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ABSTRACT

ACQUISITION, STORAGE, AND RETRIEVAL

IN DIGITAL AND BIOLOGICAL BRAINS

Jeremy R. Manning

Supervisor: Michael J. Kahana, Ph.D.

My work examines how the brain acquires, stores, and retrieves information. I first

present a theoretical model of the retina, and use the model to explore how the

design of sensory systems affects our ability to make inferences about the physical

world. I next present three analyses of electrocorticographic recordings taken as

human neurosurgical patients participated in experimental cognitive tasks. In the

first analysis, I measure the relation between single-neuron spiking and local field

potentials, which reflect the aggregate activity of large populations of neurons. In

the second analysis, I ask how the brain represents the meanings of individual

words as they are studied and remembered. In the third electrocorticographic

analysis, I address the question of how our brains retrieve memories of past expe-

riences.

vi



Contents

Acknowledgments iv

Abstract vi

Contents vii

List of tables x

List of figures xi

1 Introduction 1

1.1 Intracranial recordings from human epilepsy patients . . . . . . . . . 2

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Optimal design of photoreceptor mosaics: why we do not see in color at

night 7

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Simplified formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



3 Broadband shifts in local field potential power spectra are correlated with

single-neuron spiking in humans 51

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Supplemental materials . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Temporal and frontal networks reveal how conceptual memories are or-

ganized 78

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Supplemental materials . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Oscillatory patterns in temporal lobe reveal context reinstatement during

memory search 95

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Supplemental materials . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 General discussion 122

6.1 Contributions of this dissertation . . . . . . . . . . . . . . . . . . . . . 122

viii



6.2 Future directions: Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Future directions: Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Future directions: Chapters 4 and 5 . . . . . . . . . . . . . . . . . . . . 127

6.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

References 134

ix



List of tables

3.1 Summary of observed neurons . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Bandpass filters employed by our collaborating hospitals . . . . . . . 90

4.2 Patient and task information . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Patient and task information . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Bandpass filters employed by our collaborating hospitals . . . . . . . 112

x



List of figures

1.1 Electrodes used for human intracranial recordings . . . . . . . . . . . 3

2.1 Three simple render matrices with varying optical blur and spectral

sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Optimized error (Oopt
F ) for equal signal-to-noise case . . . . . . . . . . 27

2.3 Comparison of dichromatic and monochromatic vision for equal

photoreceptor signal-to-noise and high color and spatial correlations 29

2.4 Comparison of dichromatic and monochromatic retinae for varying

color and spatial correlations . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Optimized error (Oopt
F ) for unequal dark noise case . . . . . . . . . . . 32

2.6 Comparison of dichromatic and monochromatic vision for unequal

photopigment dark noise and high color and spatial correlations . . 33

2.7 Best arrangement as a function of illumination intensity (ω) . . . . . 34

2.8 Effect of spectral sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 LFP power and neuronal firing time series . . . . . . . . . . . . . . . . 61

3.2 A representative neuron exhibiting a positive correlation between

firing rate and broadband LFP power . . . . . . . . . . . . . . . . . . 62

3.3 Categories of observed neurons . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Broadband-shift neurons throughout the brain . . . . . . . . . . . . . 66

xi



3.5 Percentage of positive broadband-shift neurons observed in each

brain region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 LFP components that predict firing rate . . . . . . . . . . . . . . . . . 68

3.7 Average power spectra for different subsets of neurons . . . . . . . . 69

3.8 Schematic of our analysis framework . . . . . . . . . . . . . . . . . . . 76

4.1 Illustration of behavioral and electrophysiological methods . . . . . . 81

4.2 Regions of interest (ROIs) . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Neural activity predicts clustering during recall . . . . . . . . . . . . 84

4.4 Detailed region of interest results . . . . . . . . . . . . . . . . . . . . . 93

5.1 Illustration of behavioral and electrophysiological methods . . . . . . 99

5.2 Evolution of ECoG activity as participants study lists of words . . . . 100

5.3 Predicted neural similarity as a function of lag according to three

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 A neural signature of temporal context reinstatement . . . . . . . . . 103

5.5 Detailed simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Evidence for context reinstatement in the temporal lobe . . . . . . . . 119

5.7 Mean contributions of each frequency band to selected features . . . 120

6.1 Putting this dissertation into context . . . . . . . . . . . . . . . . . . . 123

6.2 Applying feature selection to principal components . . . . . . . . . . 129

xii



Chapter 1

Introduction

Weighing in at under 1.5 kilograms and containing a hundred billion neurons, sixty

trillion synapses, and more than 170 megameters of axon1 (Kandel, Schwartz, &

Jessell, 2000; Marner, Nyengaard, Tang, & Pakkenberg, 2003), the human brain is

by far the most sophisticated computing device our species has ever produced —

and perhaps ever will. Throughout history, our best and brightest philosophers,

psychologists, and neuroscientists have agonized over how our brains learn about

and interact with our physical world, and how we retrieve learned information

and memories of our past experiences. In this dissertation, I use computational

modeling and analyses of human brain recordings to study these questions. In this

chapter I briefly discuss the intracranial recording methods used in Chapters 3 – 5

and provide a general overview of this dissertation.

1For comparison, the Earth’s circumference around the equator measures just over 40 megame-
ters, and the distance from the Earth to the moon is approximately 380 megameters.
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1.1 Intracranial recordings from human epilepsy pa-

tients

The physiological data I analyze in Chapters 3 – 5 come from neurosurgical patients

with drug-resistant epilepsy. In order to identify epileptogenic tissue for potential

subsequent resection, clinical teams first implant electrodes in the brains of these

patients. Over the course of a patient’s hospital stay, neurologists and technicians

analyze the electrical activity recorded from these electrodes as the patients have

seizures, in order to localize the epileptic foci. Although seizure frequency and

duration of hospital stay varies from patient to patient, the patients are often

confined to their hospital beds for several weeks. During this time, many patients

generously volunteer to participate in our studies.

Recordings are made from three types of electrodes (Fig. 1.1). In Chapter 3, I

analyze previously collected data from microwire electrodes (Figs. 1.1A–C), which

extend from the tips of implanted depth electrodes, and lie in contact with neu-

rons’ somata. These electrodes, which measure 40 µm in diameter, record both

local field potentials, which reflect the aggregate activities of the local population

of neurons within approximately 140 µm of the tip of the electrodes (Buzsáki, 2004),

and action potentials from the directly adjacent neurons (Fig. 1.1C). A single mi-

croelectrode can record action potentials simultaneously from multiple neurons;

these action potentials must then be isolated and assigned to individual neurons

(Quiroga, Nadasdy, & Ben-Shaul, 2004). In Chapters 4 and 5, I analyze data from

depth electrodes (Figs. 1.1A,B) and surface electrodes (Figs. 1.1D,E). The exposed

recording surfaces of the depth electrodes measure 1.3 mm in diameter, while the

recording surfaces of the surface electrodes measure 2.3 mm in diameter. These

electrodes record from much larger areas than the microwire electrodes, capturing

2
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Figure 1.1. Electrodes used for human intracranial recordings. A. This panel shows a magnetic
resonance image (MRI) of a patients’ brain. The red arrow indicates the location of the tip of a depth
electrode implanted in the right hippocampus. B. This panel shows a schematic of a depth electrode
with eight microwire electrodes extending from its tip. Standard depth electrodes look similar, but
do not have the microwire extensions (not shown). C. This panel shows action potential waveforms
isolated from a microwire recording. The individual waveforms (shown in red) have been aligned
to lie on top of one another. The black line indicates the average waveform. D. This panel shows
a schematic of two surface electrodes, arranged in an 8 × 8 “grid” configuration (left) and a 1 × 12
“strip” configuration (right). Electrodes in both configurations are spaced at 1 cm intervals. E. Here
an 8 × 8 grid of electrodes has been placed on the surface of a patient’s brain. Panels A and C are
courtesy of Joshua Jacobs. Panels B and D are courtesy of Ad-Tech, Inc. Panel E is courtesy of Brian
Litt.
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population activity from approximately 500,000 neurons (K. Miller, Zanos, Fetz,

den Nijs, & Ojemann, 2009).

Whereas source localization poses serious challenges to scalp electroencephalog-

raphy (EEG), intracranial electrodes sample from much smaller volumes (Nunez

et al., 1997), are not subject to distortions produced by the skull (Pfurtscheller

& Cooper, 1975), and are relatively impervious to confounds produced by eye

movements, blinks, and vocalizations. These factors all contribute to the high

signal-to-noise ratio characteristic of intracranial recordings. We synchronize the

behavioral experiments and physiological recordings by sending a train of optically

isolated pulses from the testing computer to the recording system and computing

a linear regression across all synchronization events. With this technique, the syn-

chronization error is typically smaller than the sampling resolution of the recorded

data.

Despite the high quality of human intracranial recordings, there are several

factors one should consider when interpreting the results of any intracranial study

of human epilepsy patients, including those I report in Chapters 3 – 5. First,

whereas in animal studies electrodes are placed according to researchers’ needs,

the placements of implanted human electrodes are determined solely by clinical

teams with the goal of localizing the seizure focus in order to ensure the best possible

outcome for the patient. This means that, for some patients, the brain areas most

relevant to a particular research question may receive little or no electrode coverage.

In order to obtain adequate coverage of all relevant brain areas, I analyzed data

from many patients. A second concern is that medications or recent seizures

might change the electrophysiological properties of the brain. For this reason, we

refrained from collecting data while the patients were on high dosages of pain

medications or anti-epileptic drugs, or during the 6 hour period following any

4



clinically significant seizure. A third issue is that the brain is known to re-wire

itself to compensate for damage, including damage caused by epilepsy (Ribak &

Dashtipour, 2002), which could lead to cognitive remapping. While I cannot control

for cognitive remapping that may have occurred in individual participants, I have

averaged each of my anatomical analyses over many patients; thus results due to

remapping in one patient will average out in the population analyses. A fourth

concern is that severe epilepsy can lead to cognitive impairment. To address this

issue, I analyzed data only from patients with scores on the Wechsler Intelligence

and Wechsler Memory Scales within 1.5 standard deviations of the mean for their

age group.

1.2 Overview

In the next chapter, I present a theoretical model of the retina, and use the model

to explore how the way in which photoreceptors are arranged can affect the ability

of the visual system to reconstruct visual stimuli from the observed receptor re-

sponses. Although the model is framed as a means of examining the visual system,

in principle the core features of this approach should apply to any sensory sys-

tem, biological or digital. The framework suggests a means of designing sensory

systems that can best make inferences about the world. This work also provides a

context for interpreting why biological sensory systems may have evolved as they

did.

In Chapter 3, I present an analysis of intracranial recordings taken from human

neurosurgical patients as they performed a virtual navigation task. This work is

intended to elucidate the relation between action potentials generated by individual

neurons and the behaviors of large populations of neurons (local field potentials). I

5



view this work as furthering our understanding of the nature of the brain’s internal

language and of its electrical properties.

In Chapter 4, I present an analysis of recordings taken from a different popula-

tion of human neurosurgical patients as they studied and recalled lists of words.

In this work I attempt to elucidate how the brain represents the meanings of

individual words as they are actively manipulated by the mind. Although a num-

ber of studies have found similarities in how different people’s brains represent

words (Shinkareva et al., 2008; Mitchell et al., 2008), my work shows that individ-

ual differences in these neural representations predict the order in which people

will recall the words — a measure of how the studied words are organized in and

retrieved from memory.

In Chapter 5, I present an analysis of neurosurgical recordings during the same

memory task. In this analysis, I seek to understand how we probe our brains for

memories of experienced events. This work shows that our brains contain a repre-

sentation of the temporal contexts in which we experience each event, much like a

clock marking time along our autobiographical timeline. The state of this gradually

evolving context representation becomes associated with each event we experience.

When we retrieve an event from our memory, the context representation associated

with that event is partially reinstated along with the neural representation of the

event itself.

Taken together, this body of work takes us one small step closer to understand-

ing how the brain acquires, stores, and retrieves information. In the concluding

chapter, I propose future directions for these studies.

6



Chapter 2

Optimal design of photoreceptor

mosaics: why we do not see in color at

night

Jeremy R. Manning & David H. Brainard. Visual Neuroscience, 26, 5–19.

2.1 Abstract

While color vision mediated by rod photoreceptors in dim light is possible (Kelber

& Roth, 2006), most animals, including humans, do not see in color at night. This

is because their retinae contain only a single class of rod photoreceptors. Many

of these same animals have daylight color vision, mediated by multiple classes

of cone photoreceptors. We develop a general formulation, based on Bayesian

decision theory, to evaluate the efficacy of various retinal photoreceptor mosaics.

The formulation evaluates each mosaic under the assumption that its output is

processed to optimally estimate the image. It also explicitly takes into account

7



the statistics of the environmental image ensemble. Using the general formula-

tion, we consider the tradeoff between monochromatic and dichromatic retinal

designs as a function of overall illuminant intensity. We are able to demonstrate

a set of assumptions under which the prevalent biological pattern represents opti-

mal processing. These assumptions include an image ensemble characterized by

high correlations between image intensities at nearby locations, as well as high

correlations between intensities in different wavelength bands. They also include

a constraint on receptor photopigment biophysics and/or the information carried

by different wavelengths that produces an asymmetry in the signal-to-noise ratio

of the output of different receptor classes. Our results thus provide an optimality

explanation for the evolution of color vision for daylight conditions and monochro-

matic vision for nighttime conditions. An additional result from our calculations

is that regular spatial interleaving of two receptor classes in a dichromatic retina

yields performance superior to that of a retina where receptors of the same class

are clumped together.

2.2 Introduction

The vertebrate retina contains two broadly distinguished classes of photoreceptors,

rods and cones. Rods are characterized by low noise (Barlow, 1956; Baylor, Nunn,

& Schnapf, 1984; Schneeweis & Schnapf, 2000) and are effective at low light levels

when photons are scarce. On the other hand, they saturate more easily than cones

and their contribution to vision diminishes at daylight light levels (Aguilar & Stiles,

1954; Tamura, Nakatani, & Yau, 1989; Demontis, Bisti, & Cervetto, 1993; Burns &

Arshavsky, 2005; Yin, Smith, Sterling, & Brainard, 2006). Cones are noisier than

rods (Schnapf, Nunn, Meister, & Baylor, 1990; Rieke & Baylor, 2000; Fu, Kefalov,

8



Luo, Xue, & Yau, 2008), but operate without saturation at much higher light levels

(Schneeweis & Schnapf, 1999). Cones are therefore useful for daylight vision, when

there is plenty of light. Across species, the relative numbers of rods and cones vary

enormously, with nocturnal animals generally having a higher rod–cone ratio than

diurnal animals (Walls, 1942).

Within the rod and cone systems, there is additional across-species variability.

Most vertebrates have multiple classes of cones, distinguished primarily by dif-

ferent spectral sensitivities. The presence of multiple cone classes enables color

vision, as the relative responses of cones of different classes provides information

about the relative spectrum of the incident light. Across species that have mul-

tiple classes of cones, there are additional variations. These include the number

of distinct classes of cones present (Walls, 1942; G. H. Jacobs, 1981), the spectral

sensitivities of the individual cone classes (Bowmaker, 1991; G. H. Jacobs, 1996;

G. H. Jacobs & Rowe, 2004), and the pattern of how the cones are arranged in

the retinal mosaic (Scholes, 1975; Wassle & Riemann, 1978; Bowmaker & Kunz,

1987; Mollon & Bowmaker, 1992; Hofer, Carroll, Neitz, Neitz, & Williams, 2005).

A small minority of mammalian species that operate in low light conditions have

only one spectral class of cone (G. H. Jacobs, 1996), and are thus monochromats

under cone-mediated viewing conditions.

In contrast to their cone vision, most vertebrate retinae have only a single class

of rod. Vision mediated by a single class of rod is monochromatic, since variation in

image intensity is perfectly confounded with variation in image relative spectrum.

The restriction to a single class of rod is not due to any fundamental biophysical

constraint, as a few species (e.g. the Nocturnal Hawkmoth, Deilephila elpenor) do

have retinae with multiple classes of rods, and have been shown behaviorally to

have color vision at rod-mediated light levels (Kelber & Roth, 2006).
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Previous authors have speculated about why color vision is rare at night. Walls

(1942), for example, indicates that color vision may only be useful under condi-

tions where spatial and contrast acuity are high and that it would not be useful

when photons are scarce. Rushton (1962) makes a similar statement. To our read-

ing, however, neither of these authors offer reasoning to support their assertions.

Moreover, it is now known that some plants and bacteria detect light with low

spatial resolution but none-the-less have color vision (see Skorupski & Chittka,

2008), in apparent contradiction to Walls’ and Rushton’s hypothesis. Also note that

human rod-mediated visual acuity at approximately 5 to 10 degrees eccentricity ex-

ceeds cone-mediated visual acuity at 40 to 50 degrees eccentricity (see Weymouth,

1958 who replots data from Fick, 1898), also suggesting that factors other than those

that limit resolution contribute to whether a retina should be monochromatic or

not.

Land and Osorio (2003) articulate what we take, based on an informal polling of

our colleagues, to be the standard intuition on this topic. This intuition is based on

the observation that color vision depends on the difference between the responses

of two receptor classes, and the magnitude of this difference signal will on average

be smaller than that of a luminance signal that arises from the sum of responses

of the two classes or from a single receptor class.1 At the same time, the net effect

of photon and dark noise is the same for both difference and summed signals.

Thus the idea is that color vision becomes less useful at low light levels because

overall signal-to-noise drops, and that noise swamps the output of an opponent

color channel before it swamps that of a luminance channel. A related idea was

formalized by van Hateren (1993), who showed that as signal-to-noise drops, the

optimal post-receptoral processing favors a luminance channel over a chromatic

1This statement holds as long as the responses of the two receptor classes are positively correlated.
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channel.

Note, however, that neither the standard intuition nor van Hateren’s (1993) cal-

culations lead immediately to the conclusion that monochromatic vision is superior

to color vision at low signal-to-noise. To do so requires an analysis that shows not

just that the value of color vision decreases with light level, but that a change to

monochromatic vision leads to improved performance. That is, the fact that a lu-

minance channel carries more information than an opponent color channel tells us

neither that a monochromatic retina is superior to one with multiple receptor types,

nor that it is not advantageous to add a color opponent channel to a luminance

channel as part of post-receptoral processing.

Barlow (1957) argued that the spontaneous photopigment isomerization rate of

photoreceptors might depend strongly on their wavelength of maximal sensitivity,

with maximal sensitivity at shorter wavelengths leading to lower noise. This effect

would be expected to occur for fundamental biophysical reasons: short-wavelength

quanta have more energy than long-wavelength quanta, and this in turn would

allow a photopigment sensitive to shorter wavelengths to have a higher energy

barrier for isomerization and be more resistant to thermal fluctuations (Platt, 1956).

Barlow argued that the overall shift in human visual sensitivity towards shorter

wavelengths between cone- and rod-mediated vision (the Purkinje shift) maximizes

absolute sensitivity by minimizing thermal noise. Barlow did not explicitly address

tradeoffs between color and monochromatic vision. However, his observation that

the dependence of dark noise on spectral sensitivity has important implications for

differences between daylight and nighttime vision plays a key role in the analysis

we present below. Other closely related antecedents to the current chapter are a

treatment of the design of trichromatic mosaics (Garrigan et al., 2006, 2010) and a

treatment of optimal choice of cone spectral sensitivities (Lewis & Zhaoping, 2006);

11



these authors used an information theoretic approach and emphasize the central

role played by asymmetries in the information available at different wavelengths.

We return in the discussion to review measurements of photoreceptor thermal

noise.

Here we assess the efficacy of various choices of the design of the photoreceptor

mosaic in the context of the vertebrate eye. We formulate the design question in

terms of an explicit model that defines optimal performance for a well-defined

statistical ensemble of stimuli. Our model allows us to assess how well an ideal

observer could estimate the incident image from the photoreceptor responses, and

we examine how this performance measure varies with different aspects of eye

design. Although our formulation is very general, we focus on the performance

tradeoff between dichromatic (two receptor classes) and monochromatic (one re-

ceptor class) vision, and how this tradeoff interacts with overall light level. To

address this question, however, the work also touches on other aspects of mosaic

design, including the choice of photopigment spectral sensitivity and the packing

arrangement of the mosaic.

In the next section we introduce a general formulation. To make computational

progress, however, we then make a number of simplifying assumptions. These

include restricting attention to a model environment in which there are just two

discrete wavelengths, and where all images are characterized by the power in

each wavelength at discrete image locations on a line (one spatial dimension.) We

consider image ensembles characterized by Gaussian distributions, evaluate image

estimation using a mean squared error criterion, and do not take into account

the energetic cost of computation. Although a priori it might appear that these

simplifying choices reduce the complexity of the model too severely, the simplified

model is surprisingly rich and studying it leads to interesting insight.
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2.3 General formulation

We start with a general formulation. We model the visual environment as an ideal

image, which specifies the intensity of light incident on the eye as a function of two

angular spatial dimensions (x and y) and one spectral dimension (λ). For simplicity,

we consider the case where each of these dimensions has been finely discretized.

Thus the ideal image is specified as I(xi, y j, λk). Note that in most three-dimensional

scenes, the retinal image is not formed by viewing a planar ideal image. Rather,

light reflects to the eye from objects located at various distances. The ideal image

should be conceived as one that would produce the same retinal image as the actual

illuminated objects in the scene.

Light from the ideal image passes through an optical apparatus consisting of a

cornea, pupil, and lens. Refraction at the interfaces between the optical elements

creates an image on the retina. Aberrations in the optics combine with diffraction

to blur the retinal image; the blurring may be characterized by the point spread

function of the optics. In general, the point spread function varies with wavelength

because of chromatic aberration. It also depends on the pupil area A. In the

typical regime where effects of optical aberrations dominate effects of diffraction,

increasing pupil size both increases the intensity of the retinal image and the degree

to which it is blurred.

We denote the point spread function by PA(xi, y j, λk), where A is the pupil area.

It specifies the spread of light in the retinal image from a point source, and we

assume it to be independent of the location of that source. The subscript A denotes

the fact that the shape of the point spread function depends on pupil area. The

retinal image may be computed as the convolution of the ideal image and the point

13



spread function:

R(xi, y j, λk) = A
[
I(xi, y j, λk) ∗ PA(xi, y j, λk)

]
.

By convention, PA(xi, y j, λk) is normalized to have unit volume; the effect of pupil

area on overall light level is accounted for explicitly in the equation above.

The retinal image is sampled by an interleaved array of photoreceptors, with

one photoreceptor at each location. The photopigment isomerization rates of each

photoreceptor are the information about the image available to the visual system.

We model the relation between the retinal image and the mean isomerization rate

of a single photoreceptor of class l centered at location (xm, yn):

µ̄l =
∑

k

([R(xi, y j, λk) ∗ Yl(xi, y j)]|(xm,yn))Sl(λk) + dl.

Here Yl(xi, y j) represents the acceptance aperture of the lth photoreceptor class, Sl(λk)

represents the spectral sensitivity of the lth class, and dl represents the mean number

of spontaneous isomerizations per second of the lth class. The actual number of

isomerizations in response to an image shown for a duration ∆t is distributed as a

Poisson process with mean µ̄l∆t.

We take the task of visual processing as estimating the ideal image from the

noisy array of photoreceptor responses. At this juncture, it is convenient to express

the ideal image, which consists of a finite array of intensities, as a vector ~i. The

estimator may then be expressed as

î = F(~r),

where î is the estimate of~i and ~r is a vector representing the entire array of noisy
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responses. The appropriate estimator F() depends on the exact design properties

of the model visual system, on the statistical ensemble of images that will be

encountered, on a loss function that describes how bad it is to approximate any

given ideal image with any particular estimate, and on a decision about how loss

should be aggregated over the statistical image ensemble. Once choices for each

of these factors are are made, however, the estimator F() can be chosen to optimize

aggregate performance. Moreover, we can use optimized aggregate performance

as a metric to ask which eye design parameters are best.

To construct an optimal estimator, we turn to Bayesian decision theory (Black-

well & Girschick, 1954; Berger, 1985; Gelman, Carlin, Stern, & Rubin, 2004). We

start by expressing the relation between the ideal image and noisy response vector

as a probability distribution P(~r|~i). This is called the likelihood and represents how

probable any response vector is, conditional on knowing the ideal image.

The second step is to express the statistical structure of the environment as a

probability distribution, P(~i). This is called the prior. The prior captures what is

known or assumed about stimuli in the model environment (here the ideal image),

independent of the observed photoreceptor responses. Bayes’ rule then yields the

posterior

P(~i|~r) = CP(~r|~i)P(~i),

where C is a normalizing constant. The posterior tells us how probable any partic-

ular image is, given the observed photoreceptor responses.

To obtain a particular estimate î from the posterior, we need to specify a loss

function L(î,~i). This function provides the cost of choosing any estimate î when

the actual image is~i. Once the loss function is given, we can define the Bayes risk
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(Berger, 1985) of an estimator F(~r) as

RF =

∫
~i

[∫
~r

L(F(~r),~i)P(~r|~i)d~r
]

P(~i)d~i.

The Bayes risk provides the expected loss associated with repeated applications

of the estimator, when the images leading to the responses are drawn from the

prior distribution P(~i). To see this, note that the inner integral takes the expectation

over responses ~r given the image ~i (according to the likelihood), while the outer

integral takes the expectation over images (according to the prior). In the absence of

any computational constraints, a widely used optimality principle is to choose the

estimator F() that minimizes RF. In the development below, however, we will use

the notation OF to denote the quantity to be minimized, with OF = RF. Although not

immediately relevant, this change in notation reminds us that there are alternative

possible formulations of optimality. For example, in the discussion we briefly treat

the possibility of including energetic cost in addition to performance.

Given a specified likelihood, prior, and loss function, denote by Fopt() an estima-

tor that minimizes OF, and by Oopt
F the corresponding minimized value of OF. We

refer to Oopt
F as the optimized error. The prior and loss functions describe the features

of the environment and organism that define the visual system design problem,

while the likelihood function describes the visual system’s solution. That is, if we

hold P(~i) and L(î,~i) constant, we can regard Oopt
F as a function of the likelihood. The

optimal design is then the one corresponding to the likelihood P(~r|~i) that minimizes

Oopt
F

[
P(~r|~i)

]
. This is the approach we implement below. At this level of generality,

it closely parallels the approach used by Srinivasan, Laughlin, and Dubs (1982) to

consider the receptive fields of ganglion cells, as well as that developed recently

by Levin, Durand, and Freeman (2008) in the context of evaluating the design of
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digital cameras.

2.4 Simplified formulation

To apply our general framework to mosaic design, and in particular to the tradeoff

between color and monochromatic vision, we make concrete simplifying assump-

tions. When the simplified version of the general model is able to predict observed

biological design features, we gain insight about what properties of the environ-

ment are likely to have driven the evolution of these features. When the simplified

version fails to predict the biology, we gain insight by considering ways in which

the model is over-simplified or, alternatively, considering ways in which evolution

has failed to arrive at an optimal design.

2.4.1 Image representation and prior

We start with one spatial dimension with discretized spatial locations and wave-

lengths. Multi-wavelength–band images of this sort may be represented as column

vectors:

~i =
[
mx1,λ1 ,mx2,λ1 , ...,mxI,λ1 ,mx1,λ2 ,mx2,λ2 , ...,mxI,λ2 , ...,mx1,λK ,mx2,λK , ...,mxI,λK

]T ,

where mxi,λk is the intensity of wavelength λk at pixel i. We have 1 6 i 6 I and

λ1 6 k 6 K. For our calculations, we used 36 spatial locations and 2 wavelengths,

so I = 36 and K = 2.

Natural images are characterized by high correlations between the intensities

at neighboring spatial locations (Pratt, 1978; Field, 1987; Burton & Moorehead,

1987; Simonceli, 2005), and between intensities in the same location but at different
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wavelengths (Burton & Moorehead, 1987; Ruderman, Cronin, & Chiao, 1998).2

These statistical features of natural images may be captured using a multivariate

Gaussian distribution over multi-wavelength–band image vectors~i:

P(~i) = N(~µprior,Kprior),

where ~µprior and Kprior are the mean and covariance matrix of the distribution, re-

spectively. We required that P(~i) be separable between space and wavelength, so

that the spatial statistics were the same in each waveband, up to multiplicative

scaling. In addition, we viewed the distribution P(~i) as induced when a spatially

uniform illuminant reflected from a set of surfaces, which allowed us to paramet-

rically vary the intensity of the illuminant. For illuminant intensity ω and mean

surface reflectances m̄λ1 and m̄λ2 at the two wavelengths, ~µprior was given by

~µprior = ω × [
m̄λ1 ×O(1, I), m̄λ2 ×O(1, I)

]T ,

where O(a, b) is a matrix of 1’s with a rows and b columns. The covariance matrix

Kprior was given by the Kronecker product KS ⊗ KC, where KS was the covariance

matrix in the spatial domain and KC was the covariance matrix in the wavelength

domain. We constructed KS to represent a first-order Markov process (Pratt, 1978),

so that

KS(u, v) = r(u−v)
S ,

2The literature generally shows not correlations across wavelength, but rather correlations across
responses of different classes of cones. The reported correlations across cone classes arise both
because of correlations across wavelength and because of the broadband spectral sensitivity of the
cones. We have verified, using the data of Ruderman et al. (1998), that the correlations across
wavelength are in fact strong. For two narrowband images separated by 50 nm, the average
correlation is about 0.9. The correlation remains above 0.8 for wavelength separations of 200 nm.
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where KS(u, v) represents the entry in the the uth row and vth column of KS, and

where rS is the within-wavelength correlation between image intensities at neigh-

boring locations. The use of a Markov model allows us to adjust the correlational

structure of the image ensemble with a single parameter, and makes exploring how

this structure affects optimal design more practical. We defined KC as

KC = ω2 ×
 σ2

λ1
rC σλ1σλ2

rCσλ1σλ2 σ2
λ2

 ,
where σλ1 is the standard deviation of reflectances at the first wavelength, σλ2

is the standard deviation of reflectances at the second wavelength, and rC is the

correlation (taken over locations) of the reflectances at the two wavelengths. This

formulation for KC could be easily generalized to K > 2 wavelengths by treating it

as representing a first-order Markov process over wavelength and regarding rC as

the correlation between neighboring wavelengths.

2.4.2 Image formation and likelihood

Given I pixels and K wavelengths, a render matrix R determines the responses of

each of the L 6 I photoreceptors in the modeled retina. The render matrix has L

rows and (I × K) columns, where the value of the element in the uth row and vth

column is the responsiveness of photoreceptor u to light at pixel ((v − 1)%I) + 1 of

wavelength d v
Ke. Here % represents the modulus operator. To illustrate the idea,

consider a retina with 4 evenly spaced photoreceptors that alternate between two

classes, where each class is sensitive to only one wavelength.

For illustrative purposes we will assume that there is no optical blurring and

that each photoreceptor is sensitive to light from only one spatial location and one
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wavelength. Then, for a environment where there are 8 spatial locations and 2

wavelengths, we would have

R =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


.

The first 8 columns of this matrix represent the sensitivity of each photoreceptor

to the first wavelength while the second 8 represent the sensitivity of each pho-

toreceptor to the second wavelength. Rows 1 and 3 thus describe the first class

of photoreceptors, and their spatial location is indicated by the column containing

the 1. Rows 2 and 4 represent the second class of photoreceptor in a similar fash-

ion. This render matrix is shown pictorially in Figure 2.1A. Figure 2.1B illustrates

the addition of optical blurring to our four photoreceptor example. Blurring was

computed by centering a Gaussian at each photoreceptor’s position. Figure 2.1C

illustrates a render matrix for a retina containing photoreceptors sensitive to both

wavelengths, but to varying degrees. The general formulation of the render matrix

allows arbitrary spatial and wavelength sensitivity to be specified.

Given a render matrix R and a draw from the stimulus distribution ~i, the

photoreceptor responses to~i are given by the L-element column vector ~r:

~r = R~i + ε,

where ε represents photoreceptor noise and was a draw from the Gaussian distribu-

tion N(~µnoise,Knoise). For our simulations, we used an L-dimensional column vector

as ~µnoise, where the uth entry is given by the mean dark noise dl of the photoreceptor
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A B C

Figure 2.1. Three simple render matrices with varying optical blur and spectral sensitivity.
In these examples, we show four photoreceptors, eight pixels, and two wavelengths. Each row
corresponds to one photoreceptor. Columns to the left of the red line correspond to the first
wavelength, while columns to the right correspond to the second wavelength. Within a wavelength,
columns correspond to spatial locations. Darker areas correspond to lower sensitivity, while lighter
areas correspond to higher sensitivity. A. This render matrix corresponds to the example given
numerically in the text, with each photoreceptor sensitive to incident light at a single punctate
location and at a single wavelength. B. Effect of optical blur. The standard deviation of the
Gaussian used to compute optical blur was set to 2 pixels, and each photoreceptor is sensitive to
one of the two wavelengths. C. Spatial blur is the same as in B, but photoreceptors are sensitive to
75% of one wavelength and 25% of the other. Each matrix shown was normalized to have the same
maximum intensity for display.

represented by the uth row of the render matrix. The noise covariance matrix Knoise

is an L × L diagonal matrix where the diagonal is given by ω × m̄λk + dl. With this

choice of noise, the likelihood function is then given by the Gaussian

P(~r|~i) = N(R~i + ~µnoise,Knoise).

We used a Gaussian approximation to the more realistic Poisson noise distribution

so that we could leverage analytic results (see below) that apply for the Gaussian

case.
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2.4.3 Optimal estimator

Given the prior and likelihood, the optimal estimator depends on the loss function.

The appropriate loss function for biological vision is almost certainly a highly

complicated function of the image and the estimate, as some estimation errors will

have much more serious consequences for survival and reproduction than others.

Nonetheless, for practical reasons, we simplify in the remainder of the chapter by

restricting attention to a simple squared error loss function

L(î,~i) = ||~i − î||2.

Although this loss function does not fully capture the biologically relevant as-

pects of estimation error, it has the feature that the estimator that minimizes the

corresponding RF is the mean of the posterior distribution.

Our prior and likelihood distributions are multivariate Gaussian with known

mean and covariance. Therefore, the posterior is also multivariate Gaussian, and

its mean and covariance may be computed in closed form (Gelman et al., 2004).

The estimated image î is given by:

î = ~µposterior = F~r +~i0, where

F = KpriorRT(RKpriorRT + Knoise)−1 and

~i0 = ~µprior − FR~µprior − F~µnoise.

Moreover, for our choice of squared error loss, Oopt
F [P(~r|~i) ] is given by the trace of
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the posterior covariance matrix:

Oopt
F

[
P(~r|~i)

]
= trace(Kposterior), where

Kposterior = (K−1
prior + RTK−1

noiseR)−1.

2.5 Results

2.5.1 Dichromatic versus monochromatic vision at high illumina-

tion levels

We begin by comparing the performance of dichromatic and monochromatic vi-

sion at a high illumination level. Consider two fixed classes of photoreceptor, with

class 1 expressing photopigment sensitive only to wavelength λ1 and class 2 ex-

pressing photopigment sensitive only to wavelength λ2. We assume that the mean

and variance of the image is the same for the two wavelengths and that the two

classes of photoreceptors have the same dark noise. These choices make the model

environment and visual system symmetric with respect to wavelength. To mimic

the statistical structure of natural images, we choose high values for the spatial

and wavelength correlations: rS was set to 0.9 and rC was set to 0.8. We fixed the

optical blur (Gaussian with standard deviation of 2 pixels), photoreceptor aperture

(3 pixels), illumination level (ω = 2,000), and dark noise of each photoreceptor class

(d1 = d2 = 1). These choices lead to a good signal-to-noise ratio (SNR) in individual

photoreceptors. To see this, note that receptor SNR is given by

SNR =
ω × σλ1√
ω × m̄λ1 + d1

.
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Here, SNR = 44.7 or 16.5 dB.

To compare dichromatic and monochromatic vision, we computed Oopt
F for all

4,096 possible regularly spaced arrays of 12 photoreceptors on a 36 pixel line.

Two of these arrangements, one with all class 1 receptors and the other with all

class 2 receptors, represent monochromatic vision. The other 4,094 arrangements

represent dichromatic vision with varying choices of class 1 to class 2 receptor ratio

and with various arrangements of the two classes. We then asked which mosaic

arrangement led to the minimum value of Oopt
F . We found that an alternating array

of class 1 and class 2 receptors, corresponding to dichromatic vision, performs best.

Within our model environment then, we have identified a set of environmental

conditions under which color vision is favored.

It is instructive to examine the results in more detail. We begin by considering

the effect of the relative numbers of the two photoreceptor classes. Following

Hofer et al. (2005), we define a receptor class asymmetry index that groups together

mosaics from the full set of 4,096 that share the same number of class 1 and class 2

receptors. The asymmetry index α is defined as:

α =

∣∣∣∣∣L1 − L2

L

∣∣∣∣∣ ,
where L1 is the number of photoreceptors of type 1 and L2 is the number of type

2.3 The asymmetry index takes on a value of 0 for retinae with equal numbers of

each photoreceptor class, and a value of 1 for retinae that contain only one class.

The index is insensitive to interchange of class 1 and class 2 labels or shuffling of

receptor locations.

For each value of asymmetry index α, Figure 2.2A plots the minimum value

3In using and interpreting this and our other index expressions, we only consider the case where
L is even, a condition that holds for all results reported in this article.
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Oopt
F , with the minimum taken over all arrangements with that value of α. The

plot confirms our statement above, that for these conditions the best performance

(minimum Oopt
F ) is obtained for α = 0 (dichromatic). In addition, it shows that the

worst performance is obtained for monochromatic retinae (α = 1). As the mosaic

moves from equal numbers of the two classes to all of one, performance degrades

in a smooth and regular fashion.

One might reasonably argue that the comparison above is too restrictive, as we

considered only receptors with spectral sensitivity confined to one wavelength.

More generally, we could consider monochromatic retinae with other spectral

sensitivities. Given that our model environment has just two wavelengths, we

can express spectral sensitivity through a parameter γ that describes the relative

amounts of each of the two photopigments contained in a given photoreceptor.

The calculations above effectively considered only γ = 0 or γ = 1, corresponding to

photoreceptors containing only class 1 or class 2 photopigment. Figure 2.2B shows

the effect of allowing other values of γ on the performance of a monochromatic

retina. The optimal value of γ is 0.5, an equal mix of the two underlying pho-

topigments. Note, however, that the value of Oopt
F for this optimal mix (∼4.5 × 107)

is still considerably higher than the level of performance obtained with the best

dichromatic retina (∼3.5 × 107). Thus even when spectral sensitivity is optimized

for monochromatic vision, a dichromatic retina is better than a monochromatic

retina, at least for the high illumination intensity we simulated.

Finally, note that for a given value of the asymmetry index, there may be

multiple mosaics that only differ in how the two cone classes are arranged. So,

for example, given that an equal number of the two receptor classes leads to best

performance, we can then ask how the receptors should be arranged. We defined

an alternation index, ρ, that captures the extent to which the two receptors are
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interleaved in the overall mosaic. The computation of the alternation index begins

with the computation of a raw alternation index:

ρraw =

L−1∑
n=1

D(n,n + 1),

where D(u, v) = 1 if the photoreceptor at positions u and v are of different types, and

0 otherwise. The value of ρraw is a count of the number of alternations of receptor

type as one moves along the one-dimensional mosaic. Because the number of

possible alternations depends on the relative number of the two receptor classes,

we convert the raw alternation index to the alternation index ρ by taking the

percentile ranking of ρraw within the set of all possible arrangements that share the

same asymmetry index α, and dividing by 100. This leads to an alternation index

that is always in the range 0 to 1, that takes on a value of 0 when the two receptor

classes are maximally grouped together in the mosaic, and that takes on a value of

1 when the two classes alternate as much as possible.

Figure 2.2C shows optimized error plotted against alternation index ρ. The plot

makes it clear that arrangements which interleave the two photoreceptor classes as

much as possible are preferred over less alternating arrangements. This is true for

the optimal value of the asymmetry index (α = 0) as well as for other values.

2.5.2 Dichromatic versus monochromatic vision across illumina-

tion levels

The section above demonstrates conditions where the performance of a dichro-

matic retina dominates that of a monochromatic retina. The standard intuition, as

discussed in the introduction, is that this situation should reverse when light level

drops. To investigate, we repeated the calculations for a range of illuminant inten-
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Figure 2.2. Optimized error (Oopt
F ) for equal signal-to-noise case. This figure presents results where

the mean and variance of the signals in the two wavelength bands is the same, and where the two
classes of photopigment have the same dark noise. A. Oopt

F is plotted as a function of the asymmetry
index, α. For each value of α, performance is plotted for the particular arrangement with that α
that minimized Oopt

F . The two photoreceptor classes had γ = 0 and γ = 1 respectively, meaning
that each contained a completely separate class of photopigment. Best performance is obtained for
α = 0, which corresponds to equal numbers of the two photoreceptor classes. B. Oopt

F is plotted as a
function of the photopigment mixing parameter, γ, for a retina with only one class of photoreceptor.
Best performance is obtained for γ = 0.5, corresponding to an equal mix of the two photopigment
types. C. Effect of regularity on performance. Each line in the plot shows Oopt

F as a function of the
regularity index, ρ. Each line in the plot corresponds to a different choice of α: 0 (dark blue), 1

6
(blue), 1

3 (light blue), 1
2 (light green), 2

3 (yellow), 5
6 (orange), and 1 (red dot). For each value of α and

ρ, performance is plotted for the particular arrangement that minimized Oopt
F . In this panel, Oopt

F is
plotted in standardized (z-score) units computed separately for each value of α. This allows us to
compare the effect of ρ for each α without undue expansion of the scale of the y-axis. For each α,
the best performance is obtained for a maximally regular arrangement (ρ = 1). As in Panel A, these
calculations were performed for two photoreceptor classes with γ = 0 and γ = 1 respectively. For
all panels, illumination intensity (ω) was set to 2,000. We set the dark noise for both photopigments
to 1 spontaneous isomerization per unit time. We used a duration of 1 unit time for this and all
other calculations in the chapter. The mean and variance in number of reflected quanta for both
color bands was set to 1. Color correlation (rC) was set to 0.8 and spatial correlation (rS) was set to
0.9. The standard deviation of the Gaussian blur was set to 2 pixels and the photoreceptor aperture
was 3 pixels. All simulations were performed using 12 photoreceptors and 36 image pixels.
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sities ω. Note, by the way, that here we are not attempting to study what factors

might mediate the known shift between cone-mediated and rod-mediated vision

as light level drops. To do so would require adding a model of the differences

between cones and rods to our formulation and then comparing performance of

each system across a range of light levels. Rather, our present goal is to compare

performance of monochromatic and dichromatic mosaics within a single type of

receptor. Given our focus on what happens at low light levels, this type should be

conceived of as the rods.

Figure 2.3 plots the difference in optimized error Oopt
F between the best monochro-

matic retina and best dichromatic retina as a function of light level. For the

monochromatic retina, we found the best value of spectral sensitivity γ for each

choice of illuminant intensity ω and used this value in the comparisons. In the

event, the best value was always γ = 0.5. For the dichromatic retina, we restricted

attention to the case where each of the two photoreceptor classes was sensitive only

to a single wavelength, and used an alternating arrangement with equal numbers

of photoreceptors of each class. Given the restriction to two classes, the alternat-

ing/equal number arrangement was in fact the best for every illumination intensity.

The figure shows that at every light level, the dichromatic retina outperforms the

monochromatic retina.

Our calculations do not confirm the standard intuition about why rod-mediated

vision is almost always monochromatic. Nonetheless, it is worth noting that our

calculations are consistent with some aspects of previous thinking. The core of the

standard intuition is that the advantage for color vision decreases as SNR drops,

and our calculations reveal this effect: the difference in Oopt
F between monochro-

matic and dichromatic vision tends to zero with decreasing SNR. Indeed, this is

not surprising in the limit, since when signal-to-noise reaches zero useful vision
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Figure 2.3. Comparison of dichromatic and monochromatic vision for equal photoreceptor
signal-to-noise and high color and spatial correlations. This figure compares the optimized error
for the best dichromatic and monochromatic arrangements. The dichromatic arrangement was
constrained to have γ = 0 and γ = 1 for the two photoreceptor classes and had α = 0 and ρ = 1. The
monochromatic arrangement had γ = 0.5. The plot shows the difference between monochromatic
and dichromatic Oopt

F as a function of illumination intensity. Positive values correspond to the case
where the dichromatic arrangement has a smaller Oopt

F . For this case, dichromatic vision is better
than monochromatic vision at all light levels. Signal and photoreceptor parameters were the same
as in Figure 2.2.

disappears and the organism’s estimates of the image are optimizing by guessing

based on the mean of the image prior, independent of the receptor responses. What

our results now add is the fact that a decreasing advantage of color vision does

not necessarily translate into an advantage for monochromatic vision. To under-

stand the selective advantage for monochromatic vision at night, some additional

consideration must be added to the model system. We explore two possibilities

below. One is the statistical characterization of the image ensemble, and the other

is asymmetric signal-to-noise across the two receptor classes.

2.5.3 Effect of image statistics

All simulations discussed above used rS = 0.9, rC = 0.8. Although this choice re-

flects a reasonable characterization of natural images, it is of interest to explore

the effect of varying these parameters. Figure 2.4 shows the comparison of dichro-
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Figure 2.4. Comparison of dichromatic and monochromatic retinae for varying color and spatial
correlations. All panels compare Oopt

F for the alternating dichromatic and best monochromatic
arrangements. The dichromatic arrangement was constrained to have γ = 0 and γ = 1 for the
two photoreceptor classes, with α = 0 and ρ = 1. For monochromatic arrangements, the optimal
value of γ was allowed to vary with illumination intensity. The plot shows the difference between
monochromatic and dichromatic Oopt

F as a function of illumination intensity. Positive values corre-
spond to the case where the dichromatic retina is better. Spatial correlation (rS) was set to either
0.15 (left panels) or 0.85 (right panels). Color correlation (rC) was set to either 0.15 (top panels) or
0.85 (bottom panels). A red dashed horizontal line representing equal error for the monochromatic
and dichromatic arrangements is drawn in panels containing a crossover from monochromatic to
dichromatic vision being optimal. All signal and photoreceptor parameters were the same as in
Figure 2.2. Note that the scale of the x-axis is chosen differently in each panel, so as to better
illustrate the transition between dichromatic and monochromatic advantage.

matic and monochromatic retinal designs for four choices of rS and rC, with other

parameters the same as used to produce Figure 2.3.

The figure shows that dichromatic vision dominates at low light levels, regard-

less of spatial and color correlations. Dichromatic vision also dominates at high

light levels, when rS > rC (top right). However, when rS 6 rC (top left, bottom

panels), the high light-level pattern reverses and monochromatic vision becomes
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better at high light levels.

We draw two conclusions from this analysis. First, the tradeoff between dichro-

matic and monochromatic vision is quite sensitive to the statistical structure of the

environment. This insight is consistent with consideration of limiting cases. If the

color correlation rC = 1 then there is no chromatic variation in the environment and

no added benefit of a second receptor class. On the other hand, if rS = 1 there is no

spatial variation in the environment and having multiple receptor classes has clear

benefits. Our calculations show that a fairly rich set of tradeoffs is available across

cases intermediate to these two environmental extrema.

The second conclusion we draw is that none of the rS, rC pairs we considered

lead to a tradeoff pattern consistent with the biological observations, making it

likely that additional factors played an important role in the evolution of vertebrate

mosaic design.

2.5.4 Asymmetric photopigment dark noise

All of our calculations up to this point have assumed that the two photopigment

classes are equally reliable and that signals in the two color bands are equally

informative. As noted in the introduction, however, for biological photoreceptors

the spontaneous isomerization rate might be expected to vary systematically with

the wavelength of peak sensitivity (Platt, 1956; Barlow, 1957). For this reason,

we explored the effect of specifying different levels of dark noise for the two

photopigments.

Figure 2.5 shows, for a single intermediate illumination intensity, the effects of

making one photopigment 100 times noisier than the other, by setting the dark

noise ratio d1 : d2 = 100. This manipulation introduces an asymmetry into the re-

sults. Unlike the symmetric case, the best dichromatic photoreceptor arrangements
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Figure 2.5. Optimized error (Oopt
F ) for unequal dark noise case. This figure presents results where

the mean and variance of the signals in the two wavelength bands are the same, but where the
dark noise of class 1 photopigment is 100 times greater than the dark noise of class 2 photopigment.
A. Oopt

F is plotted as a function of the asymmetry index, α. The two photoreceptors had γ = 0 and
γ = 1 respectively. Best performance is obtained for α = 1

6 , which corresponds to an arrangement
containing five class 1 photoreceptors for every seven class 2 photoreceptors. B. Oopt

F is plotted as a
function of the photopigment mixing parameter, γ, for a retina with only one class of photoreceptor.
Best performance is obtained for γ = 0.32, which corresponds to a mix of 32% class 1 photopigment
and 68% class 2 photopigment. C. Effect of regularity on performance. Each line in the plot
corresponds to a different choice ofα: 0 (dark blue), 1

6 (blue), 1
3 (light blue), 1

2 (light green), 2
3 (yellow),

5
6 (orange), and 1 (red dot). For each value of α and ρ, performance is plotted in standardized (z-
score) units computed separately for each value ofα. For all values ofα, best performance is obtained
for a maximally regular arrangement (ρ = 1). As in Panel A, these calculations were performed for
two photoreceptor classes with γ = 0 and γ = 1 respectively. For all panels, illumination intensity
(ω) was set to 75. The mean and variance in number of reflected quanta for both colorbands was
set to 1. Color correlation (rC) was set to 0.8 and spatial correlation (rS) was set to 0.9. The standard
deviation of the Gaussian blur was set to 2 pixels and the photoreceptor aperture was 3 pixels. All
simulations were performed using 12 photoreceptors and 36 image pixels.

now contain more of the lower-dark noise photoreceptors (Figure 2.5A). Similarly,

the best monochromatic arrangements contain more of the lower-dark noise pho-

topigment (Figure 2.5B). As for the symmetric case, however, Figure 2.5C shows

that maximizing the alternation index (ρ = 1) optimizes performance.

The most striking new result to emerge from the asymmetric dark noise cal-

culations is shown in Figure 2.6. Recall that dichromatic arrangements always

out-performed monochromatic arrangements for the symmetric case, regardless

of SNR (Figure 2.3). With the more realistic modeling of asymmetric dark noise,

dichromatic arrangements still out-perform monochromatic arrangements at high

illumination intensities. As illumination intensity decreases and SNR drops, how-
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Figure 2.6. Comparison of dichromatic and monochromatic vision for unequal photopigment
dark noise and high color and spatial correlations. We compare the Oopt

F for the alternating
dichromatic and best monochromatic arrangements. The dichromatic arrangement was constrained
to haveγ = 0 andγ = 1 for the two photoreceptor classes and hadα = 0 andρ = 1. The optimal value
of γ for the monochromatic arrangement was allowed to vary with illumination intensity. The plot
shows the difference between monochromatic and dichromatic Oopt

F as a function of illumination
intensity. Positive values correspond to the case where the dichromatic arrangement has a smaller
Oopt

F . For this case, monochromatic vision is better at low light levels, and dichromatic vision is
better at high light levels. Signal and photoreceptor parameters were the same as in Figure 2.5.

ever, monochromatic arrangements lead to lower optimized error. This effect can be

explained by the following intuition: at high light levels, photon noise dominates

dark noise and the asymmetry between photopigment dark noise has a negligible

effect. In this case, the extra information about the image transduced by a dichro-

matic retina is the dominant factor. At low light levels, dark noise becomes the

dominant noise source, and the noise advantage of the less noisy photopigment

drives the optimal design.

The crossover illumination intensity, below which monochromatic vision dom-

inates and above which dichromatic vision dominates, depends on the relative

reliability of the two photopigments. As one photoreceptor class becomes more

unreliable relative to the other, the illumination intensity at which dichromatic

vision becomes beneficial increases (not shown).

In Figure 2.7, we systematically explore how the optimal dichromatic and
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Figure 2.7. Best A. asymmetry index, B. mixing parameter, and C. alternation index, as a function
of illumination intensity (ω). For all panels, class 1 photopigment is as reliable as class 2 photopig-
ment (blue); 400x more reliable than class 2 photopigment (cyan); or 1,000x more reliable than class
2 photopigment (red). Class 1 photopigment had a dark noise of 1 spontaneous isomerization per
unit time. Signal and photoreceptor parameters were the same as in Figure 2.2. Note that in Panel
C, all three curves lie on top of each other.

monochromatic photoreceptor arrangements change with illumination intensity.

In each panel, the three colored lines correspond to three d1 : d2 ratios. For reference,

the case where d1 = d2 is shown in dark blue. For this case, independent of illumi-

nation intensity, the best dichromatic arrangements have equal numbers of the two

photoreceptor classes, arranged in an alternating pattern (α = 0, ρ = 1), while the

best monochromatic arrangements have equal amounts of the two photopigments

(γ = 0.5). As d1 : d2 is increased, optimal arrangements exhibit asymmetries in the

relative numbers of photoreceptors (or amounts of photopigment) at low illumi-

nation intensities. The figure shows that the rate at which the arrangements return

to having equal number of photoreceptors of each class (or equal amounts of the

two photopigments) as a function of illumination intensity depends on the d1 : d2

ratio. The shifts in optimal spectral sensitivity with light level for monochromatic

mosaics (Panel B) are an analog, within our model system, of the Purkinje shift as

analyzed by Barlow (1957). For all conditions studied, it is always best to interleave

photoreceptors as much as possible (Panel C, ρ = 1).

Introducing an asymmetry in the level of dark noise for different photopigments

is not the only way to produce an asymmetry in the signal-to-noise ratio of the out-
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put of different photoreceptor classes. Such asymmetries can also be produced if

the mean light level is different across wavelengths, if there is a difference in the de-

gree of retinal absorption across wavelengths (as might be produced by protective

UV-absorbing macular pigment), a difference in the quantal efficiency of different

photopigments, or if the variance in the signals at different wavelengths differs.

We would expect that effects similar to those shown above for the asymmetric dark

noise case would also be produced by signal asymmetries. Indeed, we explored

this explicitly for the case of unequal signal variance and found a pattern of results

very similar to that shown in Figures 2.5 and 2.6. In the interest of brevity, we do

not present those results here.

2.5.5 Optimizing dichromatic spectral sensitivity

In the calculations above for dichromatic mosaics, we considered only photorecep-

tor classes with γ = 0 and γ = 1 respectively. Across species, there is variation in

the degree of overlap between photoreceptor spectral sensitivities between pho-

toreceptors of different classes. For example, in goldfish the peak sensitivities of

the M and L cones are noticeably more separated, at 530 nm and 620 nm, than

in primates, where the peak sensitivities are approximately 530 nm and 560 nm

(Bowmaker, 1991). We wondered what the optimal choices of spectral sensitivity

were in our model system.

To study this while avoiding parameter explosion, we considered how Oopt
F

varied with a parameter η, where the photoreceptor sensitivities of the two classes

depend on η through γ1 = η and γ2 = 1−η. We studied mosaics with equal numbers

of receptors from each class in an alternating arrangement. Note that when η = 0.5,

the dichromatic arrangement is equivalent to the monochromatic arrangement

with γ = 0.5, while η = 0 and η = 1 reduce to the dichromatic arrangement studied
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above.

Figure 2.8 plots Oopt
F as a function of η, for the alternating dichromatic arrange-

ment, at a single illumination intensity. The plot has two minima, at the symmetric

locations η = 0.27 and η = 0.73.4 Adding some degree of spectral overlap between

the two photoreceptor classes improves performance, but too much overlap has

a significant deleterious effect. Indeed, in the limit of η = 0.5 this is simply a

re-expression of the fact that monochromatic retina does worse than a dichromatic

retina.

Figure 2.8 shows results for the case of symmetric receptor dark noise. In the

asymmetric case, the same value of η characterizes optimal design for high light

levels (since at high light levels dark noise is dominated by photon noise.) Because

our results in Figure 2.6 were obtained for η = 0 (or equivalently η = 1), it is

possible that the advantage for monochromatic vision at low light levels shown

in the figure would reverse if the calculations were performed with optimized

dichromatic spectral sensitivity. We ruled out this possibility by verifying that

monochromatic vision continues to dominate at low light levels in the asymmetric

dark noise case, even for η = 0.27 (or equivalently η = 0.73).

More generally, one could consider whether any dichromatic retina outperforms

a monochromatic retina at low light levels, for the asymmetric dark noise case. Ex-

ploring all possible choices of spectral sensitivity for the two receptor classes for

all possible arrangements is computationally prohibitive. But since a monochro-

matic retina represents a limiting case of a dichromatic retina where the spectral

sensitivities of the two classes become progressively more similar, and where the

asymmetry index approaches unity, we can ask whether making a monochromatic

4The symmetry arises because for the case studied there is no effect of reversing the labels given
to the two photoreceptor classes. For this reason, only half of the plot is shown.
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Figure 2.8. Effect of spectral sensitivity. This figure plots Oopt
F as a function of the spectral

sensitivity parameter η, for the alternating arrangement (α = 0, ρ = 1), at a single illumination
intensity (ω = 1, 000). The optimal values of η are 0.27 and 0.73, corresponding to mixes of 27%
of one photopigment and 73% of the other. Aside from illumination intensity and photopigment
mixing parameters, the signal and photoreceptor parameters were the same as in Figure 2.2. Since
this figure is symmetric about η = 0.5, we restrict the domain displayed to 0 6 η 6 0.5.

retina just a little bit dichromatic improves performance or worsens it. To do so, we

compared the performance of a monochromatic retina with all receptors containing

the low-dark-noise photopigment to that of a retina where a small amount (10%)

of the high-dark-noise photopigment had been added to a single photoreceptor in

the array. We found that for the asymmetric dark noise case, the purely monochro-

matic retina led to superior performance at low illumination levels. This in turn

suggests that indeed the purely monochromatic retina represents a global optimum

in design.

2.6 Discussion

Animals have evolved sense organs that are near optimal for detecting and mea-

suring changes in the environment. For example, rod photoreceptors can reliably

transduce the energy of a single quantum of light (Baylor, Lamb, & Yau, 1979);
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hair cells in the ear are sensitive to deflections as small as the radius of a single

hydrogen atom (Sellick, Patuzzi, & Johnstone, 1982); and olfactory sensory neurons

can respond to the arrival of a single molecule of odorant (Schneider, 1969).

More generally, many properties of sensory systems have been successfully

understood as near optimal solutions to information uptake and processing prob-

lems. For example, the design of a fly’s compound eye has been shown to represent

an optimal tradeoff between spatial resolution and sensitivity to contrast (Snyder,

Stavenga, & Laughlin, 1977); the spectral properties of primate cone photoreceptors

optimize discrimination of fruit from foliage (Regan et al., 2001); properties of reti-

nal ganglion cells optimize information transmission down the optic nerve (Buchs-

baum & Gottschalk, 1983; Atick, Li, & Redlich, 1992; Atick, 1992; van Hateren,

1992, 1993; Twer & MacLeod, 2001; Koch et al., 2004); and adaptation maximizes

the use of limited neural dynamic range across changes in environmental condi-

tions (Laughlin & Hardie, 1978; J. Walraven, Enroth-Cugell, Hood, MacLeod, &

Schnapf, 1990).

Optimality calculations provide a principled null model against which to bench-

mark the performance of sensory and other information processing systems (Geisler,

1987; Watson, 1987; Brainard, 1993). In addition, showing how a feature of a bi-

ological system is closely matched to predictions derived from considerations of

optimality provides a satisfying, if speculative, answer to the question of why that

particular feature evolved.

In this chapter, we develop a theoretical methodology to evaluate the quality of

different choices of retinal photoreceptor mosaic. Our method is based on Bayesian

decision theory (Gelman et al., 2004; Berger, 1985; Blackwell & Girschick, 1954).

Similar underlying logic was employed by Srinivasan et al. (1982) in the context

of understanding the receptive fields of retinal ganglion cells, and our general
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formulation closely parallels that developed independently by Levin et al. (2008)

to evaluate the design of digital cameras.

We applied our method in the context of a simplified model system to inves-

tigate three fundamental questions about retinal design. First, we showed that

for dichromatic retinae, regular arrangements that maximally alternate between

the two types of photoreceptors lead to better performance than less regular ar-

rangements. Second, introducing overlap between the spectral sensitivities of the

photoreceptors of dichromatic retinae can improve performance. Third, when we

compare dichromatic and monochromatic retinae, we find that which is preferred

is quite sensitive to the specific parameters chosen within our model system. In

the symmetric case where the different photoreceptor types have the same level of

intrinsic noise and the different wavelengths carry the same amount of of signal,

a dichromatic retina yields best performance at all signal-to-noise ratios, when the

correlations between neighboring image locations are higher than those between

neighboring wavelength bands. To obtain results that mirror what is typically

found in biological systems (monochromatic vision for low signal-to-noise condi-

tions and color vision for high signal-to-noise conditions), we had to introduce an

asymmetry between the intrinsic noise level of the two photoreceptor classes.

2.6.1 Measurements of photoreceptor dark noise

A number of laboratories have measured photoreceptor dark noise for receptors

with different pigment spectral sensitivities. The most relevant measurements

to our analysis are those for rods, which mediate vertebrate vision at low light

levels. Baylor et al. (1984) showed that thermal like events dominate the dark

noise of primate rods, suggesting strongly that at the lowest light-levels it is ther-

mal noise rather than later noise that sets the limit on performance. Ala-Laurila,
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Pahlberg, Koskelainen, and Donner (2004) measured the activation energy for 12

visual pigments varying in λmax and found that activation energy decreased with

λmax, although the decrease was shallower than the 1/λmax dependence that would

be predicted if the only factor involved were the energy of photons at wavelength

of peak sensitivity. This result does not directly show that receptor dark noise

depends on λmax, but does confirm a key feature of the theory that predicts such

dependence. More recently, Ala-Laurila, Donner, Crouch, and Cornwall (2007) es-

timated thermal noise rates for two forms of rhodopsin in isolated salamander rods

and concluded that this was larger for the form with longer λmax. Taken together,

these results make it highly plausible that there are fundamental dark noise asym-

metries across rod photoreceptors with different wavelengths of peak sensitivity,

as Barlow (1957) hypothesized.

Rieke and Baylor (2000) compared dark noise in salamander S and L cones, and

found that the noise in L cones was much greater. For L cones, they concluded that

dark noise was dominated by thermal isomerizations, while for S cones, other noise

sources dominated. Their results are consistent with a dependence of dark noise on

1/λmax. On the other hand, Schneeweis and Schnapf (1999) found little difference

in the dark noise levels of primate M and L cones, perhaps because the dark noise

in these receptors is dominated by sources other than thermal isomerizations.

It is probably wise to keep in mind that across receptor types and species, the

relationship between λmax and dark noise may not be simple. For our present

purposes, however, the crucial point is that at the lowest light levels, asymmetries

in rod SNR across receptor types seem likely to play an important role in retinal

design.

40



2.6.2 Relation to other work: color vision at night

As noted in the introduction, a few other authors have considered why monochro-

matic vision pervades at low light levels. Although our calculations do not con-

tradict the core observation of what we have called the standard intuition on this

matter (van Hateren, 1993; Land & Osorio, 2003), they show that the standard

intuition alone is insufficient and requires more careful elaboration. Indeed, in the

absence of any asymmetry in the noise properties of photoreceptor types or in the

signal carried by different image wavelengths, a dichromatic retina can outperform

a monochromatic retina at all signal-to-noise ratios. This conclusion holds for the

case where the spatial correlation between neighboring image locations is higher

than the color correlation across neighboring image wavelengths.

We are, however, able to show that monochromatic vision dominates dichro-

matic vision at low light levels if we introduce an asymmetry across photoreceptor

types or between the statistics at different image wavelengths. Such asymmetries

interact with the signal-to-noise ratio to drive a shift in the optimal mosaic arrange-

ment. The critical role of the noise asymmetry parallels Barlow’s (1957) explanation

of the Purkinje shift. As discussed in the previous section, there is good reason to

believe that there are in fact asymmetries in photoreceptor noisiness (Barlow, 1957;

Rieke & Baylor, 2000). Less is known about possible asymmetries in the signals

carried at different image wavelengths, but these may also exist. Thus, our analysis

provides a plausible explanation for the rarity of color vision at night, but only with

the assumption of asymmetries across photoreceptors and/or wavelengths.

Note that our work does not contradict van Hateren’s (1993) results, as there

are several key differences between his analysis and that presented here. First, we

explicitly compare the performance of interleaved dichromatic retinae with that

of monochromatic retinae. This is quite different than asking, for any particular
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retina, whether the optimal processing of the output of that retina tends to towards

luminance processing at low light levels. Second, considering the properties of

the optimal single channel, as van Hateren did, is different from asking whether

adding a second channel might improve performance.

Finally, we note that we can replicate van Hateren’s (1993) basic conclusion

within the context of our current model. We asked, for the case where the two

receptor classes have equal SNR, how the reconstruction of luminance (both recep-

tor types stimulated together) and chromatic (the two receptor types stimulated

in opposition) signals compared as a function of SNR (results not shown). We

found, consistent with van Hateren, that the magnitude of the reconstructed chro-

matic signal decreased relative to that of the reconstructed luminance signal as

overall SNR dropped. This calculation is consistent with the standard intuition.

Interestingly, it is also consistent with the observed achromatic interval found for

cone-mediated foveal viewing in humans: as light level drops, there is a regime

where dim test lights can be detected but not be judged in color (P. L. Walraven,

1962; Graham & Hsia, 1969). Massof (1977) presents a model where detection is

limited by quantum fluctuations that accounts for this interval. The central idea

driving Massof’s model is the same as that driving the standard intuition.

2.6.3 Relation to other work: mosaic regularity

In all of our calculations, we found that the best arrangement of the multiple (in

this case two) receptor classes is regular, in the sense that it maximizes the number

of alternations between classes across the mosaic. This result is consistent with the

regular mosaic layout found in fish (Scholes, 1975; Bowmaker & Kunz, 1987) and

with the regular arrangement of the S cone submosaic in humans (Curcio et al.,

1991), but not with the quasi-random arrangement of L and M cone submosaics in
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primates (Mollon & Bowmaker, 1992; Hofer et al., 2005).

A few investigators have considered the effect of photoreceptor irregularity on

performance. This work is in the context of the spatial arrangement of monochro-

matic mosaics, rather than the arrangement of interleaved submosaics. The prin-

ciples considered in the earlier work, however, are of a general nature and might

reasonably be taken to apply to the current case.

Bossomaier, Snyder, and Hughes (1985) concluded that mosaic irregularity had

a deleterious effect on performance, consistent with our general conclusion. Their

analysis, however, was based on the assumption that the visual system processed

the output of the irregular mosaic as if the receptors were in fact regularly spaced.

In this case, the effect of irregular spacing may be mimicked by the addition of

noise to the output of a regular mosaic, and the addition of such noise would

degrade performance. Recent modeling of the appearance of very small flashed

spots (Brainard, Williams, & Hofer, 2008), however, indicates that the human visual

system does take the fine spatial structure of its mosaic into account. In any case,

the key difference between the development of Bossomaier et al. (1985) and the

one presented here is that their conclusion hinges on the assumption that the vi-

sual system’s post-receptoral processing is sub-optimal, while ours evaluates each

mosaic arrangement on the assumption that post-receptoral processing optimally

accounts for the location of each photoreceptor.

Yellott (1982, 1983) concluded, on the other hand, that mosaic irregularity can

improve visual performance. He analyzed the nature of the set of spatial aliases

for different mosaic arrangements. (Two different images are aliases for a mosaic

if they produce the same response in every photoreceptor in the mosaic.) For

regularly arranged mosaics, regular spatial patterns at high spatial frequencies (e.g.

high spatial frequency sinusoids) have as aliases other regular spatial patterns at
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lower spatial frequencies (e.g. low spatial frequency sinusoids). For irregularly

arranged mosaics, regular high spatial frequency patterns alias into irregular low

spatial frequency patterns that appear as spatial noise. Yellot pointed out that

a visual system that incorporated knowledge of the spatial structure in natural

scenes would be better able to filter the low spatial frequency aliases produced

by an irregular mosaic than the those produced by a regular mosaic, suggesting a

possible advantage for irregular mosaics.

Yellot’s argument could be formalized and evaluated within the framework

presented here. The key extension to the current analysis required for this would

be to choose an image prior that incorporates a preference for structured images; the

Gaussian priors we used capture only the second order structure of natural images

and do not allow expression of higher order structure that favors, for example, the

presence of edges. Whether such an analysis would lead to a rationale for irregular

mosaics within our simple model system remains an open question of considerable

interest.

Finally, Hsu, Smith, Buchsbaum, and Sterling (2000) argued that in the presence

of electrical coupling between receptors of different classes, irregularity in the

interleaving of these classes would reduce the deleterious effects of the coupling

on color vision. DeVries, Qi, Smith, Makous, and Sterling (2002) complemented

this line of thinking by observing that the same coupling could reduce noise at

the receptor outputs by integrating over multiple receptors, and that the cost of

such coupling for spatial vision was not significant in the presence of optical blur.

We have not explored these results in the context of our model system. Doing so

would require imposing specific processing steps after the receptors (e.g. modeling

electrical coupling), and then asking both how the added processing constraint

affected retinal design as well as overall performance.
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2.6.4 Relation to other work: spectral sensitivity

A number of authors have considered the interaction of spectral properties of the

photic environment and cone spectral sensitivity. The theoretical approach taken

by Lewis and Zhaoping (2006) is quite similar to ours, although their performance

criterion is one of maximizing information rather than minimizing Bayes risk (see

below). These authors conclude that the human L cone is not optimally located, as

more information would be transmitted if its peak sensitivity were at a higher wave-

length. As with our work, a key factor that drives their calculations is asymmetry

between the information available for photoreceptors with different wavelengths

of peak sensitivity. In particular, they note that as the overall signal-to-noise ratio

decreases, the optimal placement of both L and M cones tends toward the wave-

length that provides maximum signal-to-noise. This is analogous to our conclusion

that the optimal mosaic tends towards monochromatic as signal-to-noise decreases.

One important difference between our work and theirs is that we explicitly evaluate

spatial and spectral performance jointly, whereas they do not treat spatial variation.

Other papers in this general tradition (Lythgoe & Partridge, 1989; Chittka &

Menzel, 1992; Osorio & Vorobyev, 1996; Regan et al., 2001; Cummings, 2004) ana-

lyze performance on a particular color discrimination task thought to be important

for the organism (e.g. discriminating fruits from foliage for primates; Regan et

al., 2001) as a function of choice of spectral sensitivity. This work shares with our

current analysis emphasis on both the statistical properties of stimuli that will be

encountered by the visual system and on optimizing performance for a particular

task. The specifics of the analyses differ, with our work considering a highly sim-

plified visual environment. This allows us to explore a wider range of parametric

interactions, at the cost of departing further from ecologically valid measurements.
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2.6.5 Relation to other work: theory

Our approach to optimal design employs formalism taken from Bayesian decision

theory. An alternative and closely related approach is to consider maximization of

transmitted information, as measured in bits, rather than minimization of expected

loss. Analyses based on information theory have been successfully employed

to explain features of post-receptoral retinal design (e.g., Atick, 1992; Brenner,

Bialek, & de Ruyter van Steveninck, 2000; Balasubramanian & Berry, 2002; Koch

et al., 2004). In the current context, the difference between the two approaches

is straightforward. Given a fixed prior distribution on images, the design that

maximizes information transmission is the one that leads to a posterior distribution

with minimum entropy (Cover & Thomas, 1991). Entropy is a measure of the

uncertainty in the outcome of draws from a distribution. A posterior distribution

with low uncertainty, generally speaking, is also one that will lead to low estimation

error with respect to a specified loss function. However, the relation between

entropy and expected loss need not be monotonic (Thomson & Kristan, 2005).

Given that minimizing expected loss and maximizing information transmitted

do not always lead to the same conclusion, one could reasonably ask which ap-

proach is more appropriate. The attraction of minimizing expected loss is that it

allows explicit inclusion of what matters to the organism, and it is for this reason

that we have used the Bayesian approach here. At the same time, we concede

that the specific choice of squared error loss is at best a crude approximation to

what matters to most organisms, and in the current work serves as a placeholder

in the formalism where more realistic loss can be inserted when such are avail-

able. This general point, that information theory tends to be insensitive to the

metric structure of the stimulus space, is discussed by Luce (2003). We did verify

that the main features of the principal results reported in this chapter (i.e. the
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monochromatic/dichromatic comparisons shown in Figs. 2.3 and 2.6) continue to

hold when the calculations are repeated with maximizing transmitted information

as a criterion. The one exception we found is that increasing the overlap in spectral

sensitivity, which improves performance for a dichromatic retina as assessed by

minimizing expected squared error loss (see Fig. 2.8), does not increase information

transmitted.

An advantage of information theory that drives its use in many studies of

neural systems is that there are techniques for measuring the information carried

by a neuron that do not require knowledge of the analytic form of the stimulus

ensemble or of the representational structure of the neural response. Thus, for

example, the information about natural images conveyed by a particular ganglion

cell may be estimated by measuring the cell’s response to a sequence of presented

natural images, without need to develop an explicit algorithm for estimating images

from the response (e.g., Brenner et al., 2000; Balasubramanian & Berry, 2002; Koch

et al., 2004). In this sense, information theory is an approach that complements the

one we have taken here. Indeed, in related work, we considered features of mosaic

design using information theoretic methods (Garrigan et al., 2010).

2.6.6 Future directions

The model system explored in this chapter was very simple. Nonetheless, it allowed

us to express many of the pieces required for a full theory of optimal mosaic design,

including a specification of the statistical properties of the visual environment,

specification of the relation between an image and its sensory representation, and

specification of the goal of the visual computation as a loss function. Given these,

we could explore the performance of different design choices. Despite the fact

that that the model system we used is simple, we were able to demonstrate a
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number of conclusions. The first is that classic arguments for why monochromatic

vision is favored over color vision at low signal-to-noise levels are incomplete.

That is, we were able to demonstrate conditions where color vision provides better

performance as signal-to-noise drops to zero. Moreover, our analysis suggested

additional factors that, when incorporated into the analysis, do yield a shift from

color to monochrome vision as SNR drops. In addition, within the context of

our model system, regular mosaics dominate irregular mosaics. We have not yet

found factors that would predict a robust advantage for the quasi-random tiling

of L and M cones found in primate retina. Here our analysis clarifies not what we

understand, but what we have yet to make sense of.

Because our model system is very simple, an important goal for future work is

to generalize the analysis and bring it closer to biological realism. Obvious gener-

alizations include adding a second spatial dimension, additional wavelengths (i.e.

full spectra), time and motion, and additional cone classes. There are no conceptual

obstacles to these generalizations, but given present computing resources it is not

currently possible to explore these added dimensions exhaustively, as we could for

the simple case. The challenge now is to pick specific manipulations of interest.

Moving in this direction would also allow incorporation of additional factors, such

as whether the statistics of spectra shift systematically between day and night —

something we have not yet considered. These generalizations would also enable

us to draw the numerical values used for spectral sensitivity and dark noise more

directly from biological measurements; the present calculations are sufficiently

abstracted from real retinae that we thought such an effort premature.

Computations cost energy, and energy considerations are non-trivial for the

design of biological systems (Laughlin, 2001; Balasubramanian, Kimber, & Berry,

2001; Balasubramanian & Berry, 2002; Laughlin & Sejnowski, 2003). The general

48



framework we have presented could be extended to include considerations of en-

ergetic cost. If we think of the loss function as expressing the cost of misestimation

in terms of its ultimate effect on reproductive success, we can also conceive of a

function that expresses the cost of computing an estimate from the receptor re-

sponses. Denote by the energetic cost function CF(~r) the energetic cost incurred when

the estimator F() acts on input~r. In analogy to the Bayes risk, we can then associate

an expected computational cost with the estimator

CF =

∫
~i

[∫
~r

CF(~r)P(~r|~i) d~r
]
P(~i)d~i.

Once computational cost is taken into account, a more general optimality princi-

ple is to choose an estimator F() that minimizes OF = RF + CF.5 Note that this

formulation for computational cost would also allow for consequences of the time

taken to do the computation (Koch et al., 2006) and for variations in cost that arise

from variation in the size and mass of the computational apparatus (Laughlin &

Sejnowski, 2003). It might be reasonable to make initial steps toward including

energetic cost by examining the number of multiplications and additions required

to closely approximate the optimal estimator for each mosaic.

As noted in the results section, we have not explicitly modeled differences

between rods and cones, such as differences in the source and level of receptor

dark noise (see above), nor between properties of receptors across species. Because

our formulation is very general, such differences could be included. Modeling the

properties of rods and cones would, for example, allow us to address questions

such as at what light level a visual system that has both rods and cones should

5The use of a simple sum is appropriate on the assumption that the measures of loss and energetic
cost can be expressed in the same units. This seems reasonable in principle but may be difficult to
achieve in practice.
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switch from one to the other. Similarly, comparing the details of rod properties and

other retinal design factors across species might provide insight as to why some

species do exhibit rod-mediated color vision (Land & Osorio, 2003; Kelber & Roth,

2006).

Even within our simple one-dimensional, two-wavelength system, we did not

explore all possible parametric manipulations. For example, one could explore

tradeoffs between optical blur and pupil aperture, or effects of overall receptor

density. One could also try to refine the statistical model of image structure by

incorporating a characterization of the edge-like features that are pervasive in

natural images (Simonceli, 2005) or the model of the likelihood function (e.g. by

incorporating a Poisson rather than Gaussian noise model; L. Paninski, personal

communication). Finally, it would be of interest to explore effects of varying the loss

function, for example to emphasize either luminance or chromatic estimation error.

This would be a first step to modeling species differences in what stimuli are most

ecologically relevant. More generally, examining properties of the estimator itself

could yield insights about how post-receptoral processing should be configured to

optimally extract information from interleaved receptor mosaics.
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Chapter 3

Broadband shifts in local field

potential power spectra are correlated

with single-neuron spiking in

humans

Jeremy R. Manning, Joshua Jacobs, Itzhak Fried, & Michael J. Kahana.
The Journal of Neuroscience, 29(43), 13613–13620.

3.1 Abstract

A fundamental question in neuroscience concerns the relation between the spiking

of individual neurons and the aggregate electrical activity of neuronal ensembles as

seen in local field potentials (LFPs). Because LFPs reflect both spiking activity and

subthreshold events, this question is not simply one of data aggregation. Recording

from 20 neurosurgical patients, we directly examined the relation between LFPs
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and neuronal spiking. Examining 2,030 neurons in widespread brain regions, we

found that firing rates were positively correlated with broadband (2 – 150 Hz) shifts

in the LFP power spectrum. In contrast, narrowband oscillations correlated both

positively and negatively with firing rates at different recording sites. Therefore,

broadband power shifts were a more reliable predictor of neuronal spiking than

narrowband power shifts. These findings suggest that broadband LFP power

provides valuable information concerning neuronal activity beyond that contained

in narrowband oscillations.

3.2 Introduction

A large and growing literature has documented the existence of oscillatory activity

from large neuronal ensembles in both humans and animals, and has shown that

these brain oscillations are related to a wide variety of behavioral and cognitive

states (Kahana, Seelig, & Madsen, 2001; Buzsáki, 2004; Buzsáki, 2006; Crone, Sinai,

& Korzeniewska, 2006; J. Jacobs & Kahana, 2009; Jerbi et al., 2009). Elucidating

the relation between large-scale neural patterns and the activities of individual

neurons is critical for gaining a deep understanding of the brain and how it supports

behavior (Kreiman, 2007). To this end, several studies of humans and animals have

examined the relation between large-scale recordings, such as local field potentials

(LFPs), and the activities of individual neurons.

Recording from monkey visual cortex, Rasch, Gretton, Murayama, Maass, and

Logothetis (2008) found that increases in gamma activity (40–90 Hz) and decreases

in delta and theta activity (1–10 Hz) in the LFP signal were correlated with increased

neuronal firing rates. Examining primary auditory cortex as human neurosurgical

patients viewed brief movies, Mukamel et al. (2005) also observed that increased

52



gamma activity and decreased theta activity correlated with neuronal firing. The

positive correlation between gamma activity and neuronal spiking is a robust

finding reported in a variety of studies (Fries, Reynolds, Rorie, & Desimone, 2001;

Pesaran, Pezarais, Sahani, Mitra, & Andersen, 2002).

Reports of strong correlations between neuronal firing and narrowband activ-

ity (i.e., oscillations) have supported the view that oscillations reflect synchronized

spike timing in large neuronal ensembles (Singer & Gray, 1995; Logothetis, 2003;

Fries, Nikolić, & Singer, 2007). This follows in part from the temporal-binding

hypothesis (von der Malsburg, 1981), which proposes that synchronized neural

activity can solve the “binding problem” by linking multiple neuronal signals

(Koffka, 1935; Köhler, 1947; Kanisza, 1979; Pal & Pal, 1993). However, several

studies suggest that apparent correlations between spikes and gamma-band LFP

activity are actually due to broadband LFP patterns, rather than band-specific os-

cillations (Mitzdorf, 1985; Juergens, Guettler, & Eckhorn, 1999; Cruikshank, Rose,

& Metherate, 2001; Kaur, Lazar, & Metherate, 2004; Kreiman et al., 2006; Chen et

al., 2007; K. Miller, Leuthardt, et al., 2007). Furthermore, task-related modulations

in human LFP activity have been observed throughout a broad frequency range

extending to ∼150–200 Hz, showing that the human brain exhibits broadband phe-

nomena in addition to narrowband oscillations (Tanji, Suzuki, Delorme, Shamoto,

& Nakasato, 2005; Lachaux et al., 2005; Canolty et al., 2006). Other work suggests

that broadband changes in LFP activity are related to neuronal spiking (K. Miller

et al., 2009; Milstein, Mormann, Fried, & Koch, 2009). However, no previous work

has directly compared neuronal spiking in humans with simultaneous broadband

LFP activity.

Here we examined the relation between LFPs and single-neuron activity in 20

neurosurgical patients during a virtual navigation task. We recorded action poten-
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tials from 2,030 neurons from diverse brain regions including the neocortex and

medial temporal lobe. Consistent with previous studies, we found a population

of narrowband-shift neurons, which varied their firing in proportion to LFP power

at specific frequency bands. Narrowband-shift neurons were present throughout

the brain, but were especially prevalent in the frontal cortex and amygdala. In

addition, we observed a larger population of broadband-shift neurons, which varied

their firing with the overall height of the LFP power spectrum at all frequencies.

Broadband-shift neurons appeared in all examined brain regions, but were espe-

cially prevalent in the medial temporal lobe. Broadband increases in LFP power

were almost exclusively positively correlated with single-neuron firing, providing

a robust estimate of neuronal firing. We propose that, when estimating local neu-

ronal firing using LFPs, researchers should examine broadband power in addition

to power contained in narrow frequency bands.

3.3 Methods

3.3.1 Electrophysiological recordings

We examined intracranial brain recordings from 20 neurosurgical patients under-

going treatment for drug-resistant epilepsy. During each 25–60-minute recording

session, patients played a virtual navigation game, Yellow Cab, in which they as-

sume the role of a taxi driver and chauffeur (virtual) passengers to their desired

destinations. While playing this game, patients learn the virtual environment’s

layout (Newman et al., 2007) and display brain oscillations at various frequencies

related to learning and sensorimotor integration (Caplan et al., 2003; Ekstrom et

al., 2005).
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Patients are implanted with 6–12 neurosurgical depth electrodes by clinical

teams. Local field potentials (LFPs) recorded from these electrodes are used to

map the seizure focus and identify functional brain regions for potential subse-

quent surgical resection. In addition, a set of nine small microwires extend from

the tip of each depth electrode. (The ninth wire is the recording reference for

the other eight.) Each microwire is 40 µm in diameter and records from a small,

local region of cortex. By recording from the microwires at 32 kHz, we observe

both high frequency single-neuron spiking (Fried et al., 1999) and lower frequency

LFPs (Mukamel et al., 2005; J. Jacobs, Kahana, Ekstrom, & Fried, 2007). Using the

WaveClus software package (Quiroga et al., 2004), we identified the action poten-

tials of 0–3 neurons per microwire, for a total of 2,030 neurons across the 20 patients.

Recordings were obtained in widespread brain regions including the frontal cor-

tex, posterior cortex (occipital and parietal cortices), amygdala, hippocampus, and

parahippocampal region (Witter, 2002). In order to make the LFP data more com-

putationally tractable, we downsampled our recordings to 2 kHz. We then applied

a second-order Butterworth notch filter at 60 Hz to remove line noise. We com-

puted the smoothed firing rate for each time point by convolving each neuron’s

spike train with a Gaussian kernel (half-width = 500 ms). To prevent the low

frequency components of the action-potential waveform from contaminating the

LFP signal, we replaced the data samples in the −2–8-ms window around each

spike with a linear interpolation of the underlying LFP signal (J. Jacobs et al., 2007).

These recordings were obtained for a previous study (J. Jacobs et al., 2007), but the

analyses reported here are completely novel.
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3.3.2 LFP feature extraction

We measured oscillatory power in the LFP signal using Morlet wavelets (wave

number = 4) at 50 log-spaced frequencies between 2 and 150 Hz (2× 100.0383x for x ∈
{0...49}). Because oscillatory power at a given frequency isχ2 distributed (Percival &

Walden, 1993; Henrie & Shapley, 2005), we log-transformed the wavelet-calculated

powers to make the distributions more normal. To account for inter-electrode

impedance differences, we normalized the powers recorded at each electrode such

that the mean power spectrum was centered at 0 with a standard deviation of 1.

To analyze the relation between LFP spectral power and spiking activity, we

next divided each recording session into 500 ms epochs. This epoch length was

chosen to provide a reasonable balance between temporal resolution (which we

sought to maximize) and correlations across successive measurements (which we

sought to minimize). To eliminate the effect of non-biological noise on our analysis,

we removed epochs with firing rates above the 99th percentile. For computing

summary statistics, we calculated the mean power contained in the following

narrow frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–

30 Hz), and gamma (30–150 Hz). In addition to measuring LFP power at narrow

frequency bands, we computed broadband power. Broadband power refers to LFP

voltage fluctuations that occur at a broad range of frequencies, consistent with the

voltage following a random-walk process (Annibaldi & Hopcraft, 2002), unlike true

oscillations limited to a narrow frequency range. To measure the broadband power

for each individual epoch, we fit a line to that epoch’s wavelet-calculated power

spectrum via a robust regression (Holland & Welsch, 1977). Robust regression

fits the majority of data points closely and is relatively unaffected by outliers;

by contrast, a standard least-squares regression would be more affected by data

points that did not fall on the line. This is critical for distinguishing broadband and

56



narrowband effects because it minimizes the impact of narrowband oscillations,

which appear as local peaks in the LFP power spectrum, towards the computed

broadband power. We use the term broadband power to refer to the mean height of

the robust-regression–fitted line in each epoch.

3.3.3 Regression framework

Our primary objective was to examine how the firing rates of individual neurons

related to narrowband changes (i.e., oscillations) and broadband changes in the

LFP. To quantify the extent to which each of these patterns predicted neuronal

firing, we used a series of least-squares regressions. For each neuron, we set up

five bivariate simultaneous regressions of the form

R = β0 + βBB + βFF,

where R was a vector containing the estimated firing rate for each epoch, F was a

vector containing the average power in each epoch for one narrowband frequency

(delta, theta, alpha, beta, or gamma), and B was a vector containing broadband

power. Prior to computing the mean power in each narrow frequency band for each

electrode, we z-transformed the power distribution at each individual frequency to

have a mean of 0 and a standard deviation of 1. This step ensured that the individual

frequencies in each band contributed equally, despite the overall 1
f a shape of the

power spectrum. The regression was performed five times (once for each frequency

band), and the regression coefficients, β0, βB, and βF were fit separately each time.

When the βB coefficients from all five regressions were significantly different from

zero (see bootstrap procedure, below), and all had the same sign, we designated

the neuron as a broadband-shift neuron. This technique assured that, for broadband-
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shift neurons, broadband power explained a significant portion of the firing-rate

variance beyond any one narrow frequency band alone.

We designated a neuron as a narrowband-shift neuron if exactly one βF was signif-

icantly different from zero (see bootstrap procedure, below). In addition, a neuron

was also labeled as a narrowband-shift neuron if it had exactly two significant βF’s

with the same sign in neighboring frequency bands (e.g., βδ < 0 and βθ < 0). We

added this second condition so that our analysis was not biased against neurons

whose firing rates were related to oscillations that spanned the frequency band

boundaries. In this way, the firing rates of narrowband-shift neurons were corre-

lated with oscillations in one narrow frequency band. Note that a single neuron

could be tagged as both a broadband-shift neuron and a narrowband-shift neuron.

As a potential alternative to the bivariate regression framework presented here, we

also considered the use of a single simultaneous regression for each neuron (using

broadband power and each of the five frequency bands as regressors). However,

because the different frequency bands were highly co-linear, results using this

alternative approach were difficult to interpret.

3.3.4 Multiple comparisons

Our framework for classifying neurons as broadband- and narrowband-shift neu-

rons relied on the outcomes of several potentially correlated statistical tests. To

address this issue we used a bootstrap procedure to calculate a p threshold to use

for each statistic. We computed this threshold in a way that allowed us to set a sin-

gle false-positive rate for the entire procedure (i.e., across all five regressions). We

used a time-shifting bootstrap to estimate the probability of falsely labeling each

neuron as a narrowband-shift neuron and as a broadband-shift neuron. For each

neuron, we generated 1,000 simulated firing rate vectors by circularly shifting the

58



values of the original vector by a random number of elements. For each time-shifted

vector, we re-ran the original regression analyses providing, for each neuron, 1,000

sets of bootstrap regression coefficients and p values. We used these bootstraps

to determine, for each neuron, two p thresholds—one for identifying narrowband-

shift neurons and one for identifying broadband-shift neurons—that gave a 5%

false positive rate for each designation. Although individual LFP recordings may

exhibit differing correlations between the powers at neighboring frequencies, our

procedure ensured that each neuron’s false-positive rate is fixed at 5% for each

effect.

3.4 Results

Using recordings of 2,030 neurons from 20 neurosurgical patients (Tab. 3.1) we

analyzed the relation between the firing rates of these neurons and simultaneous

variations in the local field potential (LFP). In particular, we determined how

moment-to-moment variations in two distinct aspects of LFP power related to

simultaneous changes in the firing rates of nearby neurons (Fig. 3.8). In addition

to examining LFP oscillations in narrow frequency ranges, as traditionally done

in this type of work (Kahana, 2006; Fries et al., 2007), we also analyzed a novel

measure of broadband LFP activity. Broadband activity refers to changes in the

LFP power spectrum that simultaneously appear at all frequencies, rather than

being limited to a narrow frequency band. We measured broadband power using a

technique that measures the overall level of the LFP power spectrum while ignoring

narrowband oscillatory peaks (see Methods). This procedure ensures that whenever

we observed a neuron whose spiking was correlated with broadband power, this

activity was truly related to the overall level of the LFP power spectrum, rather
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than to oscillations at specific bands. We ruled out that broadband LFP power shifts

are a consequence of low frequency components of the spike waveform appearing

in the LFP (see Supplemental results). Before presenting aggregate statistics for the

full dataset, we provide some sample data to illustrate the major phenomena of

interest.

Figure 3.1 illustrates the relation between broadband power shifts and spiking

activity recorded from an electrode in the amygdala of Patient 3. Panel A shows the

normalized LFP power spectrum (black lines) and the mean broadband LFP power

(red lines) for each of thirty consecutive 500 ms epochs. Panel B shows the neuron’s

spiking (black tick marks) and mean firing rate (blue lines) for these same epochs.

Across these epochs, variations in broadband power were strongly correlated with

simultaneous variations in the neuron’s firing rate (Pearson’s r = 0.92, p < 10−12).

Note that both broadband power and neuronal firing rate exhibited local maxima

at 0.5 s, 4 s, 6.5 s, and 10 s, and both had local minima at 1.5 s and 5 s. Critically,

variations in LFP power were not limited to particular narrow frequency bands, but

rather appeared as overall broadband shifts in the entire power spectrum (brown

lines in Panel A).

To determine whether this pattern was robust across the entire recording session,

we examined the mean broadband LFP power and the mean firing rate for each of

the 3,477 half-second epochs we recorded for this neuron. Data from each epoch

appear as a point in Figure 3.2A, where the horizontal coordinate indicates the

firing rate and the vertical coordinate indicates the normalized broadband power.

Across the entire recording session, these points were clustered along the diagonal,

indicating that neuronal firing rate was positively correlated with LFP broadband

power (Pearson’s r = 0.6, p < 10−10). Figure 3.2B depicts this relation in a different

manner, showing the mean LFP power spectra for each of five groups of epochs
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Figure 3.1. LFP power and neuronal firing time series. Each box details the activity in one 500 ms
epoch. A. This panel illustrates how various features of the LFP change over time. In each epoch, the
black lines indicate the overall LFP power spectrum, brown lines indicate robust-fit lines, and the
horizontal red lines indicate mean broadband powers. B. This panel illustrates changes in neuronal
firing rate concurrent with changes in the LFP power spectrum. Black vertical ticks represent the
times when individual spikes occurred, dark blue lines indicates the smoothed firing rate (see
Methods), and horizontal blue lines indicate mean firing rates in each epoch. Mean broadband
power is shown in Panel B (horizontal red lines) on a different scale (indicated at right).

where this neuron had different firing rates (different colors in Panel A). As this

neuron’s firing rate increased, the LFP power spectrum exhibited a proportional

upward shift at all frequencies.

We next sought to identify all neurons in our dataset whose firing rates varied

with broadband power (as in the example above) or with narrowband power (as

documented in the previous literature). Because broadband power is influenced by

each narrow frequency band, disambiguating broadband and narrowband effects

is critical for understanding the relation between neuronal spiking and LFP activity.

To identify neurons exhibiting each of these patterns, we fit a bivariate linear re-

gression model to the relation between firing rate and measures of both broadband

and narrowband LFP power. For each neuron, we computed the firing rate for each

500 ms epoch and we also computed LFP power measured at the same electrode at

five narrow frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta

(12–30 Hz), and gamma (30–150 Hz), in addition to computing broadband power
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Figure 3.2. A representative neuron exhibiting a positive correlation between firing rate and
broadband LFP power. A. Broadband power and firing rate for the neuron analyzed in Figure 3.1.
Each 500 ms epoch of the recording session is represented by one colored dot. The color of each
dot represents its relative firing rate. Warm colors depict epochs with high firing rates, and cool
colors indicate epochs with low firing rates. The dashed black line shows an ordinary least-squares
regression to these data. B. Average LFP power spectra for epochs with different firing rates. The
same color scheme is used in both panels. As firing rate increases, the power spectrum exhibits a
positive shift at all observed frequencies. The thickness of each line represents ± 1 SEM.

(see Methods). For each neuron we then performed a set of bivariate regressions

where broadband power and the mean power in one narrow frequency band were

simultaneously used to predict the neuron’s instantaneous firing rate. The two β

coefficients estimated in each regression indicate the contributions of broadband

activity and this particular narrowband frequency band towards each neuron’s

firing rate (see Methods).

Combining the results of all five regressions for each neuron, we designated a

neuron as a broadband-shift neuron when all five β coefficients for the broadband

predictor were significantly different from zero in the same direction. We desig-

nated a neuron as a narrowband-shift neuron if, across the five regressions, either

(a) one and only one narrowband β coefficient was significantly different from

zero or (b) exactly two narrowband β coefficients at adjacent frequency bands (e.g.

beta and gamma) were significantly different from zero in the same direction. (An
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individual neuron could receive both the broadband-shift and narrowband-shift

designations.) We adjusted our significance thresholds for each neuron to yield a

5% false-positive rate for each designation based on a reshuffling procedure (see

Methods).

Figure 3.3 illustrates power spectra for neurons whose spiking (positively or

negatively) correlated with narrowband LFP oscillations, neurons whose spiking

correlated with broadband LFP activity, and neurons whose spiking was simulta-

neously influenced by both broadband and narrowband activity. Figure 3.3 also

shows the proportion of neurons that fell into each category. For neurons whose

firing rates were correlated with broadband or narrowband LFP patterns, the most

prominent pattern in the dataset was that 34% of neurons exhibited spiking that

was positively correlated with broadband LFP activity (Fig. 3.3, right column). The

prevalence of this phenomenon far exceeded the level expected by chance (p < 10−6,

binomial test). In addition to this broadband effect, 29.7% of all neurons varied

their spiking in relation to narrowband LFP oscillations (top and bottom rows).

The broadband and narrowband patterns were qualitatively different: the

broadband shift effect was remarkably unidirectional, with 92% of all broadband-

shift neurons exhibiting this effect in a positive direction. By contrast, among

narrowband-shift neurons, only 66% exhibited positive correlations. Both broad-

band and narrowband effects often appeared simultaneously at the same record-

ing sites; we found that 11.7% of neurons were classified as both broadband- and

narrowband-shift neurons (i.e., corner entries in Fig. 3.3). This proportion is greater

than would be expected if broadband and narrowband phenomena were indepen-

dent (χ2(1) = 5.3, p < 0.05).

We next sought to determine whether the phenomenon of positive broadband-

shift neurons was linked to any particular brain regions. We found positive
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Figure 3.3. Categories of observed neurons. Each box corresponds to one of the nine possible
categories into which our regression framework assigned each neuron in our dataset. The right and
left columns correspond to significant positive and negative broadband shifts, respectively. The top
and bottom rows correspond to significant positive and negative narrowband shifts, respectively.
The middle column and middle row correspond to neurons that did not show significant broadband
and narrowband shifts, respectively. The proportion of neurons placed into each category is
indicated in the upper-right corner of each box. Proportions that were significantly greater than the
estimated false positive rate for each category (see Methods) are filled in black. Each box contains
power spectra (in the same format as Fig. 3.2B) of an example neuron from the corresponding
category. The brain region of each example neuron is indicated in the lower-left corner of each box.
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broadband-shift neurons in all observed brain regions (Fig. 3.4). To measure the

prevalence of this pattern, we calculated the proportions of positive broadband-

shift neurons in each of the five brain regions we examined (frontal and posterior

cortices, parahippocampal region, amygdala, and hippocampus). In each of these

regions, we observed significantly more positive broadband-shift neurons than

expected by chance (binomial tests, p < 10−6 for each region). However, the preva-

lence of this effect significantly varied between regions (χ2(4) = 34.01, p < 10−6).

In particular, the proportion of neurons exhibiting significant positive broadband

shift patterns was significantly greater in medial temporal regions than in other

regions (Fig. 3.5; post-hoc χ2(1) = 241.56, p < 10−6).

The foregoing analyses focused on characterizing the broadband shift phe-

nomenon and distinguishing it from narrowband effects. We next sought to de-

termine whether combining our measure of broadband power with narrowband

power can improve the prediction of firing rate. We performed a series of bivariate

regressions with broadband power in conjunction with narrowband power, using a

different narrow band (delta, theta, alpha, beta, or gamma) in each regression. Fig-

ure 3.6 shows that broadband and gamma-band power were the two dominant LFP

measures that positively correlated with firing rate. The proportions of neurons

exhibiting these two effects were comparable to one another and were both signif-

icantly greater than the proportions of significant positive or negative correlations

observed at other frequency bands (χ2(1) > 65 and p < 10−10 for all comparisons).

In addition, we observed that in the delta, theta, and alpha bands, a greater number

of neurons showed negative correlations with firing rate than positive correlations,

which is consistent with recent literature (Mukamel et al., 2005). A notable fea-

ture of the broadband effects is that they are predominantly unidirectional, with

nearly all (92%) significant correlations being in the positive direction. By contrast,
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Figure 3.4. Broadband-shift neurons throughout the brain. Each row shows two example neurons
from a single brain region. Within each row, each plot illustrates the power spectra from an example
neuron, in the same format as Figure 3.2B. (Each of these neurons were categorized as positive
broadband-shift neurons, corresponding to the middle-right box of Fig. 3.3.)
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Figure 3.5. Percentage of positive broadband-shift neurons observed in each brain region. Dark
gray bars correspond to neocortical regions: frontal cortex (Fr) and posterior cortex (Cx). Light gray
bars correspond to medial temporal lobe structures: amygdala (Amyg), hippocampus (Hippo),
and parahippocampal region (Par). Positive broadband-shift neurons were more concentrated in
the medial temporal lobe than in the neocortex. The dotted horizontal black line marks the false-
detection rate for positive broadband-shift neurons. Error bars indicate 95% confidence intervals
based on the binomial distribution.

for neurons showing significant gamma–firing-rate correlations, only 63% showed

positive correlations. Because the broadband effects were significantly more uni-

directional than narrowband gamma effects (χ2(1) = 171.4, p < 10−10), our results

indicate that broadband power is a more specific predictor of neuronal spiking

than narrowband oscillations.

To further illustrate the robust nature of the broadband phenomenon, we com-

puted the average power spectra across all 2,030 neurons in our dataset (Fig. 3.7A).

Although only 37% of the neurons included in this figure demonstrated significant

firing rate-related broadband shifts in their LFP power spectra (Fig. 3.7B), there

is nevertheless a clear overall effect of increasing power at all frequency bands

with increased neuronal firing. However, repeating this analysis after excluding

all broadband-shift neurons (left and right columns of Fig. 3.3) reveals an effect of

increased gamma power with increased firing rate (Fig. 3.7C). Thus, the population
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Figure 3.6. LFP components that predict firing rate. Dark gray bars indicate the percentage of
neurons in each region that exhibited positive correlations between firing rate and a particular
LFP feature; light gray bars show the percentage of neurons in each region that exhibited negative
correlations. The bars on the left indicate the proportions of neurons whose firing rates were
correlated with power in each narrow frequency band: delta (2–4 Hz), theta (4–8 Hz), alpha (8–
12 Hz), beta (12–30 Hz), and gamma (30–100 Hz). Each neuron may be counted in at most one
direction (i.e., either positive or negative) per narrow frequency band. The bars on the right
indicate the proportions of neurons whose firing rates were correlated with broadband power (i.e.,
broadband-shift neurons).

of non–broadband-shift neurons recovers the gamma–firing-rate relation described

in the prior literature (Mukamel et al., 2005).

3.5 Discussion

We examined the relation between the firing of individual neurons and simultane-

ous LFP activity. In previous work, LFP recordings have typically been analyzed

in terms of narrowband oscillations, which indicate that nearby neurons are syn-

chronously spiking at a particular frequency (Buzsáki, 2006; Fries et al., 2007;

Jensen, Kaiser, & Lachaux, 2007). For many of the neurons that we recorded,

narrowband oscillations correlated significantly with firing rate, especially in the

gamma frequency band. We also analyzed LFP recordings using a measure of
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Figure 3.7. Average power spectra for different subsets of neurons. A. Average power spectra for
all 2,030 neurons in our dataset. The power spectra are normalized by subtracting the mean of the
lowest firing rate power spectrum (dark blue) from all five curves in each panel. The thickness of
each line represents ±1 SEM. As in Figure 3.2, cooler colors correspond to lower firing rates, while
warmer colors correspond to higher relative firing rates. Each neuron contributes exactly once
to each curve, at each frequency. B. Average power spectra for the 759 broadband-shift neurons.
C. Average power spectra for the 1,271 neurons that did not exhibit the broadband-shift effect.

broadband activity, which identifies fluctuations that simultaneously appear at all

frequencies. This analysis revealed that increases in the power of broadband LFP

activity positively correlated with the spiking of nearby neurons. (We verified that

these broadband increases in LFP power were not the result of the appearance of

spike waveforms in our recordings; see Supplemental results). We observed this

broadband effect in multiple patients and brain regions, and found that it was

most prevalent in medial temporal lobe structures. Our findings indicate that both

narrowband and broadband components of the LFP can be used to estimate the

firing rates of nearby neurons, even though LFP recordings do not actually display

the waveforms of individual action potentials. Below we discuss these findings in

relation to the recent literature on narrowband and broadband LFP phenomena.

3.5.1 Narrowband effects

A wide range of studies have examined the relation between narrowband LFP

oscillations and the firing of nearby neurons, identifying an array of patterns that

often differ across species, frequencies, brain regions, and behaviors. However,
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two common trends have emerged. Generally in neocortex, the power of low

frequency (< ∼10 Hz) oscillations are negatively correlated with neuronal firing

rates, while the power of high frequency (> ∼30 Hz) oscillations are typically

positively correlated with neuronal firing rates (Mukamel et al., 2005; Rasch et al.,

2008). These results comport well with the observation of task-related increases in

the amplitude of high frequency activity and decreases in the amplitude of lower

frequency activity (Crone, Miglioetti, et al., 1998; Crone, Miglioretti, Gordon, &

Lesser, 1998; K. Miller, Leuthardt, et al., 2007). In the present study, we recorded

from distributed regions throughout the brains of neurosurgical patients and found

narrowband effects that were consistent with this literature. In particular, we

found that LFP oscillations at low frequencies (delta, theta, and alpha bands) were

negatively correlated with neuronal spiking, while high frequency LFP oscillations

(beta and gamma bands) were most often positively correlated with neuronal

spiking. However, we also found a significant number of neurons whose firing

rates were negatively correlated with gamma oscillations (Fig. 3.6). Thus, there is

considerable variability in the relation between narrowband LFP oscillations and

neuronal spiking across neurons.

3.5.2 Broadband effects

Our primary finding is that neuronal spiking is positively correlated with broad-

band LFP power. Broadband changes in LFP power are qualitatively different from

narrowband changes: whereas narrowband power changes reflect modulations in

oscillatory activity, broadband power changes generally reflect modulations in the

variance of the LFP time series (Annibaldi & Hopcraft, 2002). Previous research

has identified broadband power changes in brain regions that are thought to be

involved with particular behaviors. One example is a study by K. Miller, Leuthardt,
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et al. (2007), which showed that finger and tongue movements are accompanied by

highly localized broadband LFP power increases in human motor cortex (also see

K. J. Miller et al., 2008; K. Miller et al., 2009). These studies show that broadband

LFP shifts can be difficult to identify in practice because they often occur simultane-

ously with power decreases at alpha and theta frequencies (e.g. see Figs. 1 and 2 of

K. Miller, Leuthardt, et al., 2007). Furthermore, oscillatory correlates of spatial and

verbal memory processes are not always specific to a given frequency band, but

rather appear at a very broad range of frequencies, consistent with a broadband

effect (Ekstrom et al., 2007; Sederberg et al., 2007). Although few other studies

have discussed their findings in terms of broadband patterns, a close inspection of

the data from several studies reveals examples of behavior-related broadband LFP

patterns. For example Edwards, Soltani, Deouell, Berger, and Knight (2005) re-

port that unexpected auditory stimuli were followed by LFP changes in left-frontal

and temporal cortex that appear to be broadband in nature (Fig. 3 of Edwards

et al., 2005). Furthermore, the data reported by Lachaux et al. (2005) are consis-

tent with the presence of positive broadband power shifts in the fusiform gyrus

during face viewing (top panel of Fig. 2; also Fig. 5, Patient 3 in Lachaux et al.,

2005). A third example can be found in Belitski et al. (2008), which examined LFP

power spectra from macaque visual cortex during movie watching. Figure 2A

in their manuscript shows a positive broadband shift in the LFP power spectrum

during movies, relative to a baseline period. Finally, Ball et al. (2008) show data

suggesting that broadband patterns can be observed non-invasively using scalp

electroencephalography (EEG). For example, they show recordings from an elec-

trode above motor cortex that exhibits a broadband power increase (coupled with

a low frequency narrowband decrease) after movement (Fig. 1A in Ball et al., 2008).

While each of these studies imply that broadband power indicates when a partic-
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ular brain region is active, ours is the first to show that increases in broadband

activity directly relate to simultaneous increases in neuronal spiking.

Given our finding that neuronal spiking is correlated with broadband power,

one may wonder why many studies report task-related high frequency (gamma)

modulation rather than reporting broadband effects (e.g. Lachaux et al., 2005;

Belitski et al., 2008; Ball et al., 2008). As described by K. Miller, Leuthardt, et al.

(2007), task-related spectral changes often appear as simultaneous low frequency

decreases coupled with broadband increases in power. Due to these low frequency

decreases, in practice, broadband power increases are often most visible in the

gamma band. Thus many of the gamma responses reported in the literature may

actually be the result of broadband power increases coupled with low frequency

narrowband power decreases.

An important feature of our methodology is the robust, non-linear regression

(Holland & Welsch, 1977) technique we used for distinguishing simultaneous

changes in broadband and narrowband LFP activity. Because this regression is

resistant to outliers, its estimate of broadband power is only minimally affected

by the presence or absence of narrowband oscillations, which appear as narrow-

band peaks in the power spectrum. By contrast, linear methods might interpret

the appearance of large narrowband oscillations as increased broadband power.

This issue can be important, because broadband and narrowband changes often

occur simultaneously and in opposite directions (K. Miller, Leuthardt, et al., 2007;

K. Miller et al., 2009; Ball et al., 2008), which can make these effects difficult to tease

apart.
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3.5.3 Broader implications

A particularly exciting implication of this study is that increases (K. Miller, Leuthardt,

et al., 2007) and decreases (Lachaux et al., 2008) in broadband power, which can be

observed from both invasive (Edwards et al., 2005; Lachaux et al., 2005; Ekstrom

et al., 2007; Sederberg et al., 2007; K. Miller, Leuthardt, et al., 2007; K. Miller et al.,

2009) and non-invasive (Ball et al., 2008) recordings, may be used as a proxy for

neuronal spiking. This is especially important for researchers using macroelectrode

recordings to study the neural basis of human behavior, because such recordings

cannot resolve single-neuron spiking, but can record these broadband shifts. To

the extent that the broadband effects observed here generalize to activity recorded

at broader spatial scales, one could use broadband activity to measure correlates

of neuronal spiking in scalp recorded EEG and MEG signals, or even to modulate

neuronal spiking using realtime feedback methods (Lachaux et al., 2007; K. Miller,

den Nijs, et al., 2007). In this way, the broadband power measure proposed here

may lead to new discoveries concerning how neuronal activity underlies complex

human behavior and cognition.

3.6 Supplemental materials

3.6.1 Overview

This section is comprised of three main parts. First we include a supplementary

figure illustrating each major component of the analysis framework used in the

main text of this chapter. Next, we comment on the effect of the appearance of

spike waveforms on the shape of the LFP power spectrum. Finally, we includes

a table summarizing the number of broadband- and narrowband-shift neurons
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identified for each patient.

3.6.2 Supplemental methods

Figure 3.8 illustrates the major components of the analysis we used to tag neurons

as broadband- and narrowband-shift neurons. Synthetic data are shown in the

figure in order to clearly illustrate the methods. As shown in Panel A, we first

record a local field potential (Voltage, top sub-panel) and simultaneous spiking

activity for nearby individual neurons (tick marks, bottom sub-panel). We then

convolve the spike train with a Gaussian kernel to obtain a smoothed estimate of

firing rate at each point in time during the recording session (Firing rate, bottom

sub-panel). We next divide the recording session into 500 ms epochs. We thus

obtain a distribution containing mean firing rates recorded during each epoch of

the recording session. As shown in Panel B, we divide the distribution of firing

rates into five equally spaced bins, such that each epoch is labeled according to its

associated firing rate bin (indicated by different colors). We also compute mean

LFP power spectra for each epoch. In Panel C, as in Figures 3.2, 3.3, 3.4, and 3.7

of the main text, the power spectra of epochs in each firing rate bin are averaged

together and displayed using the same color scheme as in Panel B. We use robust

regression (dotted lines) to capture the underlying 1
f a shape of the power spectra

while ignoring narrowband peaks. As shown, broadband power is equal to the

mean height of the robust regression line. We also measure narrowband power

by averaging the normalized power in each frequency band (see Methods). The

panel shows that when the neuron’s firing rate increases, the LFP power spectrum

exhibits an increase in broadband power coupled with a simultaneous decrease

in power at a single narrow frequency band. In Panels D and E, each epoch is

represented by a single dot. Note the overall positive relation between broadband
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power and firing rate illustrated in Panel D, and the overall negative relation

between narrowband power and firing rate illustrated in Panel E. As illustrated in

Panel F, we assess the degree to which broadband and narrowband power inform

us about the neuron’s firing rate using a series of five least-squares regressions with

broadband and narrowband power as regressors; each regression uses a different

narrow frequency band. A neuron is tagged as a broadband-shift neuron if the βB

coefficients have the same sign and are significant in all five regressions. The neuron

is tagged as a narrowband-shift neuron if only one βF coefficient is significant, or if

two β f coefficients (corresponding to neighboring frequency bands) are significant

and have the same sign. See Methods for details on the bootstrap procedure we

used to determine the significance of each β coefficient in the regressions.

3.6.3 Supplemental results

Effect of spike waveform shape on the LFP power spectrum

In extracellular recordings, the shape of action potentials resembles an impulse

function, which has spectral power at a broad range of frequencies. We thus

considered the possibility that our main finding of a positive correlation between

broadband power and neuronal spiking is a consequence of measuring action-

potential waveforms. As described in the Methods section of this chapter, we used

a linear interpolation to remove each spike waveform from the LFP recording.

However, it is possible that our cluster-cutting algorithm missed a number of

spikes, and that these undetected spikes are responsible for the broadband shifts

we observed in many neurons. To test this possibility, we re-ran our entire analysis

without removing spike waveforms from the LFP. If our main effect had been driven

by the appearance of spike waveforms in the LFP, then keeping spike waveforms
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Figure 3.8. Schematic of our analysis framework. All panels contain synthetic data for illustrative
purposes. A. This panel depicts the local field potential (Voltage, top sub-panel) and simultaneous
spiking activity for nearby individual neurons (tick marks, bottom sub-panel). We convolve the
spike train with a Gaussian kernel to obtain a smoothed estimate of firing rate at each point in time
(Firing rate, bottom sub-panel). Rectangles are colored according to the firing rate of each epoch.
B. This panel illustrates the distribution of mean firing rates recorded across all 500 ms epochs in
the recording session. We divide the distribution of firing rates into 5 equally spaced bins (indicated
by different colors). C. Here we show mean power spectra for epochs in each firing rate bin (solid
lines). We use robust regression (dotted lines) to capture the underlying 1

f a shape of the power
spectra while ignoring narrowband peaks. We also measure narrowband power by averaging the
normalized power in each frequency band (see Methods). D, E. These panels illustrate the relation
between firing rate and broadband power (Panel D) or narrowband power in a single frequency
band (Panel E). Each epoch is represented by a single dot in each panel. F. We use a series of least-
squares regressions to determine whether the neuron is a broadband- and/or narrowband-shift
neuron.
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in the LFP would be expected to increase the magnitude of the broadband-shift

effect. Instead, here we found that the number of positive broadband-shift neurons

actually decreased (from 697 to 602), rather than increased, without spike removal.

This suggests that the appearance of the spike waveform in the LFP does not

account for the positive broadband shifts we observed.

3.6.4 Patient table

Patient Sessions Observed BB+ BB− δ+ δ− θ+ θ− α+ α− β+ β− γ+ γ−
neurons

1 1 73 16 9 1 2 0 2 0 0 7 0 3 3

2 2 103 41 5 1 1 0 1 0 0 4 1 13 9

3 1 31 15 0 0 0 1 0 2 0 4 0 5 1

4 3 183 46 8 0 2 1 1 6 0 18 0 8 24

5 2 56 22 0 3 1 1 0 1 0 6 1 9 0

6 3 161 52 0 0 2 3 5 0 2 12 1 18 8

7 2 92 37 3 1 1 0 0 1 0 6 0 14 7

8 1 81 25 3 0 0 0 0 1 0 4 0 12 12

9 3 189 40 5 0 0 3 1 0 1 4 0 24 18

10 3 164 48 3 1 2 0 2 1 1 4 0 14 20

11 3 180 42 6 1 2 0 1 5 1 13 0 22 13

12 4 195 58 5 0 6 0 0 1 0 4 4 39 13

13 2 113 46 1 2 0 1 2 4 1 6 0 26 7

14 3 80 39 2 3 1 1 0 1 0 1 2 11 3

15 4 80 45 1 0 1 0 0 1 0 5 0 17 1

16 1 22 16 0 0 0 0 0 2 0 0 0 3 0

17 1 41 17 0 0 0 0 0 0 1 1 1 2 2

18 2 63 20 6 5 0 0 0 0 0 3 0 8 8

19 3 85 53 5 1 1 0 0 1 0 6 0 13 5

20 2 38 19 0 0 0 0 0 0 0 4 0 6 3

Total 46 2,030 697 62 19 22 11 15 27 7 112 10 267 157

Table 3.1. Summary of observed neurons. Columns 4–15 indicate, for each patient, the number
of identified positive (+) and negative (−) broadband-shift neurons (BB), and for each frequency
band (δ, θ, α, β, and γ) the number of narrowband-shift neurons. Each neuron appears in at most
one broadband column (BB+ or BB−) and at most two narrowband columns of the same sign, for
neighboring frequencies (e.g. β+ and γ+).
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Chapter 4

Temporal and frontal networks reveal

how conceptual memories are

organized

Jeremy R. Manning, Michael R. Sperling, Ashwini Sharan, Emily A.
Rosenberg, & Michael J. Kahana

4.1 Abstract

How the brain represents, organizes, and retrieves semantic information is one

of the great enduring questions in science and philosophy. We approached this

question by analyzing electrocorticographic (ECoG) recordings taken as 46 neu-

rosurgical patients studied and freely recalled lists of words. We first identified

semantic components of brain activity that varied systematically with the meanings

of each presented word, as defined by latent semantic analysis (LSA; Landauer &

Dumais, 1997). We then examined these same semantic components of brain activ-
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ity as the patients recalled the words. The degree to which brain activity correlated

with semantic similarity during recall predicted participants’ tendency to succes-

sively recall similar words. Whereas previous studies have shown that semantic

representations are conserved across people (Shinkareva et al., 2008; Mitchell et al.,

2008), our work shows that differences in these neural representations reveal how

individuals organize and retrieve their memories.

4.2 Narrative

Psychologists have long been interested in the role of semantic or conceptual rep-

resentations on the retrieval of remembered words (Tulving & Pearlstone, 1966;

Glanzer, Koppenaal, & Nelson, 1972). The distributed memory hypothesis pre-

dicts that concepts are represented by overlapping sets of semantic features, each

corresponding to a particular attribute (Semon, 1923; Guthrie, 1935; Hooke, 1969;

Plaut & McClelland, 2010). Activating the representation of a concept entails ac-

tivating its constituent semantic features. Because semantically related concepts

share semantic features, activating a given concept will, in turn, partially activate

representations of other similar concepts. Consistent with this hypothesis, when

instructed to recall words in any order, participants often cluster their recalls by

natural categories, even when the presentation order is randomized (D’Agostino,

1969). In addition, the delay between successive recalls of items from the same natu-

ral category tends to be shorter than between items from different categories (Pollio,

Kasschau, & DeNise, 1968). Further, presenting a set of words that are all strong

semantic associates of an unpresented critical word often leads to “false recall” of

the critical word (Deese, 1959; Roediger & McDermott, 1995).

Whereas the above behavioral studies provide indirect evidence that the brain
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organizes conceptual representations by their semantic features, functional mag-

netic resonance imaging (fMRI) studies over the past decade have begun to directly

examine the neural representations of concepts. Early studies showed that view-

ing (Haxby et al., 2001; Cox & Savoy, 2003; Shinkareva et al., 2008) or thinking

about (Polyn, Natu, Cohen, & Norman, 2005) words from similar semantic cat-

egories evokes similar blood-oxygen-level dependence (BOLD) signatures. Over

the past several years, researchers have gone beyond the neural representations

of broad categories, and have now begun to study the neural representations of

individual concepts. This work has shown that a word’s semantic properties can

be used to make accurate predictions about its BOLD signature (Mitchell et al.,

2008; Just, Cherkassky, Aryal, & Mitchell, 2011), and that the neural response to a

viewed object is attenuated when a similar object is viewed first (Yee, Drucker, &

Thompson-Schill, 2010). An additional finding of this line of research is that the

neural representations of concepts appear to be reasonably well-conserved across

individuals (Mitchell et al., 2008; Shinkareva et al., 2008; Just et al., 2011). In the

present study, we first use ECoG recordings to study the representations of indi-

vidual concepts as they are studied and recalled during a memory task. We then

ask whether (and how) variations in conceptual representations across individuals

were manifested in behavior.

We examined ECoG recordings from 46 neurosurgical patients who were im-

planted with subdural electrode arrays and depth electrodes during presurgical

evaluation of a treatment for drug-resistant epilepsy. We analyzed the recorded

ECoG signals in terms of specific time-varying oscillatory components of neural

activity (Fig. 4.1). Previous research has implicated oscillatory activity at a variety

of frequencies during both memory encoding and retrieval (Fell et al., 2001; Paller

& Wagner, 2002; Osipova et al., 2006; Sederberg et al., 2007) and in the represen-
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Figure 4.1. Illustration of behavioral and electrophysiological methods. A. After studying a list
of 15 words and performing a brief distraction task, a participant recalls as many words as he can
remember, in any order. B. During each study presentation, and just prior to each recall event, we
calculate the z-transformed oscillatory power at each recording electrode for each of 50 log-spaced
frequencies between 2 and 100 Hz (2 × 100.0347x for x ∈ {0, ..., 49}). C. We use principal components
analysis (PCA) to find a smaller number of orthogonal dimensions that jointly account for a large
proportion of the variation in the data shown in panel B. We select principal components that vary
with the meanings of the presented words for further analysis (see Supplemental materials).

tation of individual letters (J. Jacobs & Kahana, 2009). As the ECoG signals were

recorded, patients volunteered to participate in a free recall memory experiment,

in which they studied lists of common nouns and then attempted to recall them

verbally in any order following a brief delay (see Methods). Over several sessions,

each participant studied and recalled words from dozens of different word lists.

Our general approach is illustrated in Figure 4.1. For each study and recall

event, we used Morlet wavelets to construct an N-dimensional vector containing,

for each electrode, estimates of mean oscillatory power at 50 log-spaced frequencies

between 2 and 100 Hz (2× 100.0347x for x ∈ {0, ..., 49}) during each study event (200 –

1,600 ms relative to the word’s appearance on screen) and recall event (-1,000 – 0 ms

relative to the start of vocalization). We then used principal components analysis

(PCA) to distill these highly correlated features into a smaller number of orthogonal

components. We used the Kaiser criterion to choose, for each participant, the

principal components that explained a substantial proportion of the variance in the
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original N-dimensional vectors (Kaiser, 1960).

Based on the aforementioned neural and behavioral studies, we hypothesized

that some components of neural activity might vary systematically with the seman-

tic properties of studied words. Indeed, we found evidence for such components

in all 46 participants that we examined (Tab. 4.2). If these semantic features (hence-

forth feature vectors) truly represent the identities of studied items, one should

observe a positive correlation between neural and semantic similarity each time

the participants think of the studied words — not only during study (when the

feature vectors were identified), but also during recall. We thus selected the feature

vectors for further study. For each participant, we computed the cosine similarity

(normalized dot product) between the feature vectors from each pair of recalls they

made (if a participant made n recalls in a given list, then we computed n2−n cosine

similarities for that set of recalls). We also computed the semantic similarity (LSA

cosθ) between each pair of recalled words. We regressed the neural similarities on

the semantic similarities and obtained a t-value for the β coefficient of the regression

for each participant. A t-test on the distribution of t-values showed that the relation

between neural and semantic similarity was reliably maintained during the 1 sec-

ond interval leading up to vocalization of a recalled word (t(45) = 2.28, p = 0.03),

even though the words were neither being displayed onscreen nor vocalized by

the participant during the interval being measured. Rather, the neural patterns

recorded just prior to recall reflect internally generated semantic representations.

A number of studies have shown that certain brain regions play a particularly

strong role in representing semantic information during cognition. For example,

Broca’s and Wernicke’s areas in the inferior frontal and superior temporal lobe,

respectively, are well-known for their role in semantic processing (Demonet et

al., 1992); the prefrontal cortex and temporal lobe have been found to support
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Figure 4.2. Regions of interest (ROIs). Each dot marks the location of a single electrode from our
dataset in Montreal Neurological Institute (MNI) space. We divided our dataset into seven ROIs:
temporal lobe (Temp; 1,358 electrodes), medial temporal lobe (MTL; 524 electrodes), hippocampus
(Hippo; 130 electrodes), frontal lobe (FR; 1,369 electrodes), prefrontal cortex (PFC; 984 electrodes),
parietal lobe (Par; 336 electrodes), and occipital lobe (Occ; 102 electrodes).

semantic clustering during free recall (Long, Öztekin, & Badre, 2010); and the

occipital lobe is activated during visual recall (Le Bihan et al., 1993). To test

whether the semantic information we measured was specific to particular brain

regions, we repeated our semantic feature selection process for electrodes in each

of the following brain regions: temporal lobe, medial temporal lobe, hippocampus,

frontal lobe, prefrontal cortex, parietal lobe, and occipital lobe (Fig. 4.2). We found

that semantic features (selected during encoding and measured just prior to recall)

varied with the meanings of recalled words in the temporal lobe (t(45) = 2.88, p =

0.006), frontal lobe (t(41) = 3.56, p = 0.001), prefrontal cortex (t(41) = 3.33, p =

0.002), and occipital lobe (t(26) = 3.64, p = 0.001). Neither the medial temporal lobe

(t(41) = −0.17, p = 0.86), hippocampus (t(18) = 0.47, p = 0.64), nor the parietal lobe

(t(31) = −0.16, p = 0.88) showed such patterns.

To localize the semantic representations, we performed, for each pair of regions,

paired t-tests between the distributions of t-values from the regressions of neural

on semantic similarity, for participants with electrodes in both regions. When com-

pared with either medial temporal or hippocampal electrodes, we found that tem-

poral, frontal, and occipital electrodes all showed reliably stronger semantic effects
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Figure 4.3. Neural activity predicts clustering during recall. The height of each bar indicates
the correlation, across participants, between semantic clustering during recall (see Supplemental
materials) and the correlation between neural and semantic similarity. Each bar corresponds to a
single ROI (Fig. 4.2). The bar marked “All” indicates this correlation for all electrodes in the dataset.
Error bars denote ± SEM, estimated as 1−r2√

n−1
. The symbols indicate the p-values for each correlation:

# denotes p < 0.1, ∗ denotes p < 0.05, and ∗∗ denotes p < 0.01. See Figure 4.4 for further details.
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(p’s < 0.05 for all tests). Note that although the temporal lobe electrodes we ana-

lyzed were a superset of the medial temporal lobe electrodes (which were, in turn, a

superset of the hippocampal electrodes), the temporal lobe as a whole nonetheless

exhibited stronger effects than either the medial temporal lobe or hippocampus

alone. We also found that prefrontal electrodes exhibited stronger semantic effects

than parietal electrodes (t(28) = 2.28, p = 0.03). Taken together, our results suggest

that semantic information is most strongly represented by temporal, prefrontal,

and occipital networks, and less so by medial temporal and parietal networks.

Having identified a set of candidate semantic representations, we hypothesized

that subtle differences in the structure of these neural patterns would be reflected in

recall behavior. For example, suppose that participant A organized her conceptual

memories primarily based on the meanings of the studied words, whereas partici-

pant B organized his conceptual memories based on the appearances of the objects

represented by the words. One might expect participant A (but not B) to succes-

sively recall words such as  and , if both words had appeared on the

studied list. By contrast, participant B would be more likely to successively recall

 and . According to the distributed memory hypothesis, participant A’s

concept representations should be comprised primarily of features related to the

meanings of words, whereas participant B’s should be comprised primarily of fea-

tures related to the appearance of the objects the words represent. More generally,

we hypothesized that participants exhibiting strong correlations between neural

and semantic similarity would also semantically cluster their recalls. To test this

hypothesis, we examined the t-values from the regressions of neural on semantic

similarity (one t-value per participant). We also computed the degree to which

each participant clustered their recalls by semantic similarity using their semantic

factor (see Supplemental materials). We then computed the correlation between these
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measures of neural and behavioral organization separately for electrodes in each

region we examined (Fig. 4.3). We found significant correlations between neural

and behavioral clustering in the temporal lobe (r = 0.33, p = 0.02), frontal lobe

(r = 0.42, p = 0.006), and prefrontal cortex (r = 0.49, p = 0.001). Although hip-

pocampal electrodes showed no evidence of a semantic representation when we

combined data from all of the participants, participants whose hippocampal activ-

ity varied with the meanings of recalled words also tended to cluster their recalls

by their meanings (r = 0.45, p = 0.06). On the other hand, although the occipital

lobe showed strong evidence of a semantic representation we found no evidence

that this representation had any influence on recall order (r = 0.00, p = 0.99). This

indicates that occipital lobe structures represent the meanings of the studied items

but do not organize these conceptual representations in memory.

Given that the analyses we have described thus far rely on a single measure of

semantic similarity, our finding that participants whose neural activity varies with

the meanings of words also tend to semantically cluster their recalls is consistent

with two interpretations. We have suggested above that some participants might

organize conceptual memories semantically whereas others might use different or-

ganizational schema. However, an alternative interpretation is that all participants

organize conceptual memories according to their meanings — but that the particu-

lar semantic similarity measure we used in our analyses, LSA, might reflect the true

semantic representations for some participants more accurately than for others. To

distinguish between these two interpretations, we utilized a second measure of

semantic similarity based on word association spaces (WAS; Steyvers, Shiffrin, &

Nelson, 2004). Whereas LSA similarity is derived from an automated analysis of a

large text corpus (Landauer & Dumais, 1997), WAS similarity is derived from a se-

ries of free association experiments in which participants were given a cue item and
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responded with the first word that came to mind (Nelson, McEvoy, & Schreiber,

2004; Steyvers et al., 2004). For the words presented to participants in our study,

these two measures of semantic similarity are reliably, though weakly, correlated

(r = 0.26, p < 10−3; Spearman’s ρ = 0.18, p < 10−3). We found that the degree to

which participants clustered their recalls by LSA and WAS similarity (semantic fac-

tor; see Supplemental materials) were reliably correlated (r = 0.30, p = 0.04). Further,

the degree to which participants exhibited correlations between their neural and

LSA similarity also predicted the degree to which their neural and WAS similarity

were correlated (r = 0.40, p = 0.006). These analyses suggest that the neural signa-

tures of semantic organization we observed reflect semantic information in general

rather than a single measure of semantic similarity.

We have focused in the present study on the degree to which participants

semantically organize their memories. However, other behavioral studies suggest

that participants also organize remembered information according to the temporal

or spatial contexts in which the information was learned (Howard & Kahana,

1999; Smith & Vela, 2001). One could easily adapt our general approach to study

other forms of conceptual organization by adjusting the way in which conceptual

features were selected (Fig. 4.1C) and by measuring the extent to which individual

participants relied on the organizational scheme of interest (analogous to semantic

factor in the present study). One such analysis is presented in Chapter 5.

The preceding analyses advance our understanding of how our brains represent,

store, and retrieve conceptual information in two critical areas. First, in support

of the distributed memory hypothesis, we demonstrate that thinking about se-

mantically related words evokes similar patterns of neural activity in temporal,

prefrontal, and occipital cortex. This indicates that concepts are represented by

distributed networks in these brain areas. Second, whereas previous studies have
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shown that the neural representations of individual concepts are conserved across

individuals, we found that individual differences in how concepts are represented

in temporal and frontal (but not occipital) cortex can be used to predict the order

in which an individual will recall a list of words. This indicates that temporal and

frontal networks organize conceptual information by representing relationships

amongst stored concepts.

4.3 Methods

4.3.1 Participants

We tested 46 native-English–speaking patients with drug-resistant epilepsy who

had arrays of subdural and/or depth electrodes surgically implanted for one to

four weeks to localize the sites of seizure onset (see Tab. 4.2). The clinical team

determined the placement of these electrodes with the goal of localizing suspected

epileptogenic foci and identifying functional regions to be avoided in surgery. Our

research protocol was approved by the appropriate institutional review boards and

informed consent was obtained from the participants and their guardians. Data

were collected as part of a long-term multicenter study with previously published

articles describing separate analyses conducted on subsets of these data.

4.3.2 Behavioral methods

Participants studied lists of 15 or 20 high frequency nouns for a delayed free recall

task. Following a fixation cue, the computer displayed each word for 1,600 ms

followed by a 800–1,200 ms blank inter-stimulus interval. Each word was displayed

at most once within a single testing session. For 18 s following list presentation,
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participants solved a series of single-digit addition problems of the form A + B +

C = X. Participants were then given 45 s to recall list items in any order. Vocal

responses, digitally recorded during the trial, were scored for subsequent analysis.

Participants recalled 22.1 ± 1.1% (mean ± SEM) of the studied words. Repetitions

and incorrect recalls (28.0±3.0% of all responses) were excluded from our analyses,

as were responses that occurred within 1 s of a prior vocalization.

4.3.3 Recording methods

Subdural grids or depth electrodes (Ad-Tech Inc., Racine, Wisconsin) were im-

planted by neurosurgical teams solely for clinical purposes. The locations of the

electrodes were determined by means of co-registered post-operative computed

tomography and pre-operative magnetic resonance imaging (MRI), or from post-

operative MRIs, by an indirect stereotactic technique and converted into Montreal

Neurological Institute (MNI) coordinates. Electrocorticographic (ECoG) signals

were recorded referentially using a Bio-Logic, XLTek, Neurofile, or Nicolet EEG

digital video-EEG system. Depending on the amplifier, signals were sampled at

200, 256, 500, 512, or 1,024 Hz. Several hospitals applied bandpass filters to the

recorded signals prior to writing to disk (Tab. 4.1). Where applicable, frequencies

outside of the filtered range were excluded from further analysis. Data were sub-

sequently notch-filtered with a Butterworth filter with zero phase distortion at 60

Hz to eliminate electrical line and equipment noise. ECoG signals and behavioral

events were aligned using synchronization pulses sent from the testing computer

(mean precision < 4 ms).
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4.4 Supplemental materials

4.4.1 Overview

This section is comprised of three main parts. First, we include a table summarizing

details about the recording setup at each of our collaborating hospitals. Next, we

include additional details on our analytic methods not included in the main text.

Finally, we include a table summarizing information about the individual patients.

4.4.2 Recording methods

HOSPITAL HOSP LOWER UPPER
Brigham & Women’s Hospital, Boston,
MA

BW 0.5 Hz 60 Hz

Children’s Hospital Boston, Boston, MA CH 0.3 Hz 50 Hz
Thomas Jefferson University Hospital,
Philadelphia, PA

TJ −∞ ∞

Hospital of the University of Pennsylva-
nia, Philadelphia, PA

UP −∞ ∞

Table 4.1. Bandpass filters employed by our collaborating hospitals. Hospital codes (HOSP) are
referenced in Table 4.2. The LOWER and UPPER columns denote the lower and upper limits of the
bandpass filters, respectively. Frequencies outside of the bandpassed range were excluded from
further analysis.

4.4.3 Analysis methods

Quantifying the degree of semantic clustering

The Narrative and Figure 4.4 reference a measure of the degree to which individual

participants clustered their recalls by LSA similarity, termed the semantic factor.

This measure has been described previously (Polyn, Norman, & Kahana, 2009),

and is calculated as follows.
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For each recall transition we create a distribution of semantic similarity values

(LSA cosθ; Landauer & Dumais, 1997) between the just-recalled word and the

set of words that have not yet been recalled. We next generate a percentile score

by comparing the semantic similarity value corresponding to the next item in

the recall sequence with the rest of the distribution. Specifically, we calculate

the proportion of the possible similarity values that the observed value is greater

than, since strong semantic clustering will cause the observed similarity values to

be larger than average. When there is a tie, we score this as the percentile falling

halfway between the two items. If the participant always chose the closest semantic

associate, then their semantic factor would be 1. A semantic factor of 0.5 indicates

no effect of semantic clustering. Each patient was assigned a semantic factor by

taking the average of the percentile scores across all observed recall transitions.

Selecting candidate semantic features

To identify candidate components of the semantic representation for a given record-

ing session, we selected PCA-derived features of the neural representation (Fig.

4.1C) as follows. We first generated the set of all possible pairings of presented

words (for a list of n items, this set of all pairs contains n2 − n items). For each pair,

we computed the LSA cosθ, a measure of semantic similarity, between those two

words. We generated an (n2 − n)-dimensional vector, ~a, containing these semantic

similarity values. Separately for each feature, x, we computed the absolute differ-

ence in the value of x during each pair of presentations. We next defined ~bx as the

(n2 − n)-dimensional vector containing the neural difference values for feature x.

We computed the Pearson’s correlation between ~a and −~bx to obtain a single cor-

relation coefficient, rx, and an associated p-value for each list. We then combined
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these correlation coefficients across lists into a summary correlation measure, r̄x:

r̄x = F−1(
L∑

i=1

F(rx,i)),

where rx,i was the Pearson’s correlation coefficient for feature x during list i, F() was

the Fisher z-prime transformation:

F(r) =
ln(1 + r) − ln(1 − r)

2
,

and F−1() was the inverse of F():

F−1(z) =
e2z−1

e2z+1 .

In this way, if rx,i has large positive values across all lists, r̄x will have a large positive

value. Similarly, if rx,i is negative across all lists, r̄x will have a large negative value.

If rx,i is sometimes positive and sometimes negative (with approximately equal

probability), r̄x will take on a value near zero. (Note that −1 6 rx,i, r̄x 6 1.)

We also obtained a p-value, p̄x, associated with r̄x by applying the inverse

Normal transformation to the p-values associated with the correlation coefficient

for each list. We then summed across the transformed p-values and evaluated the

cumulative Normal distribution function at this sum to obtain p̄x. We selected

features with r̄x > 0 and p̄x < 0.05 for further analysis (see Narrative).

Detailed region of interest results

Figure 4.3 summarizes the degree to which neural activity in these brain regions

reflects the order in which words are recalled. Figure 4.4 provides a more in-depth

look at these effects in each region of interest.
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Figure 4.4. Detailed region of interest results. A. Each dot marks the location of a single electrode
from our dataset in MNI space. (This panel is reproduced from Fig. 4.2 in the main text, for
reference.) B – H. Each panel corresponds to a single region of interest. The left subpanels show the
relation between neural and semantic similarity during recall. For each list, we computed the LSA
cosθ between each pair of recalled words (semantic similarity, x-axis). We also computed the cosine
similarity between the neural semantic feature vectors for these same words (neural similarity, y-
axis). Here we show the mean neural similarity in each of 500 equally sized bins comprising the full
semantic similarity distribution. The right subpanels show the relation between neural clustering
(t-value) and semantic clustering (semantic factor); each dot represents a single participant.
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4.4.4 Supplemental patient information
ID HOSP AGE SEX HAND ELC FEA L LEN SES LST REC REP PLI ELI
1 BW 33 F R 64 59 20 1 15 55 2 26 12
2 BW 51 F R 40 89 20 1 15 66 2 8 1
3 BW 32 M R 32 48 15 3 39 212 5 9 4
4 BW 40 M R 96 62 15 2 20 82 5 38 28
5 BW 44 M R 16 24.5 15 2 20 58 1 12 19
6 BW 27 M R 64 21 15 2 20 76 49 12 3
7 BW 38 M R 104 72.67 15 3 30 136 3 30 15
8 CH 13 F R 64 114 20 1 12 59 0 2 1
9 CH 12 F R 104 146 20 1 15 39 0 0 2
10 CH 15 M L 128 85.67 20 3 30 90 1 12 8
11 CH 17 M R 64 92 20 3 45 178 20 27 17
12 CH 15 M R 123 157 20 1 15 86 3 6 3
13 CH 11 M R 104 148 20 2 30 104 3 2 3
14 CH 14 F R 72 131 20 1 15 104 2 7 5
15 CH 8 F R 86 137 20 2 30 159 5 18 10
16 CH 17 M R 84 123 20 1 14 30 2 9 12
17 CH 17 M L 124 110.5 20 4 60 116 2 104 13
18 CH 20 F R 128 97 15 2 24 114 2 9 4
19 CH 14 M R 94 70 15 3 30 94 0 18 13
20 CH 17 M L 80 42.5 15 2 20 14 0 10 22
21 CH 19 F R 125 54.5 15 2 17 47 2 10 1
22 CH 16 M R 156 126 15 1 16 76 1 4 1
23 CH 12 M L 84 67.5 15 2 20 52 9 12 25
24 CH 13 M R 72 65.25 15 4 40 200 3 4 2
25 TJ 25 M R 62 111.33 15 3 48 232 3 6 1
26 TJ 40 F R 94 99.75 15 4 64 164 8 54 43
27 TJ 39 M L 56 79 15 1 16 53 1 8 20
28 TJ 34 F R 112 113.2 15 10 154 513 7 110 24
29 TJ 44 M R 126 74 15 1 13 31 1 7 6
30 TJ 43 M R 80 81.75 15 4 64 232 139 71 29
31 TJ 21 M R 122 138 15 3 48 145 1 32 47
32 TJ 56 M R 50 67 15 2 48 120 5 98 43
33 TJ 20 M R 160 99 15 3 42 167 0 13 18
34 TJ 41 M R 98 125 15 2 32 100 2 18 98
35 TJ 34 F R 90 89.25 15 4 51 204 49 34 207
36 UP 38 M R 62 53 15 4 40 135 3 68 24
37 UP 30 M R 86 65 15 2 20 54 5 24 21
38 UP 43 M R 66 36.33 15 3 18 31 22 12 33
39 UP 36 M R 88 78.75 15 4 40 70 6 114 50
40 UP 25 M R 62 60.25 15 4 40 135 2 1 2
41 UP 18 F R 76 77.33 15 3 30 104 5 6 3
42 UP 27 F R 48 75.5 15 2 32 104 2 43 20
43 UP 55 F L 80 106 15 2 32 81 11 61 24
44 UP 18 M A 100 90.67 15 3 48 253 7 8 3
45 UP 38 F R 86 98 15 1 16 48 14 3 73
46 UP 40 M R 58 93.75 15 4 64 304 1 14 9

Table 4.2. Patient and task information. This table provides the hospital (HOSP) at which each
patient’s data were collected (see Tab. 4.1), as well as each patient’s age (AGE), gender (SEX),
handedness or language mapping (HAND), number of implanted electrodes (ELC), and mean
number of features selected for analysis across all sessions for that patient (FEA). Information about
the task includes the list length (L LEN) used for each participant, number of testing sessions
(SES), and the number of lists each participant encountered across all sessions (LST). Performance
information includes the total number of correct recalls across all lists (REC), the total number of
repeated recalls (REP), and the total number of incorrect recalls, which includes recalls of previously
presented items (prior list intrusions, or PLIs) and recalls of items which were never presented
(extra-list intrusions, or ELIs). In total the 46 patients contributed 3,970 electrodes and 4,055
selected features, studying 24,760 items presented in 1,552 lists.
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Chapter 5

Oscillatory patterns in temporal lobe

reveal context reinstatement during

memory search

Jeremy R. Manning, Sean M. Polyn, Gordon Baltuch, Brian Litt, &
Michael J. Kahana

5.1 Abstract

Psychological theories of memory posit that when people recall a past event, they

not only recover the features of the event itself, but they also recover contextual

features representing information about neighboring events and the thoughts they

evoke. The ability to associate items with their temporal context and to recover con-

textual information during recall has been termed episodic memory. We sought to

determine whether contextual reinstatement in human memory may be observed

in electrical signals recorded from the human brain. By analyzing electrocortico-
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graphic recordings taken as 69 neurosurgical patients studied and recalled lists of

words, we were able to uncover a neural signature of context reinstatement. Upon

recalling a studied item, we found that the pattern of brain activity was not only

similar to the pattern observed when the item was studied, but was also similar to

neighboring list items, with similarity decreasing reliably with positional distance.

The degree to which individual patients displayed this neural signature of context

reinstatement was correlated with their tendency to successively recall neighbor-

ing list items. These effects were particularly strong in temporal lobe recordings.

Our findings show that recalling a past episode evokes a neural signature of the

temporal context in which the episode occurred, thus pointing to a neural basis for

episodic memory.

5.2 Introduction

The pivotal distinction between memory for facts (semantic memory) and mem-

ory for episodes or experiences (episodic memory) has been argued to reflect, at

least in part, the reinstatement of a gradually changing context representation that

reflects not only external conditions, but also an ever-changing internal context

state (Bower, 1972; Tulving, 1983). According to this view, the unique quality of

episodic memory is that, in remembering an episode, we partially recover its as-

sociated mental context, and that this context information conveys some sense of

when the experience took place in terms of its relative position along our autobio-

graphical timeline.

A number of laboratory memory tasks rely on episodic memory, including

experimenter-cued tasks (e.g. item recognition and cued recall) and self-cued tasks

(e.g. free recall). Performing these episodic memory tasks requires distinguishing
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the current list item from the rest of one’s experience. According to early theories

of episodic memory (e.g. Estes, 1955; Anderson & Bower, 1972) context represen-

tations are composed of many features that fluctuate from moment to moment,

gradually drifting through a multidimensional feature space. During recall, this

representation forms part of the retrieval cue, enabling us to distinguish list items

from non-list items. Understanding the role of context in memory processes is par-

ticularly important in tasks such as free recall, where the retrieval cue is “context”

itself.

Recent neurocomputational models of episodic memory (Sederberg, Howard,

& Kahana, 2008; Polyn et al., 2009) suggest that contextual reinstatement under-

lies the contiguity effect — people’s tendency to successively recall items that were

presented in nearby positions on a studied list (Kahana, 1996). Behavioral studies

of memory show that, for a given class of memories, the contiguity effect can span

many other intervening memories (Howard & Kahana, 1999; Howard, Youker, &

Venkatadass, 2008). This result is difficult to explain according to the view that

contiguity arises from direct item-to-item associations that are established within

a few seconds, as suggested by other classes of psychological and neurobiological

theories (Raaijmakers & Shiffrin, 1981; Jensen & Lisman, 1998; Lisman, 1999; Dav-

elaar, Goshen-Gottstein, Ashkenazi, Haarmann, & Usher, 2005; Rolls & Kesner,

2006). The contiguity effect is an example of temporal clustering, which is perhaps

the dominant form of organization in free recall.

Although this behavioral evidence provides indirect support for context-based

theories of memory, there is no direct neurophysiological evidence for contextual

reinstatement. To test the context reinstatement hypothesis, we studied 69 neuro-

surgical patients who were implanted with subdural electrode arrays and depth

electrodes during treatment for drug-resistant epilepsy. As electrocorticographic
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(ECoG) signals were recorded, the patients volunteered to participate in a free re-

call memory experiment, in which they studied lists of common nouns and then

attempted to recall them verbally in any order following a brief delay.

5.3 Results

The recorded ECoG signals simultaneously sample local field potentials through-

out the brain, and can be analyzed in terms of specific time-varying oscillatory

components of neural activity. Such components have been implicated in memory

encoding and retrieval processes (Fell et al., 2001; Paller & Wagner, 2002; Buzsáki,

2006; Osipova et al., 2006; Sederberg et al., 2007) and in the representations of

individual stimuli (J. Jacobs & Kahana, 2009). For each study and recall event, we

analyzed these oscillatory components across all recording electrodes (Fig. 5.1A,B).

We constructed a matrix containing, for each electrode, measurements of mean os-

cillatory power in five frequency bands (δ: 2 – 4 Hz, θ: 4 – 8 Hz, α: 8 – 12 Hz, β: 12 –

30 Hz, and γ: 30 – 99 Hz) during each study event (200 to 1,600 ms relative to each

word’s appearance on screen) and recall event (-600 to 200 ms relative to vocaliza-

tion). We then used principal components analysis (PCA) to distill these highly

correlated features into a smaller number of orthogonal components (Fig. 5.1C).

Context-based models conceive of context as a representation that integrates

incoming information with a long time constant (Polyn & Kahana, 2008), leading

to the prediction that the representation of temporal context evolves gradually

as the experiment progresses (Manns, Howard, & Eichenbaum, 2007). We asked

whether the neural recordings supported a gradually changing representation of

context by regressing, for each participant, the mean similarity between the princi-

pal component vectors on their positional distance in the studied list (Fig. 5.2). The
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Figure 5.1. Illustration of behavioral and electrophysiological methods. A. After studying a list
of 20 words and performing a brief distraction task, a participant recalls as many words as he can
remember, in any order. B. During each study presentation and just prior to each recall event, we
calculate the z-transformed oscillatory power at each recording electrode in each of five frequency
bands (δ: 2 – 4 Hz, θ: 4 – 8 Hz, α: 8 – 12 Hz, β: 12 – 30 Hz, and γ: 30 – 99 Hz). C. We use principal
components analysis (PCA) to find a smaller number of orthogonal dimensions that jointly account
for a large proportion of the variation in the data shown in Panel B. We select those PCA components
that show significant positive autocorrelation (a defining feature of temporal context) during the
study phase of the experiment. We then compute the similarity (normalized dot product) between
the feature vectors of each recall event (e.g., “nose”) and the feature vectors associated with the
corresponding study event (lag = 0), as well as the similarity of the recall event to surrounding
study events with varying lags.
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Figure 5.2. Evolution of ECoG activity as participants study lists of words. Mean neural similarity
is shown as a function of study distance (difference in serial position) between pairs of presented
words. Error bars denote ± SEM.

similarity in recorded activity during each pair of word presentations decreased

with the positional distance between the presentations (t-test on distribution of

t-values from the regressions: t(64) = −9.31, p < 10−10), indicating that the ECoG

recordings evolve gradually over the course of the studied lists. Whereas this

gradually changing neural representation is consistent with context-based models,

such a result would also be expected to arise due to other autocorrelated neural

processes that lack the rich dynamics implied by context-based theories of mem-

ory. To determine whether this gradually changing neural representation reflects

the contexts in which list items were studied, we selected the autocorrelated PCA-

derived features (henceforth referred to as feature vectors) for further analysis (see

Methods).

To test whether the gradually changing neural representation is reinstated dur-

ing recall, we compared feature vectors recorded during each study and recall

event. First we identified the serial position (on the presentation list) of each cor-

rectly recalled word. If neural activity during study is reinstated during recall,

then the neural activity recorded during a given recall event should be more sim-
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ilar to activity recorded during the study event for the same word than during

study events for other words (Figs. 5.3B,C). This finding would not be expected

if the neural activity we measured did not contain content or context information

(Fig. 5.3A). For each correctly recalled word (e.g., “nose” in Fig. 5.1A), we calcu-

lated the similarity between the feature vector associated with the recall event and

the feature vectors associated with each of the studied items (e.g., ANT, TAPE,

NOSE, VASE, SHEEP), where similarity is defined as the normalized dot product

between the feature vectors (the vectors were normalized to have unit length before

the dot product was performed). Each studied item was assigned a lag (positional

distance) relative to the recalled item (e.g., VASE has a lag of +1 to “nose,” ANT

has a lag of -2 to “nose,” and NOSE has a lag of 0 to “nose”). We found that the

mean neural similarity at lag = 0 was significantly greater than the mean neural

similarity at other lags (Fig. 5.4A, paired-sample t-test across 39 participants with

at least 5 autocorrelated features; t(38) = 3.10, p = 0.004). This result would arise if

the signal represents either content (the list words themselves) or context (the cues

surrounding the items).

To distinguish between content and context reinstatement we compared the

feature vectors associated with each recall event with the feature vectors associated

with the neighbors of the recalled word in the study sequence. Context-based

models predict that similarity between feature vectors should decrease as a func-

tion of absolute lag in both the forward (positive) and backward (negative) direc-

tions (Polyn & Kahana, 2008). For each participant we regressed the mean neural

similarity between feature vectors on lag, separately for positive and negative lags

(two regressions were performed for each participant). Each regression yielded

a t-value associated with the slope (β coefficient) of the fitted line. Consistent

with the context-reinstatement hypothesis, t-tests on the distributions of t-values
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Figure 5.3. Predicted neural similarity as a function of lag according to three models. A–C. These
panels show the pattern of activations for a simulated 20 neuron neural network as a 15 item list is
studied. Events 1 – 15 of each matrix show activations after each item is presented. Events 16–20
show activations as distracting items are presented. Events 21–26 show activations as items 15, 10,
1, 2, 4, and 3 are recalled. In each simulation, a single neuron is activated during each experimental
event. Once activated, a neuron’s activity decays gradually; thus multiple neurons may be active at
a given time. A. For the Autocorrelated noise simulation, each experimental event activates a random
neuron, irrespective of which item is being presented or recalled. B. For the Content reinstatement
simulation, each neuron is activated by a single item or distractor (neurons 1–15 represent items;
16–20 represent distractors). Once activated, a neuron’s activity decays gradually; thus multiple
neurons may be active at a given time. Only content information (specific to a single item) is
reinstated during recall. C. The Context reinstatement simulation is similar to that shown in Panel
B, but here we simulate context reinstatement during recall. D–F. These panels show the average
expected neural similarity between the pattern of activity during study and recall as a function of
lag. Each simulation used the same presented and recalled items that were included in our data
analyses (Fig. 5.4). See Supplemental materials for further details on the simulations.
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Figure 5.4. A neural signature of temporal context reinstatement. A. Neural similarity between
the feature vector corresponding to recall of a word from serial position i and study of a word
from serial position i + lag (black dot denotes study and recall of the same word, i.e., lag = 0). B.
Participants tend to successively recall neighboring study items (the contiguity effect). Here, we
show the probability of recalling an item from serial position i + lag immediately following an item
from serial position i, conditional on the availability of an item in that list position for recall. Error
bars in Panels A and B denote ± SEM. C. Participants exhibiting greater context reinstatement also
exhibited more pronounced contiguity effects. Here the t-value associated with the regressions
in Panel A serves as a measure of the degree context reinstatement for each participant. (Only
the regressions for negative lags were used, as the regressions for positive lags are not expected
to distinguish between content and context reinstatement; Fig. 5.3.) Temporal clustering score
measures the degree to which responses were clustered on the basis of their temporal contiguity at
study (see Supplemental analysis methods).

across participants indicated that similarity decreased with absolute lag in both

the positive (t(38) = −3.63, p = 0.0008) and negative (t(38) = −2.42, p = 0.02) di-

rections. The decrease in similarity with absolute lag in both directions cannot be

explained solely by content reinstatement or autocorrelated noise in the recordings

(Figs. 5.3, 5.5). Mean similarity as a function of lag across participants is shown in

Figure 5.4A.

The decrease in neural similarity with absolute lag elegantly mirrors the con-

tiguity effect — people’s striking tendency to make transitions to neighboring

items rather than remote ones, as seen in behavioral data for the same participants

(Fig. 5.4B). Consistent with the hypothesis that the contiguity effect arises due to

reinstatement of context (Howard & Kahana, 2002; Sederberg et al., 2008; Polyn

et al., 2009), participants with stronger neural signatures of context reinstatement

exhibited more pronounced contiguity effects than did participants with weaker re-
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instatement effects (r = 0.42, p = 0.007, Fig. 5.4C). In recalling a list item, people not

only reinstate that item’s representation, as has been recently documented (Polyn

et al., 2005; Gelbard-Sagiv, Mukamel, Harel, Malach, & Fried, 2008) but they also

revive the brain activity associated with neighboring items. Further, the degree

of this neural context reinstatement effect predicts the tendency of an individual

participant to recall neighboring list items successively during memory search.

Having identified a neural signature of context reinstatement, we next asked

whether this phenomenon could be localized to one or more brain regions. For

example, recent work has given rise to the hypothesis that the medial temporal

lobe (Skaggs, McNaughton, Wilson, & Barnes, 1996; Manns et al., 2007; Pastalkova,

Itskov, Amarasingham, & Buzsáki, 2008; Jenkings & Ranganath, 2010; Howard,

Viskontas, Shankar, & Fried, Submitted) and prefrontal cortex (Schacter, 1987;

Polyn & Kahana, 2008; Jenkings & Ranganath, 2010) are critically involved in the

maintenance and updating of temporal context. To test for regional specificity of

context reinstatement, we repeated our test for neural context reinstatement using

electrodes from each of the following regions of interest: temporal lobe (including

the hippocampus and medial temporal lobe), frontal lobe (including prefrontal

cortex), parietal lobe, and occipital lobe (Fig. 5.6A). We found that neural activity

recorded from temporal lobe electrodes exhibited a decrease in similarity with in-

creasing absolute lag in both the positive and negative directions (Fig. 5.6B; positive:

t(20) = −2.20, p = 0.04; negative: t(20) = −2.82, p = 0.01). As in the whole brain

analysis, the neural signature of context reinstatement in the temporal lobe was sig-

nificantly correlated with the temporal clustering of participants’ recalls (Fig. 5.6C;

r = 0.48, p = 0.03). The frontal lobe exhibited a weak neural signature of context

reinstatement that trended towards significance (positive: t(20) = −2.85, p = 0.01;

negative: t(20) = −1.54, p = 0.14). However, this frontal signature of context re-
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instatement was not correlated with temporal clustering of participants’ recalls

(r = −0.08, p = 0.73). Our findings in the parietal and occipital lobes were incon-

clusive due to insufficient data.

5.4 Discussion

The preceding analyses demonstrate that when recalling an item, the pattern of neu-

ral activity exhibits graded similarity to the neural activity measured during the

encoding of items studied in neighboring list positions. Furthermore, the strength

of this neural similarity effect tracks the behavioral contiguity effect in free recall:

participants who exhibit a stronger tendency to make transitions among neighbor-

ing items during recall also exhibit a stronger relation between neural similarity

and absolute lag. This pattern of results is exactly what one would predict on the

basis of retrieved context theories of episodic memory (Bower, 1972; Howard &

Kahana, 2002; Sederberg et al., 2008; Polyn et al., 2009). These theories posit that

a gradually changing contextual state becomes associated with each experienced

event, and that recalling an event revives the contextual state associated with the

original experience. This retrieved context, in turn, activates other memories that

were associated with similar contexts, producing the contiguity effect seen in recall

tasks (Fig. 5.4B). The present findings provide critical neurobiological evidence in

support of context reinstatement by showing that remembering an item reinstates

the patterns of distributed oscillatory activity associated with surrounding (con-

textual) items from the original study episode. This neural signature of context

reinstatement was observed both for the whole brain analysis and for recordings

taken only from the temporal lobe.

What we have called a context representation might also be attributed to a
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rehearsal-based model where participants engage in short bouts of covert recall

during the study period. According to rehearsal-based models, words are re-

hearsed after they are presented, and more recently presented items are more

likely to be rehearsed than distant items. Such models have been shown to be

difficult to distinguish from context-based models (Laming, 2006; Davelaar, Usher,

Haarmann, & Goshen-Gottstein, 2008), likely because a context-based mechanism

is necessary to explain the pattern of rehearsals made in a free-recall task. To distin-

guish between these two classes of models we performed an analysis of the neural

correlates of the primacy effect in our data. It has been well established that re-

hearsal is associated with enhanced recall for early list items (i.e., the primacy effect;

Welch & Burnett, 1924; Postman & Phillips, 1965; Glanzer & Cunitz, 1966; Atkinson

& Shiffrin, 1968; Rundus, 1971). Thus if our basic findings were driven by rehearsal,

one would expect that participants exhibiting strong neural context reinstatement

should also show a strong primacy effect. However, we observed no significant

correlation between primacy and neural context reinstatement (r = 0.12, p = 0.45;

see Supplemental analysis methods), indicating that rehearsal during study is unlikely

to account for our findings.

Modern psychological and neuroscientific investigations are still grappling with

basic questions regarding how the human brain establishes continuity in a rapidly

changing environment, and how our memory system revives prior states of the

world. Recent neurocomputational models of human memory (Bower, 1972; Seder-

berg et al., 2008; Polyn et al., 2009) posit that continuity is provided by a context

representation that changes gradually over time as a consequence of the integra-

tion of present and past events. The current state of context is assumed to become

associated with each newly experienced event, such that reminders of the event

retrieve the event’s associated context. This notion is consistent with Tulving’s
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contention that episodic memory retrieval is like mental time travel, in that when

we remember the past, many details of the prior experience are retrieved along

with the desired material (Tulving, 1983). By showing that a component of the

neural activity retrieved during memory search shows graded similarity to the

brain states observed during the study of neighboring stimuli, we provide neural

evidence for temporal context reinstatement in humans.

5.5 Methods

5.5.1 Participants

We tested 69 patients with drug-resistant epilepsy who had arrays of subdural

and/or depth electrodes surgically implanted for one to four weeks to localize the

sites of seizure onset (see Tab. 5.1). The clinical team determined the placement of

these electrodes with the goal of localizing suspected epileptogenic foci and identi-

fying functional regions to be avoided in surgery (see Supplemental recording methods

for details on recording methods). Our research protocol was approved by the ap-

propriate institutional review boards and informed consent was obtained from

the participants and their guardians. Data were collected as part of a long-term

multicenter study with previously published articles describing separate analy-

ses conducted on subsets of these data (Sederberg, Kahana, Howard, Donner, &

Madsen, 2003; Sederberg et al., 2007).

5.5.2 Behavioral methods

Participants studied lists of 15 or 20 high frequency nouns for a delayed free-recall

task. Following a fixation cue, the computer displayed each word for 1,600 ms
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followed by a 800–1,200 ms blank inter-stimulus interval. Each word was displayed

at most once within a single testing session. For 18 s following list presentation,

participants solved a series of single-digit addition problems of the form A + B +

C = X. Participants were then given 45 s to recall list items in any order. Vocal

responses, digitally recorded during the trial, were scored for subsequent analysis.

Participants recalled 22.7 ± 1.0% (mean ± SEM) of the studied words. Repetitions

and incorrect recalls (32.4±2.6% of all responses) were excluded from our analyses,

as were responses that occurred within 1 s of a prior vocalization.

5.5.3 Data analysis

We measured oscillatory power in the ECoG recordings by applying a Hilbert

transform to the Butterworth-bandpassed signal in each of five frequency bands

(see Results). To reduce edge artifacts, we computed power at each frequency

for the entire recording session before parsing the recordings into experimental

events. Before applying PCA to the frequency × electrode matrices (Fig. 5.1B)

we z-transformed power values relative to the distribution of all events in the

recording session (the z-transformation was performed independently for each

frequency-electrode pair). We used the Kaiser criterion to choose, for each par-

ticipant, the principal components that explained a substantial proportion of the

variance (Kaiser, 1960). We next sought to identify principal components that

changed gradually during the study period. Defining the value of component k

for events at serial positions i and j as vk(i) and vk( j), we computed the correlation,

r, between the absolute difference in the components (|vk(i) − vk( j)|) and the serial

position lag (|i − j|) for lag = 1 . . . (l − 1), where l was the length of the presented

list. Components with r > 0 and p < 0.1 were selected for further analysis (see

Supplemental analysis methods). Features that met these criteria were identified in
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132 (out of 144) recording sessions. We further excluded an additional 68 sessions

in which fewer than five candidate context features were identified. This thresh-

old was chosen to balance two factors: first, we wanted to ensure that the feature

vectors were of high enough dimensionality that it would be possible to observe

neural signatures of context reinstatement (Fig. 5.4A) for each participant; second,

we wanted to maximize the amount of data included in our analysis. We report

the mean number of features selected for each participant in Table 5.1. To prevent

selection bias, recall events were not used in the feature selection process.

5.6 Supplemental materials

5.6.1 Overview

This section is comprised of three main parts. First we include a table containing

basic information about each neurosurgical patient whose data we analyzed. We

next provide a table summarizing several details of the recording setup for each of

our collaborating hospitals, as well as a description of the recording methods used

in our study. Finally, we provide additional details on several analyses referenced

in the Results and Discussion sections of this chapter.

5.6.2 Supplemental patient information

ID HOSP AGE SEX HAND ELC FEA L LEN SES LST REC REP PLI ELI
1 BW 33 F R 64 3 20 1 15 55 2 26 12
2 BW 51 F R 40 5 20 1 15 66 2 8 1
3 BW 32 M R 32 2 15 3 39 212 5 9 4
4 BW 40 M R 96 5.5 15 2 20 82 5 38 28
5 BW 44 M R 16 1 15 2 20 58 1 12 19
6 BW 27 M R 64 1.5 15 2 20 76 49 12 3
7 BW 38 M R 104 9.33 15 3 30 136 3 30 15
8 CH 13 F R 64 9 20 1 12 59 0 2 1

Continued on next page . . .
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ID HOSP AGE SEX HAND ELC FEA L LEN SES LST REC REP PLI ELI
9 CH 12 F R 104 19 20 1 15 39 0 0 2

10 CH 15 M L 128 15.67 20 3 30 90 1 12 8
11 CH 17 M R 64 4 20 3 45 178 20 27 17
12 CH 15 M R 123 13 20 1 15 86 3 6 3
13 CH 11 M R 104 0 20 2 30 104 3 2 3
14 CH 14 F R 72 0 20 1 15 104 2 7 5
15 CH 8 F R 86 6.5 20 2 30 159 5 18 10
16 CH 17 M R 84 12 20 1 14 30 2 9 12
17 CH 17 M L 124 10.5 20 4 60 116 2 104 13
18 CH 20 F R 128 8.5 15 2 24 114 2 9 4
19 CH 14 M R 94 6.67 15 3 30 94 0 18 13
20 CH 17 M L 80 7 15 2 20 14 0 10 22
21 CH 19 F R 125 8.5 15 2 17 47 2 10 1
22 CH 16 M R 156 13 15 1 16 76 1 4 1
23 CH 12 M L 83 5 15 2 20 52 9 12 25
24 CH 13 M R 72 4.75 15 4 40 200 3 4 2
25 FR 33 M R 98 8 20 1 9 43 0 0 0
26 FR 25 M R 85 21 20 1 9 45 18 1 2
27 FR 31 M L 56 4 20 1 9 24 0 4 0
28 FR 41 F R 63 9 20 1 7 23 0 9 6
29 FR 34 F L 40 3 20 1 7 38 3 5 3
30 FR 45 F L 100 10 20 1 8 27 0 20 3
31 FR 46 F L 14 0 20 1 1 4 3 0 5
32 FR 20 M R 84 4 20 1 15 42 6 6 2
33 FR 53 F L 41 5 20 1 15 49 26 21 21
34 FR 50 M R 68 4 20 2 30 116 5 36 15
35 FR 28 M L 112 11 20 1 15 37 1 1 1
36 FR 30 F R 60 7 20 1 15 67 9 10 2
37 FR 37 F L 30 6 15 1 20 65 84 73 42
38 FR 18 M L 30 2 15 1 20 121 7 12 13
39 FR 23 M L 58 3 15 4 56 281 98 32 29
40 FR 21 M L 93 4 15 1 10 49 2 10 3
41 FR 28 F R 86 7 15 1 10 36 4 4 6
42 FR 35 F L 122 3 15 2 20 54 0 6 6
43 FR 37 F L 52 2.5 15 4 35 161 38 29 28
44 FR 19 M L 74 2 15 2 30 148 19 14 35
45 FR 41 F R 30 3 15 1 15 15 0 3 38
46 FR 21 F R 64 6 15 1 15 50 0 3 7
47 FR 43 F R 56 0 15 1 15 23 5 11 59
48 FR 19 M R 30 3 15 2 25 120 2 5 27
49 FR 21 M R 70 5 15 5 53 408 41 8 194
50 FR 35 F R 62 6 15 1 15 44 24 16 114
51 FR 25 M R 84 5 15 2 30 145 5 3 96
52 FR 47 M L 82 4 15 1 4 13 1 3 35
53 FR 45 F R 88 4 15 1 10 43 11 3 0
54 TJ 25 M R 62 0.67 15 3 48 232 3 6 1
55 TJ 40 F R 94 3.25 15 4 64 164 8 54 43
56 TJ 39 M L 56 2 15 1 16 53 1 8 20
57 TJ 34 F R 111 4.3 15 10 154 513 7 110 24
58 TJ 44 M R 125 7 15 1 13 31 1 7 6
59 UP 38 M R 62 4.75 15 4 40 135 3 68 24
60 UP 30 M R 86 3 15 2 20 54 5 24 21
61 UP 43 M R 66 2.33 15 3 18 31 22 12 33
62 UP 36 M R 88 5.75 15 4 40 70 6 114 50
63 UP 25 M R 62 3 15 4 40 135 2 1 2
64 UP 18 F R 76 7.33 15 3 30 104 5 6 3
65 UP 27 F R 48 2 15 2 32 104 2 43 20
66 UP 55 F L 80 1.5 15 2 32 81 11 61 24
67 UP 18 M A 100 2.33 15 3 48 253 7 8 3
68 UP 38 F R 86 6 15 1 16 48 14 3 73

Continued on next page . . .
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ID HOSP AGE SEX HAND ELC FEA L LEN SES LST REC REP PLI ELI
69 UP 40 M R 58 5.75 15 4 64 304 1 14 9

Table 5.1. Patient and task information. This table provides the hospital (HOSP) at which each
patient’s data were collected (see Tab. 5.2), as well as each patient’s age (AGE), gender (SEX),
handedness or language mapping (HAND), number of implanted electrodes (ELC), and mean
number of features selected for analysis across all sessions for that patient (FEA). Information about
the task includes the list length (L LEN) used for each participant, number of testing sessions
(SES), and the number of lists each participant encountered across all sessions (LST). Performance
information includes the total number of correct recalls across all lists (REC), the total number of
repeated recalls (REP), and the total number of incorrect recalls, which includes recalls of previously
presented items (prior list intrusions, or PLIs) and recalls of items which were never presented
(extra-list intrusions, or ELIs). In total the 69 patients contributed 5,299 electrodes and 739 selected
features, studying 29,030 items presented in 1,790 lists.

5.6.3 Supplemental recording methods

Subdural grids or depth electrodes (Ad-Tech Inc., Racine, Wisconsin) were im-

planted by neurosurgical teams solely for clinical purposes. The locations of the

electrodes were determined by means of co-registered post-operative computed

tomography and pre-operative magnetic resonance imaging (MRI), or from post-

operative MRIs, by an indirect stereotactic technique and converted into Montreal

Neurological Institute (MNI) coordinates. Electrocorticographic (ECoG) signals

were recorded referentially using a Bio-Logic, XLTek, Neurofile, or Nicolet EEG

digital video-EEG system. Depending on the amplifier, signals were sampled at

200, 256, 500, 512, or 1,024 Hz. Several hospitals applied bandpass filters to the

recorded signals prior to writing to disk (Tab. 5.2). Where applicable, frequen-

cies outside of the filtered range were excluded from further analysis. Data were

subsequently notch-filtered with a Butterworth filter with zero phase distortion at

50 or 60 Hz to eliminate electrical line and equipment noise. ECoG signals and

behavioral events were aligned using synchronization pulses sent from the testing

computer (mean precision < 4 ms).
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HOSPITAL HOSP LOWER UPPER
Brigham & Women’s Hospital, Boston,
MA

BW 0.5 Hz 60 Hz

Children’s Hospital Boston, Boston, MA CH 0.3 Hz 50 Hz
University Hospital of Freiburg,
Freiburg, Germany

FR 0.1 Hz 100 Hz

Thomas Jefferson University Hospital,
Philadelphia, PA

TJ −∞ ∞

Hospital of the University of Pennsylva-
nia, Philadelphia, PA

UP −∞ ∞

Table 5.2. Bandpass filters employed by our collaborating hospitals. Hospital codes (HOSP) are
referenced in Table 5.1. The LOWER and UPPER columns denote the lower and upper limits of the
bandpass filters, respectively. Frequencies outside of the bandpassed range were excluded from
further analysis.

5.6.4 Supplemental analysis methods

Quantifying the contiguity effect

Figure 5.4C depicts an analysis relating the neural reinstatement effect to the re-

call behavior of the participants. Specifically, we show that participants showing

stronger neural reinstatement effects tend to exhibit a stronger contiguity effect

(whereby neighboring list items tend to be recalled successively). The contiguity

effect is measured using the temporal clustering score, an analysis technique de-

scribed previously (Polyn et al., 2009). The temporal clustering score is calculated

as follows.

For each recall transition we create a distribution of temporal distances between

the just-recalled word and the set of words that have not yet been recalled. These

distances are simply the absolute value of the difference between the serial position

of the just-recalled word and the set of not-yet-recalled words. A percentile score is

generated by comparing the temporal distance value corresponding to the next item

in the recall sequence with the rest of the distribution. Specifically, we calculate the

proportion of the possible distances that the observed value is less than, since strong

temporal clustering will cause observed lags to be smaller than average. As is often
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the case, when there is a tie, we score this as the percentile falling halfway between

the two items. If the participant always chose the closest temporal associate (which

is only possible for pure serial recall in the forward or backward direction), then

the temporal clustering score would yield a value of 1 (as there would never be

an opportunity for a tie). A value of 0.5 indicates no effect of temporal clustering.

Each patient was assigned a temporal clustering score by taking the average of the

percentile scores across all observed recall transitions.

Quantifying the primacy effect

To test whether our main finding depicted in Figure 5.4A reflects rehearsal (rather

than context reinstatement) we measured, for each participant, the strength of the

primacy effect, a well-established correlate of rehearsal (Welch & Burnett, 1924;

Postman & Phillips, 1965; Glanzer & Cunitz, 1966; Atkinson & Shiffrin, 1968;

Rundus, 1971). The primacy and recency effects refer to an enhancement in memory

for early and late list items, respectively, as compared with memory for intermediate

list items (Deese & Kaufman, 1957; Murdock, 1962). The number of items that

show a boost in memorability due to primacy or recency is relatively invariant

to changes in list length; the primacy effect generally affects the first few items,

while the recency effect generally affects the last six or so items (Murdock, 1962).

In order to measure the strength of the primacy effect, we labeled the first three

serial positions on each list as primacy positions and the last six serial positions

as recency positions. The remaining positions were labeled as intermediate list

positions (i.e., items 4 – 9 for 15 word lists, or items 4–14 for 20 word lists). We

then measured the strength of the primacy effect for each participant by dividing

their mean probability of recalling items from primacy positions by their mean

probability of recalling items from intermediate list positions.
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Simulations

To determine whether neural context reinstatement (e.g. Fig. 5.4A) could be at-

tributed to non–context-based factors, we conducted three neural network sim-

ulations (Figs. 5.3, 5.5) that predict the expected outcome of our test for context

reinstatement under various model assumptions. The autocorrelated noise model

has neural activity evolve randomly over time, irrespective of what is happening

in the experiment. The content reinstatement model has each neuron represent a

different word; a neuron is activated if its associated word is presented or recalled.

The context reinstatement model also has each neuron represent a different word.

We simulate context reinstatement by activating not only the neuron associated

with the word being recalled, but also other neurons that were active at the time

the recalled word was studied.

For all three simulations we define an activity vector, f, that defines the pattern

of activation across the network. Each neuron in the network takes on a value

between 0 (inactive) and 1 (maximally active). Let fi denote the state of f after

the ith experimental event (i.e., a study presentation, distracting task, or recall).

Our main analysis entails selecting autocorrelated components of neural activity

as the candidate context representation (see Results). After this feature selection,

the feature vectors we analyze are autocorrelated — a property we need to take

into account in our simulations. In particular,

fi = ρifi−1 + βwi,

where β is a constant; ρi is a function of fi−1,wi, and β (with 0 6 ρi, β 6 1);

and wi is the pattern of neural activity specifically evoked by the ith experimental

event (for details, see Polyn & Kahana, 2008). In this way, the neural activity

114



measured after a given experimental event (e.g. presentation of the 5th list item) is

a recency-weighted blend of the activity evoked by previous experimental events

(e.g. activity evoked by presentations of items 5, 4, 3, 2, and 1). We initialize f0 by

setting the activation of the first neuron to 1 and the activations of the other neurons

to 0. We then simulate different experimental events by adjusting wi according to

the particular rules of each model. We ensure that fi is always of unit length by

setting

ρi =
√

1 + β2[(fi−1 ·wi)2 − 1] − β(fi−1 ·wi).

For the autocorrelated noise model, each wi is set to a vector of 0’s, plus a 1 in

a single random position. In this way, each wi activates one of the neurons in the

network at random. As shown in Figure 5.5A, for β < 0.5, similarity between fi

during presentation and f j during recall increases as a function of i. This is because,

by definition, an autocorrelated signal measured at times t and t + ∆ becomes more

similar as ∆→ 0. For β > 0.5, similarity as a function of lag flattens out, since as fi is

dominated by wi the average similarity between fi and f j approaches the expected

similarity between two independent draws of wi.

For the content reinstatement model, w is set differently depending on the type

of experimental event. In this model, each neuron is assigned a different word or

distractor. During presentation of study items or distractors, wi is set to a vector

of all 0’s, plus a 1 in the position of the neuron representing the item or distractor

being presented. During recall of the jth presented item, we set wi = w j. As shown

in Figure 5.5B, for β < 0.5, similarity increases as a function of lag. Since β is small,

fi is dominated by fi−1 rather than wi. Since the specifics of the experimental event

contribute only minimally to f, the simulation approximates the autocorrelated

noise simulation. For 0.5 < β < 1, neural similarity is roughly constant as a
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Figure 5.5. Simulated neural similarity as a function of lag and drift rate (β) given A. no content
or context information in the neural recordings (Figs. 5.3A,D), B. content reinstatement without
context reinstatement (Figs. 5.3B,E), and C. context reinstatement (Figs. 5.3C,F). Similarity is
computed as the normalized dot product between the simulated feature vector after the recall of the
ith word and the feature vector corresponding to presentation of word i + lag. The first dimension
(initialized to 1 prior to the start of the simulation) was ignored for the similarity calculations.
Simulation results in Figure 5.3 in the main text used β = 0.7 (this choice was motivated by
previously reported simulation results; Polyn et al., 2009).

function of lag for negative lags, but decreases as a function of lag for positive

lags. This is because the pattern of activation during the ith presentation will only

contain traces of w j if i > j. Finally, for β = 1, similarity is 1 when lag = 0 and is 0

everywhere else. This is due to the fact that when β = 1, fi = wi, and so the neural

activity evoked by the ith item will be present only during its presentation or recall.

The context reinstatement model is identical to the content reinstatement model

during the presentation of study items and distractors. To simulate context rein-

statement during recall of the jth presented item, we set wi = f j (recall that f j will

contain a recency-weighted average of the activations associated with the previ-

ously presented items). As shown in Figure 5.5C, for β < 0.5, similarity increases

as a function of lag, just as in the other simulations. Importantly, for 0.5 < β < 1,

neural similarity decreases with absolute lag in both the positive and negative direc-

tions, as seen in the neural data (Fig. 5.4A). Finally, as in the content reinstatement

simulation, for β = 1 similarity is 1 when lag = 0 and is 0 everywhere else.

These simulations show that regardless of the precise rate at which neural ac-
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tivity evolves over time, the simplest model consistent with our neural results

(Fig. 5.4A) is one in which the temporal context in which an item is studied is rein-

stated when the item is recalled. While we have not ruled out every possible model

that does not include some form of context reinstatement, neither autocorrelated

noise (Fig. 5.5A) nor content reinstatement alone (Fig. 5.5B) can account for the

neural signature of context reinstatement we observed in our ECoG recordings.

Selecting autocorrelated features

Context-based theories of memory posit the existence of a gradually changing

pattern of neural activity that becomes associated with each studied word during

study, and is reinstated during recall. To identify candidate components of the

context representation for a given recording session, we selected autocorrelated

PCA-derived features of the neural representation (Fig. 5.1C) as follows. Separately

for each feature x, we computed the Pearson’s lag 1 autocorrelation coefficient (r)

and associated p-value for the values of x within each list. We then combined the

autocorrelation coefficients across lists into a summary autocorrelation measure, r̄:

r̄ = F−1(
L∑

i=1

F(ri)),

where ri was the Pearson’s lag 1 autocorrelation coefficient for the values of x

measured during list i, F() was the Fisher z-prime transformation:

F(r) =
ln(1 + r) − ln(1 − r)

2
,

and F−1() was the inverse of F():
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F−1(z) =
e2z−1

e2z+1 .

In this way, if ri has large positive values across all lists, r̄ will have a large positive

value. Similarly, if ri is negative across all lists, r̄ will have a large negative value.

If ri is sometimes positive and sometimes negative (with approximately equal

probability), r̄ will take on a value near zero. (Note that −1 6 ri, r̄ 6 1.)

We also obtained a p-value, p̄, associated with r̄ by applying the inverse Normal

transformation to the p-values associated with the Pearson’s lag 1 autocorrelation

coefficients for each list. We then summed across the transformed p-values and

evaluated the cumulative Normal distribution function at this sum to obtain p̄. We

selected features with r̄ > 0 and p̄ < 0.1 for further analysis (see Results).

Identifying the time interval of the recall event

Our main analysis (Fig. 5.4A) compares the neural activity elicited by a studied

word to the neural activity elicited by a word’s retrieval during the recall period.

We restrict our analysis of the study period to ECoG activity beginning 200 ms

after the appearance of a word and ending when the word disappears from the

screen. Here the 200 ms delay was meant to account for the lag between the word’s

appearance onscreen and the processing of the word by the participant.

In order to search for the optimal time interval for the recall event, we tested

for context reinstatement while varying both the duration and onset of the time

interval for the recall event. We tested time intervals ranging in duration from 100

to 1,000 ms (in increments of 100 ms), and onsets ranging from -1,000 to -200 ms

(in increments of 100 ms) relative to the time the participant began their vocalized
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Figure 5.6. Evidence for context reinstatement in the temporal lobe. A. Each dot marks the location
of a single electrode from our dataset in MNI space. We divided our dataset into four regions of
interest: temporal lobe (blue; 1,815 electrodes), frontal lobe (red; 1,737 electrodes), parietal lobe
(yellow; 512 electrodes), and occipital lobe (green; 138 electrodes). B – C. These panels are in the
same format as Figures 5.4A and C, but reflect data from temporal lobe electrodes only.

recall. This analysis indicates that the context reinstatement effect is strongest for

the recall interval ranging from -600 to 200 ms relative to vocalization.

To account for the possibility that different brain regions reinstate context at

different times relative to vocalization, we repeated this optimization analysis sep-

arately for each region of interest. The best time interval for the temporal lobe was

from -400 to -300 ms (Figs. 5.6B,C). The time interval that gave the strongest frontal

lobe effect was from -900 to -400 ms; however, the frontal effect was not statistically

reliable (see Results).

Contributions to the context representation by brain region and frequency band

Figure 5.6 provides additional details on our region of interest analysis reported

in Results. In addition to asking whether specific brain regions contribute to the
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Figure 5.7. Mean contributions of each frequency band to selected features. Error bars indicate
95% confidence intervals (Loftus & Masson, 1994).

representation of context, a natural question is whether the principal components

comprising the feature vectors tend to weight particular oscillatory components of

ECoG activity more heavily than others. Because principal components analysis

(PCA) performs a linear mapping from the n-dimensional space of the original set

of activity vectors onto the m-dimensional PCA space (where m 6 n), we can use the

PCA coefficients to perform the inverse mapping of the feature vectors back onto

the original n-dimensional space. The PCA coefficients tell us how much each of the

elements in the original PC vectors contributes to each of the principal components

in the feature vectors. This allowed us to determine the degree to which each

oscillatory component recorded from each electrode contributes to each element of

the feature vectors. For a given frequency band, we assessed the degree to which

that frequency band contributed to the feature vectors across all study and recall

events by examining the distribution of PCA coefficients assigned to that frequency

band across all participants. An analysis of PCA coefficients across frequency bands

revealed no significant differences between frequency bands (repeated measures
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analysis of variance (ANOVA): F(4, 37) = 0.57,MSE = 10−5, p = 0.69). This finding

suggests that the selected features are comprised of oscillatory activity at a broad

range of frequencies.
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Chapter 6

General discussion

In this chapter, I first summarize how the body of work presented in the preceding

chapters advances our current understanding of how the brain acquires, stores,

and retrieves information. I then suggest future directions for this work.

6.1 Contributions of this dissertation

The role of the brain can be broken down into three general tasks: acquiring infor-

mation about its environment (i.e., input; Chapter 2), performing computations on

newly acquired and previously acquired information (i.e., processing and storage;

Chapters 3 and 4), and using the processed and stored information to generate

behaviors that change or manipulate the environment (i.e., retrieval and output;

Chapter 5). The continuum ranging from input to output is illustrated in Fig-

ure 6.1; a complete understanding of the brain entails an integrated understanding

of many discrete points along this continuum. The tick marks in Figure 6.1 mark

the contributions of each chapter of this dissertation.
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Input

Sensor structure/function
Sensory representations
Nutrients, hormones

Processing

Neural computations
Decision making
Learning and memory
Consolidation
Model building
Metabolism

Output

Motor system structure/function
Motor representations
Hormones

Figure 6.1. Putting this dissertation into context. The continuum ranging from input to output
comprises a full specification of the role of the brain. The contributions of each chapter of this
dissertation are marked by colored tick marks. Chapter 2 (red) examines how arrays of sensors
should be designed so as to make accurate inferences about the environment. Chapter 3 (orange)
examines how the firing of individual neurons relates to population activity, which has implications
for how the brain performs computations. Chapter 4 (green) examines how the brain represents
individual words and organizes these representations in memory. Chapter 5 (blue) examines how
the brain recollects prior experiences. Taken together, this body of work spans a wide range of this
continuum. A complete understanding of the brain requires filling in the gaps.

6.2 Future directions: Chapter 2

6.2.1 Learning receptor types from receptor responses

The model system presented in Chapter 2 provides a means of evaluating an

arbitrary retinal mosaic’s ability to reconstruct visual stimuli from photoreceptor

responses. Two critical assumptions of the model are that the neural machinery

has accurate knowledge of the receptors’ response properties (e.g. the tuning

curves of each receptor) and of the statistical properties of the stimulus distribution.

However, it is not clear a priori whether such knowledge must be “built in” (i.e.,

genetically encoded), or whether these components might be learned over time by

observing photoreceptor responses.

Doi, Inui, Lee, Wachtler, and Sejnowski (2003) showed that unsupervised learn-

ing could produce L/M cone opponent neurons within a neural population when

the visual input was typical of natural viewing. Critically, however, they do not

address the question of whether such learning could identify which neurons in

the population carried the opponency. Preliminary work by Manning, Hurst, and
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Brainard (2011) suggests that observed receptor responses contain sufficient infor-

mation to simultaneously label receptors in the mosaic and estimate the parameters

of the stimulus distribution via unsupervised learning. An important goal of future

work will be to gain a better understanding of how the receptor responses drive

the learning process.

6.3 Future directions: Chapter 3

6.3.1 Behaviorally relevant broadband shifts in local field poten-

tial power spectra

The primary finding presented in Chapter 3 is that broadband shifts in local field

potential (LFP) power spectra are correlated with the firing rates of the underlying

neurons. This work leaves open the question of whether these spectral changes

are related to behavior and cognition (for review, see Crone, Korzeniewska, &

Franaszczuk, 2011). To test the hypothesis that broadband changes are behaviorally

relevant, one could replicate many of the previously reported analyses of oscillatory

components of neural activity (e.g., Fell et al., 2001; Paller & Wagner, 2002; Osipova

et al., 2006; Sederberg et al., 2007; J. Jacobs & Kahana, 2009) using broadband power

as a factor.

Preliminary work by Pagan, Lega, Jacobs, and Kahana (in preparation) and

Burke, Zaghloul, Jacobs, and Kahana (in preparation) suggests that broadband

changes in LFP power spectra accompany memory formation. Both of these stud-

ies examined the ECoG free recall dataset analyzed in Chapters 4 and 5. In an

analysis similar to that of Sederberg et al. (2007), Pagan et al. (in preparation) ex-

amined the spectral pattern at each electrode as each word was studied. They then
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asked whether there were differences in the patterns of activity during study of

words that were subsequently remembered, as compared with words that were

forgotten (i.e., subsequent memory effects (SMEs); Paller & Wagner, 2002). This

analysis revealed strong broadband decreases in power during study of words that

were subsequently remembered (i.e., negative broadband SMEs). This effect was

most apparent at temporal electrodes. The negative broadband SMEs occurred

simultaneously with the narrowband SMEs observed by Sederberg et al. (2007)

and others.

Burke et al. (in preparation) also examined the pattern of activity observed dur-

ing study of each word. Here the authors were primarily interested in whether

the positive gamma SMEs reported by Sederberg et al. (2007) reflected changes in

connectivity between distributed networks in the brain. Their analysis used coher-

ence, which measures shared oscillatory power with a constant phase offset, as a

proxy for inter-electrode connectivity. The analysis revealed that successful mem-

ory encoding is accompanied by a decrease in gamma coherence between temporal

electrodes and those in other brain regions. The authors then performed post-hoc

analyses to clarify the nature of this phenomenon. These analyses indicated that the

positive gamma SMEs reflected broadband changes in spectral power analogous

to those reported in Chapter 3 and by Pagan et al. (in preparation), rather than true

oscillations (e.g., Fries et al., 2007). However, in addition to changes in the overall

height of the power spectrum reported in these studies, Burke et al. (in preparation)

found that successful memory encoding was characterized by changes in the slope

of the power spectrum. This is indicative of simultaneous high frequency increases

and low frequency decreases, similar to those reported by K. Miller, Leuthardt, et

al. (2007).

Taken together, these preliminary studies show that, in addition to the nar-
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rowband changes that accompany memory formation, several brain areas exhibit

broadband changes in power. If the brain’s ability to subsequently recall studied

words reflects the degree to which the study events become associated with their

temporal context (e.g., Howard & Kahana, 2002), the neural signature of tempo-

ral context reported in Chapter 5 suggests a potential mechanism underlying the

broadband SMEs observed by Pagan et al. (in preparation) and Burke et al. (in

preparation). In particular, the neural signature of temporal context reinstatement

reported in Chapter 5 is characterized by a broad range of frequencies (Fig. 5.7).

Thus it is possible that the degree to which the studied words are bound to their

temporal context appears in the neural data as a broadband change in spectral

power.

6.3.2 Changes in the firing rate–LFP relation as a function of firing

rate

Most analyses of the relation between single-neuron spiking and spectral compo-

nents of the LFP, including those reported in Chapter 3, assume that this relation

remains constant over time. However, several recent studies have reported that the

correlation between firing rate and gamma power changes with firing rate (Nir et

al., 2007; Mazzoni, Whittingstall, Brunel, Logothetis, & Panzeri, 2010). Preliminary

work by Ramayya, Manning, Jacobs, and Kahana (2010) suggests that the correla-

tion between firing rate and broadband power is positively correlated with firing

rate. An important goal of future work will be to incorporate these findings into

neural decoders.
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6.4 Future directions: Chapters 4 and 5

6.4.1 A PCA-based framework for identifying behaviorally rele-

vant components of neural activity

The methods used in Chapters 4 and 5 to identify relevant components of neural

activity are quite similar. The general approach taken for both studies can be

summarized as follows:

1. Create feature vectors for neural activity recorded during each word presen-

tation (study event) and just prior to each recall (recall event).

2. Use principal components analysis (PCA) to map the full set of features onto

orthogonal components.

3. Discard components with coefficients (i.e., eigenvalues) less than 1 (Kaiser,

1960).

4. Use study events to select components of interest (e.g., components that vary

with the meanings of words as in Chapter 4; autocorrelated components as

in Chapter 5; etc.) for further analysis.

5. Perform analyses on selected components from recall events.

Applying feature selection to the principal components rather than the original data

has a number of useful properties that make this approach particularly well-suited

to analyzing neural data.

The use of PCA in analyses of neural data is widespread, both as a tool for

dimensionality reduction and as a means of teasing apart multivariate signals (e.g.,

Andersen, Gash, & Avison, 1999; Viviani, Grön, & Spitzer, 2005; K. Miller et al.,
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2009; Zhong et al., 2009). By definition, PCA combines features that vary in similar

ways; each principal component is a weighted sum of correlated features in the

original data. Correlations across features of the neural data can arise if the sources

of those features are directly connected in the brain (e.g., Fries et al., 2007), if the

sources receive shared input (e.g., Steriade, Amzica, & Contreras, 1996; Llinas &

Steriade, 2006), if the sources are nearby in space (Pernier, Perrin, & Bertrand, 1988)

or frequency (Buzsáki, 2006), or due to other aspects of the brain’s physiology (e.g.,

K. Miller et al., 2009).

In the analyses I present in Chapters 4 and 5, I assume that neural features that

represent the same internal variables (e.g. semantic features in Chapter 4; temporal

context features in Chapter 5) will be correlated. If so, applying PCA to the data

combines neural features that represent the same internal variables. In this way,

PCA can be conceived of as a noise-reduction technique. Thus, it should be easier

to identify neural correlates of these internal variables in the principal component

vectors than in the original data.

Figure 6.2 provides a simple example that illustrates this notion. Consider

neural recordings from n noisy sources in the brain. Here a source can mean the

voltage recorded at a particular electrode, the power of an oscillation at a particular

frequency, BOLD activation of a voxel, or any other relevant measure of neural

activity. Suppose that each of the n sources receives the common sinusoidal input

signal shown in Panel A. Finally, suppose that the connection between the common

input and each source is either excitatory (i.e., positive) or inhibitory (i.e., negative),

with equal probability of either designation. In this way, the signal measured from

each source i is given by:

fi(t) = wis(t) + εi(t),
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Figure 6.2. Applying feature selection to principal components. Data in all panels are synthetic.
A. The sinusoidal input contributes equally to each measured neural source. Each source is noisy,
and is connected to the common input via either an excitatory or an inhibitory synapse. B. Averaging
the signals from the n sources fails to recover the common input. The subpanels show the average
signal from 2, 20, and 200 sources. C. The PCA-based decoder recovers the common input. The
subpanels show the first principal component derived from 2, 20, and 200 sources.

where wi is set to 1 if the connection between source i and the common input is

excitatory, and -1 otherwise; s(t) is the contribution from the common sinusoidal

input at time t; and εi(t) is a draw from N(0, 1) taken independently for each source at

each time t. We can then examine the extent to which various decoding algorithms

recover the input signal for various choices of n (here I use n ∈ {2, 20, 200}). I

consider two decoding algorithms: the first averages the signal measured from

each source (Fig. 6.2B), and the second examines the principal component with

the largest eigenvalue (Fig. 6.2C). Visually comparing panels B and C shows that

the PCA-based decoding algorithm best recovers the common input signal. The

intuition here is simple. Because wi is set to 1 or -1 with equal probability, as n→∞
the input will exactly cancel out in the average signal across all of the sources. By

contrast, the PCA-based decoder will effectively flip the sign of wi to the extent that

doing so will better explain correlations amongst the sources.
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The success of this approach in identifying the neural representations of studied

items (Chapter 4) and temporal context (Chapter 5) suggests that the analysis

framework could be adapted to detect other neural patterns as well. For example,

one could select neural components that distinguish between tasks associated with

each study event (e.g., Polyn et al., 2009) or features of the environmental context

associated with each studied item (e.g., Isarida & Isarida, 2007). This general

framework could also be adapted to a wide variety of tasks beyond free recall;

for example, one could select components of neural activity that vary with spatial

location during virtual navigation tasks (e.g., Ekstrom et al., 2003; Newman et al.,

2007).

6.4.2 A model-based framework for interpreting neural data

From behavioral data alone, it is impossible to determine whether failure to recall a

given item is due to an error in encoding or recall (or both). Behavioral models make

predictions about encoding and recall errors by making assumptions about how

these processes work (which may or may not be supported by neural recordings).

Neural recordings can provide information about whether encoding or recall has

succeeded (Sederberg et al., 2007) and about the dynamics of the recall phase

(Polyn et al., 2005). To date, however, most analyses of neural recordings during

free recall have ignored the well-characterized stereotyped trends identified in the

behavioral literature including the primacy, recency, and contiguity effects (e.g.,

Murdock, 1962; Kahana, 1996; Kahana, Howard, & Polyn, 2008). (One exception is

the analysis presented in Chapter 5.)

Because patterns identified in neural recordings are typically confounded with

behavioral patterns, it has been difficult to gain a deep understanding of the neural

processes underlying encoding and recall. To address this confound, one could go
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beyond the analysis presented in Chapter 5 by using the Temporal Context Model

(TCM; Howard & Kahana, 2002), an established context-based memory model, as

a framework for interpreting neural recordings. Here I do not assume that TCM

(or any model, for that matter) is an accurate description of how the brain retrieves

episodic memories (although the analysis in Chapter 5 provides good support for

the context reinstatement hypothesis). Instead, I propose to use TCM’s ability to

fit behavioral trends in the data as a means of interpreting neural recordings while

taking behavioral trends into account.

One potential application of this approach would be to implement a model-

based SME analysis. For example, one could fit TCM’s parameters to a single

participant’s behavioral data. Running TCM many times using the best-fitting

parameters from that participant would yield an estimated probability of recalling

each studied word. One could then use the PCA-based framework described in

Section 6.4.1 to identify components of neural activity measured during study

that predict probability of subsequent recall (according to TCM’s predictions).

Whereas standard SME analyses (e.g., Paller & Wagner, 2002) implicitly assume

that each studied word is either perfectly encoded (if it is subsequently recalled) or

perfectly ignored (if it is not subsequently recalled), the increased sensitivity of the

model-based SME analysis may lead to the identification of new neural signatures

of successful encoding. In this way, a model-based framework for interpreting

neural data may provide novel insights into the neural mechanisms underlying

the encoding and recall of episodic memories.

131



6.4.3 A model-based framework for tracking the neural represen-

tation of temporal context

An important question raised by the analysis in Chapter 5 concerns the detailed

nature of the neural representation of temporal context. Neither the analysis in

Chapter 5 nor the behavioral data distinguish between a context representation that

drifts at random through a multidimensional space (e.g., Estes, 1955), or whether

contextual drift is driven by inputs, such as studied list items (e.g., Howard &

Kahana, 2002; Sederberg et al., 2008; Polyn et al., 2009; Socher et al., 2009). One

method of getting at this question would be to select neural features that both

vary with the meanings of studied items (as in Chapter 4) and exhibit temporal

autocorrelations (as in Chapter 5). If these neural features exhibited a neural

signature of context reinstatement (Fig. 5.4), this would indicate that semantic

features of the studied words contribute to the temporal context representation.

The hierarchical Bayesian modeling framework developed by Socher et al.

(2009) suggests an interesting alternative means of studying the context representa-

tion in finer detail. In particular, their framework could be extended to incorporate

neural data (e.g. ECoG, fMRI) collected as participants study and recall words,

which would allow the neural signature of temporal context to be tracked over the

course of the experiment. Whereas the analysis presented in Chapter 5 identified

a neural signature of temporal context reinstatement in data averaged over many

lists, the hierarchical Bayesian-based approach would provide a means of tracking

the temporal context representation as it evolved during each individual word

presentation and recall. The ability to track the temporal context representation

at this level of detail would have far-reaching implications for fields ranging from

cognitive neuroscience to education to law enforcement.

132



6.5 Concluding remarks

To date, no theoretical model provides a complete explanation of how the brain

supports acquisition, storage, and retrieval. Similarly, no known recording device

allows researchers to record all brain signals (e.g. membrane potentials from

all neurons) relevant to these processes. Nonetheless, both theoretical models

and neural recordings can be informative. To the extent that models and neural

recordings contain independent information, each approach can inform the other.

In this way, analyses that are simultaneously informed by model predictions and

recorded neural data seem most promising at elucidating the neural machinery

underlying cognition.
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