψ)

∂Y

= f(X; θ)f(R|X; θ)f(Y 00(Ψ)|X; θ)f(M |R, X, Y 00(Ψ); θ) (3.2.7)

Note that ∂Y 00(Ψ)
∂Y

= 1 for model (3.2.3).

Under sequential ignorability and our model assumption (3.2.3), the score function

for Ψ is

SΨ(Ψ, θ; X,R,M, Y ) =
∂ log f(Y 00(Ψ)|X; θ)

∂Ψ
= −∂ log f(Y 00(Ψ)|X; θ)

∂Y 00(Ψ)




R

M

RM




.

(3.2.8)

Without sequential ignorability, if we assume randomization only, i.e., the distri-

bution of M depends on the baseline potential outcome Y 00, then under our model
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assumption (3.2.3), the score function for Ψ is

SΨ(Ψ, θ; X,R,M, Y ) =
∂ log f(Y 00(Ψ)|X; θ)

∂Ψ
+

∂ log f(M |X,R, Y 00(Ψ); θ)

∂Ψ

= −∂ log f(Y 00(Ψ)|X; θ)

∂Y 00(Ψ)




R

M

RM



− ∂ log f(M |X, R, Y 00; θ)

∂Y 00(Ψ)




R

M

RM




.

(3.2.9)

Joffe and Brensigner (2003) proposed a weight scheme to gain efficiency of G-

estimation based on the sequential ignorbility assumption. Although the models are

different, we can apply their scheme on our case. In the followings, we assume that

the potential outcome Y 00 ∼ N(µ(X), σ2), and we discuss the optimal G-estimation

under the score functions (3.2.8) and (3.2.9) respectively.

Optimal G-estimation with the sequential ignorability

Under (3.2.8) and the working assumption of Y 00 ∼ N(µ(X), σ2), we have

gopt(Y 00, X) =
Y 00 − µ(X)

σ2




1

E{M |X, R = 1} − E{M |X,R = 0}

E{M |X,R = 1}




.

(3.2.10)

Expression (3.2.10) is a vector of weight corresponding to ψR, ψM , and ψRM , respec-

tively. It works for either continuous M or binary M . Following Joffe and Bresigner

(2003), the part in parenthesis of (3.2.10) is the weight vector to identify the esti-

mation equation in G-estimation. Specifically, the unit weight for main effect of R
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implies that all subjects have the same effect of R, thus should be given the same

weight. The weight for ψM , E{M |X, R = 1} − E{M |X, R = 0}, can be called the

compliance score (Follman, 2000) since it is a measure of the effect of randomization

R on the treatment received, which is the post-randomization factor M in our case.

This can also be referred as the principle score (Hill, Waldfogel, and Brooks-gunn,

2002). Intuitively, this means that the subjects with higher effects of R on M given

the baseline covariates X will provide more information on the effect of R on M and

thus they should be given more weight. The weight for ψRM is the expectation of M

in the treatment group. Since the subjects in the control group denoted as R = 0,

the subjects in the treatment group (R = 1) with higher expected value of M will

provide more information on the effect of R on R ∗M .

The difference between the expectations of two potential outcomes Y 1M1
and Y 0M0

can be written as the product of the optimal weight in (3.2.10) and causal parameters,
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which is another intuitive way to explain the optimal weight.

E{Y 1M1 − Y 0M0|X}

= E{Y 1M1|R = 1, X} − E{Y 0M0|R = 0, X}

= E{Y 00 +

(
1 M1 M1

)




ψR

ψM

ψRM



|R = 1, X}

−E{Y 00 +

(
0 M0 0

)




ψR

ψM

ψRM



|R = 0, X}

= E{Y 00|X} − E{Y 00|X}

+

(
ψR ψM ψRM

)




1

E(M1|R = 1, X)− E(M0|R = 0, X)

E(M1|R = 1, X)




=

(
ψR ψM ψRM

)




1

E(M |R = 1, X)− E(M |R = 0, X)

E(M |R = 1, X)




Optimal G-estimation without sequential ignorability

Without sequential ignorability, the score function (3.2.9) depends on not only

the distribution of Y 00, but also the distribution of M .

When the post-randomization factor M is continuous, we assume that M ∼

N(µm, σ2
m), where µm is a linear combination of X, R, and Y 00. When the post-
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randomization factor M is binary, we assume that M is a logit regression of X, R,

and Y 00, i.e., logit(P (M = 1)) = log
{

P (M=1)
1−P (M=1)

}
= um.

Under the above working assumptions, for continuous M ,

gopt(Y 00, X) =
Y 00 − µ(X)

σ2




1

E{M |X, R = 1, Y 00} − E{M |X, R = 0, Y 00}

E{M |X, R = 1, Y 00}




−




0

∂
∂Y 00 [E{M |X,R = 1, Y 00} − E{M |X, R = 0, Y 00}]

∂
∂Y 00 E{M |X, R = 1, Y 00}




.(3.2.11)

Compared with the results under sequential ignorability, first of all, the first part

of gopt(Y 00, X) has the similar expression as (3.2.10), while now the expectation or

probability of M are conditional on not only X and R, but also the baseline potential

outcome Y 00. More importantly, the second part of the gopt(Y 00, X) are the extra

terms under no sequential ignorability.

The details of the derivation of the optimal weight are attached in the appendix.

Variance estimation

The variance-covariance for Ψ̂ is estimated after convergence of the G-estimation

algorithm with a sandwich estimator based on (3.2.5) as follows:

Var(Ψ̂) = V −1
H (Ψ)B(Ψ)(V −1

H (Ψ))T , (3.2.12)

where VH is the Hessian, a symmetric 3 × 3 matrix : VH(Ψ) =
∑ ∂U(Ψ)

∂Ψ
, U(Ψ) =

∑
i(R − q)g{Y 00(Ψ), X}, and q = P (R = 1|X); B(Ψ) = [

∑
U(Ψ)U(Ψ)T ]. The

51



resulting estimate of Var(Ψ̂) is used in Wald statistics for hypothesis testing and

Wald confidence intervals for Ψ.

Following Robins(1992a), the fact that the probability of R is estimated can be

taken into account. Robins (1992a) suggested to adjust the propensity score esti-

mation into the estimation equations to obtain a less conservative estimation for

Var(Ψ̂). Assume that q = P (R = 1|X) = exp(XT β)/(1 + exp(XT β)), where β

is a p × 1 vector representing the parameters in the propensity score regression,

and X = (1, x1, · · · , xp−1)
T the baseline covariates. Denoting U(β) =

∑
(R − q)X,

U(β, Ψ) =




U(β)

U(Ψ)


, then VH(β, Ψ) =




∑ ∂U(β)
∂β

0

∑ ∂U(Ψ)
∂β

∑ ∂U(Ψ)
∂Ψ


, and B(β, Ψ) =

[
∑

U(β, Ψ)U(β, Ψ)T ]. Therefore, Var(Ψ̂) is the 3× 3 submatrix corresponding to the

Ψ elements in the (p+3)×(p+3) matrix Var(β̂, Ψ̂) = V −1
H (β, Ψ)B(β, Ψ)(V −1

H (β, Ψ))T .

3.3 Data Analysis

The data example used in our study is a psychiatry trial(Brown et. al., 2005).

The purpose of this trial is to evaluate the effect of cognitive therapy for recent sui-

cide attempters. At baseline, each patient is randomly assigned to either receive or

not receive 10 sessions of Cognitive Therapy specifically developed for preventing sui-

cide attempters. Regardless of randomization assignment, everyone received usual

care from clinicians in the community as well as tracking and referral services from

the study case managers. The outcome is a score of depression severity, Beck De-

pression Inventory-II (BDI-II), which is measured at 6-month after randomization.
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The post-randomization variable, the Scale for Suicide Ideation Worst (SSIW) was

measured at 1-month after randomization but before the measurement of the final

outcome. We have several baseline covariates such as gender, age, baseline BDI-II,

Beck Hopelessness Scale, etc.

We analyze the data using standard and causal methods. For standard approaches,

we investigate two standard linear regression interaction models with Ordinary Lease

Squares (OLS). The first OLS does not adjust baseline covariates and the second OLS

does. For causal approaches, we use the two optimal G-estimation methods whose

consistency depend only on initial randomization. In terms of efficiency, G-estimation

I is optimal when sequential ignorability holds. G-estimation II is optimal even when

sequential ignorability does not hold. The data analysis results are summarized in

Table 3.1.

First, for the main effect of randomization, all the methods are similar in terms of

estimates, standard deviation, and p-value. The negative estimates of the main effect

of randomization from all the methods indicate that patients in the treatment group

have lower BDI, which means less severe depression. For the main effect of moderator,

all the methods lead to significant positive estimates(p < 0.05), which implies that

the patients with higher SSIW at 1-month have higher BDI or more severe depression,

although the values of the estimates and standard deviation are very different among

the methods. For the interaction effects, all the methods have negative estimates but

the values are different. Within the two OLS and within the two G-estimations, the

estimates, standard deviations are similar. The signification negative value of the
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interaction effect from the two G-estimations implies that patients with higher SSIW

at 1-month tend to have more treatment effect.

The differences between the two OLS indicate that the measured baseline covari-

ates are confounders in the regression model for Y . They are likely not the only

confounders because if they were, the OLS should be similar as the G-estimations.

For the two OLS estimators, by adding baseline covariates, the standard deviation of

the main effect of randomization decreases while the standard deviation of the main

effect of moderator increases. The randomization is independent of baseline covari-

ates and therefore, adjusting baseline covariates increases its efficiency. In contrast,

the lower efficiency for the estimation of the moderator may be due to the higher as-

sociation among the moderator and the baseline covariates. The differences between

the OLS with baseline covariate adjustment and the two G-estimation approaches

imply that these baseline covariates are not sufficient to control the confounding of

the moderator.

3.4 Simulations

We now present simulation results for the effects of the randomized intervention,

post-randomization factor, and their interaction given the example cognitive therapy

trial. Each data set for each set of simulations is based on the characteristics of the

example data set and the fitted SNDM by G-estimation II.

We use the observed baseline covariates based on the real cognitive therapy data,
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Table 3.1: Data analysis results for the CT trial: the standard regression models with OLS
and SNDMs with G-estimations.

Method Effect Estimate Std P-val
Randomization -5.39 2.73 0.05

OLS Moderator 0.74 0.19 < 0.01
(without baseline covariates adjustment) Interaction -0.59 0.27 0.03

Randomization -5.85 2.70 0.03
OLS Moderator 0.48 0.22 0.03

Interaction -0.35 0.29 0.24
Randomization -5.41 2.87 0.06

G-estimation I Moderator 1.53 0.43 < 0.01
Interaction -1.63 0.54 < 0.01

Randomization -5.26 2.77 0.06
G-estimation II Moderator 1.25 0.43 < 0.01

Interaction -1.53 0.45 < 0.01

and generate baseline randomized intervention from binomial with p = 0.5. We

generate potential outcome and post-randomization factor based on our working

assumptions. Specifically, we generate Y 00 = µ(X) + εY , where εY ∼ N(0, σ2
Y ).

Next, we generate continuous post-randomization factor M = µM(X,Y 00, R) + εM ,

where εM ∼ N(0, σ2
M), and µM(X, R, Y 00) = Xθx + Rθr + XRθxr + Y 00θY 00 +

XY 00θxY 00 + RY 00θrY 00 + XRY 00θxrY 00 . The observed outcome is then generated

by Y = Y 00 + ψRR + ψMM + ψRMRM . Note that µ(X), σ2
Y , σ2

M , θ’s, and ψ’s are all

study-based estimates from the fitted SNDM by G-estimation II.

We analyze each data set with three methods. First, we use the standard linear

regression model with OlS and with baseline covariates. We do not present the OLS

without baseline covariates since there are somewhat similarity between the two OLS,

and the estimates of the two OLS are expected to be biased due to the unmeasured
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confounding. For causal approaches, as in the data analyses, we consider two G-

estimation methods whose consistency depends only on the initial randomization: G-

estimation optimal under sequential ignorability (G-estimation I) and G-estimation

optimal even when sequential ignorability does not hold (G-estimation II). For each

simulation, we simulate 1000 sets of data, and compute the absolute bias of the

estimates, the mean squared error (MSE), and confidence interval coverage.

Table 3.2 to 3.4 have the same simulation set up except for their different sample

sizes. Table 3.2 is under the original sample size in the cognitive therapy trial. We

double the sample size in Table 3.3 and use five times the original sample size in

Table 3.4 to study the asymptotic properties of the two G-estimation approaches.

The results of Table 3.2 to 3.4 show that:

First, G-estimation I and II have smaller bias than the OLS estimators, especially

for larger sample size and for the main effect of M and the interaction effect of R×M .

Second, between G-estimation I and II, with the original sample size, G-estimation

I has smaller bias and MSE. The worse performance of G-estimation II may be due to

the bad estimation for the nuisance parameters in the model of post-randomization

factor M. We have many nuisance parameters in the model of M . Asymptotically,

it pays no price for it, while for a small sample size, it does not work well. With

larger sample sizes, G-estimation II has smaller bias and MSE, and again especially

true for the main effect of M and the interaction effect of R × M . The simulation

results match our analytical results in previous section. Comparing the gopt under

and not under sequential ignorability, i.e. (3.2.10) and (3.2.11), the second part of
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(3.2.11) is the extra term. The first component in this term is zero, which implies

that relaxing the sequential ignorability assumption may not improve the efficiency

of main effect of randomization R. However, for the other two effects, the main effect

of post-randomization factor M and its interaction effect with R, their efficiency will

be improved.

Table 3.2: Simulation results (N=94; ψR = −5.26, ψM = 1.25, ψRM = −1.53)

Method Effect Coverage Rate Bias(%) MSE
Randomization 95% 0.369(-7.0%) 6.931

OLS Moderator 30% -0.444(-35.4%) 0.226
Interaction 11% 0.736(-48.1%) 0.590

Randomization 94% 0.344(-6.5%) 9.442
G-estimation I Moderator 91% -0.059(-4.7%) 0.312

Interaction 92% 0.086(-5.6%) 0.265
Randomization 95% 0.301(-5.7%) 9.475

G-estimation II Moderator 83% -0.124(-9.9%) 0.542
Interaction 81% 0.124(-8.1%) 0.652

Table 3.3: Simulation results (N=188; ψR = −5.26, ψM = 1.25, ψRM = −1.53)

Method Effect Coverage Rate Bias(%) MSE
Randomization 95% -0.245(-4.7%) 3.448

OLS Moderator 1% -0.620(-49.4%) 0.402
Interaction < 1% 0.972(-63.6%) 0.973

Randomization 94% 0.203(-3.9%) 4.425
G-estimation I Moderator 93% -0.030(-2.4%) 0.124

Interaction 94% 0.039(-2.6%) 0.120
Randomization 94% 0.222(-4.2%) 4.470

G-estimation II Moderator 97% -0.010(-0.8%) 0.084
Interaction 93% -0.001(-0.1%) 0.130

In the second set of simulations, we increase the variability over different levels

of the covariate X of the effect of randomization R on post-randomization factor M ,
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Table 3.4: Simulation results (N=470; ψR = −5.26, ψM = 1.25, ψRM = −1.53)

Method Effect Coverage Rate Bias(%) MSE
Randomization 96% 0.157(-3.0%) 1.265

OLS Moderator < 1% -0.629(-50.2%) 0.403
Interaction <1% 0.972(-63.5%) 0.956

Randomization 95% 0.110(-2.1%) 1.569
G-estimation I Moderator 94% -0.009(-0.7%) 0.042

Interaction 94% 0.013(-0.8%) 0.048
Randomization 95% 0.105(-2.0%) 1.570

G-estimation II Moderator 98% 0.006(0.4%) 0.020
Interaction 95% -0.006(0.4%) 0.042

using the double and five times of the original sample size in Table 3.5 and Table 3.6,

respectively.

The OLS has lower coverage rate and larger bias and MSE under this situation

for all three effects (except the MSEs for randomization effects, which are a little

bit smaller). Between the two G-estimations, for the main effect of R, G-estimation

I and II have similar bias and MSE. For the other two effects, G-estimation II has

higher coverage rate, smaller bias, and smaller MSE. In addition, comparing with

the first set of simulations under the same sample sizes, i.e., Table 3.3 vs. Table 3.5,

and Table 3.4 vs. Table 3.6, we find that G-estimation II improves more on MSE in

the second set of simulations. All these results imply that increasing the variability

of the effect of randomization R on post-randomization factor M will lead to better

performance of optimal G-estimations, especially G-estimation II in our case. The

results are similar to Joffe and Brensinger (2003). The implications are that one

should empirically look for baseline characteristics (X) which are associated with the
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post-randomization factor M and with the effect of the randomization effect of R on

M .

The performance on the estimators of the main effect of randomized intervention

R is almost the same among all estimators and do not vary much among the different

sample sizes. This is an artifact of the way the data were generated. Under an

alternative specification, i.e. a different model of the post-randomization factor M ,

we do not observe this and two G-estimations have higher coverage rate and smaller

bias and MSE for all three causal parameters.

In summary, through different sets of simulations, we show that G-estimations

perform better than OLS. The baseline covariates are confounding, but they are not

sufficient to control no unmeasured confounders. Between the two G-estimations,

G-estimation I can be superior for a small sample sizes, even when sequential ig-

noribability does not hold, and G-estimation II is better with larger sample sizes, and

the advantages improve greater when more variability over different levels of baseline

covariates of the effect of the randomization on the post-randomization factor.

3.5 Discussion

In the context of assessing the modification of randomized intervention effects on

outcome by early post-randomization moderators impacted by the intervention, we

investigated the standard linear regression interaction model with OLS and causal

structural nested distribution model with G-estimation. Although the interventions
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Table 3.5: Simulation results (N=188; ψR = −5.26, ψM = 1.25, ψRM = −1.53) when in-
creasing the variability over different levels of the covariate X of the effect of randomization
R on post-randomization factor M .

Method Effect Coverage Rate Bias(%) MSE
Randomization 92% 0.064(-1.2%) 6.771

OLS Moderator < 1% -0.650(-51.8%) 0.440
Interaction < 1% 0.645(-42.2%) 0.433

Randomization 91% -0.034(0.6%) 7.753
G-estimation I Moderator 92% -0.036(-2.9%) 0.110

Interaction 93% 0.035(-2.3%) 0.105
Randomization 92% -0.031(0.6%) 7.421

G-estimation II Moderator 98% -0.010(-0.8%) 0.049
Interaction 98% 0.009(-0.6%) 0.048

Table 3.6: Simulation results (N=470; ψR = −5.26, ψM = 1.25, ψRM = −1.53) when in-
creasing the variability over different levels of the covariate X of the effect of randomization
R on post-randomization factor M .

Method Effect Coverage Rate Bias(%) MSE
Randomization 94% 0.161(-3.1%) 2.172

OLS Moderator < 1% -0.661(-52.7%) 0.444
Interaction < 1% 0.659(-43.1%) 0.441

Randomization 93% 0.068(-1.3%) 2.345
G-estimation I Moderator 94% -0.012(-1.0%) 0.042

Interaction 94% 0.012(-0.8%) 0.041
Randomization 93% 0.082(-1.6%) 2.318

G-estimation II Moderator 95% 0.005(-0.2%) 0.017
Interaction 99% 0.005(0.3%) 0.017

are randomized, there are unmeasured confounding for the moderator since it is mea-

sured after randomization. Standard regression analyses are biased due to unmea-

sured confounding issue, while causal methods with G-estimation lead to consistent

estimators even the unmeasured confounding issue exists.

We further show how to obtain efficient estimators of the parameters of the causal
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model. G-estimation I is optimal under the sequential ignorability assumption and G-

estimation II is optimal even when sequential ignorability does not hold. G-estimation

I is easy to compute and G-estimation II is more complicated. Through the simula-

tions, the efficiency of G-estimation II may be less if the nuisance parameter model

is misspecified, e.g., when the sample size is small relative to the number of nuisance

parameters, although this will not affect consistency.

Although our results are based on structural distribution models, they may ap-

ply for structural mean models, which are less restrictive. In terms of application,

our study focus on the post-randomization analysis. However, the similar statistical

approach can be applied on mediation analyses, as the example we discussed in the

introduction section.

In our further research, we will extend our fixed baseline confounding variables

to time-varying confounding. Another future work will be the repeated measures

of the post-randomization factor. That is, when the post-randomization factor is a

time-varying vector instead of a scalar, how to formulate the model.

61



Chapter 4

Optimal Dose-Finding Experiments

with Correlated Continuous and

Discrete Responses

4.1 Introduction

In clinical trials, when multiple endpoints are available, the conventional strategy

is to model and analyze each endpoint separately. This approach ignores the infor-

mation contained in the correlation among the endpoints, and lacks the ability to

answer intrinsically multivariate questions (Teixeira-Pinto and Normand, 2009). The

better approach is to model and evaluate multiple endpoints simultaneously in clini-

cal trials, which necessitates the use of bivariate (multivariate) dose-response models

(Li, Durham, and Flournoy, 1995; Thall and Russell, 1998; Ivanova, 2003; Thall and
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Cook, 2004; Bekele and Shen, 2005; Dragalin and Fedorov, 2006; Whitehead et al.,

2006; Zhou et al., 2006; Zohar and O’Quigley, 2006; Zohar and Chevret, 2007).

The multiple responses of interest can be continuous or categorical, with some

categorical responses coming from categorization of the continuous responses. For

example, in a Phase II lung cancer trial, the efficacy endpoint is often measured on

a continuous scale, such as shrinkage in tumor size (Karrison et al., 2007). In con-

trast, the measure of toxicity is often categorical and described by multiple grades

of Adverse Events (AEs), such as grade 0 for no AEs, grade 1 to 4 for the severity

of the AEs from mild to life-threatening, and grade 5 for death (National Cancer

Institute, 1999). If define grade 3 or higher as Dose Limiting Toxicity (DLT), one

can convert the toxicity measure to a binary outcome, i.e. DLT/NoDLT (Dignam,

Karrison, and Bryant, 2005; Ivanova, 2006). Catalano and Ryan (1992) discussed the

bivariate endpoints in a toxicity experiment, in which one endpoint is a continuous

variable for fetal weight, and the other endpoint is an unobserved (latent) variable

corresponding to malformation. Sammel, Ryan and Legler (1997) discussed multi-

ple mixed continuous and discrete outcomes in a prospective study of the effects of

anticonvulsant medication.

One mathematical challenge to model the mixture responses is that there is no

obvious multivariate distribution for the mixed variables. Two likelihood-based ap-

proaches have been discussed in literature. One is to factorize the joint distribution

of the responses as the product of the marginal distribution of one response and the

conditional distribution of the second response given the previous response (Pearson,
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1900, 1909; Tate, 1955; Cox and Wermuth, 1992; Catalano and Ryan, 1992; Fitz-

maurice and Laird, 1995). The other approach is to model the correlation among the

multiple outcomes by introducing an unobserved (latent) variable (Arminger and

Kuster, 1988; Sammel, Ryan and Legler, 1997). Alternatively, Liang and Zeger

(1986), Prentice and Zhao (1991)used separate equations for each outcome and a

working correlation matrix to model the correlation among outcomes.

In what follows, we confine ourselves to bivariate responses, i.e. efficacy and tox-

icity, which are the two primary responses often used in early phase clinical trials,

while the proposed method can be easily generalized to multiple correlated endpoints

scenarios. The likelihood approach is used to estimate bivariate model with the un-

derlying bivariate normal distribution. This is not only convenient from the statistical

point of view, but also appeals to toxicologists because it provides a natural and in-

tuitive framework for the biological mechanism leading to adverse events (Catalano

and Ryan, 1992). Essentially, there are three different classes of bivariate responses:

both continuous, both categorical, and their mixture. We have investigated the dose-

finding designs for the cases when both endpoints are binary or both are continuous

(Fedorov and Wu, 2007a; Dragalin, Fedorov, and Wu, 2008) assuming the underlying

bivariate normal distribution. In 2007 mODa paper, we briefly discussed the designs

for all three cases and their relationship (Fedorov and Wu, 2007b). This paper is

the extension of Fedorov, Wu, and Zhang (2010) with more scenarios and technical

details for the most difficult case - the mixture of continuous and binary endpoints.

Without loss of generality, continuous efficacy and binary toxicity are assumed. Our
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primary goal is to implement optimal design techniques under the bivariate mixture

of continuous and binary responses in dose-finding experiments.

In dose-finding studies, one of the main goals is to construct the dose-response

relationship, i.e. the dose-response model. The estimates of model parameter, the

prediction of responses, or both are of interest. As one of the approaches in exper-

imental designs, optimal designs may answer a variety of questions, while the main

issues are common: how to choose the dose levels, how to allocate patients to each

dose level, and how to estimate the unknown parameters. Within the optimal design

framework, general (multivariate) models for continuous responses were discussed in

detail in Fedorov and Hackl (1997); for binary responses, several bivariate models

have been studied such as Gumbel bivariate model (Heise and Myers, 1996; Dragalin

and Fedorov, 2006), Cox bivariate model (Dragalin and Fedorov, 2006), and bivariate

probit model (Fedorov and Wu, 2007a; Dragalin, Fedorov, and Wu, 2008). In con-

trast, little work has been done for mixed responses in optimal designs. Coffey and

Glennings (2007) applied D-criterion to design experiments for multiple responses of

different types. Their analysis are based on the first and second moment of responses.

The choice of the working correlation matrix looks arbitrary, especially taking into

account the different structure of responses (binary, count and continuous).

Our approach can be distinguished from the Coffey and Glennings’s approach

(2007) in several ways. First, we use the bivariate normal distribution to generate

a model with mixed types of responses. The use of the underlying normal distribu-

tion allows to introduce correlation between responses of different types in a rather
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natural way, see Tate (1955). Second, we incorporate ethical concerns and cost con-

straints. Furthermore, practical designs, such as two-stage and adaptive designs, are

constructed and evaluated with extensive Monte Carlo simulations.

The major steps in our approach of optimal designs are:

1. Select a dose-response model and find the information matrix for a single

observation;

2. Build a utility function that quantifies the target treatment effects; identify

parameters of interest; and address ethical/cost aspects with a penalty function;

3. Identify/quantify the prior information in the design construction if it is avail-

able;

4. Select a criterion of optimality;

5. Construct locally optimal designs - they are the benchmarks;

6. If needed, build “practical” designs and compare them with the benchmarks.

This paper is organized as follows: Section 2 introduces the notation, our dose-

response model, the information matrix for a single observation, the utility function

and the penalty function. Different designs including locally optimal, two stage de-

signs, and adaptive designs are discussed in Section 3. In Section 4, we illustrate

our approach and compare various designs via examples and simulations. The paper

concludes with a summary.
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4.2 Model

4.2.1 Generalized bivariate probit model

Assume that the underlying efficacy and toxicity responses follow a bivariate nor-

mal distribution:

Z ∼ N(η,Σ) (4.2.1)

where Z is a vector of responses, η is a vector of means, and Σ is the variance-

covariance matrix. In our discussion, let the first response Z1 be efficacy, the second Z2

be toxicity, η = (η1, η2)
T , and Σ =




σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


. Responses can be observed

either directly or indirectly, i.e. only some functions of them are available.

To link the results of this paper with previous publications (Dragalin and Fedorov,

2006; Dragalin, Fedorov, and Wu, 2008), we remind the reader that when responses

are both binary, they can be described by a contingency table (see Table 4.1).

Table 4.1: Binary efficacy and binary toxicity.

Toxicity

1 0

Efficacy 1 p11 p10 p1.

0 p01 p00 p0.

p.1 p.0 1

Let Y1 and Y2 denote the binary responses for efficacy and toxicity, respectively.
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They can be modelled by the bivariate probit model as dichotomizations of Z1 and

Z2 from the bivariate normal distribution (Lesaffre and Molenberghs, 1991; Fedorov

and Wu, 2007; Dragalin, Fedorov, and Wu, 2008); the probability of no efficacy and

no toxicity is

p00 = P (Y1 = 0, Y2 = 0) = F (v1, v2;Σ
∗) =

∫ v2

−∞

∫ v1

−∞

1

2π|Σ|1/2
exp

{
−1

2
vTΣ−1v

}
dv,

(4.2.2)

where v = (v1, v2)
T , vk = (ck− ηk)/σk, Yk = I(Zk > ck), k = 1 or 2, Σ∗ =




1 ρ

ρ 1


,

ck is the (known) cut-off point, ρ is the correlation between two responses, and σ1,

σ2, η1, and η2 are parameters of marginal normal distributions.

The marginal probabilities for efficacy and toxicity are defined as p1. = P (Y1 =

1) = 1 − F (v1) and p.1 = P (Y2 = 1) = 1 − F (v2) respectively, where F (·) is the

cumulative density function of standard normal distribution. Note that Table 1 has

only three independent entries. For instance, given p11, p.1 and p1., other probabilities

are p10 = p1. − p11, p01 = p.1 − p11, and p00 = 1− p1. − p.1 + p11.

For mixed responses such as continuous efficacy (Y1) and binary toxicity (Y2),

define

Y1 = Z1, Y2 =





1, if Z2 ≥ c2

0, otherwise.

(4.2.3)

The bivariate mixed responses Y1 and Y2 are now described in Table 2. The

marginal probability of toxicity is p.1 = P (Y2 = 1) =
∫

P (Y2 = 1|Y1 = y1)ϕ(y1)dy1,

where ϕ(y1) is the marginal probability density of efficacy Y1, i.e. the probability
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density of normal distribution with mean η1 and standard deviation σ1. We denote

the conditional probability of Y2 given Y1 as p1|y1 = P (Y2 = 1|Y1 = y1) = 1− F (u2),

where u2 = (v2 − ρ(y1 − η1)/σ1)/
√

1− ρ2 and v2 = (c2 − η2)/σ2. Note that in Table

4.2, as compared to Table 4.1, the marginal probability of efficacy in (y1, y1 + dy1) is

P (y1 < Y1 < y1 + dy1) = ϕ(y1)dy1.

Table 4.2: Continuous efficacy and binary toxicity.

Toxicity

1 0

...
...

...
...

Efficacy (y1, y1 + dy1) p1|y1ϕ(y1)dy1 p0|y1ϕ(y1)dy1 ϕ(y1)dy1

...
...

...
...

p.1 p.0 1

Given the unknown parameters ϑ = (η1, v2, ρ, σ1)
T , the likelihood for a single

observation (Y1 = y1, Y2 = y2) can be expressed as

L(y1, y2; ϑ) = [p1|y1 ]
y2 [1− p1|y1 ]

1−y2ϕ(y1), (4.2.4)

and the log-likelihood for a single observation is:

l(y1, y2; ϑ) ∝ y2 log {1− F (u2)}+ (1− y2) log {F (u2)} − log σ1 − (y1 − η1)
2

2σ2
1

.

(4.2.5)

For the model given by (4.2.3), (4.2.4) and (4.2.5), we call ϑ = (η1, v2, ρ, σ1)
T the

elemental parameters. In practice, these parameters may depend on some covariates

69



such as doses of various compounds (drugs), age, gender, etc. Note that although

η1 and σ1 can be estimated separately, their counterparts η2 and σ2 cannot. Only

(c2 − η2)/σ2 is estimable (Dragalin, Fedorov, and Wu, 2008).

4.2.2 Information Matrix for a Single Observation

In experimental design, the information matrix plays a crucial role since it is

the basis for the formulation of the optimality criterion (cf. Fedorov and Hackl,

1997). Because the information matrix of independent observations is the sum of

the information matrices of the single observations, the derivation of the information

matrix for a single observation is discussed.

Elemental Information Matrix

For a single observation, the information matrix for model (4.2.3) is (e.g., Tate,

1955):

µ[ϑ(θ)] =




1−ρ2+ρ2a0

σ2
1(1−ρ2)

ρa0

σ1(1−ρ2)
ρ(ρv2a0−a1)
σ1(1−ρ2)2

ρ2a1

σ2
1(1−ρ2)

− a0

(1−ρ2)
ρv2a0−a1

(1−ρ2)2
ρa1

σ1(1−ρ2)

− − a2−2ρv2a1+ρ2v2
2a0

(1−ρ2)3
ρ(ρv2a1−a2)
σ1(1−ρ2)2

− − − 2(1−ρ2)+ρ2a2

σ2
1(1−ρ2)




, (4.2.6)

where

ak(v2, ρ) =

∫ +∞

−∞

tkϕ(t)ϕ2( v2−ρt√
1−ρ2

)

F ( v2−ρt√
1−ρ2

)

[
1− F ( v2−ρt√

1−ρ2
)

] dt and k = 0, 1, 2, (4.2.7)

and “−” in the lower left of (4.2.6) stands for the corresponding element of the

symmetric matrix.
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In (4.2.7), except when ρ = 0, we have to use numerical integration to find ak. If

Σ is known, then ϑ = (η1, v2)
T and their information matrix is the upper left 2 × 2

submatrix of (4.2.6).

Information matrix for regression models

To move from the elemental parameters ϑ to parameters θ for regression models,

recall that if ϑ ∈ Rm′ is a continuous function of θ ∈ Rm then

µ(θ) = Jµ[ϑ(θ)]JT , (4.2.8)

where matrix J is the m×m
′
Jacobian matrix of transformation ϑ=ϑ(θ) (cf. Lehmann

1983):

J =
∂ϑ(θ)

∂θT
=

∣∣∣∣
∣∣∣∣
∂ϑβ(θ)

∂θα

∣∣∣∣
∣∣∣∣
m,m

′

α=1,β=1

. (4.2.9)

If we assume that η1 = θT
1 f1(x) and v2 = c2−η2

σ2
= θT

2 f2(x), i.e. θ = (θT
1 ,θT

2 , ρ, σ1)
T ,

then

J =




f1(x) 0 0 0

0 f2(x) 0 0

0 0 1 0

0 0 0 1




and

µ(θ) =




1−ρ2+ρ2a0

σ2
1(1−ρ2)

f1f
T
1

ρa0

σ1(1−ρ2)
f1f

T
2

ρ(ρv2a0−a1)
σ1(1−ρ2)2

f1
ρ2a1

σ2
1(1−ρ2)

f1

− a0

(1−ρ2)
f2f

T
2

ρv2a0−a1

(1−ρ2)2
f2

ρa1

σ1(1−ρ2)
f2

− − a2−2ρv2a1+ρ2v2
2a0

(1−ρ2)3
ρ(ρv2a1−a2)
σ1(1−ρ2)2

− − − 2(1−ρ2)+ρ2a2

σ2
1(1−ρ2)




. (4.2.10)
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Whenever it does not lead to a confusion, we omit x or θ in our notation, but

one should remember that in (4.2.10), v2, a1, a2, f1, and f2 all depend on x. (4.2.10)

is the information matrix for all unknown parameters in the regression model. In

this paper, we assume that θ1 and θ2 are always unknown, σ1 is always known, and

ρ is either known or unknown. Accordingly, θ is (θT
1 ,θT

2 )T or (θT
1 ,θT

2 , ρ)T , and the

information matrix is the upper left 2× 2 or 3× 3 block matrix in (4.2.10). The true

dimension of the matrix will depend on the dimensions of vectors θ1 and θ2. The

parameterization for the binary toxicity response is taken to be v2 = θT
2 f2(x), since

the probability of toxicity is fully determined by v2 in our model. The information

matrix for different parameterizations, such as η2 = θT
2 f2(x) (under known c2 and σ2),

can be easily obtained through the Jacobian transformation.

4.2.3 Utility Function

A utility function needs to be specific to the target of a particular dose-finding

study. It can coincide with the dose-response probability, or be other function of

unknown parameters. Fedorov and Wu (2007) suggested a utility function based on

the joint probability of efficacy without toxicity, i.e. p10(x, θ) = P (Y1 = 1|Y2 =

0)P (Y2 = 0), and defined the best dose as x∗ = arg maxx∈X p10(x, θ). Similar ideas

can be found in Li, Durham, and Flournoy (1995); Kpamegan and Flournoy (2001);

Zohar and O’Quigley (2006); Ivanova (2006). Another utility could be a “distance”

function which measures the distance of the response probabilities from a “desirable”

point (Thall and Cook, 2004; Dragalin, Fedorov, and Wu, 2008).
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We emphasize that although the utility function p10(x, θ) is based on dichotomized

responses, this does not mean that either efficacy or toxicity should be dichotomized

during, or before statistical analysis. Dichotomization during the analysis may lead

to significant loss of information. For example, when dichotomizing a normal distri-

bution by a cut-off point, the loss in terms of (Fisher’s) information is at least 36%

(Fedorov, Mannino, and Zhang, 2009). Whenever possible, one should generate the

binary utility only when analysis is completed (Fedorov and Wu, 2007).

To obtain a utility function for mixed responses of continuous efficacy and binary

toxicity that is consistent with p10(x, θ), we define our utility function as the product

of the mean of efficacy without toxicity multiplied by the probability of having no

toxicity:

ζ(x, θ) = E(Y1|Y2 = 0)P (Y2 = 0)

= η1F (v2)− ρσ1ϕ(v2) = θT
1 f1(x)F (θT

2 f2(x))− ρσ1ϕ(θT
2 f2(x)).

(4.2.11)

The best dose is defined as the dose whose utility reaches the maximum of (4.2.11)

within the design region:

x∗(θ) = arg max
x∈X

ζ(x, θ). (4.2.12)

Of course any of the utility functions described in Fedorov and Wu (2007) can be

used for the model in (4.2.3), but (4.2.11) shows the flexibility of this approach.
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4.2.4 Penalty function

In drug development studies, there are always ethical concerns and cost constraints

associated with different doses. These constraints can be quantified by a penalty

function φ(x, θ). Dragalin and Fedorov (2006) made one of the first attempts to

address the penalized optimal design problem in the dose-finding context. For two

binary responses, they introduced a penalty function involving both efficacy and

toxicity, i.e. a function of the probabilities of efficacy and toxicity. Lai and Robbins

(1978, 1982) introduced a cost function φ(x, θ) = (x − x∗)2, where x∗ is the target

dose. A target dose, for instance, could be MTD in phase I trials or MSD in phase II

trials. In our study, we use the following penalty functions similar to the cost function

of Lai and Robbins (1978):

φ(x, θ) = r(x− x∗(θ))2 + c, (4.2.13)

where x∗(θ) = arg maxx∈X ζ(x, θ) is the “best dose” and ζ(x, θ) is the utility function

defined in (4.2.11). The parameter r quantifies the risk of the dose. The larger the

value of r, the more penalty is added to the doses which are far away from the best

dose. The traditional optimal design can be viewed as a special case of penalized

optimal design, in which one adds constant penalty across the entire design region,

i.e., r = 0 in (4.2.13). The parameter c can be considered as the cost for each

observation or unit cost. Since every observation has a cost, c should be positive. It

can be shown that optimal design characteristics depend only on the ratio of c/r.

The left plot in Figure 4.1 shows efficacy, toxicity, utility and penalty functions
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under our model. The true parameters of the model in this example were estimated

from a clinical trial of prevention of venous thromboembolism (VTE) in total joint

replacement to assess new anticoagulants (see details in Dragalin, Fedorov, and Wu,

2008). The efficacy is the lowered VTE incidence rate and the toxicity is having major

bleeding event. For the parameters of the penalty function, c = 1 and r = 10 are used.

Under our model, the mean efficacy η1 and the probability of toxicity p.1 increase as

the doses increase. The utility function, or “success” curve ζ(x, θ), increases first and

then decreases. The penalty function φ(x, θ) reaches the minimum when the utility

function reaches its maximum. The “best dose” X∗(θ) is the maxima of the “success”

curve.

The utility functions for the different values of ρ are shown in the right plot of

Figure 4.1. As ρ increases from −0.9 to 0.9, the best dose X∗(θ) decreases from 1.2 to

1.0. In addition, the plot shows that when the dose level is less than 0.6, the utility

function almost linearly depends on the dose and is not very sensitive to ρ. This

is because when dose is low (< 0.6), the probability of toxicity p.1 does not change

much from zero (see left in Figure 4.1), and the effect of efficacy dominates the utility

function. When the dose is high, the probability of toxicity significantly increases as

the dose increases. Both efficacy and toxicity affect the utility and, therefore, the

utility is more sensitive to the correlation between efficacy and toxicity.
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Figure 4.1: Under the mixed responses model with θ = (−0.9, 1.9, 3.98,−3), σ1 = 1:

(1) Left plot: relationship between efficacy η, toxicity p1., utility ζ(x, θ) and penalty

φ(x, θ) with ρ = 0.5. The left y-axis is for efficacy, utility, and penalty; the right

y-axis is for toxicity; (2) Right plot: utility functions with different ρ’s.
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4.3 Optimal Designs

4.3.1 Locally optimal designs

Assume that the sample size at design point xi in the design region X is ni, and the

weight for xi is λi = ni/N , where i = 1, . . . , k, N =
∑k

i=1 ni. Let ξ = {xi, λi}k
1 denote

the design. From (4.2.10) and additivity of information matrices for independent

observations, we have

M(ξ, θ) =
k∑

i=1

λiµ(xi,θ) = N−1

k∑
i=1

niµ(xi, θ) = MN(ξ, θ)/N, (4.3.1)

where M(ξ, θ) is called normalized information matrix and MN(ξ, θ) is the informa-

tion matrix.

Under mild regularity conditions (cf. Rao 1973, Ch. 4a), the Maximum Likelihood

Estimator (MLE) is strongly consistent and (θ̂−θ)/
√

N is asymptotically (N →∞)

normal with zero mean and variance-covariance matrix M−1(ξ, θ).

We can define penalized locally optimal design as in Dragalin and Fedorov (2006),

Dragalin, Fedorov, and Wu (2008):

ξ∗(θ) = arg min
ξ

Ψ[M(ξ, θ)/Φ(ξ, θ)], (4.3.2)

where Ψ is some convex function called the criterion of optimality, and Φ(ξ, θ) is the

total penalty normalized by the total sample size with the following definition,

Φ(ξ, θ) =

∫

X

φ(x, θ)ξ(dx). (4.3.3)

Note that matrix M(ξ, θ)/Φ(ξ, θ) may be viewed as information gained per unit

77



of penalty. Indeed, let

ΦN(ξ, θ) =
k∑

i=1

niφ(xi,θ) = NΦ(ξ, θ), (4.3.4)

then the information gained per unit of penalty is

MN(ξ, θ)

ΦN(ξ, θ)
=

NM(ξ, θ)

NΦ(x, θ)
=

M(ξ, θ)

Φ(ξ, θ)
. (4.3.5)

The choice of the criterion of optimality Ψ, is driven by the study goals. For in-

stance, it could be the determinant of the variance-covariance matrix of all estimated

parameters, the variance of the estimator of the best dose, or the variance of the

estimator of the parameter of the utility function, etc. The former is D-optimality,

which is well described in the statistical literature (e.g., Fedorov and Hackl, 1997).

If estimation of the best dose is the only goal, for sufficiently large samples, it is

necessary to minimize the variance of its estimator as a function of unknown param-

eters. This variance can be viewed as a generalized version of L-criterion (Dragalin,

Fedorov, and Wu, 2008). In our study, both the best dose and the utility function

involve all unknown parameters in the model; therefore, we choose D-optimality as

our design strategy to obtain the overall accuracy.

The sensitivity function ψ(x, ξ, θ) is related to the directional derivative of the

design criterion Ψ, and completely determines the location of the support points of

the optimal design ξ∗ (cf. Fedorov and Hackl, 1997). For penalized locally D-optimal

design, the design criterion is

ξ∗(θ) = arg min
ξ

log |M(ξ, θ)/Φ(ξ, θ)|−1, (4.3.6)
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and the sensitivity function is

ψ(x, ξ, θ) = tr[µ(x, θ)M−1(ξ, θ)]−mφ(x, θ)/Φ(ξ, θ), (4.3.7)

where m is the number of unknown parameters in the model.

A design ξ∗ is locally D-optimal if and only if the following inequality holds for

∀x ∈ X

ψ(x, ξ∗,θ) ≤ 0, (4.3.8)

where the equality holds for all x′s that are support points of ξ∗. Inequality (4.3.8) can

be viewed as another generalized version of the Kiefer-Wolfowitz general equivalence

theorem (Fedorov and Hackl, 1997). We would like to emphasize again that although

locally optimal designs have restrictions in practice, they are important to calibrate

other designs like adaptive designs.

Numerical algorithm

To construct the optimal design, we use the first order exchange algorithm (Fe-

dorov and Wu, 2007). It is an iterative procedure that shuffles the design points

within the design region in order to improve the design criterion. At the sth iter-

ation, a “good” (the most informative) design point from the candidate set with

certain weight is added into the current design point set. This (forward) step can be

expressed as

x+
s = arg max

x∈X
ψ(x, ξs−1,θ). (4.3.9)
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In the second (backward) step, a “bad” (the least informative) design point with

certain weight is deleted from the current design:

x−s = arg min
x∈X

ψ(x, ξs−1,θ). (4.3.10)

As s →∞, ξs converges to locally optimal designs. The algorithm stops when the

design criterion cannot be improved (Fedorov and Hackl, 1997).

4.3.2 Two-stage Designs

For non-linear models, the information matrices M(ξ, θ) in (4.2.6) and (4.2.10)

depend on the unknown parameters θ. Therefore, the locally optimal design depends

on the unknown parameters θ and cannot be implemented in practice. Dragalin,

Fedorov, and Wu (2008) proposed a penalized optimal two-stage design under the

bivariate probit model for practical dose-finding experiments.

The idea is that at the initial design stage, the researcher collects N0 observations

based on design ξ0 and obtains the initial estimates for unknown parameters, θ̂0.

Then in the second design stage, θ̂0 are treated as the “true” parameters, on which

locally optimal designs or penalized locally optimal designs are constructed for the

remaining N1 subjects. At the end of the second stage, the unknown parameters are

re-estimated using all N0 + N1 observations.

Assuming that the information matrix for ξ0 is N0M(ξ0,θ) ' Σ−1
0 , the D-optimal

design for the second stage (see derivations of (4.3.11) and (4.3.12) in the appendix)
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is

ξ∗(θ) = arg min
ξ

log

∣∣∣∣
πM(ξ0,θ) + (1− π)M(ξ, θ)

πΦ(ξ0,θ) + (1− π)Φ(ξ, θ)

∣∣∣∣
−1

, (4.3.11)

where π = N0/(N0 + N1).

The necessary and sufficient condition for D-optimality of ξ∗ (see Appendix) is

tr
{
µ(x, θ) [πM(ξ0,θ) + (1− π)M(ξ∗,θ)]−1}− mφ(x, θ)

πΦ(ξ0, θ) + (1− π)Φ(ξ∗,θ)

≤ tr
{
M(ξ∗, θ) [πM(ξ0,θ) + (1− π)M(ξ∗,θ)]−1}− mΦ(ξ∗, θ)

πΦ(ξ0, θ) + (1− π)Φ(ξ∗,θ)
.

(4.3.12)

The first order iterative algorithm ((4.3.9) and (4.3.10)) is used to construct the

optimal design in the second stage, where the sensitivity function ψ(x, ξ, θ) is defined

as

ψ(x, ξ, θ) = tr
{
µ(x, θ) [πM(ξ0,θ) + (1− π)M(ξ, θ)]−1}− mφ(x, θ)

πΦ(ξ0,θ) + (1− π)Φ(ξ, θ)
.

In an actual two-stage design, the true parameters θ are replaced by their esti-

mates θ̂0 after the analysis of the initial stage data. In (4.3.11) and (4.3.12), θ̂0 and

M(ξ0, θ̂0) (or Σ0) may be viewed as a prior information that, for instance, has been

accumulated via other studies or existing publications related to the considered drug.

Note that for the actual two-stage design, the matrix πM(ξ0, θ̂0)+(1−π)M(ξ∗, θ̂0)

is not the exact normalized information matrix any more because ξ∗ depends on θ̂0.

However, on intuitive level we can make the following conjecture. If the initial de-

sign ξ0 has a regular information matrix for any θ ∈ Rm, where the admissibility

set Rm includes the true value θtrue as an internal point, then the maximum likeli-

hood estimator θ̂0 = θ̂(N0) will be strongly consistent, i.e. converges almost surely
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to θtrue when N0 → ∞. Consequently, the sensitivity function ψ(x, ξ, θ̂0) will con-

verge almost surely to ψ(x, ξ, θtrue) uniformly with respect to x and ξ. Obviously

some smoothness of f1(x) and f2(x) is needed together with the compactness of X

(Rao, 1973, Ch. 2c). Consequently, the solution ξ∗(θ̂0) will converge to ξ∗(θtrue)

and πM(ξ0, θ̂0) + (1 − π)M(ξ∗, θ̂0) will converge to the “true” information matrix

πM(ξ0, θtrue)+(1−π)M(ξ∗,θtrue). Of course the above statement is only a conjecture

without any rigorous mathematical proof and that is why we resort to Monte-Carlo

simulations to confirm its validity for our specific case.

4.3.3 Fully Adaptive Designs

An alternative design is the fully adaptive design. Similar to the two-stage de-

signs, the researcher obtains the initial estimates for unknown parameters. For fully

adaptive designs, the researcher then constantly updates estimates of unknown pa-

rameters when new observations come in, and stops when the procedure converges or

all the resources are consumed. Box and Hunter (1965) proposed sequential assign-

ments by maximizing a sensitivity function; Dragalin and Fedorov (2006) proposed

this strategy for two correlated binary responses in the dose-response studies. In each

step of the iterative algorithm, given a penalty function, we assign the patient to the

dose which maximizes the sensitivity function (e.g., Dragalin and Fedorov, 2006), i.e.,

xN = arg max
x∈X

ψ(x, ξN−1, θ̂N). (4.3.13)

Note that (4.3.13) coincides with the forward step of the first order algorithm

82



(4.3.9) with θ replaced by θ̂N .

Similar to two-stage designs, in fully adaptive designs, the observations are not

independent. Since ξN is random, πM(ξ0,θtrue) + (1 − π)M(ξ∗N , θtrue) is random

and hence it is not the actual information matrix. However, the distribution of each

element of this matrix after “large” number of observations heavily gravitates towards

to the corresponding element in πM(ξ0, θtrue) + (1 − π)M(ξ∗, θtrue), see the results

of simulation, Lai (2001), and Rosenberger and Hughes-Oliver (1999).

4.4 Examples

In this section, we construct locally optimal, two-stage designs and fully adap-

tive designs. The performances among different designs are assessed via simulation

studies.

For illustration and comparison purposes, the true parameters of the model are

the same as in the prevention of VTE trials (Dragalin, Fedorov, and Wu, 2008).

The efficacy endpoint is the lowered VTE incidence rate and the toxicity endpoint is

having major bleeding event. In the continuous-binary model given by (4.2.3)-(4.2.5),

we assume that σ1 is a known parameter with a value of 1, while ρ is either known

(Section 4.1 to 4.2) or unknown (Section 4.3). For the other two elemental parameters

η1 and v2, we assume that

η1 = θ11 + θ12x, and v2 = (c2 − η2)/σ2 = θ21 + θ22x,

where (θ11, θ12, θ21, θ22) = (−0.9, 1.9, 3.98,−3). The design region is restricted to [0.2,
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1.4]. A moderate correlation between efficacy and toxicity, i.e. ρ = 0.5, is assumed

unless stated otherwise (see Figure 1). Note that the sensitivity function ψ (4.3.7)

depends on the ratio φ(x, θ)/Φ(ξ, θ), which depends on c/r (not c and r separately).

Thus without loss of generality, we select c = 1 and discuss different scenarios that

r = 0, 1, 10 and 100.

4.4.1 Locally optimal designs

Locally optimal designs are benchmarks for other designs. Under our model, the

locally D-optimal design may be a two-point or three-point design depending on the

parameter r (see the left plot in Figure 4.2). When r = 0, locally D-optimal design

is a three-point design having two points at the boundaries of the design region [0.2,

1.4] with weight 20% and 47%, respectively, and one point in the middle with weight

33%. When r is small, the optimal design is a three-point design that is close to the

design with r = 0. As r gets larger, the optimal design puts higher weights on the

points around the best dose (X∗(θ) = 1.095) and may reduce to a two-point design.

We found that the threshold for r between two and three design points for the locally

optimal design is around r = 2.6 under our model. For instance, when r = 10, the

two optimal dose levels are 0.93 and 1.4, with corresponding weights 60% and 40%.

When r = 100, the two optimal dose levels (1.06 and 1.35) are closer to the best dose.

Let us define the relative efficiency as

∣∣∣∣
M(ξ′,θ)/Φ(ξ′, θ)

M(ξ, θ)/Φ(ξ, θ)

∣∣∣∣
1/m

. (4.4.1)
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A value of (4.4.1) less than one indicates that design ξ is more efficient than design

ξ′ with respect to the D criterion, i.e. a smaller cost is needed for ξ than ξ′ to achieve

the same precision. This metric is model and penalty dependent.

The left table in Table 4.3 lists the relative efficiency for the four locally optimal

designs (see the left plot in Figure 4.2). The value of r′ is the assumed penalty

parameter used to build designs, and the value of r is the “actual” penalty parameter

to evaluate the efficiency. For example, the relative efficiency for the designs with

r′ = 1 and r = 10 is 0.79. This number shows the efficiency of the design built under

the assumption that r = 1 if the actual r = 10. The first row in Table 4.3 indicates

that the efficiency of the traditional locally optimal design built under the assumption

that r = 0, monotonically decreases as r increased. The table allows to evaluate the

robustness of the design with respect to potential uncertainty in cost selection.

4.4.2 Two-stage Designs

Because we know little about the model parameters, at the first stage of the

two-stage designs N0 patients are allocated according to a uniform design ξ0 with

five equally spaced doses {0.2, 0.5, 0.8, 1.1, 1.4 } and equal weights. Note that

the first stage design can be any design that the investigator feels comfortable with.

The responses collected in the first stage are used to obtain the preliminary model

parameters estimates θ̂0. In the second stage, penalized locally D-optimal designs are

built for the remaining N1 patients by treating θ̂0 as the “true” parameters.

Examples of the two-stage designs with different penalty parameters are shown in
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Dose

Locally optimal designs

0.2 0.4 0.6 0.8 1.0 1.2 1.4

r=0

r=1

r=10

r=100

20% 33% 47%

8% 42% 50%

60% 40%

87% 13%

Dose

Two−stage designs

0.2 0.4 0.6 0.8 1.0 1.2 1.4

r=0

r=1

r=10

r=100

14% 27% 59%

36% 64%

48% 52%

63% 37%

Figure 4.2: Allocation of the doses for optimal designs built with different values of

r in the penalty function. The size of each point represents the corresponding weight

which is labelled below each point.Left: locally optimal designs; Right: the second

stage designs in the two-stage designs. True values of the unknown model parameters

are used in the second stage and five-point uniform design is used in the initial stage.

the right plot in Figure 4.2, in which the second stage designs are constructed based

on the true values of the unknown parameters. Similar to the left table, the right

table in Table 4.3 shows the relative efficiency for the optimal two-stage designs with

various values of r′ and r. Again, the efficiency of the optimal two-stage design built

under the assumption that r = 0 drops as the actual r increases. Compared to the

left table, the relative efficiency is higher since the same uniform design is used for

the initial stage for all the two-stage designs in the examples.

One thousand simulations are performed for the two-stage designs with r = 0,
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Table 4.3: The relative efficiency for the bivariate mixture of continuous and binary

responses.

Locally optimal designs

@
@

@
@

@
@

r′

r
0 1 10 100

0 1 0.96 0.60 0.23

1 0.97 1 0.79 0.34

10 0.77 0.88 1 0.65

100 0.36 0.42 0.65 1

Two-stage designs

@
@

@
@

@
@

r′

r
0 1 10 100

0 1 0.97 0.80 0.69

1 0.98 1 0.97 0.92

10 0.94 0.97 1 0.99

100 0.88 0.92 0.98 1

10, and 100 respectively. In each scenario, N0 = 80 patients are assigned to the

five doses via the uniform design in the initial stage, and then the rest of N1 = 120

patients are assigned according to the estimated optimal designs. MLEs are calculated

using the non-linear optimization subroutine “nlptr” in SAS. For this specific dose-

response model, the probability of toxicity is very low within the dose range 0.2 to

0.8. There is a small probability that one may get no events for all five dose levels

in the initial stage, which would lead to unreasonable MLEs. To fix this problem,

we add a regularization term to the likelihood function for the initial stage. This

regularization term has minimal impact on the parameter estimates if enough events

are observed (Tarantola, 2004, Wahba, 1990).

Figure 4.3 shows the results of simulations. The left panel presents the allocations

of the optimal doses in the second stage for the different designs. The circles in the
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Figure 4.3: 1000 simulated two-stage designs with r = 0, 10 and 100. N0 = 80;

N1 = 120. Left panel: Locations of design points in the second stage; Right

panel: Distributions of the predicted “best dose” X̂∗.
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histograms represent the theoretical second stage optimal doses in Figure 4.2, and the

sizes of the circles are proportional to their weights. These plots demonstrate that

the locations of the design points are around the theoretical second stage optimal

designs, and close to the corresponding locally optimal designs as well (see Figure

4.2).

The right panel of Figure 4.3 are the distributions for the predicted best dose

X̂∗ for different two-stage designs using the final estimated parameters for all 200

subjects. The reference lines indicate the best dose under true parameters (X∗ =

1.095). The curves denote the fitted normal density with the sample mean of X̂∗,

and the variance coinciding with the asymptotic variance of X̂∗ for the corresponding

two-stage optimal designs with true parameters (see Table 4.3). The means of the

estimated best doses for all three designs are close to the true best dose. Although

the two-stage design with r = 0 has smaller variances for the estimated best dose,

the allocation for the doses is spread far away from the best dose and thus cause the

large penalties.

4.4.3 Fully Adaptive Designs

Similar to the two-stage designs, 80 patients are assigned to the uniform design

at the initial stage and 200 patients are assumed in total. We update the model

parameters after each subject and assign the next subject following a given strategy.

For D-adaptive designs, given currently available observations, we allocate the next

observation to the dose which maximizes the sensitivity function in (4.3.13). D-
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adaptive designs with the penalty parameters r = 0, 10, and 100 are studied. For the

purpose of comparison, we also construct the best intention adaptive design, in which

the next patient is assigned to the predicted best dose (the dose that maximizes the

utility function, see (4.2.11) and (4.2.12)) based on the current accumulated data,

i.e.,

xN = arg max
x∈X

ζ(x, θ̂N). (4.4.2)

Similar designs are rather popular in clinical trials such as the intuitive “best in-

tention” design proposed by Lai and Robbins (1978), the adaptive design for max-

imization of the probability p10 by Li, Durham and Flournoy (1995), Continuous

Reassessment Method (CRM) by O’Quigley, Pepe, and Fisher (1990), and Escalation

with Overdose Control (EWOC) by Babb, Rogatko, and Zacks (1998). All these

designs have some in common with so called ”self-tuning” optimizer problem, see

Pronzato (2000).

Figure 4.4 shows the allocations of the patients (the left panel) and the distribu-

tions of the predicted ”best dose” (the right panel) for the three D-adaptive designs

and the best intention adaptive design when the total number of patients reaches 200.

One thousand simulations are performed for each design.

The allocations of the patients in the simulations are around the theoretical second

stage optimal designs, and close to the corresponding locally optimal designs as well

(see Figure 4.2). For the estimates of the best dose, the D-adaptive design with r = 0

has the smallest variability and the best intention design has the largest variability.

In addition, the distributions of the predicted best dose in the adaptive designs have

90



Figure 4.4: 1000 simulated fully adaptive designs with r = 0, 10 and 100, and best

intention adaptive design; N0 = 80; Left panel: Locations of design points at 200th

patient; Right panel: Distributions of the predicted “best dose” X̂∗.
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the means and standard deviations close to the corresponding two-stage designs (see

Figure 4.3).

4.4.4 Unknown correlation ρ

In this section, we construct the penalized locally D-optimal design when ρ is

assumed as an unknown parameter. To study the effect of different correlations

between efficacy and toxicity on the optimal designs, we consider the following true

values of ρ: −0.9,−0.5, 0, 0.5 and 0.9, while the other parameters remain the same.

The results (Figure 4.5) show that the optimal designs are not very sensitive to the

changes of the correlation ρ.

We expect that when ρ is assumed to be a unknown model parameter, the two-

stage designs and D-adaptive designs have similar changes to the corresponding locally

optimal designs.

4.4.5 Partition of sample sizes in two-stage designs

In practice, people may be interested in the choice of the ratio of the sample sizes

of two stages in the two-stage design. This is a trade-off between the accuracy of

estimators from the initial stage and the number of patients put on the more efficient

design. For example, a very large sample size of the initial stage leads to more accurate

estimators from the initial stage but leaves a small sample size for optimal design,

and consequently the final estimators may be less accurate. In contrast, a very small

sample size may result in inaccurate estimates from the initial stage, and consequently
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Dose

r=0

0.2 0.4 0.6 0.8 1.0 1.2 1.4

ρ= −0.9

ρ= −0.5

ρ=  0

ρ=  0.5

ρ=  0.9

Dose

r=1

0.2 0.4 0.6 0.8 1.0 1.2 1.4

ρ= −0.9

ρ= −0.5

ρ=  0

ρ=  0.5

ρ=  0.9

Dose

r=10

0.2 0.4 0.6 0.8 1.0 1.2 1.4

ρ= −0.9

ρ= −0.5

ρ=  0

ρ=  0.5

ρ=  0.9

Figure 4.5: Allocation of the doses for locally optimal designs under different unknown

correlation parameters of ρ and with different values of r in the penalty function. The

size of each point represents the corresponding weight.

the design in the second stage may be far away from the local optimal design. To

investigate this issue, given the total sample size 200, we construct simulations under

different sample sizes of first stage (N0) with values of 20, 40, 60, 80, 100 and 120

with r = 10 in the penalty function, and compare the final results.

Three measures are investigated :

(1) The information per penalty (|(πM(ξ0,θ)+ (1−π)M(ξ, θ))/(πΦ(ξ0,θ)+ (1−

93



π)Φ(ξ, θ))|1/m) which indicates the efficiency of the design;

(2) The estimate of the general MSE of θ, which quantifies the overall accuracy

of all unknown parameters and is defined as |E(θ̂ − θ)(θ̂ − θ)T |1/m = N |∑s
i=1(θ̂ −

θ)(θ̂ − θ)T /s|1/m, where s is the number of simulations and N is the total sample

size;

(3) The Root Mean Square Error (RMSE) of the predicted best dose which mea-

sures the performance of the design in terms of the estimated best dose.

For comparison purposes, the corresponding values for the locally two-stage D-

optimal design (i.e., the true parameters are used in the second stage), the penalized

locally D-optimal designs, and the five-dose uniform designs are also calculated as the

reference lines.

The information per penalty for the locally two-stage designs (the top left plot

in Figure 4.6), decreases as N0 increases, while in the simulations, the values may

drop when N0 is small and the range of the quantiles may be large due to the less

accurate MLE in the first stage. Both the estimate of the general MSE of θ (the top

right plot in Figure 4.6) and the RMSE of the predicted best dose (the bottom plot in

Figure 4.6) decrease first and then increase as N0 increases. All these results suggest

that a moderate sample size (say between 80 and 100) in the first stage has relatively

higher efficiency for the design and better performance in terms of the prediction of

the overall parameters and the best dose.
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Figure 4.6: For different designs: locally D-optimal design built with r = 0, locally D-

optimal design built with r = 10, five-point uniform deign, locally and simulated two-

stage designs built with r = 10 and different partition of sample sizes, respectively,

(1) Top-left: information per penalty, (2)Top-right: estimation of the general MSE

of θ, and (3)Bottom: RMSE of the estimated best dose.
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4.5 Conclusion

Under a bivariate model for correlated continuous efficacy and discrete toxicity

responses, we developed dose-finding procedures based on optimal experimental de-

sign theory. A utility function is used to quantify the targeted treatment effects, and

a penalty function is introduced to address ethical issues and cost constraints in a

drug development setting.

Various designs including locally optimal, two-stage designs, and fully adaptive

designs were constructed and compared. We used the locally optimal designs as

benchmarks with which all other designs were compared. In examples, we varied the

penalty function to illuminate its impact on the optimal designs and compared the

relative efficiency among different designs. In practice, the selection of the penalty

assigned to each dose should be extensively discussed with researchers.

In our simulations the two-stage designs work well to predict the best dose, and

the assignment of the patients is very close to the locally optimal two-stage designs

when a decent sample size is used in the initial stage (e.g. 40% of the total 200

observations). We provided a rather straightforward evaluation of the sample size

of the first stage based on Monte Carlo simulations. It is computationally intensive

but we are not aware of any analytical tool. Looking at the histograms provided for

various estimators one can notice that two-stage designs perform equally well or better

than fully adaptive designs. It might contradict to the intuition of many who think

that fully adaptive designs use the available information more efficiently than two-
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stage designs. However, recalling (Fedorov, 1972) that fully adaptive designs mimic

the first order algorithm with “forward” steps only, one can understand why two-stage

designs may be better. Indeed in two-stage designs given θ̂, we build an exact optimal

compliment to the first stage. Therefore, if unknown parameters are reasonably well

estimated after the initial stage, two-stage designs can be superior than fully adaptive

designs. Taking into account that the logistics for two-stage designs is much simpler

than for fully adaptive designs, the two-stage designs are preferable in most cases.

This study is an example of how general probit model can be introduced and

combined with optimal design theory in dose-finding experiments. The generalization

of our work can be easily extend to multiple mixture responses, multilevel categorical

responses, and multistage optimal designs.
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Chapter 5

Appendices

5.1 The proofs related to Chapter 2

5.1.1 Proof of Theorem 1

The OLS estimator of βT = (β0, βR, βM , βRM) for the model in (2.2.2) is β̂ =

(ZT Z)−1ZT Y = θ+(ZT Z)−1ZT ε, where Z is the design matrix in regression analysis,

and Y = (Y1, . . . , Yn)T , the vector of outcome. Under Assumption (A1) and E(ε|R) =

0, also assuming that (ZT Z) has the full rank, we have
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β̂ − θ = (ZT Z)−1ZT ε

=




1
∑

i Ri/n
∑

i Mi/n
∑

i RiMi/n

∑
i Ri/n

∑
i R

2
i /n

∑
i RiMi/n

∑
i R

2
i Mi/n

∑
i Mi/n

∑
i RiMi/n

∑
i M

2
i /n

∑
i RiM

2
i /n

∑
i RiMi/n

∑
i R

2
i Mi/n

∑
i RiM

2
i /n

∑
i R

2
i M

2
i /n




−1 


∑
i εi/n

∑
i Riεi/n

∑
i Miεi/n

∑
i RiMiεi/n




=




1 E(R) E(M) E(RM)

E(R) E(R2) E(RM) E(R2M)

E(M) E(RM) E(M2) E(RM2)

E(RM) E(R2M) E(RM2) E(R2M2)




−1 


0

0

E(Mε)

E(RMε)




+ op(1),

Given P (R = 1) = P (R = 0) = 1/2, we have E(R) = 1/2, E(RM) = E(R2M) =

1/2E(M |R = 1), E(RM2) = E(R2M2) = 1/2E(M2|R = 1), and E(RMε) =

1/2E(Mε|R = 1). Substituting them into the above expression leads to

Bias(β̂) = plim(β̂ − θ) + op(1)

=




E(M |R=0)E(Mε|R=0)
Var(M |R=0)

−E(M |R=1) E(Mε|R=1)
Var(M |R=1)

+ E(M |R=0) E(Mε|R=0)
Var(M |R=0)

E(Mε|R=0)
Var(M |R=0)

E(Mε|R=1)
Var(M |R=1)

− E(Mε|R=0)
Var(M |R=0)




+ op(1).
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5.1.2 Proof of Lemma 1

Under f(r,m, ε) = f(1− r,−m,−ε) and P (R = 1) = P (R = 0),

(1) E(Mε|R = 1) =

∫ +∞

−∞

∫ +∞

−∞

mεf(r = 1,m, ε)

P (R = 1)
dmdε

=

∫ +∞

−∞

∫ +∞

−∞

mεf(r = 0,−m,−ε)

P (R = 1)
dmdε

=

∫ −∞

+∞

∫ −∞

+∞

(−m)(−ε)f(r = 0,m, ε)

P (R = 1)
d(−m)d(−ε)

=

∫ +∞

−∞

∫ +∞

−∞

mεf(r = 0,m, ε)

P (R = 1)
dmdε = E(Mε|R = 0).

(2)E(M |R = 1) =

∫ +∞

−∞

mf(r = 1, m)

P (R = 1)
dm =

∫ +∞

−∞

mf(r = 0,−m)

P (R = 1)
dm

=

∫ −∞

+∞

(−m)f(r = 0,m)d(−m)

P (R = 1)
=

∫ +∞

−∞

(−m)f(r = 0,m)

P (R = 1)
dm

= −E(M |R = 0).

(3) E(M2|R = 1) =

∫ +∞

−∞

m2f(r = 1,m)

P (R = 1)
dm =

∫ +∞

−∞

m2f(r = 0,−m)

P (R = 1)
dm

=

∫ −∞

+∞

m2f(r = 0, m)

P (R = 1)
d(−m) =

∫ +∞

−∞

m2f(r = 0,m)

P (R = 1)
dm = E(M2|R = 0).

From (2) and (3), we have Var(M |R = 1) = E(M2|R = 1) − E2(M |R = 1) =

E(M2|R = 0)− E2(M |R = 0) = Var(M |R = 0).

5.1.3 Proof of Theorem 2

From Lemma 1, we know that if f(r,m, ε) = f(1− r,−m,−ε), and under P (R =

1) = P (R = 0) = 1/2, then E(Mε|R = 1) = E(Mε|R = 0) and Var(M |R =

1) = Var(M |R = 0). We have Cov(R, M) = E(RM) − E(R)E(M) = E(RM) =
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1
4
[E(M |R = 1) − E(M |R = 0)]. Substituting these into the bias expression of The-

orem 1 leads to Bias(β̂R) = −4E(RM)E(Mε)
Var(M)

+ op(1), Bias(β̂M) = E(Mε)
Var(M)

+ op(1), and

Bias(β̂RM) = op(1).

And also Bias(β̂R)/Bias(β̂M) = −[E(M |R = 1) − E(M |R = 0)] = −4E(R, M) +

op(1).

5.1.4 Proof of Theorem 3

The OLS estimator for the model in (2.2.6) is

β̂f = (XT
f Xf )

−1XT
f Y = θf + (XT

f Xf )
−1XT

f ε

, where Xf = (Z, X) and θf = (θT ,γT )T .

Therefore,

β̂f − θf = (XT
f Xf )

−1XT
f ε =




ZT Z ZT X

XT Z XT X




−1 


ZT ε

XT ε




=




(ZT Z)−1(I + (ZT X)F−1(ZT X)T (ZT Z)−1) −(ZT Z)−1(ZT X)F−1

−F−1(ZT X)T (ZT Z)−1 F−1







ZT ε

XT ε




=




(ZT Z)−1ZT ε + LF−1(ZL− X)T ε

F−1XT ε− F−1XT ZÃL


 ,

where L = (ZT Z)−1ZT X and F = XT X− XT Z(ZT Z)−1ZT X.
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Consequently,

Bias(β̂)

= plim(β̂)− θ + op(1)

= {plim(ZT Z)}−1plim(ZT ε) + plim{LF−1(ZL− X)T ε}+ op(1)

= {plim(ZT Z)}−1plim(ZT ε) + plim(L){plim(F)}−1plim((ZL− X)T ε) + op(1).

5.2 The derivation of optimal weight of G-estimation

The optimal choice of gopt(Y 00(Ψ), X) for dichotomous R is (Robins(1992a)):

gopt(Y 00, X) = E{SΨ(Ψ, θ; X, R, M, Y )|X, R = 1, Y 00}

− E{SΨ(Ψ, θ; X, R, M, Y )|X, R = 0, Y 00} (5.2.1)

where SΨ(Ψ, θ; X,R, M, Y ) is the score function w.r.t Ψ, and here θ represents the

nuisance parameters.

To study gopt(Y 00, X), we start with the likelihood function based on the observ-

able data:

L(Ψ, θ; X, R, M, Y ) = L(Ψ, θ; X, R,M, Y 00(Ψ))
∂Y 00(Ψ)

∂Y

= L(Ψ, θ; X, R,M, Y 00(Ψ))

(
∵ ∂Y 00(Ψ)

∂Y
= 1 for model(3.2.3)

)

= f(X; θ)f(R|X; θ)f(Y 00(Ψ)|X, R; θ)f(M |R, X, Y 00(Ψ); θ)

= f(X; θ)f(R|X; θ)f(Y 00(Ψ)|X; θ)f(M |R, X, Y 00(Ψ); θ)

(
∵ R ⊥ Y 00(Ψ)|X)
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The log likelihood function is :

l(Ψ, θ; X, R, M, Y ) = log f(X; θ) + log f(R|X; θ)

+ log f(Y 00(Ψ)|X; θ) + log f(M |R,X, Y 00(Ψ); θ) (5.2.2)

Thus the score function is :

SΨ(Ψ, θ; X, R, M, Y ) =
∂l(Ψ, θ; X, R, M, Y )

∂Ψ
=

∂l(Ψ, θ; X,R,M, Y )

∂Y 00(Ψ)

∂Y 00(Ψ)

∂Ψ

= −∂ log f(Y 00(Ψ)|X; θ)

∂Y 00(Ψ)




R

M

RM



− ∂ log f(M |X, R, Y 00; θ)

∂Y 00(Ψ)




R

M

RM




= S{1}Ψ(Ψ, θ; X,R, M, Y ) + S{2}Ψ(Ψ, θ; X, R, M, Y ), (5.2.3)

where S{1}Ψ(Ψ, θ; X, R, M, Y ) = −∂ log f(Y 00(Ψ)|X;θ)
∂Y 00(Ψ)




R

M

RM




and S{2}Ψ(Ψ, θ; X, R,M, Y ) = −∂ log f(M |X,R,Y 00;θ)
∂Y 00(Ψ)




R

M

RM




.

Expression (5.2.3) consists of two parts, which depend on the distributions of

f(Y 00|X) and f(M |X, R, Y 00). Accordingly, denoting

gopt
{i}(Y

00, X) = E(S{i}Ψ(Ψ, θ; X, R, M, Y )|X, R = 1, Y 00)

− E(S{i}Ψ(Ψ, θ; X, R, M, Y )|X, R = 0, Y 00),

where i = 1, or 2, we can write gopt as

gopt(Y 00, X) = gopt
{1}(Y

00, X) + gopt
{2}(Y

00, X).
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Under the sequential ignorability assumption, i.e. M⊥Y 00|R, X, the second term,

gopt
{2}(Y

00, X) will be ignored (Joffe and Brensinger, 2003). Here we relax this assump-

tion so both terms should be kept in gopt. In what follows, for simplicity we assume

that the potential outcome Y 00 and post-randomization factor M follow the normal

distributions.

If we assume Y 00 ∼ N(µ(X), σ2), then

f(Y 00|X) =
1√

2πσ2
exp

{− (Y 00 − µ(X))2

2σ2

}
,

S{1}Ψ(Ψ, θ; X,R,M, Y ) =

{
−Y 00 − µ(X)

σ2

}




−R

−M

−RM




.

Thus

gopt
{1}(Y

00, X) =
Y 00 − µ(X)

σ2




1

E{M |X,R = 1, Y 00} − E{M |X, R = 0, Y 00}

E{M |X,R = 1, Y 00}




(5.2.4)

Expression (5.2.4) is a general form for gopt
{1}(Y

00, X), and can be used for any type

of M (continuous, binary, categorical). In other words, under sequential ignorabil-

ity, (5.2.4) is the optimal weight for G-estimation. The explicit form of conditional

expectation of M depends on the model and distribution of M that we assume (the

working assumption in G-estimation). For gopt
{1}(Y

00, X), it also depends on the dis-

tribution assumption of M . Therefore, in the following, we will discuss gopt
(Y 00,X) when
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M is continuous or binary respectively.

5.2.1 Continuous post-randomization factor M

Assume M ∼ N(µm(X, R, Y 00), σ2
m), where the mean µm(X, R, Y 00) is a linear

combination of X,R, and Y 00. For example. all two-way and three way interactions

are included, then

µm(X, R, Y 00) = Xθx + Rθr + XRθxr + Y 00θY 00 +

XY 00θxY 00 + RY 00θrY 00 + XRY 00θxrY 00 , (5.2.5)

or equivalently,

M = Xθx + Rθr + XRθxr + Y 00θY 00 + XY 00θxY 00

+RY 00θrY 00 + XRY 00θxrY 00 + εm, (5.2.6)

with E(εm|X, R, Y 00) = 0 and E(ε2
m|X,R, Y 00) = σ2

m.

Then under (5.2.5) and (5.2.6),

E{M |X,R = 1, Y 00} = θr + X(θx + θxr) + Y 00(θY 00 + θrY 00) + XY 00(θxY 00 + θrxY 00)

(5.2.7a)

E{M |X,R = 0, Y 00} = Xθx + Y 00θY 00 + XY 00θxY 00 (5.2.7b)

E{M |X,R = 1, Y 00} − E{M |X, R = 0, Y 00} = θr + Xθxr + Y 00θrY 00 + XY 00θrxY 00

(5.2.7c)
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Substituting (5.2.7) into (5.2.4), we obtain

gopt
{1}(Y

00, X) =

Y 00 − µ(X)

σ2




1

θr + Xθxr + Y 00θrY 00 + XY 00θrxY 00

θr + X(θx + θxr) + Y 00(θY 00 + θrY 00) + XY 00(θxY 00 + θrxY 00)




(5.2.8)

Again under (5.2.5) and (5.2.6), we have

S{2}Ψ(Ψ, θ; X, R,M, Y )

=

{
M − µm

σ2
m

}
(θY 00 + XθxY 00 + RθrY 00 + XRθxrY 00)




−R

−M

−RM




= − εm

σ2
m

(θY 00 + XθxY 00 + RθrY 00 + XRθxrY 00)




R

M

RM




.
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Therefore,

gopt
{2}(Y

00, X)

= −
{

E
{ εm

σ2
m

(θY 00 + XθxY 00 + θrY 00 + XθxrY 00)




1

M

M



|X, R = 1, Y 00

}

−E
{ εm

σ2
m

(θY 00 + XθxY 00)




0

M

0



|X, R = 0, Y 00

}}

= −Y 00 − µ(X)

σ2




1

θr + Xθxr + Y 00θrY 00 + XY 00θrxY 00

θr + X(θx + θxr) + Y 00(θY 00 + θrY 00) + XY 00(θxY 00 + θrxY 00)




.

(5.2.9)

Thus

gopt(Y 00, X) = gopt
{1}(Y

00, X) + gopt
{2}(Y

00, X)

=
Y 00 − µ(X)

σ2




1

θr + Xθxr + Y 00θrY 00 + XY 00θrxY 00

θr + X(θx + θxr) + Y 00(θY 00 + θrY 00) + XY 00(θxY 00 + θrxY 00)




−




0

θrY 00 + XθxrY 00

θY 00 + θrY 00 + X(θxY 00 + θxrY 00)




. (5.2.10)
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5.2.2 Binary post-randomization factor M

Assume that M is binary with logit link,

logit(P (M = 1)) = log
{ P (M = 1)

1− P (M = 1)

}

= Xθx + Rθr + XRθxr + Y 00θY 00 + XY 00θxY 00 + RY 00θrY 00 + XRY 00θxrY 00

= um,

P (M = 1) =
eum

1 + eum
=

1

1 + e−um
,

P (M = 0) = 1− eum

1 + eum
=

1

1 + eum
.

Denote

logit(P (M = 1|X, R = 1, Y 00)) = θr + X(θx + θxr) + Y 00(θY 00 + θrY 00)

+ XY 00(θxY 00 + θxrY 00) = ur1
m

logit(P (M = 1|X, R = 0, Y 00)) = Xθx + Y 00θY 00 + XY 00θxY 00 = ur0
m .

Then

P (M = 1|X, R = 1, Y 00) =
eu

r1
m

1 + eu
r1
m

=
1

1 + e−u
r1
m

,

P (M = 0|X, R = 1, Y 00) = 1− eu
r1
m

1 + eu
r1
m

=
1

1 + eu
r1
m

.

Thus we have

gopt
{1}(Y

00, X) =
Y 00 − µ(X)

σ2




1

1

1+e−µ
r1
m
− 1

1+e−µ
r0
m

1

1+e−µ
r1
m




. (5.2.11)
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The log likelihood of binary M and its partial derivative w.r.t Y 00 are:

log f(M) = log{P (M = 1)MP (M = 0)(1−M)}

= M log P (M = 1) + (1−M) log P (M = 0)

∂ log f(M)

∂Y 00
= M

∂ log P (M = 1)

∂Y 00
+ (1−M)

∂ log P (M = 0)

∂Y 00

= M
1

1 + eum
(θY 00 + XθxY 00 + RθrY 00 + XRθxrY 00)

−(1−M)
eum

1 + eum
(θY 00 + XθxY 00 + RθrY 00 + XRθxrY 00)

= (θY 00 + XθxY 00 + RθrY 00 + XRθxrY 00)(M − eum

1 + eum
)

= (θY 00 + XθxY 00 + RθrY 00 + XRθxrY 00)(M − P (M = 1)).

(5.2.12)

Thus we have,

S{2}Ψ(Ψ, θ; X,R,M, Y )

= −(θY 00 + XθxY 00 + RθrY 00 + XRθxrY 00)(M − P (M = 1))




R

M

RM




,

(5.2.13)
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gopt
{2}(Y

00, X)

= −(θY 00 + XθxY 00 + θrY 00 + XθxrY 00)E{(M − P (M = 1))




1

M

M



|X,R = 1, Y 00}

−(θY 00 + XθxY 00)E{(M − P (M = 1))




0

M

0



|X,R = 0, Y 00}

= −(θY 00 + XθxY 00 + RθrY 00 + XRθxrY 00)(M − P (M = 1))




R

M

RM




. (5.2.14)

Therefore, for binary M

gopt(Y 00, X) = gopt
{1}(Y

00, X) + gopt
{2}(Y

00, X) (5.2.15)

5.3 The necessary and sufficient condition of opti-

mality for the two-stage designs.

For two-stage designs, we assume that the design for the first stage ξ0 is available

and fixed, with sample size N0. For simplicity of notation, we omit θ in the infor-

mation matrix, the penalty, and the sensitivity function, but readers should keep in

mind that they all depend on θ.

When the total penalty for the two stages is limited by C, the optimal design can
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be defined as

ξ∗(θ) = arg min
ξ

Ψ[N0M(ξ0) + N1M(ξ)] s.t. N0Φ(ξ0) + N1Φ(ξ) ≤ C, (5.3.1)

where Ψ is convex and homogeneous.

Denoting π = N0/(N0 + N1), we can rewrite (5.3.1) as

ξ∗(θ) = arg min
ξ

Ψ[N(πM(ξ0) + (1− π)M(ξ))] s.t. N(πΦ(ξ0) + (1− π)Φ(ξ)) ≤ C.

(5.3.2)

Assume that π is fixed. The constraint in (5.3.2) implies N(ξ) = C/(πΦ(ξ0)+(1−

π)Φ(ξ)), and thus

ξ∗(θ) = arg min
ξ

Ψ[(πM(ξ0) + (1− π)M(ξ)) C/(πΦ(ξ0) + (1− π)Φ(ξ))]

= arg min
ξ

γ(C)Ψ[(πM(ξ0) + (1− π)M(ξ))/(πΦ(ξ0) + (1− π)Φ(ξ))],

(5.3.3)

where γ is a non-increasing function.

Due to the homogeneity assumption (Fedorov and Hackl, 1997, Ch.2.2), the opti-

mization problem for the second stage in two-stage design is equivalent to

ξ∗(θ) = arg min
ξ

Ψ

[
πM(ξ0) + (1− π)M(ξ)

πΦ(ξ0) + (1− π)Φ(ξ)

]
, (5.3.4)

or

ξ∗ = arg min
ξ

Ψ

[
A + M(ξ)

a + Φ(ξ)

]
, (5.3.5)

where A = π
1−π

M(ξ0) and a = π
1−π

Φ(ξ0). Both A and a are fixed given the fixed

initial design ξ0.
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In general, the criterion in (5.3.5) is not a convex function of ξ ∈ Ξ(X). However,

this criterion is quasiconvex (see Avriel, 2003 Ch.6.1). For this class of functions most

results used in convex optimization stay valid.

A real-valued function f , defined on a convex set X ⊂ Rn, is said to be quasiconvex

if

f(q1x
1 + q2x

2) ≤ max[f(x1), f(x2)]. (5.3.6)

Consider the design ξ̄ = (1 − α)ξ∗ + αξ, where ξ∗ is the optimal design and ξ

is some arbitrary design. For D-optimality, the directional derivative of Ψ in the

direction of ξ̄ is

∂

∂α
log

∣∣∣∣
A + M(ξ)

a + Φ(ξ)

∣∣∣∣
−1

α=0

= m
Φ(ξ)− Φ(ξ∗)

a + Φ(ξ∗)
− tr

{
(A + M(ξ∗))−1(M(ξ)−M(ξ∗))

}
,

(5.3.7)

where m is the number of unknown parameters.

Ψ is quasi-convex and the necessary and sufficient condition of the optimality of

ξ∗ is nonnegativeness of the directional derivative (5.3.7), i.e.,

tr(A + M(ξ∗))−1M(ξ)− mΦ(ξ)

a + Φ(ξ∗)
≤ tr(A + M(ξ∗))−1M(ξ∗)− mΦ(ξ∗)

a + Φ(ξ∗)
.

(5.3.8)

This statement is of little help because it should be verified for all possible ξ.

However, instead of looking through all possible designs, one can actually verify in-

equality (5.3.8) only for designs atomized at a single point (Fedorov and Hackl, 1997).

Indeed, with M(ξ) =
∫

X
µ(x)ξ(dx) and Φ(ξ) =

∫
X

φ(x)ξ(dx), one may conclude that
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for any design ξ, there exists x̃ ∈ X such that

tr(A + M(ξ∗))−1M(ξ)− mΦ(ξ)

a + Φ(ξ∗)

=

∫

X

[tr(A + M(ξ∗))−1µ(x)− mφ(ξ)

a + Φ(ξ∗)
]ξ(dx)

= tr(A + M(ξ∗))−1µ(x̃)− mφ(x̃)

a + Φ(ξ∗)
. (5.3.9)

Therefore, one may conclude that the inequality

tr(A + M(ξ∗))−1µ(x)− mφ(x)

a + Φ(ξ∗)

≤ tr(A + M(ξ∗))−1M(ξ∗)− mΦ(ξ∗)
a + Φ(ξ∗)

, ∀x ∈ X,

(5.3.10)

is the necessary and sufficient condition of optimality of ξ∗. The equality holds for

all x which are support points of ξ∗.

Thus the sensitivity function for the second stage in the two-stage design is

ψ(x) = tr(A + M(ξ))−1µ(x)− mφ(x)

a + Φ(ξ)
. (5.3.11)
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