
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

January 2005

Synthesis of Interface Specifications for Java Classes
Rajeev Alur
University of Pennsylvania, alur@cis.upenn.edu

Pavol Cerný
University of Pennsylvania

P. Madhusudan
University of Pennsylvania

Wonhong Nam
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_papers

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/184
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Rajeev Alur, Pavol Cerný, P. Madhusudan, and Wonhong Nam, "Synthesis of Interface Specifications for Java Classes", Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '05) 40(1), 98-109. January 2005.
http://dx.doi.org/10.1145/1040305.1040314

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76384078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1145/1040305.1040314
http://repository.upenn.edu/cis_papers/184
mailto:libraryrepository@pobox.upenn.edu

Synthesis of Interface Specifications for Java Classes

Abstract
While a typical software component has a clearly specified (static) interface in terms of the methods and the
input/output types they support, information about the correct sequencing of method calls the client must
invoke is usually undocumented. In this paper, we propose a novel solution for automatically extracting such
temporal specifications for Java classes. Given a Java class, and a safety property such as "the exception E
should not be raised", the corresponding (dynamic) interface is the most general way of invoking the methods
in the class so that the safety property is not violated. Our synthesis method first constructs a symbolic
representation of the finite state-transition system obtained from the class using predicate abstraction.
Constructing the interface then corresponds to solving a partial-information two-player game on this symbolic
graph. We present a sound approach to solve this computationally-hard problem approximately using
algorithms for learning finite automata and symbolic model checking for branching-time logics. We describe
an implementation of the proposed techniques in the tool JIST- Java Interface Synthesis Tool- and
demonstrate that the tool can construct interfaces accurately and efficiently for sample Java2SDK library
classes.

Keywords
behavioral interfaces, synthesis, software components, abstraction, model checking, games, learning regular
languages

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/184

http://repository.upenn.edu/cis_papers/184?utm_source=repository.upenn.edu%2Fcis_papers%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages

Synthesis of Interface Specifications for Java Classes

Rajeev Alur Pavol Černý

P. Madhusudan Wonhong Nam

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

{alur, cernyp, madhusudan, wnam}@cis.upenn.edu

ABSTRACT
While a typical software component has a clearly specified
(static) interface in terms of the methods and the input/out-
put types they support, information about the correct se-
quencing of method calls the client must invoke is usually
undocumented. In this paper, we propose a novel solution
for automatically extracting such temporal specifications for
Java classes. Given a Java class, and a safety property such
as “the exception E should not be raised”, the correspond-
ing (dynamic) interface is the most general way of invoking
the methods in the class so that the safety property is not
violated. Our synthesis method first constructs a symbolic
representation of the finite state-transition system obtained
from the class using predicate abstraction. Constructing the
interface then corresponds to solving a partial-information
two-player game on this symbolic graph. We present a sound
approach to solve this computationally-hard problem ap-
proximately using algorithms for learning finite automata
and symbolic model checking for branching-time logics. We
describe an implementation of the proposed techniques in
the tool JIST— Java Interface Synthesis Tool—and demon-
strate that the tool can construct interfaces accurately and
efficiently for sample Java2SDK library classes.

Categories and Subject Descriptors: D.2.4 [Software
Engineering] Software/Program Verification -formal meth-
ods, model checking ; D.2.1 [Software Engineering] Require-
ments/Specification -methodologies, tools; D.2.2 [Software
Engineering] Design Tools and Techniques -modules and in-
terfaces

General Terms: Algorithms, Verification

Keywords: Behavioral interfaces, synthesis, software com-
ponents, abstraction, model checking, games, learning reg-
ular languages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05, January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

1. INTRODUCTION
Contemporary software development emphasizes compo-

nents with clearly specified APIs. In current practice, com-
ponents such as Java library classes have a clearly specified
static interface that consists of all the (public) methods,
along with the types of input parameters and return val-
ues that these methods support. However, there are often
implicit constraints on the sequencing of method calls that
capture the intended use of the component. For example,
for a file system, the method open should be invoked before
the method read, without an intervening call to close. While
such interfaces can be made precise, using for instance regu-
lar expressions as types, these kinds of precise specifications
are typically not documented. Such dynamic interfaces for
components can help application programmers writing client
code for the class, and program analysis tools may even be
able to check automatically whether the client code invokes
the component correctly. In this paper, we propose a rig-
orous and automated approach for extraction of dynamic
interfaces from existing code for Java classes.

Formally, a (behavioural) interface I for a Java class C
maps a history of method calls and return values to the
methods that can be invoked after this history. Given a set
E of unsafe valuations for the class variables, we say that
the interface I is safe with respect to the requirement E if
invoking any of the methods allowed by I avoids the state
of C to reach E. Typically, the safe set will correspond to
requirements such as “the exception e is never raised,” or
“an error value is never returned.” Different applications
can employ the same class with different requirements, and
different interfaces can be safe for different requirements.
There is a natural notion of the most permissive interface
for a given class C with respect to a given requirement E.
Needless to say, typical decision problems concerning this
most permissive interface are undecidable. In this paper,
we propose a method to algorithmically construct a safe,
but not necessarily most permissive, interface that can be
represented as a finite-state automaton.

The first step of our solution employs predicate abstrac-
tion, a powerful and popular technique for extracting finite-
state models from complex and potentially infinite-state mod-
els [14, 19]. Given a (concrete) Java class C and a finite set
P of boolean predicates over the class variables, A is an ab-
straction of C with respect to P such that it has the same set
of methods as C, but the input parameters, return values,

and abstract states are (the finitely many) combinations of
truth values to the boolean predicates in P. The abstract
transition relation over-approximates the concrete one in the
standard way. As a result, the abstract class A is nondeter-
ministic: whenever one of its methods is called, there are
multiple possible executions that can result in different ab-
stract states and return values.

The interface computation for the abstract class then cor-
responds to a two-player partial information game. Player 0,
the user of the class, chooses to invoke one of the methods.
Player 1, the abstract class, chooses a corresponding possible
execution through the abstract state-transition graph which
results in an abstract return value. Player 0 does not know
the current state of the abstract class precisely, and has to
choose the next method based on the history of the invoked
methods and the values they returned thus far. A strategy
for player 0 is winning if the game always stays away from
the abstract states satisfying the requirement E. A winning
strategy for player 0 in this game is a safe interface for the
original class C with respect to the requirement E.

The second step of our solution corresponds to comput-
ing a winning strategy in the two-player partial information
game over the abstract class A with respect to the safety
requirement. From classical results concerning partial infor-
mation safety games [26], it follows that the most permissive
winning strategy in this game can be represented by a deter-
ministic finite-state automaton (DFA) I of size exponential
in the number of states of A (which, in turn, is exponential
in the number of predicates used for abstraction).

We compute the strategy automaton using the L∗ algo-
rithm for learning a regular language using membership and
equivalence queries [4, 27]. The learning-based approach
produces a minimal DFA, and the number of queries is only
polynomial in the size of the output automaton. Further-
more, this approach allows us to encode the abstract class
A symbolically, and we use an existing BDD-based symbolic
model checker NuSMV [10] to answer the queries.

The membership query is to test whether all runs of the
abstract class A corresponding to a given sequence σ of
method calls and return values stay away from the states
that satisfy E, and can be posed as an invariant verification
problem for the composed model A‖σ. The equivalence test
is to check whether the current strategy automaton J has
the same language as the most permissive winning strategy
I for A with respect to E. To test L(J) = L(I), we first use
the subset query L(J) ⊆ L(I) (i.e., is J safe?). This reduces
to checking whether E is an invariant of the model A‖J . The
model checker NuSMV is used for this test, and if the test
fails, the model checker returns a counter-example that can
be used by the learning algorithm to update J . The super-
set query L(J) ⊇ L(I) (i.e., is J most permissive?) cannot
be naturally posed as a model checking query: a counter-
example is a sequence σ 6∈ L(J) such that every run of A
on σ stays within the safe region. In fact, we show that the
superset query is NP-hard. We hence use approximate and
heuristic techniques that employ symbolic model checking to
answer the superset query. In summary, our approach ter-
minates with a deterministic finite-state automaton J such
that (1) J is the minimal DFA accepting L(J), (2) the num-
ber of model checking queries is polynomial in the size of J
and in the length of the longest counter-examples obtained
while synthesizing the automaton (3) J is safe for A with
respect to E, and (4) either J is declared to be the most

permissive interface for A, or J is declared to be approxi-
mate (and in this case, J is guaranteed to be maximal in
the sense that if J ′ is any interface more permissive than J ,
we are assured that J ′ has more states than J does).

We report on an implementation of our solution in a pro-
totype tool called JIST, the Java Interface Synthesis Tool.
The JIST abstractor processes Jimple, an intermediate rep-
resentation of Java byte code used in the Soot framework [30].
Given an input Jimple class, and a set of predicates, the ab-
stractor transforms the input class line by line, producing
a class with only boolean (or enumerated) variables. Cur-
rently, only a subset of Jimple is supported and only those
abstraction predicates that compare a variable to a constant
are handled. The transformed class then is rewritten to a
symbolic representation compatible with the input format
of the model checker NuSMV. The JIST synthesizer imple-
ments the L∗ learning algorithm via CTL model checking
queries on this symbolic representation using NuSMV.

We report on the performance of the tool on four classes:
AbstractList$ListItr.java, Signature.java, ServerTableEn-
try.java and PipedOutputStream.java. In each case, the class
file has a few (less than 10) methods with about a hundred
lines of code. As a requirement, we choose a particular ex-
ception, and as abstraction predicates, we include all con-
ditions of the form “a variable is equal to a constant” that
are checked before raising the exception. After the transfor-
mations, the input to the symbolic model checker has 20–50
boolean variables. The interface is computed by the synthe-
sizer within a few minutes. More importantly, the interfaces
computed by the tool are guaranteed to be safe and max-
imal, and in practice, seem to capture useful information.
For the class AbstractList$ListItr.java we also show how the
choice of initial predicates impacts the synthesized interface.

Related Work
This work was inspired by the work of Whaley et al. on
extracting interfaces from Java classes [32]. In their original
work, the focus was on finding pairs of methods (m,m′)
such that calling m′ after m will certainly raise an exception.
The solution used static analysis techniques such as constant
propagation, augmented with dynamic techniques analyzing
execution runs, and extensive experimentation with large
applications is reported. Our paper presents a more general
and formal solution to interface synthesis. In particular, the
interface generated by [32] is not guaranteed to be safe, and
the safety requirement, the abstraction, and the states of
the interface automaton are hard coded in the solution.

A relevant line of research is the recent work on software
verification tools such as Bandera [13], SLAM [6], Feaver [22],
and Blast [21]. Our abstraction strategy is closest to the one
employed by SLAM for abstracting C code using boolean
predicates [5]. In all these works, the focus is on verifying
the code with respect to user-specified requirements, while
our focus is on synthesizing a safe interface. Abstract inter-
pretation has been used to automatically generate invariants
such as linear constraints over program variables [15, 23].

Using automata as types has been explored in program-
ming languages research, particularly for access control [17,
31]. The focus of these efforts is on providing the user with a
formal way of specifying interfaces, and enforcing type con-
sistent usage either statically or at runtime. The proposed
synthesis approach can be viewed as type inference in this
context, and is complementary.

There is a rich tradition of research in program analy-
sis aimed at extracting specifications from sample execution
traces and related dynamic techniques [3, 24]. These tech-
niques can be effective in learning about the typical usage
of the class. However, they cannot provide soundness guar-
antees that verification techniques such as ours do.

There is an extensive literature on games in the context
of design and verification of systems [2, 28] as well as in pro-
gramming languages semantics [1]. The idea of synthesizing
interfaces using games does not seem to appear explicitly
in this literature. A related project is Chic, where the au-
thors use games to formalize and check compatibility of user
specified interfaces [9, 16].

The work presented in [18] involves synthesis of environ-
ments that is similar to our setting, but synthesizes inter-
faces using explicit graph techniques that involve a subset
construction of the state space, while our techniques are
symbolic involving graphs constructed using predicate ab-
straction. In [29], the authors present techniques to con-
struct environment models using user-provided environment
requirements and by examining environment implementa-
tions.

Finally, our use of learning algorithms is related to the
work of Cobleigh et al. [12] (see also [7]) who use the L∗ al-
gorithm to automatically construct assumptions for compo-
sitional verification. In order to verify that the composition
of two components C1 and C2 satisfies a safety requirement
E, the authors propose to learn the assumption I on inputs
to C1 such that C1‖I satisfies E and C2 satisfies I [12]. In
this setting, C2 is given and can be used to answer queries,
while in our setting no concrete environment that can aid
answering queries is provided.

2. INTERFACES
In this section, we formalize the notion of a symbolic

class and its interfaces. A symbolic class is a tuple C =
(M,X, {Dx}x∈X , Xr, Init , {Tm}m∈M , {Rm}m∈M) that con-
sists of the following components:

• M is a finite set of method names. For simplicity, we
assume that methods do not have input parameters.

• X is a finite set of variables used in the class.

• For each x ∈ X, Dx is the domain of the variable x. A
state s ∈ Πx∈XDx is a valuation of the variables in X.
Let S denote the set of all states. A predicate over X
is a constraint over the possible valuations, and for a
predicate p and a state s, we use s |= p to denote the
satisfaction relation.

• Xr ⊆ X is a set of return variables used for return
values from method calls. We use Sr to denote the set
of all valuations for Xr.

• Init(X) is an initial state predicate over X. For any
state s, if s |= Init , then s is an initial state.

• Let X ′ = {x′| x ∈ X} be the set of primed variables
corresponding to the variables in X. For each m ∈M ,
Tm(X,X ′) is a transition predicate over X∪X ′ for the
method m.

• For each m ∈ M , Rm(X) is a return predicate over X
for the method m.

When a method m is invoked in a state s, the transition
relation Tm is applied repeatedly until a return state s′ sat-
isfying Rm is reached. For any such return state s′, the
values of the return variables Xr in the state s′, denoted
s′[Xr], are the corresponding return values. Formally, for

states s and s′ and a method m, s
m
−→ s′ holds iff there

exist states s = s0, s1, . . . , sn = s′ such that s′ |= Rm, and
for all 0 ≤ i < n, si 6|= Rm and Tm(si, si+1).

When a program interacts with a class, it invokes a se-
quence of methods, say m1, · · · , ml, and gets return values
v1, · · · , vl, where each vi is in Sr. An interface for a class
is a function that takes such a history of interaction and
prescribes a set of methods that can be called after this in-
teraction. Formally, an interface for a symbolic class C is a
function I : (M ×Sr)

∗ → 2M . Given a class C and an inter-
face I, runs(C, I) is the set of behaviors the class exhibits
when used in accordance with the interface, and is the set
of all (finite or infinite) sequences ρ = s0,m0, s1,m1, s2, · · ·
over S ∪M that satisfy the following conditions:

• s0 |= Init and m0 ∈ I(ε).

• For every i ≥ 0, si
mi−→ si+1.

• For every i ≥ 0,
mi+1 ∈ I((m0, s1[Xr]), · · · , (mi, si+1[Xr])).

We specify safety requirements using predicates that cap-
ture the “bad” states. A run ρ = s0,m0, s1,m1, s2, · · · is
said to be safe with respect to a predicate E over the class
variables in X if si 6|= E for every i ≥ 0. An interface I for
C is said to be a safe interface with respect to the predicate
E if every ρ ∈ runs(C, I) is safe with respect to E. We refer
to E as an exception predicate in what follows.

There is a natural ordering among interfaces: if I and
I ′ are two interfaces for a class C, then we say that I is
more permissive than I ′ if for all σ ∈ (M × Sr)

∗, I ′(σ) ⊆
I(σ). That is, if I is more permissive than I ′, then after
any possible history of calls and returns, I allows invoking
any method that is allowed by I ′. The most permissive safe
interface for C, if one exists, is a safe interface I such that
for every safe interface I ′, I is more permissive than I ′. For a
given exception E, it is easy to see that the most permissive
safe interface exists.

Example: Signature Class
To illustrate the definition of an interface, we consider
the class Signature from the package java.security

from Java2SDK. The Signature class provides the func-
tionality of a digital signature algorithm. We pick
the five most interesting methods for interface synthe-
sis: initSign(), initVerify(), sign(), verify() and
update(). There are eight other methods in the class.
Users sign by invoking sign() and check the input signa-
ture using verify(). Both operations need initialization
via initSign() and initVerify(), respectively. Once such
initialization method is invoked, the user can also update
the data to be signed or verified by update().

A finite automaton (DFA) over the alphabet (M×Sr) can
be interpreted to represent an interface. For such a DFA J ,
the corresponding interface I is defined as: I(σ) = {m ∈ M |
∃sr ∈ Sr, σ · (m,sr) ∈ L(J)}. For example, Figure 1 illus-
trates an interface automaton. In this example, Xr = ∅ and

initSign

initVerify
initVerify

verify
update update

sign
initSign

initSigninitVerify

q1 q2

q0

Figure 1: Signature

we use M instead of M × Sr; hence the labels on edges are
over M . All states are final, and missing transitions indicate
disallowed calls. For instance, I(initSign initVerify) is
the set of all methods on the outgoing transitions from q1,
that is, {initSign, initVerify, update, verify}. The
formal notion of how automata describe interfaces is ex-
plained in Section 5.1. It is easy to see that interface au-
tomata capturing the most permissive interface do exist if
the symbolic class is finite (i.e. each domain Dx is finite),
but may not exist otherwise.

We say a safe interface automaton J for a class C is max-
imal if it is true that for every safe interface automaton J ′

with L(J) ⊆ L(J ′) (i.e. where J ′ is more permissive than
J), J ′ has more states than J does. Note that the minimal
automaton describing the most permissive safe interface au-
tomaton is, by definition, maximal.

3. OVERVIEW OF JIST
Given a symbolic class C, presented as a class written

in Java, our aim is to find a safe (and if possible the most
permissive) interface for C. Our solution is in two steps.
The first step, described in Section 4, involves abstraction
of a Java class into a boolean symbolic class, that is, a class
whose variables are booleans (or of enumerated type), and
all predicates are expressed as propositional formulas. This
step obviously introduces a loss of information, but leads
to a representation that can be manipulated by symbolic
computational techniques such as BDD-based model check-
ers. The second step requires solving a partial-information
2-player safety game over the abstract boolean class. We
wish to output a finite interface automaton over the alpha-
bet M ×Sr that captures the language of method sequences
allowed by the interface (as in Figure 1). However, since
this problem is hard and infeasible to compute accurately,
our method strives to construct the most permissive inter-
face failing which it will produce an approximation with the
guarantee that the interface output is maximal. The syn-
thesis step is presented in Section 5.

The complete tool chain is given in Figure 2. On the im-
plementation level, the following transformations are per-
formed:

1. Java to Jimple: The Java source is compiled into Java
byte code and then the Soot tool is used to transform
it to the Jimple format. Jimple is a 3-address represen-
tation that has been designed to simplify analysis and
transformation of Java byte code and is thus suitable
for our purpose. In the current implementation of the
prototype tool, a pre-processing step is done manually
on the Java source code to replace the ‘throwing’ of
exceptions (other than the ones we are interested in
for the interface) to statements that return 0.

2. Jimple to Boolean Jimple: The Jimple to Boolean Jim-

ple conversion is done by the Predicate abstractor. The
input to the abstractor is a Jimple file along with a set
of predicates. The algorithm and the implementation
are described in Section 4.

3. Boolean Jimple to NuSMV: The boolean The Jimple
code is converted to a boolean model in the NuSMV
language.

4. Synthesizing an interface: The Interface Synthesizer
takes in the NuSMV code for the boolean abstract
class and an exception predicate E, and computes an
interface automaton that is either the most permissive
interface or a maximal safe interface. We use a regular-
language learning algorithm and CTL symbolic model
checking for the synthesis. The synthesis algorithm
and its implementation are described in Section 5.

Using JIST to synthesize interfaces
A user of JIST can go about synthesizing interfaces in the
following manner. First, the user identifies the exception
predicate for the class with respect to which the interface is
required, and also an initial set of predicates that may be
useful in extracting an appropriate interface. In our exper-
iments, the exception predicate corresponds to a particular
exception being thrown, and the initial predicates are chosen
as the predicates in the conditionals that guard the throwing
of this exception.

The user then runs the tool to get a maximal safe interface
J with an indication of whether or not the interface is guar-
anteed to be the most permissive for the chosen abstraction.
The user can then examine this interface to see whether it
adequately describes all behaviors one would expect from
the class. For example, in one of the experiments (ListItr),
it turned out that the initial interface was too weak as it
completely ruled out calling certain methods. Checking ad-
equacy of the interface is something that is currently left
entirely to the user; indeed, there can be several ways to
check this (for example, the user could check conformance
of typical clients of the class to the interface).

If the interface is not adequate and the tool has not guar-
anteed that J is the most permissive interface, then the user
can find a method-call sequence that she believes must be
allowed by the interface. The tool can then take this string
and examine whether it is safe (using a membership query as
explained in Section 5), and if it is safe, use it as a counter-
example to the superset query (see below for details) to con-
tinue learning a better interface.

If the user-supplied string is not safe or if the tool has
assured that the current interface is the most permissive,
then then the user must provide new predicates that refine
the abstraction and rerun the tool.

Discovering abstraction predicates automatically is an ac-
tive area of research in software verification (see [6, 20]),
and some of these techniques are potentially useful for the
purpose of synthesizing interfaces, but this is left for future
work.

4. PREDICATE ABSTRACTION

4.1 Sound abstractions for symbolic classes
Predicate or boolean abstraction uses boolean variables

corresponding to assertions (predicates) over the states of a

Soot
Predicate

Chain
Concept

Predicates

Boolean

Chain
Synthesizer
Interface

Tool NuSMV
Java

Java Byte
Jimple

Boolean
Jimple Language

Symbolic Class
Symbolic Class

Abstraction

Game Lang.
Convertor Interface

Interface
Game Solving

Partial Information

Automaton
Abstractor

Exception Predicate E

Code

Figure 2: The complete tool chain

program to form a coarse model of the program. In predicate
abstraction, we take a set of predicates P over the concrete
set of variables X and treat these predicates as abstract vari-
ables. We then transform the class so that it keeps track of
these abstract variables rather than the concrete variables.
Note that if there is a finite number of predicates, abstrac-
tion reduces the (possibly infinite) concrete state space into
a finite state space.

When abstracting a class, we must ensure that all be-
haviors of the program correspond to some behavior in the
abstracted class. It will then follow that if we design a safe
interface for the abstract class, then the interface will indeed
be safe for the concrete class as well. We formalize below a
standard set of rules under which the abstraction captures
all concrete behaviors. We restrict ourselves to abstraction
predicates such that if a predicate refers to a variable in
Xr, then it refers only to the variables in Xr, that is, to
predicates over Xr or over X \Xr.

Let C = (M,X, {Dx}x∈X , Xr, Init , {Tm}m∈M , {Rm}m∈M)
be a symbolic class and let P be a set of abstraction predi-
cates. A symbolic class A = (M,Xa, {DA}x∈Xa , Xa

r , Inita,
{T a

m}m∈M , {Ra
m}m∈M) is said to be an abstraction of C with

respect to P if the following conditions hold. The set of
methods stays the same. The abstract domain DA is the set
{0, 1, ∗}, where, intuitively, 0 stands for an abstract predi-
cate being false, 1 stands for it being true, and ∗ stands for
it being unknown. Xa = {xP | P ∈ P} is a set of vari-
ables over the domain DA, one for each predicate in P. A
state sa of the abstract symbolic class is hence an element
of Sa = Πx∈XaDA. Let γ : Sa → S be the concretization
function defined by:

γ(sa) = {s | ∀P ∈ P, s
�
P ⇒ sa[xP] 6= 0,

s � P ⇒ sa[xP] 6= 1}

We say that sa abstracts s if s ∈ γ(sa).
The abstract class must further satisfy:

• Xa
r is the set of abstract variables xP such that P is a

predicate that involves some variable in Xr.

• For every abstract state sa, if there exists a state s ∈
γ(sa) such that s |= Init , then Inita(sa) holds.

• For all m ∈ M , if for some s ∈ γ(sa) and s′ ∈ γ(s′a),
Tm(s, s′) holds, then T a

m(sa, s′a) holds.

• For all m ∈ M , if for some s ∈ γ(sa), s |= Rm, then
sa |= Ra

m.

Also, we require that for all m ∈ M , Rm ∈ P. Note
that the abstraction of C with respect to P is not unique,

because of the flexibility in the abstraction of the transition
predicate.

Let C be a symbolic class and let A be its abstraction
with respect to P. Let γ∗ : (M × Sa)∗ → (M × S)∗ be the
natural extension of γ.

Let J be an interface of the class A. An interface IJ

for the class C is a concretization of J if IJ(σ) = J(σa)
whenever σ ∈ �γ(σa) where �γ is the natural extension of γ
to (M × DXr

)∗ and DXr
is the product of the domains of

return variables of the class A.

Lemma 1. runs(C, IJ) ⊆ γ∗(runs(A, J))

Given the exception predicate E, we define the abstract
predicate Ea as follows: for all m ∈M , if for some s ∈ γ(sa),
s |= E, then sa |= Ea. The next theorem captures correct-
ness of the abstraction: whenever an abstract interface is
safe for the abstracted class, then the concretization of the
interface is safe for the concrete class.

Theorem 1. Let C be a symbolic class. Let A be its ab-
straction with respect to P. Let J be a safe interface for the
class A with respect to the exception predicate Ea. Then IJ

is a safe interface for the class C with respect to E.

4.2 Abstracting Jimple programs
A Jimple program can be seen as a symbolic class. Our

tool abstracts the Jimple class into a boolean Jimple pro-
gram. A boolean Jimple program is simply a Jimple pro-
gram that has only boolean or enumerated data types. The
tool is implemented on top of Soot, a framework for opti-
mizing Java bytecode. This framework is implemented in
Java, and supports a number of representations for Java
bytecode. Our tool uses the API of the Soot framework to
perform transformations on Jimple code.

Our abstractor works on a subset of Jimple (the grammar
of the subset that we handle is available at http://www.cis.
upenn.edu/jist). A large part of core classes of Java 2 falls
into this subset and thus can be analyzed by our tool. The
main features Jimple that are not treated here are floating-
point types, arrays, recursive function calls, and exceptions
(apart from the exception with respect to which we are con-
structing the interface).

The abstraction algorithm proceeds line-by-line on the
original program, and is inspired by the SLAM toolkit [5].
In the SLAM tool, an automatic theorem prover is used
to compute abstractions. In our prototype implementation,
the abstractions of Jimple statements can be precomputed,
since we use predicates of a simple form and the tool ab-
stracts simple expressions (and safely overapproximates the

rest). The predicates are of the form x = k where x is a
variable and k is a constant. We denote such a predicate by
the abstract variable b(x,k) over the three-valued domain
{0, 1, ∗}. Since Jimple does not have a nondeterministic con-
ditional, we create a class TriBool and make each predicate
that we add an instance of this class. In abstracting Jim-
ple code, the values of the TriBool variables are set and
read using unimplemented methods. As a consequence, our
boolean abstractions are valid Jimple programs that can be
executed with any implementation of TriBool (for example,
it can randomly resolve the nondeterminism).

Let P be a predicate and Pr be a set of predicates used
for abstraction. We need the following notions in order to
define the abstraction algorithm on Jimple statements:

• WP(st,P) (weakest precondition) is the weakest pred-
icate over the concrete variables X whose truth before
a statement st entails the truth of P afterwards.

• The command assume(P) silently terminates if P
evaluates to false. By ‘silently terminates’ we mean
that the method halts without returning and such runs
are ignored in the analysis.

• Implies(Pr)(P) is the best boolean function on Pr
that implies P, i.e. Implies(Pr)(P) ⇒ P, and if F
is a boolean function on Pr such that F ⇒ P, then F
⇒ Implies(Pr)(P).

• ImpliedBy(Pr)(P) is the best boolean function on
Pr that is implied by P, i.e. P ⇒ Implies(Pr)(P),
and if F is a boolean function on Pr such that P ⇒
F, then ImpliedBy(Pr)(P) ⇒ F.

In general, a statement st is abstracted into the following
sequence of commands: (one command for each predicate p
in Pr):

b(p) = Implies(Pr)(WP(st,p)) ? true :

Implies(Pr)(WP(st,not p)) ? false : *

It is well-known that if we abstract a program statement
by statement in this way, we will get a sound abstraction.
However, it should be noted that in order to prove formal
correctness of the abstractor, we need to formally associate
a symbolic class C(J) with a Jimple class, and prove that if
the abstractor transforms a class J to J ′, then C(J ′) is an
abstraction of C(J) as defined in Section 4.1.

We present here the abstraction of assignments, condi-
tional statements and method calls. The abstraction of
other statements is quite straightforward in our setting.

Abstraction of assignments
Consider a sample Jimple statement

x=y+1

Let (y, l1) · · · (y, ln) be the set of predicates involving y.
Note that if one of these predicates is true, the others are
false. For all predicates of the form (x, k), we get the fol-
lowing series of abstracted statements if (y, k − 1) is in the
predicate list:

b(x,k)=b(y,k-1)

If (y, k − 1) is not in the predicate list, we get:

if (b(y,l1)==TRUE or ... or b(y,ln)==TRUE) then

b(x,k)=FALSE

else

b(x,k)=*

Abstraction of conditionals
Consider a sample statement

if (x==k) then C1 else C2

If (x, k) is in the predicate list, the abstracted class contains:

if b(x,k)==*

resolve-nondeterminism{b(x,k1),...,b(x,kn)}
if b(x,k)==TRUE

Abs(C1) // abstracted code for C1

else // b(x,k)==false

Abs(C2) // abstracted code for C2

If (x, k) is not in the predicate list:

if b(x,k1)==* or ... or b(x,kn)==*

resolve-nondeterminism{b(x,k1),...,b(x,kn)}
if b(x,k1)==TRUE or ... or b(x,kn)==TRUE

Abs(C2) // abstracted code for C2

else

// Every b(x,ki)=FALSE

Abs(C1) // abstracted code for C1

where (x, k1) · · · (x, kn) are the set of predicates involving x.
In the above translation, resolve-nondeterminism(b(x,k1),
...,b(x,kn)) sets all variables whose value is ∗ to TRUE or
FALSE in such a way that if for any i, b(x, ki) is set to TRUE,
then b(x, kj) is set to FALSE, for all j different than i.

Abstraction of method calls
Currently, calls to other methods are inlined in the code
and abstracted. If the method is not implemented, then it
is abstracted in a coarse way: an assignment that contains
a method call to f

x=f()

is replaced by:

b(x,k1)=*

...

b(x,kn)=*

where (x, k1) · · · (x, kn) are the set of predicates involving
x. However, if the specifications of what the method must
do are known, we replace the call with this specification
(manually) using appropriate Java code.

5. INTERFACE SYNTHESIS
In this section, we describe the interface synthesis algo-

rithm for a given (abstracted) boolean symbolic class A. It
turns out from standard results in games that the most per-
missive safe interface can be captured by a finite automaton,
and hence corresponds to a regular language that we shall
henceforth refer to as U .

The standard way to generate the interface would be to
generate, using a subset construction, a new complete-inform-
ation game. In this new game, after any interaction with the
class, the player playing the role of the interface would keep
track of the set of states the original game can be in. This
new game can then be solved using a standard fix-point com-
putation that computes the winning positions in the game.
However, solving a partial information game in this way re-
quires manipulating sets of states of A. Recall that a state

of A is a valuation of the boolean predicates, and the tran-
sitions of A are given symbolically. Working with sets of
states of A symbolically seems hard, and explicitly enumer-
ating the state space of A is unaffordable.

Furthermore, in our setting, we expect the interface to be
a much smaller DFA than the abstract class, and solving
the game using the above method makes us pay an expo-
nential cost in computation time, regardless of the size of
the strategy we want to build.

To avoid this problem, we have chosen to implement the
interface synthesis using a learning algorithm; the learning
algorithm tries to learn the most permissive safe interface.
We use a standard algorithm to learn regular languages
called the L∗ algorithm [4, 27]. The L∗ algorithm is an
algorithm that learns an unknown regular language U (in
our setting, U is the language of the most permissive safe
interface) by asking two kinds of queries to a teacher who
knows U : membership queries (i.e. asking whether a given
string σ is in U) and equivalence queries (i.e. asking whether
a given conjecture regular language L is precisely U). If an
equivalence query is answered in the negative, the teacher
also provides a counter-example, i.e. a string which is either
in L and not in U , or which is in U but not in L.

The number of queries the L∗ algorithm makes is depen-
dent on the size of the interface automaton it constructs.
We answer the queries of the L∗ algorithm using calls to a
standard symbolic model-checker, and thus we do not resort
to a subset construction. Hence, the learning-based solu-
tion avoids both the problems stated above: the complexity
of the algorithm depends on the size of the interface con-
structed, and the algorithm is implemented using symbolic
model checking techniques.

In our setting, we split the role of the teacher answering
equivalence queries into two: one that checks subset queries
(whether a given conjecture language is a subset of U) and
one that checks superset queries. As we show below, mem-
bership queries and subset queries can be efficiently handled
using model-checking algorithms. However, we do not know
how to handle the superset query efficiently. We can in fact
show that while the computational complexity of member-
ship queries and subset queries is in polynomial time (in fact
in nondeterministic log-space), the superset query is NP-
hard, and hence a simple algorithm to answer it is unlikely
to exist.

We hence propose heuristic approximations to handle su-
perset queries. We ensure that the equivalence query is first
checked as a subset query, and only if the subset query
passes, it is passed on as a superset query. The superset
query teacher first checks for a certain stronger property,
which if true, implies that the conjecture language L is in-
deed a superset of U , and the superset query can return
true. But if this property fails, we gain no information as
to whether L is a superset of U . At this point, if we declare
that the language L is indeed U , the L∗ algorithm will ter-
minate with an interface that is a subset of U , and is not
guaranteed to be exactly U .

However, in practice, this kind of termination results some-
times in interfaces that are too restrictive. Hence, we do
an additional test that looks for certain simple counter-
examples (strings in U that are not in L) that we do not
want to miss. If this procedure fails to generate a counter-
example, we terminate and output the interface.

In summary, our algorithm is guaranteed to terminate

(since the L∗ algorithm guarantees termination) and out-
put an interface J , which is a minimal DFA that is guar-
anteed to be safe. Also, the algorithm either declares that
J is the most-permissive interface (in which case it is guar-
anteed that J is the same as U) or the algorithm declares
that J may not be the most-permissive interface. In the
latter case, we are assured that J is maximal (this follows
from the property of the L∗ algorithm that it is the mini-
mal automaton that satisfies the “observation table” it has
maintained). Finally, the algorithm has built-in heuristics
that search for a certain class of counter-examples that try
to make the output interface closer to U .

We describe now formally the notion of automata repre-
senting interfaces, the learning algorithm and the handling
of queries.

5.1 Interfaces
Let us start by defining formally how finite automata de-

scribe interfaces. We use deterministic finite automata over
an alphabet of method-call–return-value pairs, whose lan-
guage is prefix-closed, to capture interfaces. Given a boolean
class A = (M,X, {Dx}x∈X , Xr, Init , {Tm}m∈M , {Rm}m∈M),
consider a deterministic finite automaton (DFA) J = (Q, q0,
F, δ) over the alphabet (M × Sr), where:

• M is the set of method names of A and Sr is the set
of all valuations for return variables of A.

• Q is a finite set of states; q0 ∈ Q is the initial state, F ⊆
Q is a set of accepting states, and δ : Q×(M×Sr) → Q
is the transition function.

Intuitively, if δ(q, (m, r)) = q′, it means that when at
state q, the interface corresponding to the DFA can invoke
the method m, and if it receives the return value r, it moves
to state q′. Note that if an interface prohibits a sequence
σ ∈ (M ×Sr)

∗, then it prohibits all extensions of σ and the
language of the interface is hence prefix-closed. We therefore
require that there is at most one non-accepting state and it
is a sink if it exists (i.e., all transitions from it go to itself).

For q ∈ Q, let the set of legal methods from q, denoted
LM (q) be the set of methods m such that for some return
value r, δ(q, (m, r)) ∈ F . The transition function δ general-
izes to strings in (M × Sr)

∗ in a natural way: δ(q, ε) = q,
and δ(q, σ · (m, r)) = δ(δ(q, σ), (m, r)), for σ ∈ (M × Sr)

∗,
(m, r) ∈ M × Sr. Now, a DFA J = (Q, q0, F, δ) repre-
sents the interface I : (M × Sr)

∗ → 2M , given by I(σ) =
LM (δ(q0, σ)), for every σ ∈ (M × Sr)

∗.
Given a boolean class A, an exception predicate E and

an automaton J representing an interface, we say J is a
safe interface for A with respect to E if J represents a safe
interface I for A with respect to E. We henceforth refer
to automata that represent interfaces also as interfaces and
treat them synonymous with the interfaces they represent.

5.2 L∗ algorithm
The L∗ algorithm learns an unknown regular language and

generates a minimal DFA that accepts the regular language.
This algorithm was introduced by Angluin [4], but we use
an improved version by Rivest and Schapire [27].

The algorithm infers the structure of the DFA by asking
a teacher, who knows the unknown language, two types of
questions: membership queries and equivalence queries. On
a membership query, the learner asks whether a string σ is

L∗ Algorithm

1: S := {ε}; E := {ε};
2: foreach (s ∈ S), (a ∈ Σ) and (e ∈ E) {
3: T [s, e] := Member(s·e);
4: T [s·a, e] := Member (s·a·e);
5: }
6: repeat:
7: while ((snew := Closed(S,E, T)) 6= null) {
8: Add(S, snew);
9: foreach (a ∈ Σ) and (e ∈ E) {
10: T [snew ·a, e] := Member (snew ·a·e);
11: }
12: }
13: C := MakeConjectureMachine (S,E, T);
14: if ((cex := Equivalent(C)) = null) then return C;
15: else {
16: enew := FindSuffix (cex);
17: Add (E, enew);
18: foreach (s ∈ S) and (a ∈ Σ) {
19: T [s, enew] := Member (s·enew);
20: T [s·a, enew] := Member (s·a·enew);
21: }
22: }

Figure 3: L∗ algorithm

accepted by the unknown language, and the teacher answers
true or false. On an equivalence query, the learner conjec-
tures that the machine it has constructed is equivalent to the
unknown language. The teacher replies that the conjecture
is either correct or incorrect, and in the latter case gives a
counter-example which is a string accepted by one but not
the other.

Figure 3 illustrates the L∗ algorithm. Let U be the un-
known regular language and Σ be its alphabet. At any
given time, the L∗ algorithm has information about a fi-
nite collection of strings over Σ, classified either as members
or non-members of U . This information is maintained in
an observation table (S,E, T) where S and E are a set of
strings over Σ, and T is a function from (S ∪ S ·Σ) · E to
{true , false}. Intuitively, S can be viewed as a set of repre-
sentative strings that lead from the initial state (uniquely)
to the various states of the DFA, and E as experiments that
are performed at these states in order to distinguish states.
T maps strings σ in (S ∪ S ·Σ) · E to true if σ is in U , and
to false otherwise. Initially, S and E are set to {ε}, and T ,
which is implemented as a two-dimensional array, is initial-
ized using membership queries for every string in (S∪S·Σ)·E
(line 2–5). In line 7, it checks whether the observation table
is closed ; that is, for every s ∈ S and a ∈ Σ, there exists
s′ ∈ S such that T [s·a, e] = T [s′, e] for every e ∈ E. If not,
each such s ·a (e.g., snew is s ·a in line 8) is simply added
to S. The algorithm again updates T with regard to s ·a
(line 9–11). Once the table is closed, it constructs a conjec-
ture machine C = (Q, q0, F, δ) as follows (line 13): Q = S,
q0 = ε, F = {s ∈ S | T [s, ε] = true}, and for every s ∈ S
and a ∈ Σ, δ(s, a) = s′ such that T [s·a, e] = T [s′, e] for ev-
ery e ∈ E. Finally, if the answer of the equivalence query is
yes, it returns the current machine C; otherwise, a counter-
example cex ∈ ((L(C) \ U) ∪ (U \ L(C)) is provided by the
teacher. The algorithm analyzes the counter-example cex in
order to find the longest suffix enew of cex that witnesses a

difference between U and L(C) (line 16). Adding enew to E
reflects the difference in the next conjecture by splitting a
state in C. It then updates T with respect to enew .

The L∗ algorithm guarantees to construct a minimal DFA
for the unknown regular language using only a polynomial
number of membership and equivalence queries: more pre-
cisely with O(|Σ|n2 + n logm) membership queries and at
most n − 1 equivalence queries, where n is the number of
states in the final DFA and m is the length of the longest
counter-example provided by the teacher for equivalence
queries.

5.3 Synthesis of interfaces using L∗

In this section, we explain how we apply the L∗ algorithm
to synthesize a safe interface. Given a boolean class A and
an exception predicate E, we can make the L∗ algorithm
construct the most permissive interface for A with respect
to E by providing answers for membership and equivalence
queries to the learner.

Figure 4 is a high-level pseudo-code for the teacher who
answers queries in the L∗ algorithm. We implement teachers
for the membership query, the subset query and the superset
query, using model-checking procedures for CTL (Compu-
tational Tree Logic) model checking [11].

5.3.1 Membership and subset queries
Given a string σ = (m0, r0), · · · , (mn, rn), the teacher for

membership queries checks whether the string σ is in the
language U (i.e., whether σ ∈ U). The membership query
can be reformulated as a subset query, where we first con-
struct a simple interface Jσ with |σ| + 2 states that accepts
precisely the string σ and its prefixes. It is easy to see that
the membership query for σ is equivalent to the subset query
for Jσ.

Since we know that the language we are trying to learn is
prefix-closed, we ensure that the L∗ algorithm does not ask
membership queries for σ if a prefix of σ has already been
known to be not in the language. This reduces the number
of membership queries [8].

Given an interface J , the subset query asks whether the
language of J is a subset of the language U (i.e., whether
L(J) ⊆ U). Since U consists precisely the set of all the safe
method-call–return-value sequences, this question is equiv-
alent to asking whether J is a safe interface for A.

The teacher for subset queries checks, using a standard
CTL model checker, whether J is a safe interface for the
class A with respect to E. The state space of the interaction
between A and J , A||J , is defined as SA||J = {tA, tJ}×M ×
S × Q. A state s = (tA,m, sA, q) ∈ SA||J means that at
the state s, the class A has ‘turn’, the currently executing
method ism, and the class A and the interface J are in states
sA and q, respectively. Transitions of A||J are as follows.

• Initially, the interface has ‘turn’ and selects a method
m ∈ LM (q0) to be executed. Then, it passes ‘turn’ to
the class.

• When the class gets ‘turn’ (let s = (tA,m, sA, q) be
the current state of A||J), the method m is simulated.
The class keeps the ‘turn’ until it reaches a state s′A ∈
S with s′A |= Rm, and then passes the ‘turn’ to the
interface with a return value r = s′A[Xr].

• If the interface receives ‘turn’ with a return value r
from the class (let s = (tJ ,m, sA, q) be the current

Boolean Member (String σ) {
Jσ := ConstructInterface (σ);
if (Subset (Jσ) = null) then return true ;
else return false;

}

String Equivalent(Interface J) {
if ((cex := Subset (J)) = null) then cex := Superset (J);
return cex ;

}

String Subset (Interface J) {
A := ReadAbstractClass ();
ϕ := AG (E = false);
cex := CTLModelChecking(A||J, ϕ);
return cex ;

}

String Superset (Interface J) {
A := ReadAbstractClass ();
ψ := AG((legal =0 ∧ turn = tJ) → EF E);
if ((cex := CTLModelChecking(A|||J, ψ)) = null) then {

print (“L(J) is a superset of U .”);
} else if (¬Member(cex)) then {

if ((cex := OneStepFurther (J)) = null) then
print (“L(J) may or may not be a superset.”);

}
return cex ;

}

String OneStepFurther (Interface J) {
foreach (q ∈ Q) and (m, r), (m′, r′) ∈ (M × Sr) {

if ¬Accept (J, σq(m, r)(m
′, r′)) then

if (Member (σq(m, r)(m
′, r′))) then

return σq(m, r)(m
′, r′);

}
return null ;

}

Figure 4: Implementation of the L∗ teacher

state of A||J), it changes its state to q′ = δ(q, (m, r))
and picks a new method m′ ∈ LM (q′). It then passes
‘turn’ to the class and the interaction continues as be-
fore.

A model checker checks (exhaustively) whether all the
method-call–return-value sequences allowed in J keep the
class A away from states that satisfy E by checking whether
A||J satisfies the CTL specification

AG (¬E).

If it does, then J is a safe interface and the answer to the
subset query is true. Otherwise, the model checker gives
a counter-example path of A||J that reaches a state where
E = true . The method-call–return-value sequence extracted
from this counter-example is provided to the learner as a
counter-example string σ ∈ L(J) \ U .

5.3.2 Superset query
Given a conjecture interface J , the superset query asks

whether the language of J is a superset of the language U
(i.e., whether L(J) ⊇ U).

The teacher for superset queries must check that ∀σ ∈
(M × Sr)

∗, σ /∈ L(J) → σ /∈ U ; that is, for every method-
call–return-value sequence σ /∈ L(J), there is some run of
the boolean class A corresponding to the sequence σ that
does not stay within the safe set (E(X) = false). We do not
know how to implement this exactly and efficiently.

Let us consider the computational complexity of the mem-
bership, subset and superset queries to see why we think
superset queries are inherently hard. Given a finite class A,
let the size of A be the sum of its methods, states, and tran-
sitions (i.e., the size of A is the the size of the class when
it is represented explicitly). Assume the safety predicate E
is given as a subset of the states of the class. Now, given
a conjecture strategy automaton J , the problem of check-
ing whether A||J is safe can be done in polynomial time
(in fact in nondeterministic log-space). Similarly, member-
ship queries can be handled in polynomial time. However,
it turns out that superset queries are NP-hard:

Proposition 1. Given an (explicit) class A, an unsafe
set E and a strategy automaton J, checking whether there
is some string σ /∈ L(J) such that L(J) ∪ {σ} is safe, is
NP-hard.

The proof of the above is by a reduction from 3-SAT , and
crucially uses the fact that the game is a partial information
game; we omit the proof.

We hence turn to ways that heuristically and approxi-
mately answer superset queries. Our first step is to pose
a stronger property ψ that asks whether for every method-
call–return-value sequence σ /∈ L(J), all runs of the boolean
class A corresponding to the sequence σ do not stay within
the safe set (E(X) = false). Note that if the property ψ is
true, then L(J) ⊇ U ; otherwise, we cannot conclude whether
L(J) ⊇ U or not.

To check the property ψ, we define a new interaction be-
tween A and J , A|||J , that simulates legal method sequences
in J followed by at most one method not allowed by J . The
domain of A|||J is SA|||J = {tA, tJ} ×M × S × Q × {0, 1}
which adds a legal bit to SA||J . Transitions of A|||J are as
follows.

• Initially, the interface has ‘turn’ and selects a method
m ∈ M . If m ∈ LM (q0), it sets legal to 1, otherwise
to 0. Then, it passes ‘turn’ to the class.

• When the class receives ‘turn’, the method m is sim-
ulated in the same manner as in A||J ; however, if
legal = 0, then at the end of the method the model
halts and does not return to the interface.

• If the interface gets back ‘turn’ with a return value r,
let s = (tJ ,m, sA, q) be the current state of A|||J (legal
must be 1). Then, it moves from q to q′ = δ(q, (m, r)),
picks a new method m′ ∈ M , sets legal to 0 iff m′ /∈
LM (q′), and passes ‘turn’ to the class.

A model checker checks whether the first method call not
allowed by the interface J always leads to an unsafe state
during its execution, by checking the following CTL specifi-
cation

AG ((legal = 0 ∧ turn = tJ) → EF E).

Note that the above formula captures an inherently branching-
time property and cannot be captured using linear temporal
logic nor can be checked using a simple invariant checker.

If A|||J satisfies the above specification, the teacher an-
swers true for the superset query and the L∗ algorithm ter-
minates with an interface and reports that it is the most
permissive safe interface. Otherwise, the model checker pro-
vides a counter-example which is a method-call–return-value
sequence σ. By definition, there is at least one run corre-
sponding to σ that is safe, but we do not know whether all
runs corresponding to σ are safe; hence we cannot return σ
as a counter-example to the superset query, as σ may not
be in U . We now check whether σ is indeed in U by a mem-
bership query on σ. If σ is in U , then σ is a witness for
L(J) � U and is returned to the L∗ algorithm to update
the conjecture J . Otherwise, σ is not in U and we discard
it.

If the above method fails to produce a counter-example,
we turn to some heuristic ways to check for natural counter-
examples that the interface may have missed. By a property
of the observation table, a conjecture interface always allows
all the safe method calls from every state since the L∗ algo-
rithm checks membership for every string σ ∈ S · Σ (more
precisely, σ ∈ (S ∪ S ·Σ) ·E) and allows calling a method m
from a state s if s·m is a member. However, in the examples
we have experimented with, there are often scenarios where
a safe method call sequence m·m′ is disallowed from a par-
ticular state q even though calling m guarantees that calling
m′ is safe. The reason is this: if q′ is the state reached from
q on m, then there can be another path to q′ that makes
calling m′ from q′ unsafe.

To find these counter-examples for superset queries (in the
above case, calling m·m′ at q), we check whether from ev-
ery state the conjecture interface allows all the safe method
call sequences of length 2 (procedure OneStepFurther). For-
mally, we denote one representative of the strings that reach
q as σq (this representative is the one in the set S, in the
L∗ algorithm). We check whether ∃q ∈ Q, (m, r), (m′, r′) ∈
M × Sr. σq(m, r)(m

′, r′) /∈ L(J) ∧ σq(m, r)(m
′, r′) ∈ U by

traversing J and asking membership queries. If there exists
σq(m, r)(m

′, r′) satisfying the above, we use σq(m, r)(m
′, r′)

as a counter-example for the superset query. Otherwise,
our synthesis terminates with the maximal safe interface J
(maximality of J is assured by the L∗ algorithm).

In summary, the teacher for superset queries always pro-
vides a counter-example to the learner, or terminates and
says true, and additionally may give the assurance that the
superset query indeed was true. If it terminates with this
assurance, then the L∗ algorithm has learned the most per-
missive interface. If not, the L∗ algorithm has learned a safe
interface that is guaranteed to be maximal.

6. EXPERIMENTS
In this section, we report results obtained by using JIST

on some sample Java classes. In all cases, the tool could
generate a useful and safe interface automatically using little
computational resource. The original Java classes, interme-
diate forms (such as the abstracted Jimple files) and results
are available at http://www.cis.upenn.edu/jist/ .

ListItr Class
We present the class ListItr as the first example. It is an
inner class of AbstractList from the package java.util

and supports random access for a list. It has ten meth-
ods. We focus on the following five: next(), remove(),

previous(), set() and add().

��� � �
	����� ���� �
������� ���
� ������� ���

Figure 5: List Iterator (1 predicate)

� � �"!

� #

� $

�&%

' (*),+"-/. 0�1
' 2*+ 3�4�. 5"1 . ' (*),+ -�. 5"1 ' 2*+&3�4�. 0�1 . ' 6�7*7�. 0�1

' (*) +"-�. 0�1

' 2*+&3�4�. 5"1 . ' (*) +"-�. 5�1' (*) +"-�. 0�1 . ' 8 + 4�. 5"1

' 2*+ 3�4�. 0�1' 6�7*7�. 0�1' 8 +&4�. 5"1
' 6�7*7�. 5�1

'),+ 9;:<-�+�. 5�1 . ' 6�7*7�. 5�1
' 2*+ 3�4�. 5"1 . ' (*),+"-/. 5"1

' 6�7*7�. 5"1 ' 2*+&3�4�. 0�1 . ' 6�7*7�. 0�1

' 2*+&3�4�. 0�1 . ' 6�7*7�. 0�1

'),+"9=:<-�+�. 5"1' (*) +"-�. 0�1

' (*) +"-�. 5�1

Figure 6: ListItr (2 predicates)

The class is used to navigate and modify a list. Methods
next and previous are used to traverse the list, add to add
a new element, set and remove to modify/remove the last
accessed element. The last accessed element is tracked using
an index into the list (called lastRet) and is updated by the
next and previous methods. However, if remove or add are
called, this variable is set to −1. If any of the methods
remove or set is invoked when lastRet is −1, an exception
is raised. The exception predicate we use corresponds to
raising of this exception.

The interface shown in Figure 5 is a safe interface. How-
ever, it is overly restrictive. While it allows calls to next(),

previous() and add() methods, it completely disallows calls
to remove() and set(). The interface was produced using
only one predicate, lastRet = −1, i.e. the predicate that
triggers the raising of the IllegalStateException exception.
The value of lastRet is the index of element returned by
most recent call to next or previous. It is reset to -1 if this
element is deleted by a call to remove.

In order to produce a more permissive interface, we add
one more predicate, cursor = −1, the predicate that is used
as a test in the if statements in several of the methods. The
value of cursor is the index of element to be returned by
subsequent call to next. We need to keep track of whether
or not it is equal to −1, because the code contains the as-
signment lastRet = cursor .

The resulting interface is shown in Figure 6. The high
level description of this interface is that the methods next(),
previous() must be called successfully (return 1) before
remove or set can be called. Furthermore, notice that:

• When a method is not allowed by the interface at a
given state (i.e. there are no outgoing edges labeled
with the method’s name), then it is not safe to call
this method (because an exception might be raised).
For example, the method set is not allowed at q0. As
noted before, only the final states of the automata are
shown.

activate

holdDown

activateholdDown

registerPorts

register
activate

install
registerPorts

uninstall
holdDown

registerPorts

q2q0 q1

Figure 7: ServerTableEntry

• if there is an outgoing edge from a given state q for
a method m but the interface does not mention all
possible return values m from q, it means that the
return values that are missing are not feasible. For
example, the method next can not return 0 at q0.

We also present a case when the ListItr class is abstracted
using an additional irrelevant predicate, expectedModCount =
0 (we checked manually that it was irrelevant). In this case,
the resulting interface is the same as the one we got with-
out it. This suggests that the tool is resilient to addition
of irrelevant predicates, and we believe that an automatic
tool for refinement of predicates will not adversely change
the quality of results of our tool.

As mentioned previously, an interface for this class was
computed by the tool presented in [32]. Their interface how-
ever is not sound. For example, their interface declares that
one can call remove after a call to prev; however, there are
situations where prev may fail (say when one is at the begin-
ning of the list) in which case remove is not allowed. On the
other hand, our interface is guaranteed to be safe: for exam-
ple, in Figure 6, if prev fails (i.e. after (prev, 0)), remove
is disallowed. Our interface also gives more precise infor-
mation about possible return values: for example, Figure 6
says that calling prev initially will always fail (i.e. return
0).

ServerTableEntry Class
ServerTableEntry from the package com.sun.corba.se.-

internal.Activation is a class related to the server table
for Corba objects. It has 19 methods. We choose the fol-
lowing six: activate(), register(), registerPorts(),

install(), uninstall(), holdDown() to construct the in-
terface. Once users activate the system by activate(), they
can enroll a server by register() and listeners’ network
ports by registerPorts(). After ports are registered, the
user can install the server or uninstall it. Users can call
holdDown whenever they want. We produced the interface
for the class using five predicates, state = 0, state = 1,
state = 2, state = 3 and state = 4.

The resulting interface is illustrated in Figure 7. Once
activate() is called, register or registerPorts can be
called at q1. After the registration, install or uninstall

are enabled at q2. holdDown() can be called at any state,
and results in returning to the initial state q0.

Signature Class
The class Signature is taken form the package java.secu-

rity. This class was described in Section 2. To produce
the interface for this class, we used three predicates, state =
UNINITIALIZED, state = SIGN and state = VERIFY .
The resulting interface is shown in Figure 1.

In order to demonstrate how such an interface can help a
programmer to discover errors in programs, we consider the
Signature class with an artificially introduced error. We

initSign

initVerify
initVerify

verify
update update

initVerify

initSign

initSign

q1 q2

q0

Figure 8: Signature (programming error)

(connect, 1)

(connect, *)
write

close
flushclose

flush
(connect, 0)

q0 q1

Figure 9: PipedOutputStream Class

modify the initSign method so that in some cases initial-
ization may fail, thus not making it possible to guarantee
that the call to Sign is possible after a call to initSign.
The interface produced in this case is in the Figure 8 and
the error is clearly visible: it is not possible to call the Sign

method.

PipedOutputStream Class
The class PipedOutputStream from the package java.io is
an implementation of an abstract class OutputStream. It has
four methods, connect, write, flush, close. One property
that the user of the class should know is that it is necessary
to call connect before calling write.

This property is captured by the interface produced by the
JIST tool. The predicate sink = null was used in construct-
ing the interface, because it is the predicate guarding the
NullPointerException. Note that while creating this in-
terface, the heuristic check for the natural counter-examples
for the superset query was used. (Note: The prototype im-
plementation of our tool currently handles only predicates
of the form “var=integer constant”; so, the abstraction step
had to be done manually for this example. However, there
is no difference conceptually between the predicates the tool
handles and the predicate sink = null .)

Experiments Summary
All experiments were performed on a PC using a 1GHz Pen-
tium III processor, 1.5GB memory and a Linux operating
system. The synthesis results for three classes are shown Ta-
ble 6. It gives the number of predicates used for abstraction
in the Java program, the number of derived predicates in the
corresponding Jimple code (Jimple introduces temporary
variables corresponding to Java variables) and the number of
variables in the NuSMV boolean model (this model has ad-
ditional boolean variables for handling the control flow, like
the program-counter). The table also shows the number of
membership, subset and superset queries that the learner
asked in the interface synthesis phase, whether the heuristic
method (OneStepFurther) found a counter-example for the
superset query and the total execution time in seconds. The
last column indicates whether it was possible for the tool to
conclude that the resulting interface is the most permissive
one. Though the tool could not conclude this in two cases,
it turns out that even in these cases the interfaces generated
were indeed the most permissive ones.

Predicates Predicates OneStepFurther Time Tool reports interfaceClass name
in Java in Jimple

Var MQ SubQ SuperQ
found a cex? (sec) is most permissive?

Signature 3 7 24 83 3 3 N/A 10.3 yes
ServerTableEntry 5 9 25 53 3 3 N/A 9.2 yes
ListItr (1 pred.) 1 5 20 35 1 1 no 5.2 no
ListItr (2 pred.) 2 17 29 288 5 2 N/A 83.4 yes
ListItr (3 pred.) 3 19 31 288 5 2 N/A 101.8 yes

PipedOutputStream 1 5 19 64 2 2 yes 6.0 no

Table 1: Experimental results

7. CONCLUSIONS
We have proposed a technique for automatically synthesiz-

ing behavioral interface specifications for Java classes using
abstraction and games. Our initial prototype and experi-
mentation shows promising results. The proposed solution
to computing the most permissive winning strategies in par-
tial information games using learning algorithms and sym-
bolic model checking can be useful in contexts other than
interface synthesis. There are many directions for future re-
search. First, the current tool handles a simple subset of
Java. We would like to develop similar techniques for ex-
tracting interfaces for a set of classes that call one another,
and for handling class and exception hierarchies. Second,
the current tool allows only simple forms of predicates for
abstraction. The abstractor can be made much more pow-
erful without sacrificing automation. Coupled with slicing
techniques, this will lead to a robust toolkit that will per-
mit extensive experimentation. Finally, software verification
tools can address scalability using our tool for automatically
abstracting classes by their interfaces for compositional ver-
ification, and this application deserves further exploration.

Acknowledgments
We thank Gunjan Gupta and Anshuman Srivastava for their
help in implementing components of the JIST prototype.
This research was partially supported by NSF award CCR-
0306382 and ARO URI award DAAD19-01-1-0473.

8. REFERENCES
[1] S. Abramsky. Semantics of interaction. Technical report,

Oxford University, 2002.

[2] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time
temporal logic. Journal of the ACM, 49(5):1–42, 2002.

[3] G. Ammons, R. Bod́ık, and J. Larus. Mining specifications. In
Proc. 29th ACM POPL, pages 4–16, 2002.

[4] D. Angluin. Learning regular sets from queries and
counterexamples. Information and Computation, 75:87–106,
1987.

[5] T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani.
Automatic predicate abstraction of C programs. In Proc.
PLDI, ACM SIGPLAN Notices 36(5), pages 203–213, 2001.

[6] T. Ball and S.K. Rajamani. The SLAM project: Debugging
system software via static analysis. In Proc. 29th ACM

POPL, pages 1–3, 2002.

[7] H. Barringer, C.S. Pasareanu and D. Giannakopolou. Proof
rules for automated compositional verification through
learning. In Proc. of the 2nd Int’l Workshop on Specification

and Verification of Component Based Systems, 2003.

[8] T. Berg, B. Jonsson, M. Leucker, and M. Saksena. Insights to
Angluin’s learning. In Proc. of International Workshop on
Software Verification and Validation, 2003.

[9] A. Chakrabarti, L. de Alfaro, T.A. Henzinger, M. Jurdzinski,
and F. Mang. Interface compatibility checking for software
modules. In Proc. 14th CAV, LNCS 2404, Springer, pages
428–441, 2002.

[10] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV Version 2: An Opensource tool for symbolic model

checking. In Proc. 14th CAV, LNCS 2404, Springer, pages
359–364, 2002.

[11] E.M. Clarke and E.A. Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic.
In Proc. of Workshop on Logic of Programs, pages 52–71,
1981.

[12] J.M. Cobleigh, D. Giannakopoulou, and C.S. Pasareanu.
Learning assumptions for compositional verification. In Proc.
9th TACAS, LNCS 2619, Springer, pages 331–346, 2003.

[13] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu,
Robby, and H. Zheng. Bandera: Extracting finite-state models
from Java source code. In Proc. 22nd ICSE, pages 439–448,
2000.

[14] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. 4th ACM POPL, pages
238–252, 1977.

[15] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proc. 5th ACM

POPL, pages 84–96, 1978.

[16] L. de Alfaro and T.A. Henzinger. Interface automata. In Proc.

9th ACM FSE, pages 109–120, 2001.

[17] R. DeLine and M. Fähndrich. Enforcing high-level protocols in
low-level software. In Proc. ACM POPL, pages 59–69, 2001.

[18] D. Giannakopoulou, C.S. Pasareanu and H. Barringer.
Assumption generation for software component verification. In
Proc. 17th ASE, pages 3–12, 2002.

[19] S. Graf and H. Saidi. Construction of abstract state graphs
with PVS. In Proc. 9th CAV, LNCS 1254, pages 72–83, 1997.

[20] T.A. Henzinger, R. Jhala, R. Majumdar, K.L. McMillan.
Abstractions from proofs. In Proc. 31st ACM POPL, pages
232–244, 2004.

[21] T.A. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre,
and W. Weimer. Temporal-safety proofs for systems code. In
Proc. of CAV, LNCS 2404, pages 526–538. Springer, 2002.

[22] G. Holzmann and M. Smith. Software model checking -
extracting verification models from source code. In Formal
Methods for Protocol Engineering and Distributed Systems,
pages 481–497, 1999.

[23] F. Logozzo. Automatic inference of class invariants. In Proc. of

VMCAI, LNCS 2937, pages 211–222, 2004.

[24] J. Nimmer and M. Ernst. Automatic generation of program
specification. In Proc. of ISSTA, pages 229–239, 2002.

[25] G. Ramalingam, A. Warshavsky, J. Field, D. Goyal and
M. Sagiv. Deriving specialized program analyses for certifying
component-client conformance. In ACM PLDI, pages 83–94,
2002.

[26] J.H. Reif. Universal games of incomplete information. In Proc.
of the 11th ACM symposium on Theory of computing, pages
288–308. ACM Press, 1979.

[27] R. L. Rivest and R. E. Schapire. Inference of finite automata
using homing sequences. Information and Computation,
103(2):299–347, 1993.

[28] W. Thomas. Infinite games and verification. In Proc. 14th
CAV, LNCS 2404, pages 58–64. Springer, 2002.

[29] O. Tkachuk, M.B. Dwyer, and C.S. Pasareanu. Automated
environment generation for software model checking. In Proc.

18th ASE, pages 116–127, 2003.

[30] R. Vallée-Rai, L. Hendren, V. Sundaresan, E.G. Patrick Lam,
and P. Co. Soot - a Java optimization framework. In Proc.
CASCON, pages 125–135, 1999.

[31] D. Walker. A type system for expressive security policies. In
Proc. 27th ACM POPL, pages 254–267, 2000.

[32] J. Whaley, M.C. Martin, and M.S. Lam. Automatic extraction
of object-oriented component interfaces. In Proc. ISSTA,
pages 218–228, 2002.

	University of Pennsylvania
	ScholarlyCommons
	January 2005

	Synthesis of Interface Specifications for Java Classes
	Rajeev Alur
	Pavol Cerný
	P. Madhusudan
	Wonhong Nam
	Recommended Citation

	Synthesis of Interface Specifications for Java Classes
	Abstract
	Keywords

	tmp.1117747844.pdf.W6Ex7

