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Transcendocardinal Delivery of AAV6 Results in Highly Efficient and
Global Cardiac Gene Transfer in Rhesus Macaques

Abstract
Heart disease is the leading cause of morbidity and mortality, and cardiac gene transfer has potential as a novel
therapeutic approach. We previously demonstrated safe and efficient gene transfer to the canine heart using a
percutaneous transendocardial injection procedure to deliver self-complementary (sc) adeno-associated virus
6 (AAV6) vector. In the present study, we proceed with our vertical translation study to evaluate cardiac gene
transfer in nonhuman primates (NHPs). We screened approximately 30 adult male rhesus macaques for the
presence of neutralizing antibodies against AAV6, AAV8, and AAV9, and then selected seven monkeys whose
antibody titers against these three serotypes were lower than 1/5. The animals were then randomized to
receive either scAAV6 (n =3), scAAV8 (n =1), or scAAV9 (n =3) vector expressing the enhanced green
fluorescent protein (EGFP) reporter gene at a dose of 5.4×1012 genome copies/kg, which was administered
according to a modified version of our previously developed transendocardial injection procedure. One
animal treated with scAAV6 died secondary to esophageal intubation. The remaining animals were euthanized
7 days after gene transfer, at which time tissue was collected for analysis of EGFP expression, histopathology,
and biodistribution of the vector genome. We found that (i) transendocardial delivery of AAV is safe in the
NHP, (ii) AAV6 and AAV8 provide efficient cardiac gene transfer at similar levels and are superior to AAV9,
and (iii) AAV6 is more cardiac-specific than AAV8 and AAV9. The results of this NHP study may help guide
the development AAV vectors for the treatment of cardiovascular disease in humans.
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Transendocardial Delivery of AAV6
Results in Highly Efficient and Global Cardiac

Gene Transfer in Rhesus Macaques

Guangping Gao,1,2,* Lawrence T. Bish,3,* Meg M. Sleeper,4,* Xin Mu,1,2 Lan Sun,5 You Lou,5

Jiachuan Duan,6 Chunyan Hu,6 Li Wang,6 and H. Lee Sweeney3

Abstract

Heart disease is the leading cause of morbidity and mortality, and cardiac gene transfer has potential as a novel
therapeutic approach. We previously demonstrated safe and efficient gene transfer to the canine heart using a
percutaneous transendocardial injection procedure to deliver self-complementary (sc) adeno-associated virus 6
(AAV6) vector. In the present study, we proceed with our vertical translation study to evaluate cardiac gene
transfer in nonhuman primates (NHPs). We screened approximately 30 adult male rhesus macaques for
the presence of neutralizing antibodies against AAV6, AAV8, and AAV9, and then selected seven monkeys
whose antibody titers against these three serotypes were lower than 1/5. The animals were then randomized to
receive either scAAV6 (n = 3), scAAV8 (n = 1), or scAAV9 (n = 3) vector expressing the enhanced green fluorescent
protein (EGFP) reporter gene at a dose of 5.4 · 1012 genome copies/kg, which was administered according to a
modified version of our previously developed transendocardial injection procedure. One animal treated with
scAAV6 died secondary to esophageal intubation. The remaining animals were euthanized 7 days after gene
transfer, at which time tissue was collected for analysis of EGFP expression, histopathology, and biodistribution
of the vector genome. We found that (i) transendocardial delivery of AAV is safe in the NHP, (ii) AAV6 and
AAV8 provide efficient cardiac gene transfer at similar levels and are superior to AAV9, and (iii) AAV6 is more
cardiac-specific than AAV8 and AAV9. The results of this NHP study may help guide the development AAV
vectors for the treatment of cardiovascular disease in humans.

Introduction

Heart Disease is the leading cause of morbidity and
mortality, and cardiac gene transfer has potential as a

novel therapeutic approach. Significant effort has recently
been directed at developing methods for efficient cardiac gene
transfer in large animals, including sheep, pigs, and canines
(Katz et al., 2010; Mariani and Kaye, 2010; Njeim and Hajjar,
2010; Roncalli et al., 2010; Bish et al., 2011; Kawase et al., 2011;
Swain et al., 2011). Most investigators have chosen to focus on
the highly efficient and minimally immunogenic adeno-
associated virus (AAV) vector, and several large-animal
studies have reported the superiority of AAV6 over other

serotypes with respect to cardiac gene transfer efficiency
(Sasano et al., 2007; Bish et al., 2008; Raake et al., 2008; White
et al., 2011). Therapeutic efficacy has been demonstrated in
several large-animal models of heart failure following AAV-
mediated transfer of genes regulating calcium handling and
angiogenesis (Beeri et al., 2010; Pepe et al., 2010; Mariani et al.,
2011; Tao et al., 2011).

Although much work has recently been performed eval-
uating cardiac gene transfer in large animals such as sheep,
pigs, and canines as described above, very little investigation
has been undertaken in the nonhuman primate (NHP)
model. Both lentivirus (Tarantal et al., 2005) and AAV (Tar-
antal and Lee, 2010) have been evaluated following fetal
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delivery of reporter constructs, and it was found that AAV
induced higher levels of transgene expression than lentivirus
and that AAV9 and AAV10 were superior to AAV5. In ad-
dition, a separate group demonstrated approximately four-
fold greater transgene activity following injection with
AAV9 compared with AAV1 in neonatal NHPs (Pacak et al.,
2006). However, evaluation of cardiac gene transfer in adult
NHPs has not been described in the literature.

We recently developed an efficient method for cardiac gene
transfer in the canine using a percutaneously inserted injection
catheter (Bish et al., 2008, 2011), and our goal in this study was
to use a modified version of this approach to evaluate the
cardiac gene transfer efficiency of self-complementary (sc)
AAV6, AAV8, and AAV9 in the adult rhesus macaque. We
report that (i) transendocardial delivery of AAV is safe in the
NHP, (ii) AAV6 and AAV8 provide efficient cardiac gene
transfer at similar levels and are superior to AAV9, and (iii)
AAV6 is more cardiac-specific than AAV8 and AAV9.

Materials and Methods

Vector design and production

Each vector was designed to express the enhanced green
fluorescent protein (EGFP) reporter gene under control of the
constitutive chicken b-actin promoter with cytomegalovirus
(CMV) enhancer (CB promoter). Vectors were produced ac-
cording to the previously described pseudotyping protocol by
the Vector Core of the Children’s Hospital of Philadelphia
(Herzog et al., 1999). In brief, recombinant AAV genomes con-
taining AAV2 inverted terminal repeats (ITRs) were packaged
by triple transfection of 293 cells with a cis-plasmid containing
the EGFP transgene, an adenovirus helper plasmid, and a chi-
meric trans-plasmid containing the AAV2 rep gene fused to the
capsid gene of the AAV serotype of interest. Self-complementary
vectors contained a mutation in the termination sequence of
the 5¢ ITR to allow synthesis and encapsidation of a dimeric
inverted repeat of the transgene cassette (McCarty et al., 2001).

Animal use and vector delivery protocol

All animal experiments were performed at the Chengdu
National Center for Safety Evaluation of Drugs in Chengdu,
China. All animals were handled in compliance with the Asso-
ciation for the Assessment and Accreditation of Laboratory
Animal Care International and institutional guidelines that were
approved by the Institutional Animal Care and Use Committee
of the Chengdu National Center for Safety Evaluation of Drugs.
Thirty adult male rhesus macaques were screened for the pres-
ence of neutralizing antibodies (NAbs) against AAV6, AAV8,
and AAV9. Titer was determined by incubating Huh7 cells with
serial dilutions of canine serum and AAV-CMV-EGFP of the
serotype in question and observing the dilution at which the
number of green fluorescent protein (GFP)-positive cells was
reduced by 50% compared with control wells.

Seven macaques (6–10 kg) whose titer against all three
serotypes was < 1:5, which is the detection limit of the assay,
were selected for this study. The animals were randomized
to receive AAV6 (n = 3), AAV8 (n = 1), or AAV9 (n = 3). The
vector delivery procedure was performed under general
anesthesia, and macaques were placed in left lateral recum-
bency. Heart rate, respiratory rate, systolic blood pressure,
electrocardiogram, and oxygen saturation were monitored

throughout the anesthetic period. A right carotid arterotomy
was performed, and a 7 French introducer was placed in the
vessel, followed by insertion of the injection catheter. This
catheter was a steerable injection catheter with an adjustable
length core needle (MyoCath, Bioheart Inc., Sunrise, FL),
which was previously used to deliver AAV vector to canines
in our laboratory (Bish et al., 2008, 2011). The catheter was
flushed with heparinized blood prior to vector infusion to
prevent inactivation of the virus (Marshall et al., 2000). Next,
under fluoroscopic guidance, the catheter was advanced into
the left ventricular cavity, and by steering the needle tip and
adjusting the needle length, approximately 60 transendo-
cardial injections of 250 ll each were performed to target the
left ventricular free wall and interventricular septum from
base to apex and from endocardium to epicardium with
AAV vector. Contrast medium was added to the vector so-
lution so that injection sites could be visualized. This allowed
us to differentiate between injected and uninjected regions of
the heart and helped to ensure that the vector solution was
distributed globally throughout the myocardium.

For each procedure, vector was mixed with 2 ml of sterile
contrast solution (Omnipaque) and diluted with sterile saline
to produce 15 ml for injection. Lidocaine (2 mg/kg as a bolus
followed by a constant rate infusion at 50 lg/kg/min) was
initiated if ventricular tachycardia developed during the
procedure. After recovery, animals were treated with car-
profen for 2 days and amoxicillin-clauvolonic acid for 5 days.

Histologic analysis of transgene expression
and pathology

Macaques were euthanized 7–8 days following treatment,
and tissues were harvested for determination of reporter
transgene expression and vector biodistribution. For analysis
of GFP fluorescence, the heart was divided into four sections
along the short axis from the apex to base and fixed in 4%
paraformaldehyde overnight at 4�C. The tissue was then
washed 3 · 10 min in PBS and dehydrated in 20% sucrose
overnight at 4�C. Next, each section was frozen in OCT
embedding compound (Tissue Tek, Torrance, CA), and
10-lm cryosections were prepared. Slides were mounted
with Vectashield DAPI media (Vector Laboratories, Burlin-
game, CA) and examined for GFP fluorescence using a Leitz
DMRBE fluorescent microscope (Leica, Bannockburn, IL)
equipped with a Micro Max digital camera (Princeton In-
struments, Trenton, NJ) interfaced with Image Pro Plus
software (Media Cybernetics, Bethesda, MD). For each ani-
mal, four representative photographs were recorded under
constant exposure conditions using the 10 · objective from
the interventricular septum and left ventricular free wall
from the endocardium to the epicardium in each of the four
heart sections. A liver sample was also processed as above to
monitor hepatic GFP expression. For pathology, slides were
stained independently with hematoxylin and eosin (H&E)
and trichrome (Sigma, St. Louis, MO) to identify mononu-
clear infiltrate and fibrosis, respectively.

Biodistribution analysis

For biodistribution analysis, samples were snap-frozen in
liquid nitrogen. Following DNA extraction, genome copy
titers were quantified by TaqMan PCR (Applied Biosystems,
Foster City, CA) using primers and probes designed against
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the EGFP transgene. One hundred nanograms of template
DNA was used per reaction for triplicate reactions, and
several controls were performed to confirm the specificity
and accuracy of the PCR. A spike control was performed in
which the test sample was spiked with exogenous test assay
target to rule out PCR inhibition. The assay was also per-
formed on samples from a negative control, saline-injected
animal to determine background signal of the assay, which
was negligible [ < 1 genome copy (gc) per 5,000 cells, or > 1
log lower than the minimum genome copies detected in ex-
perimental samples]. Finally, a control endogenous gene
[glyceraldehyde 3-phosphate dehydrogenase (GAPDH)] was
run as a loading control and displayed minimal sample-to-
sample variation ( < 0.25 cycle) with 100 ng of template DNA.

Results

Study design

In this NHP study, we compared the cardiac gene transfer
efficiency of three AAV vectors 1 week following transen-
docardial injection via an injection catheter inserted through
a peripheral artery. Each AAV vector was designed to ex-
press the EGFP reporter gene under control of the chicken
b-actin promoter with CMV enhancer (AAV-CB-EGFP).
Rhesus macaques were randomized to receive 5.4 · 1012 gc/
kg of either AAV6 (n = 3), AAV8 (n = 1), or AAV9 (n = 3).

These seven animals were selected from a pool of approxi-
mately 30 macaques after their NAb titer against AAV6,
AAV8, and AAV9 was determined to be < 1:5, the lower
limit of detection of the assay used.

Cardiac GFP expression

GFP expression was evaluated in the NHPs 7 days after
delivery of AAV6, AAV8, or AAV9. Expression of GFP was
minimal following injection with AAV9 (Fig. 1D). In contrast,
high levels of GFP expression were observed throughout the
heart following injection with AAV6 (Fig. 1B) and AAV8 (Fig.
1C). It should be noted that the AAV8 expression is based on
n = 1 and should be considered preliminary.

Biodistribution studies

AAV vector genomes were detected in all tissues exam-
ined (Fig. 2A); however, the ratio of genomes detected in the
heart to genomes detected in other tissues varied signifi-
cantly from vector to vector (Fig. 2B). Of the three vectors
examined, AAV6 had the highest cardiac specificity with
heart to tissue ratios ranging from 0.5 in the liver to ap-
proximately 25 in the spleen and up to 1,000 in other tissues.
In contrast, the heart to organ ratios for the other vectors
evaluated were approximately 0.1 or less for the liver and 0.2
or less in the spleen (Fig. 2B). GFP fluorescence was also

FIG. 1. Representative images (10 · objective) of GFP expression in the NHP heart. (A) For analysis, the heart was divided
into four equal sections through the short axis from base to apex. Hearts were harvested 7 days following injection of
5.4 · 1012 gc/kg of (B) scAAV6-CB-EGFP, (C) scAAV8-CB-EGFP, or (D) scAAV9-CB-EGFP. Endo, endocardium; Epi, epi-
cardium; IVS, interventricular septum; LVFW, left ventricular free wall. Scale bar = 200 lm.
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minimal in liver sections from animals treated with AAV6
compared with AAV8 (Fig. 2C).

Safety of transendocardial delivery of AAV vectors

One animal treated with AAV6 died in postprocedure
recovery, and it was determined that death occurred sec-
ondary to esophageal intubation. No mortality was associ-
ated with the injection procedure itself. Ventricular ectopy
occurred in conjunction with myocardial injections in all
NHPs undergoing treatment; however, all of the arrhythmias
responded to lidocaine administration and had converted to
sinus by the end of the anesthetic protocol. Histopathological
analysis of H&E and trichrome stained cardiac sections re-

vealed patchy cardiomyocyte degeneration and necrosis
with mononuclear cell infiltration and fibrosis at the injection
sites (Fig. 3). Finally, no significant alterations in baseline
values of liver-function studies, complete blood count, or
creatinine were noted (data not shown).

Discussion

To our knowledge, this is the first investigation to com-
pare the cardiac tropism of several AAV serotypes in the
adult rhesus macaque. We previously developed a method
to deliver vector to canine hearts via a percutaneously in-
serted injected catheter (Bish et al., 2008, 2011), and we ap-
plied a modified version of the technique in this report,

FIG. 2. Biodistribution of
AAV vectors 7 days follow-
ing delivery to the NHP
heart. (A) Biodistribution in
several organs examined. He,
heart; Li, liver; Lu, lung;
Du, duodenum; Co, colon;
Pa, pancreas; LN, lymph
node; Go, gonad; SM, skeletal
muscle; Ki, kidney; Sp,
spleen. (B) Tissue tropism of
vectors evaluated reported as
ratio of vector detected in
heart to vector detected in
organ of choice. Note that
AAV6 is highly tropic for
cardiac tissue when com-
pared with the other vectors.
(C) GFP expression in cryo-
sections of the liver 7 days
following treatment (10 ·
objective). Scale bar = 200 lm.
Color images available online
at www.liebertonline.com/
hum

FIG. 3. Representative high-
power magnification images
(20 · objective) from NHP
cardiac cryosections 7 days
following injection with AAV.
H&E staining demonstrates
patchy cardiomyocyte degen-
eration (black arrow) and ne-
crosis (green arrow) with
mononuclear cell infiltration at
the injection site. Trichrome
staining reveals fibrosis at the
injection site. Scale bar = 80 lm.
Color images available online
at www.liebertonline.com/
hum
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where we compared the cardiac gene transfer efficiencies of
AAV6, AAV8, and AAV9. We found that (i) transendo-
cardial delivery of AAV is safe in the NHP, (ii) AAV6 and
AAV8 provide efficient cardiac gene transfer at similar levels
and are superior to AAV9, and (iii) AAV6 is more cardiac-
specific than AAV8 and AAV9. It should be noted that the
AAV8 data are based on n = 1 and should be considered
preliminary. Future investigation will be directed at in-
creasing the number of NHPs treated with AAV8.

Currently, there are several ongoing clinical trials evalu-
ating the therapeutic efficacy of cardiac gene transfer as a
novel treatment for heart failure; the two vector delivery
methods being used in these trials include coronary perfu-
sion and direct transendocardial injection (Chaanine et al.,
2010). Based on this, we believe that the transendocardial
delivery method used in our current NHP study has the
potential for clinical translation. Furthermore, we believe
that direct transendocardial injection is a more versatile de-
livery method than coronary perfusion, because it could be
used in both nonischemic and ischemic cardiomyopathy.
Coronary perfusion would have limited utility in ischemic
heart disease, because blood flow would be limited in the
targeted areas of the heart. In addition, although coronary
perfusion should theoretically deliver vector globally
throughout the heart, histological analysis in large-animal
models demonstrates that delivery is somewhat heteroge-
neous (Kawase et al., 2011), similar to what has been reported
following direct transendocardial injection (Bish et al., 2011).
Finally, vector delivered via direct transendocardial injection
is less likely to be neutralized by pre-existing NAbs than
vector delivered via coronary perfusion. Indeed, heart failure
patients with an NAb titer of 1:2 did not respond to coronary
perfusion of AAV-SERCA2a ( Jaski et al., 2009), whereas we
previously observed robust transgene expression following
direct transendocardial injection of AAV-GFP in canines
with NAb titers ranging from 1:20 to 1:40 (Bish et al., 2008). In
summary, we believe that both coronary perfusion and di-
rect transendocardial injection are delivery methods with
potential clinical utility and that future investigation should
be directed at comparing both methods in an NHP model.

The direct transendocardial injection procedure was well-
tolerated in NHPs, just as in canines (Bish et al., 2008). The one
death that occurred in postprocedure recovery was determined
to be secondary to esophageal intubation, not the injection
procedure itself. The only adverse event associated with the
procedure was ventricular ectopy, which was amenable to li-
docaine in all cases. Moreover, in all cases, ventricular ectopy
had resolved before extubation. All animals that recovered from
anesthesia survived until scheduled euthanasia at the 1-week
time point. Pathology at this time revealed mononuclear infil-
tration and fibrosis at the injection sites, similar to what has been
observed previously in the canine (Bish et al., 2008) and pig (Su
et al., 2006). Unfortunately, no long-term safety data are avail-
able, because it was necessary to euthanize the animals at an
early time point before a T-cell response was mounted against
the cells expressing GFP, a concern raised by recent reports
describing this phenomenon in baboon hearts (McTiernan et al.,
2007), cynomolgus macaque livers (Gao et al., 2009), and canine
livers (Bell et al., 2011) expressing a foreign protein. Although
this time constraint did not allow us to analyze peak expression
of the AAV vectors, we were still able to gain valuable pre-
clinical information by comparing the relative cardiac tropism

of each serotype. Indeed, we used this same strategy in our
recent study that compared the cardiac tropism of the same
AAV serotypes in the canine (Bish et al., 2008). Future investi-
gation using a nonimmunogenic transgene will be necessary to
address long-term expression and safety.

We have also identified AAV6 and AAV8 as vectors with
high cardiac tropism in the macaque heart. AAV6 has been
previously identified as an efficient cardiac gene transfer
vector in several large-animal models, including the canine
(Bish et al., 2008), pig (Sasano et al., 2007; Raake et al., 2008), and
sheep (White et al., 2011), but this is the first time that AAV6, as
well as AAV8, has been evaluated in the NHP. Previous NHP
studies have identified AAV9 as superior to AAV5 (Tarantal
and Lee, 2010) and AAV1 (Pacak et al., 2006) and equivalent to
AAV10 (Tarantal and Lee, 2010) in the heart. We did not
evaluate AAV10 in this study, but it is likely that as both AAV6
and AAV8 outperformed AAV9, they would also outperform
the equivalent AAV10. We also did not evaluate AAV1 in this
study. Although AAV1 is the serotype that has been used in
initial clinical trials evaluating the efficacy of gene transfer of
SERCA2a for heart failure ( Jaski et al., 2009; Chaanine et al.,
2010), at least two ongoing clinical trials are using AAV6
(Chaanine et al., 2010). In addition, it has been previously re-
ported that AAV9 is superior to AAV1 in the NHP heart
(Pacak et al., 2006), but evaluation of AAV6 in the NHP was
lacking. Based on these facts, we decided to compare AAV6
and AAV9 in this study. However, as both AAV1 and AAV6
have been used in clinical trials, future investigation should be
directed at comparing AAV1 and AAV6 in the NHP heart.

We also performed analysis of vector genome biodis-
tribution to characterize the cardiac specificity of AAV6,
AAV8, and AAV9. Although AAV6 and AAV8 achieved
similar levels of cardiac GFP expression, the biodistribution
profiles of the two vectors were very different. Vector ge-
nomes were detected at high levels in extracardiac tissues,
especially the liver, following delivery of AAV8 in compar-
ison with AAV6. For example, the ratio of vector genomes
detected in the heart versus liver was 0.540 for AAV6 and
0.009 for AAV8—an approximately 50-fold difference. This
cardiac tropism may be explained by enhanced cellular in-
ternalization and nuclear uncoating of AAV6 versus other
serotypes in cardiomyocytes (Sipo et al., 2007). These results
suggest that if cardiac specificity is a high priority, AAV6
should be the vector of choice over AAV8. If desired, cardiac
specificity could be further enhanced by transcriptional,
posttranscriptional, or transductional targeting (Muller et al.,
2006; Xie et al., 2011), and future investigation is necessary to
explore these options in the NHP model.

In summary, we have demonstrated that transendocardial
delivery of AAV vectors is safe in the NHP. We are the first
group to report that AAV6 and AAV8 are superior to AAV9
in the NHP heart and that AAV6 is more cardiac-specific
than AAV8 and AAV9. The results of this study may be used
to guide development of clinical applications of AAV vectors
in the treatment of cardiovascular diseases.
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