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Evaluation and Enhancement of an Intraoperative Insulin Infusion
Protocol via In-Silico Simulation

Abstract

Intraoperative glycemic control, particularly in cardiac surgical patients, remains challenging. Patients with
impaired insulin sensitivity and/or secretion (ie., type 1 diabetes mellitus) often manifest extremely labile
blood glucose measurements during periods of stress and inflammation. Most current insulin infusion
protocols are developed based on clinical experiences and consensus among a local group of physicians.
Recent advances in human glucose metabolism modeling have established a computer model that invokes
algorithms representing many of the pathways involved in glucose dysregulation for patients with diabetes. In
this study, we used an FDA approved glucose metabolism model to evaluate an existing institutional
intraoperative insulin infusion protocol via closedloop simulation on the virtual diabetic population that
comes with the computer model. A comparison of simulated responses to actual retrospective clinical data
from 57 type 1 diabetic patients undergoing cardiac surgery managed by the institutional protocol was
performed. We then designed a proportional-derivative controller that overcomes the weaknesses exhibited
by our old protocol while preserving its strengths. In-silico evaluation results show that our proportional-
derivative controller more effectively manages intraoperative hyperglycemia while simultaneously reducing
hypoglycemia and glycemic variability. By performing insilico simulation on intraoperative glucose and
insulin responses, robust and seemingly efficacious algorithms can be generated that warrant prospective
evaluation in human subjects.
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Abstract—Intraoperative glycemic control, particularly in car-
diac surgical patients, remains challenging. Patients with im-
paired insulin sensitivity and/or secretion (i.e., type 1 diabetes
mellitus) often manifest extremely labile blood glucose mea-
surements during periods of stress and inflammation. Most
current insulin infusion protocols are developed based on clinical
experiences and consensus among a local group of physicians.
Recent advances in human glucose metabolism modeling have
established a computer model that invokes algorithms repre-
senting many of the pathways involved in glucose dysregulation
for patients with diabetes. In this study, we used an FDA
approved glucose metabolism model to evaluate an existing
institutional intraoperative insulin infusion protocol via closed-
loop simulation on the virtual diabetic population that comes with
the computer model. A comparison of simulated responses to
actual retrospective clinical data from 57 type 1 diabetic patients
undergoing cardiac surgery managed by the institutional protocol
was performed. We then designed a proportional-derivative
controller that overcomes the weaknesses exhibited by our old
protocol while preserving its strengths. In-silico evaluation results
show that our proportional-derivative controller more effectively
manages intraoperative hyperglycemia while simultaneously re-
ducing hypoglycemia and glycemic variability. By performing in-
silico simulation on intraoperative glucose and insulin responses,
robust and seemingly efficacious algorithms can be generated
that warrant prospective evaluation in human subjects.

Index Terms—Intraoperative glycemic control, in-silico evalua-
tion, proportional-derivative controller, insulin infusion protocol,
computer model

I. INTRODUCTION

Background. Hyperglycemia, unless iatrogenic, typically
represents a secondary manifestation (i.e., epiphenomenon)
of myriad physiologic, pharmacologic and/or metabolic de-
rangements. While glucose is essential to life, in excess it is
associated with increased cardiovascular morbidity and mor-
tality in both diabetics and non-diabetics [1], [2]. Currently,
one in every twelve people in the United States has diabetes
mellitus and the risk of death among this group is roughly
twice that of age-matched controls [3], [4], [5], [6]. It is
therefore not surprising that the prevalence of diabetes mellitus
and its associated complications among hospitalized patients

This research was supported in part by NSF CNS-1035715 and NIH
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are increasing [7], [8], [9]. While outpatient management of
hyperglycemia has historically been the primary focus in this
population, and has unquestionably reduced diabetic morbid-
ity and mortality, mounting evidence suggests that inpatient
glycemic control may impart a similar benefit [10], [11], [12],
[13], [14], [15], [16], [17], [18].

More recent investigations have begun focusing efforts
towards reducing hyperglycemia specifically among critically
ill and perioperative patients. The primary genesis of this
approach stems from a 2001 randomized, controlled study that
reported significant decreases in ICU and hospital mortality
when blood glucose levels (BGLs) were maintained between
80 — 100 mg/dL compared to a less aggressive level of 180
— 200 mg/dL [19]. Subsequent enthusiasm for aggressive glu-
cose management, however, has tempered as multiple groups
attempting to replicate those results were unable to show
comparable reductions in morbidity and mortality and have
consistently observed high rates of hypoglycemia [20], [21],
[22], [23], [24], [25]. Whether the lack of mortality benefit
in these studies can be directly attributed to the high rates
of hypoglycemia is uncertain. Many groups that have effec-
tively maintained euglycemia whilst avoiding hypoglycemia
have demonstrated improved outcomes in those treated more
aggressively with insulin [26], [27], [28], [29]. Furthermore,
wide and frequent oscillations in plasma glucose (so called,
glycemic variability) appear to be as, if not more, important
as absolute glucose values in critically ill patients and may
compound any deleterious effects of hyperglycemia [30], [31],
[32], [33].

While the appropriate target of plasma glucose in criti-
cally ill or perioperative patients remains elusive, there is
general consensus with regards to three points: 1) Profound
and sustained hyperglycemia in critically ill patients is likely
harmful; 2) Isolated or sustained hypoglycemia in critically
ill patients is likely harmful; 3) Wide and frequent variations
in serum glucose values are likely harmful. As these three
goals, nebulous as they may be, appear to be recurrent and
unifying themes, attention must be directed towards methods,
protocols and/or devices that can aid in achieving all three.
Until accurate and reliable continuous glucose monitors are



available for critically ill patients, we remain limited in our
ability to measure, respond, and predict future glucose values.
Protocols that take into account prior glucose readings and
rates of change have been more successful but are far from
foolproof [34], [35], [36], [37], [38], [39], [40].

Motivation. Designing a protocol to reliably achieve glu-
cose control, particularly when faced with frequent changes
in physiologic parameters such as insulin sensitivity (as is
seen perioperatively) is, at best, challenging and, at worst,
harmful [41], [42], [43]. Current protocols are mostly de-
rived from experience and intuition and are developed by
local consensus, often taking into account available resources.
Unlike many engineering systems (e.g., electronic circuits and
automobiles), where first-principle plant models can be derived
from classical physics, it is extremely difficult to identify a
mathematical model that would accurately predict the glucose-
insulin dynamics of an individual with only limited measurable
clinical data [44]. Furthermore, it is neither feasible nor ethical
to test all potential insulin protocols in human patients.

While attempts to model glucose metabolism using com-
puter simulation were first proposed in the 1960s, newer
simulations that incorporate data-driven plant modeling of
glucose metabolism now exist and are able to more accurately
mimic gluco-regulation in diabetic patients [45], [46], [47].
System identification, a variant of classical plant modeling,
incorporates observed “real person” data (input and output of
the plant) into a dynamic system allowing one to develop new
mathematical models representative of the data entered [48].
Repeated evaluations of numerous insulin infusion protocols,
all slightly different, on live patients is neither realistic nor
feasible. In-silico evaluation and simulation is a well accepted
and validated means to examine a large number of iterative
changes and is only recently being used to evaluate insulin
infusion protocols [49].

Contributions. The contribution of this paper is twofold.
First, we use the Type 1 Diabetes Metabolic (T1DM) Simula-
tor to evaluate an institutional intraoperative insulin protocol
(ITP) for our diabetic cardiac surgery patient population and
reveal its weaknesses by closed-loop in-silico simulation on
the virtual population that comes with the simulator. We
compare the simulated glucose responses to the actual retro-
spective clinical data collected from 57 type 1 diabetic patients
undergoing cardiac surgery managed by the IIP, and show
that the in-silico simulation is able to closely reproduce the
glucose variability observed in the real clinical data. Second,
we develop a novel proportional-derivative (PD) algorithm for
the target population, propose a parameter tuning method to
identify the optimal controller setting, evaluate its performance
by in-silico simulations and show that the PD algorithm
overcomes the weaknesses of IIP by reducing hypoglycemia
and glucose variability, while preserving the strengths of the
IIP by keeping most glucose readings within the target range.
Our work demonstrates that in-silico simulation is a cost and
time effective means of evaluating existing insulin infusion
algorithms and generating more efficacious ones that warrant
prospective evaluation in clinical trials.

II. OUR APPROACH

This section presents our in-silico simulation based ap-
proach for evaluating and improving the IIP. We first in-
troduce the software platform for in-silico simulation. Then
we describe the IIP and explain how it is evaluated on a
virtual population as well as how the simulated results are
validated against real clinical data. After evaluating the IIP
and identifying its weaknesses, we design a PD algorithm and
tune its parameters according to several performance metrics
that are clinically important.

A. In Silico Testing Platform

The T1DM Simulator is a software package that was
developed in MATLAB/Simulink® [50]. The patient glucose
model that it utilizes is based on a previously published
high-dimensional, non-linear differential equation model [51],
[52]. The TIDM Simulator (academic version) was provided
with 10 pre-identified type 1 diabetic “virtual” adult subjects.
Each virtual subject is a configuration of the patient-specific
parameters that are used by the simulation model (e.g., body
weight and insulin/glucose transportation rates among different
body compartments). Many of these parameters cannot be
directly identified from the clinical data that hospitals currently
have (e.g., total insulin/glucose distribution volumes). The
virtual population in the software was identified based on real
data collected from a group of individuals who participated
in a triple-tracer meal study [52]: the meals were marked
with isotope tracers so that the glucose/insulin fluxes in the
body can be directly measured. In 2008, the TIDM Simulator
(together with its group of 300 virtual subjects) received FDA
approval for computer simulations that could be substituted
for animal trials in pre-clinical testing and has become an
accepted method of evaluation for studies in patients with type
1 diabetes mellitus [53].

The simulator is a Simulink® model file within MATLAB®
that includes the patient model, glucose sensor and in-
sulin pump models, and an interface for user-defined con-
trollers [54]. We implemented the control algorithms in
Simulink using the Stateflow® toolbox.

B. Evaluation of Insulin Infusion Protocol (IIP) and Valida-
tion of the Virtual Population

After obtaining acknowledgment from the University of
Pennsylvania Institutional Review Board (IRB), blood glucose
measurements were retrospectively evaluated on 57 type 1
diabetic patients controlled with the IIP during the period
of cardiopulmonary bypass. The IIP used in the real patient
population was a paper-based protocol that consisted of two
parts: 1) a table that categorized the BGL into a finite number
of intervals and, based upon the current interval, set a fixed
intravenous bolus and infusion rate; 2) a set of infusion rate
adjustment rules that took into account the relative change in
BGL with respect to the previous value (Figure 1). The target
BGL defined by the IIP was 70 — 130 mg/dL. The protocol
rules were entered and evaluated in-silico on 10 virtual patients
and the experiments were repeated with different initial BGL



Target Glucose: 70 - 130 mg/dL.
** Glucose must be checked every 30 minutes **

* INSULIN Bolus / Infusion Protocol *

Initiation of Protocol Blood Glucose Insulin Bolus (U)* | Insulin Infusion (U/h)
lnilliate protocol if any one of the following criteria (mg/dL) (No bolus pre-CPB)
exist: =100 0 0
. ) ) ) ) 100110 0 2
¢ Previous diagnosis of diabetes mellitus 111-130 0 4
*  Any blood glucose (BG) > 120 mg/dL 131150 2 4
*  Any patient arriving to operating room 151170 4 6
on L.V. Insulin 171 - 190 4 8
*  Anticipated administration of steroids 191-210 6 8
*  Planned circulatory arrest 211 -230 8 10
231-250 10 10
251-300 12 14
>300 15 15

INSULIN TITRATION PROTOCOL (start after INITIATING insulin infusion)

* If BG unchanged- repeat action on Infusion Protocol *

Blood Glucose Action
(mg/dL)
<60 25 mL of D5y I.V. AND STOP ALL INSULIN
60 — 99 e IfBG | by 30 mg/dL or less from last BG, stop infusion
e IfBG | by greater than 30 mg/dL from last BG, 25 mL of D5y L.V.
¢ IfBG ! from last BG, NO infusion and NO bolus
100 — 150 BG Less than Prior
e IfBG | by 30 mg/dL or less from last BG, | infusion by 2 U/h and NO bolus
e IfBG | by greater than 30 mg/dL from last BG, | infusion by 4 U/h and NO bolus
BG Greater than Prior
¢ IfBG 1 by 10 mg/dL or less from last BG, continue infusion with 2 bolus
¢ IfBG ! by greater than 10 mg/dL from last BG, continue per infusion protocol
151 -170 BG Less than Prior
e IfBG | by 30 mg/dL or less from last BG, continue per infusion protocol, NO bolus
¢ IfBG | by greater than 30 mg/dL, start %4 recommended infusion, NO bolus
BG Greater than Prior
¢ IfBG ! by 10 mg/dL or less from last BG, continue per infusion protocol with % bolus
¢ IfBG ! by greater than 10 mg/dL from last BG, continue per infusion protocol
171 -200 BG Less than Prior
¢ IfBG | by 30 mg/dL or less from last BG, continue per infusion protocol with 2 bolus
¢ IfBG | by greater than 30 mg/dL, continue per infusion protocol, NO bolus
BG Greater than Prior
¢ IfBG ! by 10 mg/dL or less from last BG, continue per infusion protocol with %2 bolus
¢ If BG ! by greater than 10 mg/dL from last BG, continue per infusion protocol
201 -250 BG Less than Prior
¢ IfBG | by 30 mg/dL or less from last BG, continue per infusion protocol with % bolus
e IfBG | by greater than 30 mg/dL, continue per infusion protocol, NO bolus
BG Greater than Prior
e IfBG 1 by 10 mg/dL or less from last BG, continue per infusion protocol with ; bolus
e IfBG ! by greater than 10 mg/dL from last BG, continue per infusion protocol
251-300 BG Less than Prior
¢ IfBG | by 30 mg/dL or less from last BG, continue per infusion protocol with %2 bolus
¢ If BG | by greater than 30 mg/dL, continue per infusion protocol, NO bolus
BG Greater than Prior
e IfBG ! by 10 mg/dL or less from last BG, continue per infusion protocol with % bolus
e IfBG ! by greater than 10 mg/dL from last BG, continue per infusion protocol
> 300 Continue per infusion protocol

Fig. 1. Insulin infusion protocol used for real patient population (n=57). Abbreviations: BG, Blood glucose; CPB, Cardiopulmonary bypass; D50, 50 percent

Dextrose (50 gram/100 mL).

values to more thoroughly investigate protocol performance.
Blood glucose measurements were taken every 30 minutes (as
defined in the IIP). For each real patient’s measured BGL
trajectory, we ran closed-loop simulation on the 10 virtual
subjects starting from the same initial BGL and picked the
virtual subject whose simulated BGL trajectory best matched
(i.e., had the lowest maximum deviation from) the measured
BGLs. Simulated BGL data was then compared with the actual
BGL data measured.

When evaluating the control algorithms (the IIP and PD
controller) on the in-silico population, the simulation time
length for each in silico experiment was 24 hours. While the
typical cardiac surgical procedure usually takes only 3 — 4
hours, running the simulation for longer periods revealed the
“stable” control pattern. A pattern typical of all controllers
is an initial variability around the set target prior to stability.
It is essential to evaluate for an extended period of time to
ensure prolonged stability, enabling a steady state error to



eventually be applied. Each BGL trajectory was then divided
into two epochs: 0 — 5 hours (“initial” phase) and 12 — 24
hours (“oscillating” phase).

In addition to comparing the mean and standard deviation
of the per-subject BGL values, we calculated the normal-
ized glucose liability index (NGLI, [mg/dL]%/hour?), akin
to the weekly glucose liability index (GLI) prev10usly pub-
lished [55]. The GLI ZN((’f 1 week) M is a measure
of the weekly sum of the rate of change of BGL, where Glu;
is the i-th glucose reading (mg/dL) taken at time 7;. Because
the length of surgery is different for each patient, the GLI
must be normalized to the total length of the measurement
time, Ty — T, where N is the total number of glucose values
obtained for the patient (dependent on the length of surgery),
TN is the final time of the measurement period and 73 is the
initial time. We define this normalized metric as the NGLI.
The NGLI was thus calculated as follows:

EN (Glui+17Glui)2
i=1 Tit1—T;

NGLI =
Ty —Th

A higher NGLI implies that the BGL trajectory exhibits more
variability.

C. Proportional Derivative (PD) Controller Design

After evaluating the weaknesses and strengths of the IIP in
silico, we designed a PD controller, which belongs to the broad
category of well-known proportional-integral-derivative (PID)
controllers (Figure 2). The controller was designed so that the
sampling period would be the same as the IIP (30 minutes) and
only the calculation method of insulin and dextrose dose would
change. Similar to the IIP, the PD controller only makes use
of the current and previous BGL readings so that caregivers
do not have to collect any additional information in order
to evaluate the PD controller in real clinical environment. In
our future work we will investigate whether the performance
can be further enhanced by adding the integral control, which
requires keeping log of all past BGLs. For safety purposes,
we retained the same fixed actions of the IIP if and when the
BGL reached an extreme (e.g., BGL < 60 mg/dL. or BGL
> 300 mg/dL). The critical part of our controller design is
that when the BGL is in the control zone (60 — 300 mg/dL),
the intravenous insulin infusion rate is calculated and changed
in response to a proportional-derivative law, where Kp, Kp,
Target, and Rp are the proportional gain (U/hr per mg/dL),
derivative gain (U/hr per mg/dL), target value (mg/dL), and
basal insulin rate (U/hr), respectively. Since one cannot admin-
ister “negative” insulin, when the rate (calculated by the PD)
is less than zero, we set the rate to zero. Additionally, if BGL
drops too fast (defined as: BGL(n) — BGL(n — 1) < —30)
and the current BGL(n) is already below 100 mg/dL, we
stop the insulin infusion and give intravenous dextrose to
counteract impending hypoglycemia. The amount of dextrose
(Ds0) administered is proportional to the magnitude of BGL
decrease using the derivative law.

D. Proportional Derivative (PD) Controller Tuning

All controllers require manipulation of the independent
variables such that performance, however it is defined, can be
optimized (tuning). For this study we picked three performance
metrics to monitor and optimize: 1) percentage of BGL values
in-target (70 — 130 mg/dL), 2) percentage of BGL values
lower than target (< 70 mg/dL), and 3) NGLI. These represent
the quality of target tracking, hypoglycemia risk control, and
variability minimization, respectively. Additionally, from a
clinical standpoint, when tuning the controller we considered
hypoglycemia to be the primary safety concern. Thus, if a
trade-off had to be made between very low BGL and higher
than target BGL, we favored the latter.

There are classic control theory methods that allow one
to analytically calculate the optimal PID controller setting
based on the mathematical model of the control plant (i.e.,
the patient model). However, it is very challenging to apply
the analytical methods to the patient simulator we were using,
because the underlying plant model is highly nonlinear (most
classic control approaches assume linear plant models) and
many model variables cannot be directly measured in real time
on general patients (the tracer experiment used to identify
the virtual subjects is clearly too resource demanding to be
applied to all ICU patients). Therefore, we tune the controller
parameters based on numerical simulations. To identify the
optimal setting of the PD controller parameters, we systemat-
ically changed Kp, Kp, and Rp on a wide range of values
and examined how the performance metrics were affected by
different controller settings. The optimal setting of Kp, Kp,
and Rp is the one such that the three performance metrics (in-
target percentage, lower-than-target percentage, and NGLI) are
optimized.

III. EXPERIMENTAL RESULTS

This section enumerates the experimental results of the IIP
evaluation, virtual population validation, PD control parameter
tuning, and performance comparison between the PD algo-
rithm and the IIP. In the next section, we will further analyze
the experimental data and discuss the results in the clinical
context.

A. Virtual Population Validation and IIP Evaluation

The summative data for validation of the virtual subjects
can be seen in Table I. This represents the effect of the IIP on
the virtual patients compared with the retrospectively observed
data in the actual 57 patients. By adjusting the initial BGL in
all 10 virtual patients, we evaluated the efficacy of the IIP
in-silico. Key metrics of the simulated BGL trajectories on
the 10 virtual subjects in response to the IIP are shown in
Table II. For each initial BGL, a simulation run generates 10
BGL trajectories (from 10 virtual subjects) and metrics are
reported for the initial (O — 5 hours) phase and the oscillating
(12 — 24 hours) phase.



BGL (n) (mg/dL) Action
<60 Give 25 mL Dsq
60 - 300 Rate (U/hr) = max(0, K,[BGL(n) — Target] +
Ko[BGL(n) — BGL(n-1)] + Rg)
IF [BGL(n) — BGL(n-1)] < -30 AND BGL(n) < 100
THEN
Rate= 0 and give [(BGL(n-1) — BGL(n))x 0.2] mL Ds,
> 300 Rate (U/hr) = 15 and give 15 U Insulin bolus

Fig. 2. Proportional-Derivative algorithm for controlling blood glucose intraoperatively. Abbreviations: BGL Blood glucose level; U Units; D50 50 percent
Dextrose (50 g/100 mL); BGL(n) current blood glucose reading; BGL(n-1) previous blood glucose reading; K p Proportional gain (U/hr per mg/dL; after
tuning= 0.05); K p Derivative gain (U/hr per mg/dL; after tuning=0.06); Target Blood glucose target (set to 100 mg/dL); Rp Basal insulin rate (U/hr; after
tuning= 1.0).

R = 1.0U Infial BGL = 250 mo/aL. el Phase: 0 - 5h Rg = 1.0 Inial BGL = 250 mg/aL. nifal Phase: 0- $h Ry = 1.0UA Inial BGL = 250 modL. Iial Phase: 0 - 5h.

Average lower-than-target percentage

10000

8000

6000

Average NGLI

2000

(a) Initial (O — 5 hr) phase. Rp = 1.0 U/hr and (b) Initial (O — 5 hr) phase. Rp = 1.0 U/hr and (c) Initial (0 — 5 hr) phase. Rg = 1.0 U/hr and
initial BGL = 250 mg/dL. Metric= in-target (70 initial BGL = 250 mg/dL. Metric= lower-than- initial BGL = 250 mg/dL. Metric= NGLI.

— 130 mg/dL) percentage.

Rg = 1.0UM Inial BGL = 250 mg/l. Oscillating Phase: 12 - 241

Average lower-than-target percentage

Rg =100 Iniial BGL = 250 mg/dlL Oscillating Phase: 12 - 24h.

target (< 70 mg/dL) percentage.

Rg = 1.0U/h sl BGL = 250 mg/dL. Osoillsting Phase: 12- 241,

(d) Oscillating (12 - 24 hr) phase. Rp = 1.0 U/hr (e) Oscillating (12 — 24 hr) phase. Rp = 1.0 U/hr (f) Oscillating (12 — 24 hr) phase. Rp = 1.0 U/hr
and initial BGL = 250 mg/dL. Metric= in-target and initial BGL = 250 mg/dL. Metric= lower- and initial BGL = 250 mg/dL. Metric= NGLI.

(70 — 130 mg/dL) percentage.

than-target (< 70 mg/dL) percentage.

Fig. 3. Impact of Kp and Kp. Abbreviations: K p Proportional gain (U/hr per mg/dL); K'p Derivative gain (U/hr per mg/dL); Rp Basal insulin rate (U/hr).

B. Proportional Derivative (PD) Controller Tuning

We chose the target for the controller to be fixed at 100
mg/dL, which represents a value in the middle of the IIP
target range (70 — 130 mg/dL) and is also the insulin action
start point in the IIP. The impact of incremental changes of
Kp and Kp on our three primary metrics, both for the initial
phase (0 — 5 hours) and oscillating phase (12 — 24 hours)
are shown in Figure 3. Simulation results show that R, in its
variance range, does not significantly change the shapes of the
Kp-Kp performance surfaces shown in Figure 3, in which
Rp = 1.0 U/hr. Therefore, we first identified the optimal

Kp-Kp setting by integrating the three performance metrics
discussed in Section II-D. Key findings in this analysis were
that hypoglycemia (< 70 mg/dL) and NGLI are minimized
when Kp and Kp are relatively small. The in-target (70 — 130
mg/dL) percentage is maximized when Kp and Kp are in the
lower middle range (see Figure 3 and Table III). Integrating
the data analysis with the performance metrics, we identified
the optimal Kp-Kp setting, Kp = 0.05 U/hr per mg/dL and
Kp = 0.06 U/hr per mg/dL, in the region where the peak
areas of in-target percentages (Figures 3 (a) and (d)) overlap
the low areas of lower-than-target range and NGLI (Figures 3
(b), (¢), (e), and (f)). The metrics were then further optimized



Ke= 0.05 Ko = 0.06 Iital BGL = 250 mgfaL. Iial Phase: 0 - 5

Average lower-then-target percentage

K= 0.05 Ky, =006 nifial BGL = 250 mgidL. Itial Phase: 0 - 5.

Ke= 0.05 K, = 0.06 Inial BGL = 250 mgiaL. Inial Phase: 0 - 51
5200 . ' i

/ 5000 ~
4800
4600 =

_ 4400 I

age NGLI

< 4000
3800 /
3600

400 ~

(a) Initial (0 — 5 hr) phase. Initial BGL = 250 (b) Initial (0 — 5 hr) phase. Initial BGL = 250 (c) Initial (0 — 5 hr) phase. Initial BGL = 250
mg/dL. Metric= In-target (70 — 130 mg/dL) per- mg/dL. Metric= Lower-than-target (< 70 mg/dL) mg/dL. Metric= NGLI.

centage. percentage.

Kq=0.05 K, = 0.06 Il BGL = 250 gL Oscileling Phase: 12 - 24h

Ky=0.05 Ky, = 0.06 sl BGL = 250 gL Oscillfing Phase: 12 - 24h

Kp= 0.05 Ky, = 0.06 Iiial BGL = 250 gL Oscileting Phase: 12 - 24,

/

Average lower-than-target percentage

Average in-target percentage

Average NGLI

(d) Oscillating (12 — 24 hr) phase. Initial BGL = (e) Oscillating (12 — 24 hr) phase. Initial BGL (f) Oscillating (12 — 24 hr) phase. Initial BGL =
250 mg/dL. Metric= In-target (70 — 130 mg/dL) = 250 mg/dL. Metric= Lower-than-target (< 70 250 mg/dL. Metric= NGLIL

percentage. mg/dL) percentage.

Fig. 4. Impact of Rp on performance metrics after optimal tuning of PD parameters (K p = 0.05, Kp = 0.06). Abbreviations: K p Proportional gain (U/hr
per mg/dL); Kp Derivative gain (U/hr per mg/dL); Rp Basal insulin rate (U/hr).

TABLE I
COMPARISON OF THE EFFECT OF IIP ON BGL IN 10 VIRTUAL PATIENTS IN-SILICO WITH THOSE OF IIP ON BGL IN REAL PATIENTS. ABBREVIATIONS:
IIP, INSULIN INFUSION PROTOCOL; STD, STANDARD DEVIATION; BGL, BLOOD GLUCOSE LEVEL; NGLI, NORMALIZED GLUCOSE LABILITY INDEX; NS,
NOT SIGNIFICANT. MEAN VALUES WERE COMPARED VIA TWO-TAILED UNPAIRED T-TEST.

Real patients (n=57)

Virtual patients (n=10)

Average per-subject Mean STD of BGL (mg/dL)

p
130 + 16.0 114 + 153 0.0047

Average per-subject NGLI ([mg/dL]%/hr?)

1775 1782 NS

by evaluating incremental increases in basal insulin rate (Rp)
(Figure 4) according to the same performance metrics and the
optimal PD control parameter setting is /p = 0.05 U/hr per
mg/dL, Kp = 0.06 U/hr per mg/dL, Rp = 1.0 U/hr.

C. Proportional Derivative (PD) Controller Evaluation

Table IV shows the performance metrics of the PD con-
troller on the virtual population. When comparing the PD con-
troller to the ITP (Table II) there are some notable differences.
With regard to target tracking, in the oscillating phase the
PD controller is able to maintain close to 100% of the BGL
readings within the target range. In the initial phase, when
the BGL starts within the target range (70 — 130 mg/dL), the
PD controller is able to maintain almost 100% of BGL values
in target. When the BGL starts > 130 mg/dL, the average
in-target percentages are similar between the two algorithms.
When comparing the risk of hypoglycemia between the IIP
and the PD controller, the PD controller is noted to almost
completely eliminate occurrences of BGL < 70 mg/dL in

both phases, though this comes with a concomitantly greater
frequency of BGL values > 130 mg/dL in the initial phase
compared with the IIP. Furthermore, the average minimum
BGL achieved by the PD controller is also significantly higher
(but within the target-range), especially for the ‘“extreme”
subjects (the min minimum BGL, or lowest minimal BGL)
thus further reducing the chance of hypoglycemia. Finally,
with regards to BGL variability, the PD controller achieves
significantly lower NGLI than the IIP (less than half the
variability in both phases for most initial BGLs).

IV. EXPERIMENTAL DATA ANALYSIS AND DISCUSSION
A. Validation of the Virtual Population

By implementing in-silico testing of glycemic control with a
validated simulator of diabetes mellitus, we have developed a
testable algorithm to be studied in live patients undergoing
cardiac surgery. Of note, the TIDM Simulator does not

(and cannot) account for all parameters, both in-vivo (i.e.,
time varying insulin sensitivity) and ex-vivo (i.e., effect of



TABLE II
KEY METRICS OF SIMULATED BGL CONTROLLED BY THE IIP IN VIRTUAL PATIENTS (N=10)

BGL (0 - 5h) Simulated BGL (12 — 24h)

Init BGL | Mean BGL STD of BGL NGLI 70 - 1302 > 1302 < 702 Min BGL | Mean BGL STD of BGL NGLI 70 - 1302 > 1302 <702 Min BGL
(mg/dl) | mgd)!  (mgdl)!  ((mg/dL]2 /)t (mgd)! | mgd)!  mgd)!  ((mg/dL]2/n%)! (mg/dL)t
70 86[80,02]  15[9,18] 411[35,1533] 99%[90%,100%] _ 0%[0%,0%] __ 1%[0%,10%] _ 70[66,70] | 104[91,108] _ 10[4,29] 882[19,5088] 94%[58%,100%]1 2%[0%,17%] 4%[0%,25%] 83[60,101]
80 93(89,98]  12[9,16] 286[48,1253] 99%[90%,100%]  0%[0%,0%]  19%[0%,10%]  78[63,80] | 104[91,108]  10[2,.27] 878[9,5083] 92%[38%,100%] 2%[0%,21%] 6%[0%.42%] 89[64,104]
90 | 99971021 8[5,19] 216[16,915] 99%(90%,100%]  1%[0%,10%]  0%[0%,0%]  88[78,90] | 104(92,108]  10[1,30] 877[4,5045] 949%[54%,100%]  2%[0%,21%)] 4%[0%,25%] 87(60,105]
100 | 98[88,101]  7(2,15] 318[9,1400] 99%(90%,100%]  0%[0%.0%]  19%[0%,10%]  89[68,98] | 104(91,109]  10[1,31] 927(4,5782] 929[42%,100%]  2%[0%,21%)  6%[0%,38%] 89[59,106]
110 | 104[97,107)  6[2,16] 388[10,1781] 99%(90%,100%]  0%[0%,0%]  19%[0%,10%] 95[69,105] | 104(91,111]  10[3,31] 951(12,5707) 939%[42%,100%]  2%[0%,21%) 5%[0%,38%] 87(59,100]
120 | 102090,111]  12[5,22] 789[24,3044] 95%(80%,100%]  0%[0%,0%]  5%[0%,20%] 85[60,106] | 104(89,109]  10[1,29] 889[8,5030] 939%[54%,100%]  2%[0%,21%) 5%[0%,25%] 88[59,105]
130 [ 107[96,119]  14[6,25] 928[37,3278] 97%[80%,100%]  0%[0%.0%]  3%[0%,20%] 90[58,112] | 104[89,109]  10[2,30] 879[3,4997] 939%[46%,100%] 2%[0%,21%) 5%[0%,33%] 89[59,106]
140 | 104[91,117]  17[11,28] 1314[112,4226] 849%[60%,90%]  11%[10%,20%] 5%[0%,30%] 85[53,106] | 104[94,109]  10[2,29] 903[10,5411] 94%[50%,100%] 2%[0%21%] 4%[0%,29%] 89[59,101]
150 | 107(93,125]  20[12,31] 1719[129,5728] 81%[60%,90%]  14%[10%,20%] 5%[0%,30%] 87[55,113] | 104[91,111]  10[2,31] 962[4,5690] 929[42%,100%]  2%[0%,21%] 6%[0%,38%] 89[59,103]
160 | 101[85,113]  26[20,36] 2734[415,7501] 80%[50%,90%]  12%[10%,20%] 8%[0%,40%] 74[41,98] | 104[91,110]  10[1,29] 921[4,5441] 939%[50%,100%] 2%[0%,21%)] 5%[0%,29%] 89[59,106]
170 | 103(87,115]  29[22,38] 2992[605,8214] T9%[50%,90%]  14%[10%,20%] T%[0%.40%]  75[42,99] | 104[91,109]  10[2,29] 901[9,5410] 93%[50%,100%] 2%[0%,21%] 5%[0%,29%] 89[59,105]
180 | 103[88,112]  34[27,41] 3633[778,8644]1 73%[50%,80%] 17%[10%,30%] 10%[0%,40%] 70[38,90] | 106[97,109]  10[2,29] 984[8,5315] 95%[54%,100%] 2%[0%,21%] 3%[0%,25%] 89[59,104]
190 | 106[89,119]  36[30,43] 3984[860,9464] TA%[50%,80%] 17%[10%,30%] 9%[0%.40%] 72[39,95] | 105[96,110]  10[2,32] 1049[15,5867] 94%[46%,100%] 2%[0%,21%] 4%[0%,33%] 89[59,105]
200 | 105[89,130]  39[31,48] 5310[966,11978]  71%[50%,80%] 17%[10%,30%] 129%[0%40%] 69[32,108] | 104[90,108]  10[2,32] 972(12,5804] 93%[46%,100%] 2%[0%,21%] 5%[0%,33%] 88[58,103]
210 | 106[91,118]  43[36,50] 5829[1435,13084]  71%(50%,80%] 17%[10%,30%] 12%[0%.40%] 67(33,94] | 104[90,108] ~ 10[2,32] 954(8,5767] 939%[46%,100%]  2%[0%,21%) 5%[0%,33%] 89[58,105]
220 | 101[89,115]  49[40,56] 7301[2065,15537]  65%[40%,80%]  17%[10%,30%] 18%[0%.40%] 57(26,85] | 105(95,109]  9[2,28] 868[10,4954] 959%[63%,100%] 3%[0%,25%) 89(58,106]
230 | 105[92,117]  51[43,59] 8207[2243,16927)  69%[50%,80%] 17%[10%,30%] 14%[0%.40%] 60[27,88] | 105(95,108]  10[1,28] 874[2,4967] 95%[63%,100%] 3%[0%,25%] 89(58,107]
240 [ 102(89,117]  55[46,62] 9286[2788,18936]  63%[40%,80%] 17%[10%,30%] 20%[0%,50%] 56[24,84] | 105[91,109]  9[2,27] 869[13,5005] 94%[63%,100%] 4%[0%,21%]  91[58,105]
250 | 105[91,121]  58[49.65]  10204[301021115]  63%[40%,80%] 17%[10%,30%] 20%[0%,50%] 57[24,87] | 105[92,109]  9[1,27] 849[6,5005] 95%[63%.100%] 29%[0%.17%] 4%[0%.21%] 90[58.105]

All data are presented on a per-trajectory basis. Each row represents a starting BGL value and data from 10 trajectories (each virtual patient). 'Data
represent Mean[Minimum, Maximum]. Target range for ITP was 70 — 130 mg/dL. ?Values represent Mean % [minimum %, maximum %] BGL within stated
range for each trajectory. Abbreviations: BGL, blood glucose level; STD, standard deviation; NGLI, normalized glucose liability index; Min, minimum
BGL. Example: when initial BGL is 70 mg/dL and simulation is run using IIP on the 10 virtual patients, the mean value for the mean BGL of each
trajectory (virtual patient) was 86 mg/dL. The virtual patient with the lowest mean had a mean BGL of 80 mg/dL and the trajectory with the highest mean
had a mean of 92 mg/dL. Similar interpretations can be made for the STD BGL, NGLI and Min. Within this same trajectory, the mean % of BGLs that
were within target was 99%. At the lowest end, 90% of the BGLs were within target and at the highest end 100% of the BGLs were within target. Similar

interpretations can be made for the > 130 and < 70 mg/dL ranges.

TABLE III
OBSERVATIONS NOTED WHEN TUNING THE PD CONTROLLER.
PD Parameter| Metric
Tn-target (70 — 130 mg/dL) BGLs Less-than-target (< 70 mg/dL) BGLs NGLI

K Initial phase: As K p increases, metric first increases then decreases Initial phase: As K p increases, metric increases Initial phase: As K p increases, metric increases

P [Oscillating phase: As K p increases, metric decreases (except when K 5 is large)Oscillating phase: As K p increases, metric increases when K 1y is low| Oscillating phase: As K p increases, metric increases
K Initial phase: As K p increases, the peak K p increases Initial phase: K py is not the dominating factor Initial phase: K p is not the dominating factor

D Oscillating phase: As K 1 increases, metric decreases Oscillating phase: As Ky increases, metric increases Oscillating phase: K 5 is not the dominating factor
R Initial phase: metric is maximized when R > 1 Initial phase: As R g increases, metric increases Initial phase: As R p increases, metric increases

B Oscillating phase: metric is maximized when Rp > 1 Oscillating phase: As R g increases, metric increases Oscillating phase: As R p increases, metric is minimized (when R < 1))

Abbreviations: PD, proportional derivative (controller); K p, proportional gain (U/hr per mg/dL); Kp, derivative gain (U/hr per mg/dL); Rp, basal insulin
rate (U/hr); BGL, blood glucose level; NGLI, normalized glucose liability index [(mg/dL)2/11r2].

cardiopulmonary bypass). As such, one of the limitations
of this study is that by evaluating the data from 57 type
1 diabetic patients we may not have identified all variables
involved in glucoregulation and insulin dynamics. However,
as seen in Table I, the standard deviation of BGL values and
normalized glucose lability index (NGLI) of the two groups
(virtual and real) were similar. Thus, the virtual population
was able to closely reproduce the BGL variability observed
in the real data. While the standard deviation and NGLI were
quite similar, the per-subject means in the two populations
were significantly different. We believe this is due to several
reasons. First, the initial “physiological” state of the two
populations was mismatched. Each virtual patient needs an
initial configuration that includes all physiological states at
simulation “time zero” which defines the initial condition for
the differential equations that describe the patient model. Most
of these physiological states are not directly measurable (i.e.,
total mass of glucose and insulin in different compartments).
In our experiments, these physiological variables were set
to be started at a perfectly “stable” state. In other words,
given a starting glucose value, the model functions on the
premise that the physiological state will not change over
time. Mathematically this means that differential equations
are solved on the assumption that all derivatives are zero.
However, such exquisite homeostasis is unlikely to be present

in a real patient at the start of surgery. An additional reason
for the observed mean inter-subject variability is that we had a
limited quantity of real population data from which we could
draw conclusions. Intraoperatively, the BGL was measured at
a relatively low frequency (every 30 minutes) and therefore,
for each individual patient there were usually fewer than 10
BGL readings over the entire surgery. If the initial states of
the two populations are mismatched, the virtual population
may not be able to converge to the state of the real patients
within such limited time and with such few measurements.
Furthermore, while our protocol dictates measuring the BGL
every 30 minutes, the reality is that sampling unlikely occurred
exactly every 30 minutes in our actual patient population.
Finally, we used a relatively small group size for our virtual
patient population. The “best match” for each patient could
only be chosen from 10 virtual subjects and may not include
a good match for each real patient. This would explain why
the population standard deviation and NGLI match better than
individual data.

B. Performance Comparison between the IIP and the PD
algorithm

Evaluation of the IIP on the 10 virtual subjects is shown
in Table II. This data illustrates that during the oscillating
phase, the IIP is able to keep most BGLs within the target



TABLE IV
KEY METRICS OF SIMULATED BGL CONTROLLED BY THE PD CONTROLLER.

Simulated BGL (0 — 5h) Simulated BGL (12 — 24h)

Init BGL | Mean BGL _STD of BGL NGLI 70 — 1302 > 1302 < 702 Min BGL | Mean BGL STD of BGL NGLI 70 - 1302 > 1302 <702  Min BGL
(mgdl) | (mgd)!  (mgd)!  ((mg/dL]2/n3)t mg/d)t | mgd)!  mgd)!  ((mg/dL]2 /%)t (mg/dL)t
70 85[79,01] 12[8,16] 76[36,1631 100%[100%,100%] _ 0%[0%,0%] __ 0%[0%,0%]1 _70[70,70] | 110(98,116] __ 3[0,14] 25510,16031 T00%[100%, 100%] 0%[0%,0%] 0%[0%0%] 106[81,116]
80 91[87,96] 916,12] 34[17,56] 100%[100%,100%] ~ 0%[0%,0%]  0%[0%,0%] 80[80,80] | 110(99,116]  3[0,15] 230[0,1571] 100%[96%,100%]  0%[0%4%] 0%[0%,0%] 106[81,116]
90 95[92,99] 6(3,91 33(8,114] 100%[100%,100%] ~ 0%[0%,0%]  0%[0%,0%]  89[85,90] | 110[98,116]  3[0,15] 271[0,1744] 100%[100%,100%]  0%[0%,0%] 0%[0%.,0%] 106[81,116]
100 | 99196,102] 501,91 592,252 100%[100%,100%] ~ 0%[0%,0%]  0%[0%,0%] 93[84,99] | 110[98,116]  3[0,15] 258[0,1731] 100%[100%,100%]  0%[0%,0%] 0%[0%.,0%] 106[80,116]
110 | 103(97,106]  6[3,12] 121(5,546] 100%[100%,100%] ~ 0%[0%,0%]  0%[0%,0%] 95[82,103] | 110[98,116]  3[0,15] 258[0,1632] 100%[100%,100%] 0%[0%.,0%] 0%[0%,0%] 106[82,116]
120 | 106(98,111]  8[6,14] 187(16,744] 100%[100%,100%] ~ 0%[0%,0%]  0%[0%,0%] 96[79,105] | 110[98,116]  3[0,15] 271[0,1779] 100%[100%,100%]  0%[0%.0%] 0%[0%.0%] 106[82,116]
130 | 109(99,116]  11[8,16] 272[39,905] 100%[100%,100%]  0%[0%.0%]  0%[0%,0%] 97[77,106] | 110(98,116] ~ 3[0,14] 246[0,1526] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[82,116]
140 | 112[100,121]  14[12,17] 343[68,963] 83%(70%.90%]  17%[10%,30%] 0%[0%.,0%] 98[81,108] | 110[98,116]  3[0,15] 267[0,1745] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[82,116]
150 | 115[102,126]  18[15,20] 496[114,1371] T7%[60%,90%]  23%[10%,40%] 0%[0%.0%] 99[80,110] | 110[99,116]  3[0,14] 212[0,1484] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 107[86,116]
160 | 118[103,131]  21[18,24] 662(166,1760] 76%[60%,90%]  24%[10%,40%] 0%[0%,0%] 99[78,111] | 110[98,116]  3[0,15] 261[0,1689] 100%[100%,100%] 09%[0%,0%] 0%[0%,0%] 106[83,116]
170 | 121[104,135]  25[22,27] 861[237,2211] T2%[50%,90%]  28%[10%,50%] 0%[0%.0%] 99[77,113] | 110[99,116] ~ 3[0,15] 245[0,1562] 100%[100%,100%] 09%[0%,0%] 0%[0%,0%] 105[78,116]
180 | 123[105,139]  28[2531] 1095[312,2796] T0%[50%,80%]  30%[20%,50%] 0%[0%,0%] 99[76,114] | 110[98,116]  3[0,14] 238[0,1450] 100%[100%,100%] 0%[0%,0%] 0%[0%,0%] 106[81,116]
190 | 126[105,144]  32[28,34] 1356[399,3383] 69%(40%,80%]  31%[20%,60%] 0%[0%,0%] 99[74,116] | 110[98,116]  3[0,15] 253[0,1600] 100%[100%,100%] 0%[0%.,0%] 0%[0%,0%] 106[81,116]
200 | 128[106,148]  35[32,38] 1661(504,4129] 68%(40%,80%]  32%[20%,60%] 0%[0%,0%] 98[72,116] | 110[98,116]  3[0,15] 253[0,1613] 100%[96%,100%]  0%[0%,4%] 0%[0%,0%] 106[81,116]
210 | 131[106,152]  39(3541] 1997(629,4874] 67%(40%,80%]  33%[20%,60%] 0%[0%,0%] 98[70,117] | 110[98,116]  3[0,15] 267(0,1745] 100%[100%,100% 6,0% %] 106[82,116]
220 | 133[108,156]  43(38,45] 2353(758,5576] 65%(40%,80%]  34%[20%,60%] 19%[0%,10%)] 98[69,118] | 110[98,116]  3[0,15] 257(0,1641] 100%[100%, 100%] 105[78,116]
230 | 135(108,160]  46[42,48] 2770[904,6468] 64%(40%,80%]  34%[20%,60%] 2%[0%,10%)] 97[67,118] | 110[98,116]  3[0,15] 249[0,1560] 100%[100%, 100%] b 105(78,116]
240 | 138[109,164]  50[45,52] 3195[1062,7374] 63%[30%,80%]  35%[20%,70%] 2%[0%,10%] 97[65,119] | 110[98,116]  3[0,14] 239[0,1467] 100%[100%,100%] ov/z[o%o%] %] 106[82,116]
250 | 140[110,167]  53[49,56] 3656[1236,8272] 63%[30%,80%]  35%[20%,70%] 2%[0%,10%] 97[64,119] | 110[98,116]  3[0,15] 261[0,1675] 100%(100%.100%] 0%[0%.0%] 0%[0%.0%] 105[80.115]

All data are presented on a per-trajectory basis. Each row represents a starting BGL value and data from 10 trajectories (each virtual patient). ' Data represent
Mean [Minimum, Maximum)]. Target for PD controller was 100 mg/dL. ?Values represent Mean % [minimum%, maximum%] BGL within stated range for
each trajectory. Abbreviations: BGL, blood glucose level; STD, standard deviation; NGLI, normalized glucose liability index; Min, minimum BGL. Example:
when initial BGL is 70 mg/dL and simulation is run using the PD controller on the 10 virtual patients, the mean value for the mean BGL of each trajectory
(virtual patient) was 85 mg/dL. The virtual patient with the lowest mean had a mean BGL of 79 mg/dL and the trajectory with the highest mean had a mean of
91 mg/dL. Similar interpretations can be made for the STD BGL, NGLI and Min. Within this same trajectory, the mean % of BGLs that were within range of
70 — 130 mg/dL was 100%. There were no trajectories that fell out of this range. Similar interpretations can be made for the > 130 and < 70 mg/dL ranges.

range (70 — 130 mg/dL) for most subjects. Interestingly, given
that the minimum of in-target percentage during this phase
is less than 60% in most runs, it is also apparent that there
exist subjects whose BGLs do not track the target well. On
the contrary, in the initial phase, the quality of target tracking
with IIP is very dependent on the initial BGL. However,
when the initial BGL is high, the number of in-target BGLs
decrease and the number of below-target (< 70 mg/dL) BGLs
increase significantly. This is typical of many currently used
insulin infusion protocols and results from the “overshooting”
phenomenon. That is, most protocols start with a high dose
of insulin bolus and infusion when the initial BGL is high
resulting in the subsequent BGL going below the target range.
The resultant hypoglycemia is caused by two primary factors:
1) the overshooting during the initial phase, and 2) extreme
oscillation in the oscillating phase. In the initial phase, when
the initial BGL is > 130 mg/dL, overshooting causes a
significant percent (as high as 50%) of low BGL readings.
In the oscillating phase, when considering out-of-target BGL
readings, there are more low BGL readings (as high as 42%)
than high BGL readings. Thus, even when the control pattern
stabilizes, the risk of hypoglycemia remains significant with
the IIP for some subjects. This is in stark contrast to the
performance of the PD controller (Table IV). Similar to the
IIP, when initial BGL values were within the target range,
the PD controller maintained the majority of BGLs within
the target range during the initial phase. However, while both
algorithms led to a decrease of in-target BGLs when the initial
BGL was > 130 mg/dL, the IIP did so at a cost of significantly
increasing the frequency of hypoglycemia (as high as 50%).
No such increase was seen in the PD controller.

The NGLI with the IIP is noted to significantly increase
in the initial phase as the initial BGL increases. This is a
result of the magnitude and slope of the overshooting. No
such relationship is seen in the oscillating phase since the

trajectories have stabilized. The average NGLI for the IIP
in the initial period was 3466 (mg/dL)?/hr?. This translates
into an average BGL change of 58.8 mg/dL per hour. The
maximum NGLI was greater than 21,000 (mg/dL)?/hr? which
equates to a BGL change of more than 145 mg/dL per
hour. The PD controller, however, very effectively reduced
the variability seen with the IIP. In the initial phase, the
average NGLI was 1117 (mg/dL)?/hr?, which corresponds to
a BGL change of 33.4 mg/dL per hour (a 43% reduction in
variability). The maximum NGLI with the PD controller was
8272 (mg/dL)?/hr?. This is 63% less than the IIP and equates
to a BGL change of 91 mg/dL per hour.

Thus, it appears that the risk of hypoglycemia with our (or
any) IIP is significantly increased by two primary mechanisms.
The first involves the “overshooting” phenomenon during the
initial phase. Indeed, data in Table II show that when the initial
BGL is high, overshooting causes a significant percent (as
high as 20% with a maximum of 50%) of low BGL readings.
The second mechanism of hypoglycemia is by wide variation
during the oscillating phase. In the oscillating phase, when
considering out of target readings, there is a higher rate of
hypoglycemia than hyperglycemia (with the maximum of low
BGL percentage being above 40%). Thus, for some subjects,
the risk of hypoglycemia persists even when the control pattern
stabilizes.

Thus, strengths of the IIP during in-silico evaluation in-
cluded most BGLs being kept within the target range during
the “oscillating” phase as well as during the “initial” phase
when the starting BGL was within target range. Weaknesses of
the protocol include episodes of severe overshooting and oscil-
lations (sometimes large) in BGL trajectory. These oscillations
appear to be the result of the discrete nature of the infusion
rules in the IIP. That is, because infusion rates are determined
by a limited number of adjustment rules, the insulin bolus
amount and infusion rate take jumps as the BGL changes. As



a result, the IIP controller may fail to stabilize an individual at
the “equilibrium” state and, instead, oscillate between different
infusion values. Finally, the IIP (as a result of overshooting and
oscillation) was not very effective at reducing hypoglycemia
and BGL variability.

The performance of any PD controller is highly dependent
on the accuracy of tuning. Tuning controller parameters on the
BGL simulator represents a challenging optimization problem.
As explained in Section II-D, it is difficult to apply classic lin-
ear system PID tuning theories to the highly complex glucose
simulation model. Our strategy in solving this complex non-
linear optimization problem was to systematically characterize
the impact of control parameters on performance metrics by
running numerical simulations and finding the optimal trade-
off configuration (Figures 3 and 4). One particular challenge
with this is the inter-subject variability. While an insulin
insensitive subject may favor a more aggressive controller,
that same controller may cause significant hypoglycemia in
subjects who are highly insulin sensitive. We intentionally
designed our algorithm to minimize hypoglycemia over a
broad range of glucose trajectories as the optimal controller
configuration must achieve good control performance on the
larger population.

V. CONCLUSION

By utilizing a validated, FDA approved simulator for type 1
diabetes, we evaluated an existing insulin infusion algorithm
and developed a novel proportional-derivative algorithm for in-
sulin and dextrose therapy for use during cardiac surgery. The
new algorithm emphasizes the strengths of our pre-existing
insulin infusion protocol, and minimizes its weaknesses. Most
importantly, the PD controller algorithm maximizes the BGL
values that are in target range (70 — 130 mg/dL), minimizes
hypoglycemia (< 70 mg/dL) and minimizes glucose vari-
ability. These results warrant further prospective evaluation.
We believe our novel PD controller achieves this goal and
warrants prospective investigation in-vivo. Furthermore, we
have demonstrated that in-silico simulation can be used to
assess protocol performance and devise novel algorithms for
the intraoperative period.
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