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Clinical Decision Support for Integrated Cyber-Physical Systems: A Mixed
Methods Approach

Abstract
We describe the design and implementation of a clinical decision support system for assessing risk of cerebral
vasospasm in patients who have been treated for aneurysmal subarachnoid hemorrhage. We illustrate the need
for such clinical decision support systems in the intensive care environment, and propose a three pronged
approach to constructing them, which we believe presents a balanced approach to patient modeling. We
illustrate the data collection process, choice and development of models, system architecture, and
methodology for user interface design. We close with a description of future work, a proposed evaluation
mechanism, and a description of the demo to be presented.
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ABSTRACT
We describe the design and implementation of a clinical
decision support system for assessing risk of cerebral va-
sospasm in patients who have been treated for aneurysmal
subarachnoid hemorrhage. We illustrate the need for such
clinical decision support systems in the intensive care envi-
ronment, and propose a three pronged approach to construct-
ing them, which we believe presents a balanced approach to
patient modeling. We illustrate the data collection process,
choice and development of models, system architecture, and
methodology for user interface design. We close with a de-
scription of future work, a proposed evaluation mechanism,
and a description of the demo to be presented.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g.,
HCI)]: User Interfaces; I.2.1 [Artificial Intelligence]: Ap-
plications and Expert Systems

General Terms
Design, Experimentation

Keywords
Clinical Decision Support, Vasospasm, Machine Learning,
Mixed Methods, Patient Modeling

1. INTRODUCTION
Many modern critical care units continuously monitor pa-

tient vital signs. Due to the volume of data produced and

the lack of sophisticated on-line analytic tools, however, this
data is currently of limited use. Bedside nurses can utilize it
through threshold-based alarms, but accessing past data is
often difficult. As physicians are not geographically bound
to one or two bedsides, they must rely on periodic manual
recording of the data on paper records, or hand-entered val-
ues in electronic medical records. There may be information
within this data that can assist clinicians in real-time deci-
sion making, but it is inaccessible due to technological and
human factor barriers.

To more effectively use this data, systems are being devel-
oped that enable real-time medical information from multi-
ple devices to be gathered in one place [11]. It would then
be possible to analyze this data alongside information from
a patient’s electronic health record to create a clinical con-
text. Once this context is created, ”smarter” alarms can be
created that detect physiologic changes in the patient and
present relevant pieces of information to the physician. The
clinician can use the system to investigate further, probing
or visualizing the data in real-time.

We propose a design of an alarm system which utilizes
multiple patient models using data from different sources,
forming a more complete picture of the patient’s state and
balancing the traditional drawbacks of complex statistical
models. We describe in particular a project in which multi-
ple patient models are used to communicate a patient’s risk
for vasospasm after aneurysmal subarachnoid hemorrhage.

2. BACKGROUND
Some vital sign monitors can be configured with thresh-

old alarms, which activate when the value monitored crosses
a predefined threshold. These devices can be vital for the
timely detection of emergency states [1, 10], but suffer from
severe limitations. They are simplistic, unable to recognize
anything beyond basic threshold crossings; they are insular,
only utilizing single streams of data; and they do not lever-
age patient context information. As a result, they produce
many false positive alarms which fatigue caretakers [3, 9].
Many efforts have been made to improve the accuracy of
threshold alarms [4, 12, 15] and many clinical decision sup-



port systems have been shown to hold promise in improving
care [6, 8, 16]. However, many developed systems operate
on hospital-dependent platforms, making use in other hos-
pitals difficult or impossible. Additionally, adoption rate of
developed systems after the main evaluation study has been
completed has been low, often due to trust issues or lack of
clear perceived benefit.

Changes in physiologic state can have subtle yet intercon-
nected manifestations in phenotype, monitor, and labora-
tory data. Complex physiological state changes are not ad-
equately detected by threshold-based alarms, because such
detection requires integration of disparate data sources [14,
2].

Once integrated, these data sources must be used to build
patient models with high accuracy, while maintaining trans-
parency and simplicity. These models can be generated us-
ing automated statistical methods, which are able to de-
tect patterns within data that unaided human methods may
miss. However, new clinical alarms may be accompanied by
a healthy amount of skepticism in clinicians, due to their
complexity, their lack of transparency, and their imperfect
accuracy.

3. THREE-PRONGED APPROACH
In designing a smart alarm, it is important to enable clin-

icians to trust statistical methods through transparency. In
our three pronged approach, we incorporate a thorough anal-
ysis of existing clinical care guidelines, a survey of the ap-
proach commonly taken by physicians, and complex statis-
tical models trained on data from large patient populations.
Each of these approaches to clinical decision support has
strengths and weaknesses, and we believe presenting them
to the clinician in parallel grants each significantly more
strength, and the performance of each can be evaluated
against the others in order to gain a better understanding
of their significance.

Clinical guidelines establish a standard of care for a par-
ticular institution and are based on an interpretation of
evidence-based medicine and local expertise. Incorporating
these guidelines into a decision support system which evalu-
ates data in real-time provides a ”lower bound” on behavior,
and a baseline for comparing the performance of more com-
plex classifiers. Most guidelines are relatively simple and
are easily understood by humans, and incorporating them
into a decision support system provides transparency and
assurance of reasonable behavior.

Guidelines, however, are inherently incomplete [5]. It is
impossible for every possible patient scenario to be outlined
and presented, and often specificity must be sacrificed to
keep the guidelines brief and easy to understand. Because
guidelines are written in natural language for human read-
ability, they may contain ambiguities, and are difficult to
check for completeness. Lastly, because they are usually
created by large panels of experts, they are infrequently re-
vised and may become out of date quickly, and cannot adapt
very swiftly to changes in practice suggested by new studies.

Physician experience expands considerably upon clinical
practice guidelines. Physicians leverage extensive education
and experience to develop and refine their own decision mak-
ing techniques. Experienced physicians are able to quickly
identify salient points to focus on when attempting to assess
patient risk. By capturing experienced physicians’ mental
models in a clinical decision support system, doctors and

nurses would have access to the aggregate opinion of expert
consultants’ opinions when no expert is available locally or
immediately. More generally, they would allow patient risk
to be assessed based on what an expert physician might do
if they were physically at the bedside and had ample time,
memory, and the ability to process large amounts of data
quickly.

Utilizing physician experience is not without its difficul-
ties. Clinicians are inherently biased, relying on past expe-
rience and practice, which is influenced by time, training,
and many other factors. Also, it is often difficult to capture
how clinicians actually make decisions, as they may rely on
difficult to quantify ”gut feelings,” and may, while describing
their thought process, unintentionally leave out subtle cri-
teria that they use to accurately assess patient risk. There
is also no guarantee that any group of physicians will agree:
constructed models may contain contradictory statements
and methods of practice in areas of clinical equipoise, which
might be challenging to reconcile in an electronic system.

Electronic decision support systems are unique in that
they can use statistical models learned on large quantities
of relevant patient data to generate decision support. Such
models can identify which features are most indicative of
patient risk according to the provided data. They have the
potential to identify medically novel approaches to patient
risk assessment by uncovering subtle patterns in patient data
normally overlooked by clinicians.

The large amount of data required to build statistical
models poses significant obstacle to their use. Data collec-
tion is currently an arduous process at many hospitals, and
insufficient data could lead to a poor model. Also, many sta-
tistical models act as ”black boxes,”producing an output but
no accompanying justification, making them unintuitive and
difficult to trust in clinical use. All of these present unique
challenges that must be addressed for statistical data mod-
eling to be a useful part of future systems.

4. PROJECT DEVELOPMENT DETAILS
After aneurysmal subarachnoid hemorrhage, patients are

kept in the ICU for up to fourteen days to monitor for cere-
bral vasospasm (VSP), a narrowing of the blood vessels in
the brain. VSP can lead to cerebral ischemia and neuro-
logic dysfunction if untreated. While there are clinical fac-
tors which increase suspicion for VSP, the ability to define
its onset in these patients is made difficult by poor sen-
sitivity of available tests. The only definitive measure of
VSP’s presence is cerebral angiogram, which is invasive and
resource-intensive. Early detection and treatment of VSP
is the mainstay of ICU goals toward improving patient out-
come after subarachnoid hemorrhage. With these consider-
ations in mind, we have produced a decision support system
which could aid clinicians in assessing a subarachnoid hemor-
rhage patient’s risk for VSP during their post-surgery stay in
the neurological ICU by integrating and analyzing multiple
patient vital signs. We aimed to achieve a ”three pronged”
approach, described above, in an attempt to overcome the
individual weaknesses of the various types of models.

Initial focus was to identify patient vital signs which were
likely to be of use in assessing a patient’s risk for VSP and
could be used in the decision support system. These ”fea-
tures” were gathered from reviews of clinical guidelines, in-
terviews with clinicians, and literature reviews. We also
noted the current availability of these features in the neuro-



Figure 1: A portion of the statistical model testing interface, running a subset of available models over a set
of patient data. The arrow points to the line indicating the time when doctors confirmed vasospasm using
cerebral angiogram. Note the general upward trend of the various classifiers prior to the positive angiogram.

logic ICU at the Hospital at the University of Pennsylvania.
Even if a feature was not well established as a clinical marker
for vasospasm, we attempted to include it in our collection
process. If we determine that these variables are not sig-
nificant, their impact on the models’ performance will be
minimal.

As device interoperability and data accessibility are still
often significant challenges in the ICU, we focused on retro-
spective data acquisition measures. We collected data from
89 HUP patients who presented with aneurysmal subarach-
noid hemorrhages between 2001 and 2011. We gathered
static data (i.e., those factors that did not vary during the
patient’s hospital stay) such as gender, age, tobacco and co-
caine history, home medications, etc. Periodic data (taken
regularly during the hospital stay) was also collected in or-
der to establish a timeline of diagnosis and treatment of
vasospasm for each patient. We tracked the results of daily
transcranial Doppler tests and noted increased suspicion of
vasospasm in conjunction with increased velocity of blood
flow. Angiogram and CT angiogram data were used to es-
tablish definite evidence of vasospasm. We also gathered CT
and MRI information, noting whether either scan evidenced
stroke or neurological deficit.

To achieve the rule-based portion of the ”three-pronged
approach,”we utilized the Hospital of the University of Penn-
sylvania’s clinical guidelines for care of subarachnoid hem-
orrhage patients after surgery. We identified a section de-
scribing mechanisms for detection and treatment of VSP.
Adjectives in this section were stratified, and guidelines were
formulated into rule-action pairs, which were encoded as a
decision table. During the encoding process, we identified
several ambiguities in the rules and sought to reconcile them
by consulting physicians.

The physician-based model proved to be more difficult to
construct. There are many different knowledge acquisition
techniques available for extracting expertise from experts,
and each has strengths and weaknesses [13]. For each physi-
cian, we attempted to determine which variables they per-
ceived as clinically relevant from among those included in
the main list. We then developed a decision tree using those
variables through enumeration of many possible cases. A
decision tree was chosen both for its relative simplicity, ease
of construction, and because it seems to correspond closely
to how physicians vocalize their thought process. Then, to
combine the classifiers produced, we use an ”ensemble of
classifiers” approach in which each physician model is run
on incoming data and a mixture of their ”opinions” is used
as the final output, through voting or averaging.

For preliminary testing of statistical models, we utilized
the Weka [7] machine learning tool. Common machine learn-
ing techniques were used to produce statistical models over
collected patient data. Because it is unlikely than any single
model will produce the ”best” results in all scenarios, we cre-
ated many different models and a testing interface 1 which
can evaluate models in parallel over test data and produce
detailed statistics on their performance. Results of these
tests can then be used to select and combine the strongest
models.

The final stage of the project involved development of a
concise, intuitive user interface to present results to the user.
We aimed to achieve a balance between ease of understand-
ing, and depth of knowledge presented, by allowing clini-
cians to obtain more details and explore the data on their
own, beyond the data summary presented to them. For the
demo, we will present a simple user interface that has basic
functionality aspects that illustrates this balance.

Future work will involve clinical evaluation, as well as ex-
panding the framework developed for this system to modules
for other difficult-to-diagnose conditions, such as sepsis.

5. EVALUATION
For patients who underwent an angiogram which con-

firmed VSP, it is possible to evaluate the system’s perfor-
mance in a ”time-to-diagnose”capacity. In those cases where
physicians performed an angiogram on the patient, we will
will evaluate whether the system produced a marked in-
crease in risk level before VSP was angiographically con-
firmed. We will focus on using the data available to prove
that the model has a high positive predictive value, and min-
imal false negatives. Once this has been established, we will
introduce the system into prospective trials and attempt to
evaluate the system’s ability to alert the physician to points
of interest in the data.

6. DEMO DESCRIPTION
The overall architecture of the system will then consist

of the developed statistical models to be used to evaluate
the patients’ state, chosen prerecorded clinical data used to
train those models, input devices (in the case of the demo,
prerecorded test data will be inserted into the models over
time, for the purposes of simulation), the framework used to
run these models in parallel and deliver their results to some
display, and the display code itself, which will present the
results in a manner conducive to the hospital environment.

The demo to be presented will involve an interactive va-
sospasm monitoring system running over patient data ”re-
ceived” in simulated real-time. The system will display the
status of the patient and an evaluation of their risk for va-
sospasm. The demo audience will be able to pause the demo,
move through the data forward and backward in time, in or-
der to compare the patient’s current state to their past state,
and will be able to access more details about the data.
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