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Robust Model Predictive Control with Anytime Estimation

Abstract
With an increasing autonomy in modern control systems comes an increasing amount of sensor data to be
processed, leading to overloaded computation and communication in the systems. For example, a vision-
based robot controller processes large image data from cameras at high frequency to observe the robot’s state
in the surrounding environment, which is used to compute control commands. In real-time control systems
where large volume of data is processed for feedback control, the data-dependent state estimation can become
a computation and communication bottleneck, resulting in potentially degraded control performance.
Anytime algorithms, which offer a trade-off between execution time and accuracy of computation, can be
leveraged in such systems. We present a Robust Model Predictive Control approach with an Anytime State
Estimation Algorithm, which computes both the optimal control signal for the plant and the (time-varying)
deadline/accuracy constraint for the anytime estimator. Our approach improves the system’s performance
(concerning both the control performance and the estimation cost) over conventional controllers, which are
designed for and operate at a fixed computation time/accuracy setting. We numerically evaluate our approach
in an idealized motion model for navigation with both state and control constraints.
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Robust Model Predictive Control with Anytime Estimation

Truong X. Nghiem, Yash V. Pant and Rahul Mangharam
Department of Electrical and Systems Engineering

University of Pennsylvania
{nghiem, yashpant, rahulm}@seas.upenn.edu

Abstract— With an increasing autonomy in modern control
systems comes an increasing amount of sensor data to be
processed, leading to overloaded computation and commu-
nication in the systems. For example, a vision-based robot
controller processes large image data from cameras at high
frequency to observe the robot’s state in the surrounding
environment, which is used to compute control commands.
In real-time control systems where large volume of data is
processed for feedback control, the data-dependent state estima-
tion can become a computation and communication bottleneck,
resulting in potentially degraded control performance. Anytime
algorithms, which offer a trade-off between execution time and
accuracy of computation, can be leveraged in such systems.
We present a Robust Model Predictive Control approach with
an Anytime State Estimation Algorithm, which computes both
the optimal control signal for the plant and the (time-varying)
deadline/accuracy constraint for the anytime estimator. Our
approach improves the system’s performance (concerning both
the control performance and the estimation cost) over conven-
tional controllers, which are designed for and operate at a fixed
computation time/accuracy setting. We numerically evaluate
our approach in an idealized motion model for navigation with
both state and control constraints.

I. INTRODUCTION

Data-driven control systems, such as autonomous naviga-
tion and radar-based missile defense, generate a deluge of
sensor data which often overload the real-time processing
system. In such cases, the computational bottleneck is the
state-estimation from sensor data (e.g. position and velocity
estimates), while computing the control takes significantly less
time, which is often well-bounded. A common underlying
assumption in most studies on co-design of computation
and control, has been that the state-estimator has a fixed
sampling rate, and/or has either no/fixed computation time
[1], as well has a fixed estimation error (constant upper
bound or distribution) [2]. In reality, for overloaded systems
with limited computation power, the computation time for
estimation may be too high to neglect or too long to support
a stabilizing controller.

Anytime algorithms [3], which have multiple computa-
tion time and error operating points, have a computation
time/accuracy trade-off which offers much needed flexibility
for overloaded systems. This is often achieved by having
different implementations to perform the same function
with varying levels of effort and accuracy. This paper
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investigates the design of robust controllers with the use of
such anytime algorithms for estimation in overloaded systems.
A key challenge is that when an anytime algorithm is used
for estimation the static computation time/estimation error
representation of an estimator is either too conservative for
the setup at hand (operating at a fixed time/error setting) or
is no longer applicable (if the entire operating range of the
anytime algorithm is to be used).

In this paper, we present a Robust Model Predictive
Controller (RMPC) based algorithm, that computes both the
control signal and the operating point for the estimator, for
a system where the state estimation is done by an anytime
algorithm. The focus of this paper is on the RMPC algorithm
and the anytime state estimator is abstracted away to its
computation time/estimation error characteristics. The main
contributions of this paper are:

• We treat the computation delay (and the corresponding
estimation error) as a variable to be optimized over and
present an algorithm which finds the best operating point
for the estimator and also uses the RMPC to compute
the optimal control signal.

• We take into account an anytime algorithm based
estimator and its computation time (delay) vs. accuracy
dependency (resulting in different operating points) and
formulate a RMPC for the system. Unlike existing work
on anytime control, our approach handles both state and
input constraints.

• We have developed a computationally-light method for
set operations specific to our problem, providing a
significant speedup compared to using existing toolboxes.
This allows our method to be applied to systems with
many states and also have for longer horizon lengths for
the optimization leading to better over all performance.

Organization: We describe the components of the system we
consider in our study and the goal for our control algorithm
in Section III. We then introduce our RMPC algorithm In
Section IV. In Section V, we formulate the optimization
problem which is central to our algorithm and also the
tightened set constraints to ensure robust feasibility of the
RMPC algorithm. In Section VI, we show how to explicitly
compute the set constraints for the RMPC algorithm in order
to reduce the computation time needed. We finally present
a case study, in Section VII, where we apply our RMPC
algorithm (with multiple estimator modes) to an idealized
motion model for constrained navigation in a 2D plane.



II. RELATED WORK

Dean and Boddy [3] introduced the term “Anytime algo-
rithm” in the late 1980s. In [4], Horvitz et al. introduced the
flexible computing model for time-critical decision making
and planning algorithms in Artificial Intelligence. Anytime
algorithms for sensor interpretation and path planning in more
complex systems were studied in [5], [6]. Anytime algorithms
have also been studied for graph search [7], evaluation of
belief networks [8] and GPU architectures [9].

As overloaded real-time systems are becoming increasingly
common, anytime algorithms for control have become a topic
of research interest. Most notably, Quevedo and Gupta [10],
Bhattacharya and Balas [1], and Fontanelli et al. [11] have
contributed on the topic. In [10], the authors presented an
algorithm that computes control input sequences for time
steps into the future when given processor availability and
use the previously computed inputs when there is no processor
availability. In [11], a switching condition was developed to
switch among multiple feedback controllers with different
worst case execution times for a single plant. The authors in
[1] proposed a methodology to get reduced order controllers
with different computation requirements for a given linear
time invariant (LTI) plant and a switching scheme to chose
which controller to use.

Our approach differs significantly from these works as the
anytime computation assumption is on the state estimator and
our controller is a robust controller which can switch between
different modes of the anytime estimator. Also, while most
of these works require either access to the full state of the
system or have a fast estimator giving them the state estimate
[1], our algorithm accounts for the computation time/error of
the estimation algorithm. Furthermore, an advantage of the
proposed RMPC is that it can handle both state and input
constraints. However, our RMPC formulation differs from
related RMPC formulations [12], [2] as it can work with
time-varying error bound and execution time (delay) of the
state estimator.

III. SYSTEM MODEL

The control system consists of three interconnected com-
ponents as illustrated in Fig. 1:

1) The plant is a continuous time LTI system of the form

ẋ(t) = Acx(t) +Bcu(t) + wc(t) (1)

where x ∈ Rn is the state, u ∈ Rm is the control
input, and wc ∈ Rn is the process noise. Though wc is
unknown, we assume that it belongs to a known compact
and convex constraint set Wc ⊂ Rn.

2) The estimator observes the plant output y(t) = Cx(t) +
v(t) (where v is the output noise) and estimates the
current state of the plant, which cannot be measured
directly. Let x̂(t) denote the estimated state at time t and
e(t) = x(t)− x̂(t) be the error between the actual and
estimated states. Note that e(t) is unknown, however,
depending on the characteristics of the estimation algo-
rithm, it would be bounded. The upper bound ε(t) of the
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Fig. 1. Structure of the control and anytime estimation system.

norm ‖e(t)‖, where ‖·‖ is any vector norm, determines
the accuracy of the state estimation. The set of error
vectors corresponding to an accuracy ε ≥ 0 is denoted
by E(ε) := {e ∈ Rn : ‖e‖ ≤ ε}. We assume that the
estimator is an anytime algorithm where there is a trade-
off between the accuracy and the computation time. In
particular, the more accurate the estimation is the longer
it takes to compute, and conversely. The accuracy of the
estimator, hence its computation time, can be adjusted
online by changing its parameters or its algorithm.

3) The controller computes the control input for the plant
as well as adapts the estimator’s accuracy to achieve a
predefined control goal.

We consider a discrete time implementation of the con-
troller and the estimator, in which the output y(t) is sampled
periodically at instants ts,k = kT , where k ∈ Z+ and T > 0
is a predefined sampling period. The sampled output is fed to
the estimator which computes the state estimate x̂k := x̂(ts,k)
with the desired accuracy εk := ε(ts,k) determined by the
controller in the previous time step. The controller then uses
this state estimate to compute the control input uk as well
as decide on the desired state estimate’s accuracy εk+1 for
the next step. Let δk be the worst-case total execution time
of both the estimator and the controller corresponding to the
accuracy εk of the state estimation at time step ts,k. We make
the following theoretical assumption of the state estimator.

Assumption 1: The estimation algorithm is given with a
finite set of p > 0 modes (or options) ∆ = {(δi, εi)}pi=1;
each mode corresponds to a pair of time delay and estimation
accuracy. In each time step k, one of the estimation modes
is selected, that is (δk, εk) ∈ ∆.

This assumption means that in this paper we will not design
nor analyze the estimation algorithm; in other words, the esti-
mator is a black-box given to us with known characteristics.

Furthermore, the control implementation is subject to the
following assumption.

Assumption 2 (Time-triggered actuation): The control ac-
tuation is delayed by δk, i.e., the control input computed
by the controller is applied exactly at the actuation instant
ta,k = ts,k + δk.

The order of sensing–computing–actuating and their timing
are illustrated in the diagram in Fig. 2. We remark that in
each step k ≥ 0, the estimation accuracy εk and hence the
delay δk are already decided in the previous step and known
to the controller. The previous control input uk−1 is still used
until ta,k when the new control input uk is computed and
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Fig. 2. Timing diagram of Control with Anytime Estimation. The symbols
S and A signify the instants of (periodic) sensing and actuation respectively.

applied by the controller. The controller also chooses the next
desired accuracy εk+1 and delay δk+1 to be used in the next
step k+ 1. In the first step k = 0, the initial accuracy ε0, the
initial delay δ0, and the initial control input u−1 are chosen
by the designer.

A. Discrete-time System Dynamics

The plant’s state at each sampling time ts,k can be
described by the discrete-time system:

xk+1 = Axk +B1(δk)uk−1 +B2(δk)uk + wk, k ≥ 0 (2)

in which

A = eAcT , wk =

∫ T

0

eAc(T−t)wc(ts,k + t) dt

B1(δk)=

∫ δk

0

eAc(T−t)Bc dt, B2(δk)=

∫ T

δk

eAc(T−t)Bc dt.

Here wk is the accumulated process noise during the interval.
Because wc(t) is constrained in the compact and convex set
Wc and T is finite, we can find a compact and convex set
W that bounds wk, namely

wk ∈ W ∀k ≥ 0. (3)

Note that both the current control uk and the previous control
uk−1 appear in Eq. (2). Furthermore, the input matrices
B1(δk) and B2(δk) depend on the delay δk; hence δk is also
an input to the dynamics. The estimation accuracy εk does
not appear in the equation because it only affects the state
estimate x̂k used by the controller to compute uk; therefore
εk indirectly affects the dynamics via the control input.

B. State and Control Constraints

For every step k ≥ 0, the actual state of the plant xk :=
x(ts,k) must satisfy a safety condition that

xk ∈ S (4)

where S ⊂ Rn is the set of safe states. We assume that S
is a polytope of the form S := {x ∈ Rn : Hx ≤ b}, where
matrix H and vector b constitute an H-representation of S.
Note that S is not necessarily bounded. In addition, a control
input uk is only valid if it belongs to the predefined set of
admissible control inputs U ⊆ Rm

uk ∈ U ∀k ≥ 0. (5)

The sets S and U are part of the problem statement and
are either chosen by the designer or determined by physical
constraints of the plant and the actuators.

C. Control Performance

The goal of the controller is two fold: it needs to maintain
the state and control constraints while minimizing a cost
function given by J =

∑∞
k=0 (`(xk, uk) + π(δk)), where `(·)

is the stage cost function for the state and control, and π(·)
is the stage cost function for the estimation and computation.
These stage cost functions are chosen by the designer to
achieve a desired control performance.

D. Control Problem

The control problem is stated as follows.
Problem 1: Design a feedback controller, which computes

the admissible control input uk ∈ U and the required
estimation accuracy εk+1 (equivalently the delay δk+1) based
on the current state estimate x̂k, to minimize the cost J while
maintaining the state constraint xk ∈ S for all k ≥ 0.

E. Notations

In the rest of this paper, we use the following notational
convention. We write xj | k for a variable x at time step j
in the RMPC optimization for time step k ≤ j (i.e., the
prediction made at time step k of variable x at time step j).
To emphasize that this variable depends on an independent
variable v we write xj | k(v); however in cases when the
dependency is implicitly understood, we only write xj | k for
brevity. We use In to denote the identity matrix of size n×n.
The notation 0n (1n) represents the column vector of length n
whose elements are all 0’s (respectively 1’s). Similarly, 0n×m
(1n×m) is the matrix of size n×m whose elements are all
0’s (1’s). When the dimensions of the vectors or matrices are
obvious from the context, we drop the subscripts for brevity.

IV. ROBUST MPC WITH ANYTIME ESTIMATION

In this paper, we design the controller using a Robust
Model Predictive Control (RMPC) approach via constraint
restriction [2], [12]. In order to ensure robust safety and
feasibility, the key idea of this approach is to tighten the
state constraint iteratively to account for possible effect
of the disturbances. As time progresses, this “robustness
margin” is used in the MPC optimization with the nominal
dynamics, i.e., the original dynamics where the disturbances
are either removed or replaced by nominal disturbances.
Because only the nominal dynamics are used, the complexity
of the optimization is the same as for the nominal problem.

Since the controller only has access to the estimated state
x̂, we need to rewrite the plant’s dynamics with respect to x̂.
The error between xk and x̂k is ek = xk − x̂k. At time step
k + 1 we have

x̂k+1 = xk+1 − ek+1

= Axk +B1(δk)uk−1 +B2(δk)uk + wk − ek+1,

then, by writing xk = x̂k + ek, we obtain the dynamics

x̂k+1 = Ax̂k +B1(δk)uk−1 +B2(δk)uk + ŵk, k ≥ 0 (6)

where ŵk = wk + Aek − ek+1. The set of possible
values of ŵk depends on the estimation accuracy at
steps k and k + 1 and is denoted by Ŵ(εk, εk+1), i.e.,



Ŵ(ε, ε′) := {w +Ae− e′ : w ∈ W, e ∈ E(ε), e′ ∈ E(ε′)}.
Note that Ŵ(εk, εk+1) is independent of the time step k.
It can be computed as Ŵ(ε, ε′) = W ⊕ AE(ε) ⊕ (−E(ε′))
where the symbol ⊕ denotes the Minkowski sum of two sets.

The dynamics in Eq. (6) has a nonstandard form where it
depends on both the current and the previous control inputs.
However we can expand the state variable to store the previous
control input as

ẑk =

[
x̂k
uk−1

]
∈ Rn+m

and rewrite the dynamics as, for all k ≥ 0,

ẑk+1 = Â(δk)ẑk + B̂(δk)uk + F̂ ŵk. (7)

Here, the system matrices are

Â(δk) =

[
A B1(δk)

0m×n 0m×m

]
,

B̂(δk) =

[
B2(δk)
Im

]
, F̂ =

[
In

0m×n

]
.

(8)

Let the actual expanded state be zk =
[
xTk , u

T
k−1
]T

.
Because the expanded state consists of both the plant’s state
and the previous control input, the state constraint xk ∈ S
and the control constraint uk ∈ U are equivalent to the joint
constraint zk ∈ S × U . We can now describe the RMPC
algorithm for the dynamics in Eq. (7).

A. Tractable RMPC Algorithm

Let N ≥ 1 be the horizon length of the RMPC
optimization. Because the system matrices in the state
equation (7) depend nonlinearly on the variables δk, the
RMPC optimization is generally a mixed-integer nonlinear
program, which is very hard to solve. To simplify the RMPC
optimization to make it tractable, we fix the estimation mode
for the entire RMPC horizon.

Let Pδ,ε(x̂k, δk, εk, uk−1) denote the RMPC optimization
problem at step k ≥ 0 where the current state estimate
is x̂k, the current estimation mode is (δk, εk) ∈ ∆, the
previous control input is uk−1, and the estimation mode for
the entire horizon (after step k) is fixed at (δ, ε) ∈ ∆. The
specific RMPC optimization formulation will be presented
in Section V. Because the estimation mode is fixed for the
RMPC optimization, the RMPC cost function only needs to
include the first component of J : Jδ,ε =

∑k+N
j=k `(xj , uj).

The estimation and computation cost will be added later
J total
δ,ε = J?δ,ε + απ(δ) where α ≥ 0 is a weight specified

by the designer. Since the system matrices become constant
now, if the stage cost `(·) is linear or positive semidefinite
quadratic, each optimization problem Pδ,ε(·) is tractable and
can be solved efficiently as we will show later. The RMPC
algorithm with Anytime Estimation is stated in Alg. 1.

V. ROBUST MPC FORMULATION

We formulate the RMPC optimization
Pδ,ε(x̂k, δk, εk, uk−1) with respect to the nominal dynamics,
which is the original dynamics in Eq. (7) but the disturbances
are either removed or replaced by nominal disturbances. To

Algorithm 1 RMPC algorithm with Anytime Estimation.
1: (δ0, ε0) and u−1 specified by designer
2: Apply u−1
3: for k = 0, 1, . . . do
4: Estimate x̂k with mode (δk, εk)
5: for each (δ, ε) ∈ ∆ do
6: Solve Pδ,ε(x̂k, δk, εk, uk−1)
7: Calculate cost J total

δ,ε = J?δ,ε + απ(δ)
8: end for
9: (δ?, ε?, u?k | k)← arg minδ,ε J

total
δ,ε

10: Wait until ta,k
11: Apply control input uk = u?k | k and estimation mode

(δk+1, εk+1) = (δ?, ε?)
12: end for

ensure robust feasibility and safety, the state constraint set is
tightened after each step using a candidate stabilizing state
feedback control, and a terminal constraint is derived. In this
RMPC formulation, we extend the approach in [2], [12]. At
time step k, given (x̂k, δk, εk, uk−1) and for a fixed (δ, ε),
we solve the following optimization Pδ,ε(x̂k, δk, εk, uk−1):

J?δ,ε (x̂k, δk, εk, uk−1) = min
u,x

N∑
j=0

`(xk+j | k, uk+j | k) (9a)

subject to, ∀j ∈ {0, . . . , N}
zk+j+1 | k = Â(δk+j | k)zk+j | k + B̂(δk+j | k)uk+j | k (9b)
(δk+j+1 | k, εk+j+1 | k)=(δ, ε), (δk | k, εk | k)=(δk, εk) (9c)

xk+j | k =
[
In 0n×m

]
zk+j | k (9d)

zk | k =
[
x̂Tk , u

T
k−1
]T

(9e)
zk+j | k ∈ Zj (εk, ε) (9f)
zk+N+1 | k ∈ Zf (εk, ε) (9g)

in which z and x are the variables of the nominal dynamics.
The constraints of the optimization are explained below.
• Eq. (9b) is the nominal dynamics.
• Eq. (9c) states that the estimation mode is fixed at (δ, ε)

except for the first time step when it is (δk, εk).
• Eq. (9d) extracts the nominal state x of the plant from

the nominal expanded state z.
• Eq. (9e) initializes the nominal expanded state at time

step k by stacking the current state estimate and the
previous control input.

• Eq. (9f) tightens the admissible set of the nominal
expanded states by a sequence of shrinking sets.

• Eq. (9g) constrains the terminal expanded state to the
terminal constraint set Zf .

The state constraint Zj: The tightened state constraint sets
Zj (εk, ε) are parameterized with two parameters εk and ε.
They are defined as follows, for all j ∈ {0, . . . , N}

Z0(εk, ε) = Z 	 F̂E(εk) (10a)

Zj+1(εk, ε) = Zj(ε, ε)	 LjF̂Ŵ(εk, ε) (10b)

in which the symbol 	 denotes the Pontryagin difference
between two sets. The set Z combines the constraints for



both the plant’s state and the control input: Z = S × U .
The matrix Lj is the state transition matrix for the nominal
dynamics in Eq. (9b) under a candidate state feedback gain
Kj(δ), for j ∈ {0, . . . , N}

L0 = I (11a)

Lj+1 = (Â(δ) + B̂(δ)Kj(δ))Lj (11b)

Note that the possibly time-varying sequence Kj(δ) is
designed for each choice of δ (i.e., the system matrices
Â(δ) and B̂(δ)), hence Lj depends on δ; however we write
Lj for brevity. The candidate control Kj(δ) is designed
to stabilize the nominal system (9b), desirably as fast as
possible so that the sets Zj are shrunk as little as possible.
In particular, if Kj(δ) renders the nominal system nilpotent
after M < N steps then Lj = 0 for all j ≥ M , therefore
Zj (εk, ε) = ZM (εk, ε) for all j > M .
The terminal constraint Zf : Zf is given by

Zf (εk, ε) = C(δ, ε)	 LN F̂Ŵ(εk, ε) (12)

where C(δ, ε) is a robust control invariant admissible set for
δ [13], i.e., there exists a feedback control law u = κ(z)
such that ∀z ∈ C(δ, ε)

Â(δ)z+B̂(δ)κ(z)+LN F̂w ∈ C(δ, ε),∀w ∈ Ŵ(ε, ε) (13a)
z ∈ ZN (ε, ε) (13b)

We remark that C(δ, ε) does not depend on (δk, εk), therefore
it can be computed offline for each mode (δ, ε).

A. Robust Feasibility

The RMPC formulation in Eq. (9), with a fixed estimation
mode (δ, ε) ∈ ∆, is designed to ensure that it is robustly
feasible, as stated in Theorem 1.

Theorem 1 (Robust Feasibility of RMPC): For any esti-
mation mode (δ, ε), if Pδ,ε(x̂k0 , δk0 , εk0 , uk0−1) is feasible
then the system (2) controlled by the RMPC and subjected
to disturbances constrained by Eq. (3) robustly satisfies the
state constraint (4) and the control input constraint (5), and
all subsequent optimizations Pδ,ε(x̂k, δk, εk, uk−1), ∀k > k0,
are feasible.

Proof: See the Appendix.
The control algorithm in Alg. 1, in each time step k, solves
Pδ,ε(x̂k, δk, εk, uk−1) for each estimation mode (δ, ε) ∈ ∆
and selects the control input uk and the next estimation
mode (δk+1, εk+1) corresponding to the best total cost J total

δ,ε .
Therefore, during the course of control, the algorithm may
switch between the estimation modes in ∆ depending on the
system’s state. Theorem 2 states that if the control algorithm
Alg. 1 is feasible in its first time step then it will be robustly
feasible and the state and control input constraints are also
robustly satisfied.

Theorem 2: If at the initial time step there exists (δ, ε) ∈ ∆
such that Pδ,ε(x̂0, δ0, ε0, u−1) is feasible then the system (2)
controlled by Alg. 1 and subjected to disturbances constrained
by Eq. (3) robustly satisfies the state constraint (4) and the
control input constraint (5), and all subsequent iterations of
the algorithm are feasible.

Proof: The Theorem can be proved by recursively apply-
ing Theorem 1. Indeed, suppose at time step k the algorithm
is feasible and results in control input uk and next estima-
tion mode (δk+1, εk+1), then Pδk+1,εk+1

(x̂k, δk, εk, uk−1) is
feasible. By Theorem 1, uk ∈ U and at the next time step
k + 1, xk+1 ∈ S and Pδk+1,εk+1

(x̂k+1, δk+1, εk+1, uk) is
also feasible, hence the algorithm is feasible. Therefore, the
Theorem holds by induction.

VI. IMPLEMENTATION DETAILS

Efficient computation of the constraint sets necessary for
the RMPC formulation can be achieved for some special cases
of disturbances and estimation errors as explained below.

A. Compute State Constraint Sets

If the error set E and the disturbance set W are defined
by vector norms, while the other sets are polytopes in
H-representation form, then it is possible to compute the
Pontryagin difference in the above equations efficiently [14].

• If E(ε) :=
{
e ∈ Rn : ‖e‖p ≤ ε

}
for some norm p ∈

{1, 2,∞} then its support function is hε(η) = ε ‖η‖q
with p−1 + q−1 = 1. Similarly we also have hw(η).

• Suppose Z = {z : HZz ≤ bZ} is a polytope in H-
representation form (i.e., intersection of a finite number
of half-planes). The rows of HZ are HT

Z,i.
• The most demanding computation in computing the con-

straint sets of the RMPC optimization is the Pontryagin
difference. If a set V has support function hV then
Z 	 V can be computed as:

Z 	 V =

z : HZz ≤ bZ −

hV (HZ,1)
...

hV (HZ,m)




• The support function hεk,ε for Ŵ (εk, ε) is

hεk,ε(η) = hw(η) + hεk
(
AT η

)
+ hε (−η)

The computation of Zj therefore involves only simple
linear algebra: matrix and vector multiplications, additions
and substractions, as well as vector norms. It is not difficult
to see that we can write

Zj (εk, ε) = {z : HZz ≤ bZ − εdj − εkgj} (14)

where dj and gj are constant vectors, which depend only on
δ. Therefore we can improve these computations further by
pre-computing offline these vectors; then once εk is given,
we can compute Zj in real time very fast. The terminal set
Zf can be computed in the same way.

B. Compute Robust Control Invariant Set

To compute the set C (δ, ε) in Eq. (13):

1) Compute Ω = ZN (ε, ε) and Ŵ (ε, ε) (see above).
2) Call the Matlab Invariant Set Toolbox [15] to compute

the maximal robust control invariant set C (δ, ε) inside
Ω subject to the disturbance set Ŵ (ε, ε).



VII. CASE STUDY

To evaluate the performance of the proposed control
scheme, we apply it to an idealized tracking and navigation
problem in a 2-dimensional plane. The estimator, which is an
anytime algorithm, is responsible for localization of a vehicle.
The controller, which is the RMPC algorithm, is tasked with
moving the vehicle to the origin while keeping it inside a
safe set. The continuous-time state-space representation of
the vehicle is

ẋ
ẏ
v̇x
v̇y

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



x
y
vx
vy

+


0 0
0 0
1 0
0 1

[axay
]

.

Here, the states are position along x-axis (x), position along
y-axis (y), velocity along x-axis (vx), and velocity along
y-axis (vy). The control inputs are acceleration along x-axis
(ax) and acceleration along y-axis (ay). The sampling period
for discrete-time implementation of the controller and the
estimator is T = 0.02s. For simplicity, we assume that there
is no process noise.

A. The state estimator

In this study, we assume that the estimator is a vision-
based system which can give estimates of the 4 states.
For example, the estimator can utilize a camera looking
down on the vehicle in the x–y plane, and the captured
images are processed to detect and localize the vehicle
as well as to estimate its velocity. There are three esti-
mation modes (δ1 = 10ms, ε1 = 0.1), (δ2 = 5ms, ε2 = 0.5),
(δ3 = 2.5ms, ε3 = 1.0), assuming a linear relation between
computation time and estimation accuracy. The realization
of these modes can come from the use of different camera
resolutions, frame rates as well as feature tracking/estimation
algorithms, which is beyond the scope of this paper. The
estimation error is such that ‖ek‖∞ ≤ εk where ek = xk−x̂k.
In our simulation, the state estimate x̂k is generated by adding
a uniformly random error ek, bounded by εk, to the true state
xk.

B. Simulation setup and results

The controller is tasked with minimizing a `2-norm cost
on the states and inputs while respecting the state and input
constraints. When the origin is within the safe set of positions,
this minimization results in a trajectory bringing the vehicle
from an initial displacement to the origin. We chose a horizon
length N = 50 for the RMPC and a simulation length of 400
time steps. For the scope of this study, we neglected the cost
of using a particular estimation mode, i.e., α = 0 in Alg. 1.
This means that the mode selection depends solely on the
control performance for the RMPC formulation for that mode.
Note, the computations for the feasible set were done using
the results of Section VI-A, which gave a significant speed up.
Discrete time LQR design was used to select a time-invariant
stabilizing feedback gain K(δ) for each estimation mode.The
robust control invariant set C(δ, ε) was computed using the

Fig. 3. Trajectory and safe set of positions.

Matlab invariant set toolbox [15]. The RMPC optimization
was solved in MATLAB using CVX [16], [17].

For the simulation, the initial state was set to be
[30, 30, 0, 0] corresponding to initial position of 30, 30 units in
the x–y plane and zero initial velocities (in both directions).
The initial inputs were also set to zero. Fig. 3 shows the
estimated trajectory and the actual trajectory of the system,
which stays inside the safe set of positions (the polyhedron
in the figure). The velocities were constrained such that
‖vx(t)‖∞ ≤ 100,∀t and ‖vy(t)‖∞ ≤ 100,∀t. The inputs
were also constrained to be such that ‖ax(t)‖∞ ≤ 100,∀t
and ‖ay(t)‖∞ ≤ 10,∀t. The initial feasible set Z can be
found by the Cartesian product of these three (the position,
velocity and acceleration) sets. Initially, the estimator was
started in the 1st mode. Using Alg. 1, the optimal mode
of the estimator and the corresponding Robust MPC input
to the system are picked at each time step. Note that the
actual trajectory is nearly a straight line from the initial point
to the origin, as it would be in a noiseless and delay free
system, even though the measured trajectory shows the effects
of the estimation error and computation delay. This shows
the robustness of the RMPC algorithm in the presence of
time varying delays and estimation errors due the estimator
mode switching. Fig. 4 shows the velocities (both estimated
and actual). Note that as expected, the vehicle slows down
as it approaches the origin and the trend continues even as
estimation error increases. Fig. 5 shows the acceleration inputs
to the system. Note, the main assumption behind this work
is that there is a benefit from switching between different
(δ, ε) estimation modes. Fig. 6 shows the mode selected at
each time step and the switching of the modes indicates
that there is indeed a cost improvement in switching modes
while maintaining feasibility. This shows Alg. 1 gives better
performance than a Robust MPC formulation with a fixed
delay/estimation error mode.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an RMPC algorithm for a control
system, with state and input constraints, where the state
estimator is an anytime algorithm with multiple operation
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Fig. 4. Estimated and actual velocities of the vehicle.
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Fig. 5. Control input (acceleration) to the vehicle.

modes. The modes represent different trade-offs between
computation time and estimation accuracy. The proposed
RMPC algorithm computes both the control input to the
plant as well as the mode for the anytime estimator. Robust
feasibility and robust satisfiability of the constraints are
ensured by tightening the constraints corresponding to the
estimation mode, and by a terminal set based on robust control
invariance. As a case study, we applied our scheme to an
idealized motion model with three estimation modes and
showed the benefits of switching between modes.

Ongoing research focuses on reducing the computational
burden of solving the RMPC optimization for each estimation
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Fig. 6. Estimation mode switching of the proposed control algorithm.

mode at each time step. This can be achieved by developing
conditions that eliminate certain modes which are either
infeasible at the current time step or are suboptimal. Another
branch of ongoing work, which is beyond the scope of this
paper, is on developing anytime estimators for vision-based
control. This will enable us to apply our approach to real
systems.

APPENDIX

Proof of Theorem 1: We will prove the theorem by recursion.
We will show that if at any time step k the RMPC problem
Pδ,ε(x̂k, δk, εk, uk−1) is feasible and feasible control input
uk = u?k | k is applied with estimation mode (δk+1, εk+1) =
(δ, ε) then uk is admissible and at the next time step k + 1,
the actual plant’s state xk+1 is inside S and the optimization
Pδ,ε(x̂k+1, δk+1, εk+1, uk) is feasible for all disturbances.
Then we can conclude the theorem because, by recursion,
feasibility at time step k0 implies robust constraint satisfaction
and feasibility at time step k0 +1, and so on at all subsequent
time steps.

Suppose Pδ,ε(x̂k, δk, εk, uk−1) is feasible. Then it has a
feasible solution

(
{z?k+j | k}

N+1
j=0 , {u?k+j | k}

N
j=0

)
that satisfies

all the constraints in Eq. (9). Now we will construct a
feasible candidate solution for Pδ,ε(x̂k+1, δk+1, εk+1, uk)
at the next time step by shifting the above solution by
one step. Consider the following candidate solution for
Pδ,ε(x̂k+1, δk+1, εk+1, uk):

zk+j+1 | k+1 = z?k+j+1 | k + LjF̂ ŵk (15a)

zk+N+2 | k+1 = Â (δ) zk+N+1 | k+1 + B̂ (δ)uk+N+1 | k+1

(15b)

uk+i+1 | k+1 = u?k+i+1 | k +Ki (δ)LiF̂ ŵk (15c)

uk+N+1 | k+1 = κ
(
zk+N+1 | k+1

)
(15d)

in which j ∈ {0, . . . , N}, i ∈ {0, . . . , N − 1}, and κ (·) is
the feedback control law for the invariant set C(δ, ε) that is
used in the terminal set in Section V. We first show that the
input and state constraints are satisfied for uk and xk+1, then
we will prove the feasibility of the above candidate solution
for Pδ,ε(x̂k+1, δk+1, εk+1, uk).
Validity of the applied input and the next state: The next
plant’s state is

xk+1 = Axk +B1 (δk)uk−1 +B2 (δk)uk + wk

= A (x̂k + ek) +B1 (δk)uk−1 +B2 (δk)u?k | k + wk

=
[
A B1 (δk)

] [ x̂k
uk−1

]
+B2 (δk)u?k | k

+ ek+1 + (wk +Aek − ek+1)

in which ek+1 ∈ E (ε) and (wk +Aek − ek+1) ∈ Ŵ (εk, ε).
Note that z?k | k =

[
x̂Tk , u

T
k−1
]T

. Hence we have[
xk+1

uk

]
= Â(δk)z?k | k + B̂(δk)u?k | k

+ F̂ ek+1 + F̂ (wk +Aek − ek+1)

= z?k+1 | k + F̂ ek+1 + F̂ (wk +Aek − ek+1)



where we use the dynamics in Eq. (9b). From Eq. (9f)
and Eq. (10), z?k+1 | k satisfies z?k+1 | k ∈ Z1 (εk, ε) =

Z 	 F̂E (ε) 	 F̂Ŵ (εk, ε). It follows that
[
xTk+1, u

T
k

]T ∈
Z = S × U , therefore xk+1 ∈ S and uk ∈ U .
Initial condition: We have from Eq. (7) that ẑk+1 = Â(δk)ẑk+
B̂(δk)uk + F̂ ŵk. On the other hand, by Eq. (15a),

zk+1 | k+1 = z?k+1 | k + L0F̂ ŵk

= Â(δk)z?k | k + B̂(δk)u?k | k + L0F̂ ŵk.

Note that z?k | k = ẑk, uk = u?k | k, and L0 = I. Therefore
zk+1 | k+1 = ẑk+1, hence the initial condition is satisfied.
Dynamics: We show that the candidate solution satisfies the
dynamics constraint in Eq. (9b). For 0 ≤ j < N we have

zk+j+2 | k+1

= z?k+j+2 | k + Lj+1F̂ ŵk

= Â (δ) z?k+j+1 | k + B̂(δ)u?k+j+1 | k + Lj+1F̂ ŵk

= Â (δ)
(
zk+j+1 | k+1 − LjF̂ ŵk

)
+ B̂(δ)

(
uk+j+1 | k+1 −Kj (δ)LjF̂ ŵk

)
+ Lj+1F̂ ŵk

= Â (δ) zk+j+1 | k+1 + B̂(δ)uk+j+1 | k+1

−
(
Â (δ) + B̂(δ)Kj (δ)

)
LjF̂ ŵk + Lj+1F̂ ŵk

= Â (δ) zk+j+1 | k+1 + B̂(δ)uk+j+1 | k+1

where the equality in Eq. (11b) is used to derive the last
equality. Therefore the dynamics constraint is satisfied for
all 0 ≤ j < N . For j = N , the constraint is satisfied by
construction by Eq. (15b).
State constraints: We need to show that z(k+1)+j | k+1 ∈
Zj(ε, ε) for all j ∈ {0, . . . , N}. Consider any 0 ≤ j < N .
Eq. (10b) states that Zj+1 (εk, ε) = Zj (ε, ε)	LjF̂Ŵ (εk, ε).
From the construction of the candidate solution we have
zk+j+1 | k+1 = z?k+j+1 | k + LjF̂ ŵk, where ŵk ∈ Ŵ (εk, ε)
and z?k+j+1 | k ∈ Zj+1 (εk, ε). By definition of the Pontryagin
difference, we conclude that zk+j+1 | k+1 ∈ Zj (ε, ε) for all
j ∈ {0, . . . , N − 1}.

At j = N the candidate solution in Eq. (15a) gives
us z(k+1)+N | k+1 = z?k+N+1 | k + LN F̂ ŵk. Because
z?k+N+1 | k ∈ Zf (εk, ε) = C (δ, ε) 	 LN F̂Ŵ (εk, ε) and
ŵk ∈ Ŵ (εk, ε), we have z(k+1)+N | k+1 ∈ C (δ, ε). The
definition of C (δ, ε) in Eq. (13) implies C (δ, ε) ⊆ ZN (ε, ε).
Therefore z(k+1)+N | k+1 ∈ ZN (ε, ε).
Terminal constraint: We need to show that zk+N+2 | k+1 ∈
Zf (ε, ε) = C (δ, ε) 	 LN F̂Ŵ (ε, ε). Add LN F̂ ŵ, for any
w ∈ Ŵ (ε, ε), to both sides of Eq. (15b) and note that
uk+N+1 | k+1 = κ

(
zk+N+1 | k+1

)
, we have

zk+N+2 | k+1 + LN F̂ ŵ = Â (δ) zk+N+1 | k+1

+ B̂ (δ)κ
(
zk+N+1 | k+1

)
+ LN F̂ ŵ.

It follows from zk+N+1 | k+1 ∈ C (δ, ε) and from the
definition of the invariant control invariant admissible set
C (δ, ε) (Eq. (13)) that zk+N+2 | k+1 + LN F̂ ŵ ∈ C (δ, ε)

for all w ∈ Ŵ (ε, ε). Then by definition of the Pontryagin
difference, we conclude that zk+N+2 | k+1 ∈ C (δ, ε) 	
LN F̂Ŵ (ε, ε) = Zf (ε, ε).
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