View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarlyCommons@Penn

University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

March 2005

Perturbed Timed Automata

Rajeev Alur

University of Pennsylvania, alur@cis.upenn.edu

Salvatore La Torre
Universita degli Studi di Salerno

P. Madhusudan
University of Illinois

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Recommended Citation
Rajeev Alur, Salvatore La Torre, and P. Madhusudan, "Perturbed Timed Automata", Lecture Notes in Computer Science: Hybrid Systems:

Computation and Control 3414, 70-85. March 200S. http://dx.doi.org/10.1007/978-3-540-31954-2_5
From the 8th International Workshop, HSCC 2005, Zurich, Switzerland, March 9-11, 2005.

This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/cis_papers/182

For more information, please contact libraryrepository@pobox.upenn.edu.

https://core.ac.uk/display/76384072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/978-3-540-31954-2_5
http://repository.upenn.edu/cis_papers/182
mailto:libraryrepository@pobox.upenn.edu

Perturbed Timed Automata

Abstract

We consider timed automata whose clocks are imperfect. For a given perturbation error 0 < ¢ < 1, the
perturbed language of a timed automaton is obtained by letting its clocks change at a rate within the interval [1
- ¢, 1 + £]. We show that the perturbed language of a timed automaton with a single clock can be captured by a
deterministic timed automaton. This leads to a decision procedure for the language inclusion problem for
systems modeled as products of 1-clock automata with imperfect clocks. We also prove that determinization
and decidability of language inclusion are not possible for multi-clock automata, even with perturbation.

Comments

From the 8th International Workshop, HSCC 2005, Zurich, Switzerland, March 9-11, 2008.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/182

http://repository.upenn.edu/cis_papers/182?utm_source=repository.upenn.edu%2Fcis_papers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages

Perturbed Timed Automata*

Rajeev Alur!, Salvatore La Torre?, and P. Madhusudan?

! University of Pennsylvania
% Universita degli Studi di Salerno
3 University of Tllinois at Urbana-Champaign

Abstract. We consider timed automata whose clocks are imperfect. For
a given perturbation error 0 < € < 1, the perturbed language of a timed
automaton is obtained by letting its clocks change at a rate within the
interval [1 — ¢,1 + €]. We show that the perturbed language of a timed
automaton with a single clock can be captured by a deterministic timed
automaton. This leads to a decision procedure for the language inclu-
sion problem for systems modeled as products of 1-clock automata with
imperfect clocks. We also prove that determinization and decidability of
language inclusion are not possible for multi-clock automata, even with
perturbation.

1 Introduction

Traditional automata do not admit an explicit modeling of time and consequently
timed automata [1] were introduced as a formal notation to model the behavior
of real-time systems. Timed automata are finite automata extended with real-
valued variables called clocks, whose vertices and edges are annotated with clock
constraints that allow specification of constant bounds on delays among events.
Timed automata accept timed languages consisting of sequences of events tagged
with their occurrence times. Over the years, the formalism has been extensively
studied leading to many results establishing connections to circuits and logic, and
much progress has been made in developing verification algorithms, heuristics,
and tools (see [2] for a recent survey and [3-5] for sample tools). The class of
timed regular languages —languages definable by timed automata— is closed
under union, intersection and projection, but not under complementation, and
while language emptiness can be decided by symbolic algorithms manipulating
clock constraints, decision problems such as universality and language inclusion
are undecidable for timed automata [1].

The undecidability of language inclusion and nonclosure under complemen-
tation has motivated many researchers to search for ways to limit the expres-
siveness of timed automata (see for example [1,6-12]). A canonical example of a
timed regular language whose complement is not timed regular, is the language

* This research was partially supported by the US National Science Foundation under
grants ITR/SY0121431 and CCR0410662. The second author was also supported by
the MIUR grant ex-60% 2003 Universita degli Studi di Salerno.

L' of timed words containing some two symbols separated ezactly by 1 time
unit. In fact, a single clock suffices to express L'. Typical proofs of undecidabil-
ity of language inclusion crucially use the language L!. One way to avoid L!
is to require that the automaton be deterministic: since there can be unbound-
edly many symbols in an interval of 1 time unit, nondeterminism is necessary
to accept L'. The class of deterministic timed automata is closed under union,
intersection, and complementation, and problems such as universality and inclu-
sion are decidable for deterministic timed automata [1]. An alternative way to
rule out L! is inspired by the observation that L! relies on the (infinite) preci-
sion of the timing constraints. In robust timed automata fuzziness is introduced
in the language of an automaton semantically using a metric over the timed
words, and considering a word to be accepted/rejected only if a dense subset
around the word is accepted/rejected [13]. Unfortunately, language inclusion re-
mains undecidable under the robust semantics also, and robust languages are
not closed under complementation [14].

In this paper, we propose and study an alternative way of introducing im-
precision in timed automata by introducing errors in the rates of clocks. Given
a timed automaton A and a rational constant 0 < € < 1, let L.(A) be the lan-
guage of the automaton in the perturbed semantics, where each clock increases
at a rate within the interval [1 — e,1 + €]. If we add a perturbation € to the
standard timed automaton accepting L', then the resulting language consists
of timed words with some two symbols separated by a distance d such that
1—¢ <d < 1+e¢. Perturbed timed automata can be seen to be special kinds
of (initialized) rectangular automata [15]. It follows that a perturbed timed au-
tomaton can be translated to a timed automaton preserving the timed language,
and emptiness of perturbed languages is decidable.

Our main result is that if A has one clock, then the language L. (A), e > 0, can
be accepted by a deterministic timed automaton. Intuitively, when the clock has
a drift, then instead of guessing the event on which the clock gets reset, it suffices
to remember the first and the last possible times when the reset may occur in
every interval of length . More precisely, given a 1-clock automaton A with
m locations and ¢ as the largest (integer) constant in its clock constraints, and
an error € = 1/n, we show how to construct a deterministic timed automaton
B with O(emn) clocks that accepts the language L.(A). We also prove the
construction to be essentially tight via lower bounds on the number of clocks in
any equivalent deterministic automaton. This construction, however, does not
generalize when A has multiple clocks: we show that for every € > 0, there exists
a timed automaton A with two clocks such that L.(A) is not definable using
deterministic timed automata.

Our result leads to a decision procedure for checking inclusion for systems
expressed as products of 1-clock automata with perturbation. That is, consider
a system A expressed as a product of 1-clock components A;, and a system B
expressed as a product of 1-clock components B;. Then, given a perturbation
error € > 0, we can test whether the language of the product of L(A;) is included
in the language of the product of L.(B;), using our translation from 1-clock

perturbed automata to deterministic ones. This procedure requires space that
is linearly proportional to 1/e, linearly proportional to the maximum constant
¢ mentioned in the component automata, and polynomial in the size of the
automata.

Systems expressed as products of 1-clock nondeterministic timed automata
are common. For example, an asynchronous circuit with timing assumptions can
be expressed as a product of 1-clock automata modeling individual gates, where
the clock measures the time elapsed since the switch to the excited state, and
nondeterminism is used to model the unpredictable effect of an input in the
excited state (see for example [16-19]). As we explain in the paper, the results
on perturbed timed automata can be used for checking inclusion L(I) C L(S),
where I and S are asynchronous circuits with I being a refinement of S, and
where they are modeled using products of 1-clock automata. For establishing
decidability of this problem, it is crucial that we take product after perturbing
the components, rather than perturbing the standard product that allows precise
synchronization.

Related work. There have been many attempts to introduce errors in timed
automata. As mentioned earlier, robust timed automata have been introduced
and studied by changing the notion of acceptance using a metric over timed
words that allows perturbation of occurrence times of events [13]. The impact of
introducing drifts in clocks on reachability is studied by Puri in [20]: a location
of a timed automaton A is defined to be limit-reachable if, for every € > 0, it is
reachable if we let the clocks change at a rate within the interval [1 —¢,1+¢], and
the paper shows that while limit reachability is different from standard reach-
ability, it can be decided by modifying the search in the region graph. Instead
of perturbing the clock rates, if we perturb the guards, and ask if a location is
reachable for every perturbation ¢ of the guards, then the problem is solvable
by similar techniques [21]. The benefits of disallowing precise timing constraints
have been observed in other contexts also. For example, the model checking
problem for real-time linear temporal logics with modalities bounded by inter-
vals becomes decidable if the intervals are required to be non-singular [22], and
the requirement for decidability of language emptiness of rectangular automata
that all clocks be initialized, can be relaxed if the guards are perturbed [23].

Among the numerous results pertaining to language inclusion for timed au-
tomata, the most relevant result for this paper is that checking whether the
language of a timed automaton A is contained in that of B is decidable if B has
a single clock [12]. This result, in conjunction with translation from initialized
rectangular automata to timed automata, however, does not imply decidabil-
ity of language inclusion problem for single-clock perturbed automata, since the
translation doubles the number of clocks. Furthermore, the algorithm in [12] has
high complexity and some recent work shows that it must require space that
is not even primitive-recursive in the input [24]. Our results hence show that
introducing perturbation leads to a sharp drop in complexity for the decision
procedures.

2 Perturbed Timed Automata

Let C be a finite set of clocks. The set of clock constraints #(C) is the smallest
set that contains:

—z<yt+czrx>y+c,xr=y+c,x<c x>candz =cforevery z,y € C
and rational number ¢; we call such constraints atomic clock constraints;
— =0 and 01 A 62 where 6,01,d2 € H(C).

A clock interpretation is a mapping v : C — Ry, where R, is the set of
nonnegative real numbers. If v is a clock interpretation and d is a real number,
let (v + d) denote the clock interpretation that maps each clock = to v(z) + d.
If A C C, let [\ = 0](v) be the clock interpretation that maps each clock z € A
to 0 and maps each clock z ¢ A to v(x).

A timed automaton A is a tuple (¥, Q, Qo, C, A, F) where:

— X' is a finite set of symbols (alphabet);

— (Q is a finite set of locations;

— Qo C @ is a set of initial locations;

— (C is a finite set of clock variables;

— A is a finite subset of Q@ x X x #(C) x 2¢ x Q (edges);
— F C (@ is a set of final locations.

A timed automaton is deterministic if |Qo| = 1 and for each pair of distinct
edges (q,0,01,A\1,q1),(q,0,02,A2,q2) € A, 61 A 3 is not satisfiable.

A state of a timed automaton A is a pair (¢,v) where ¢ € @ and v is
a clock interpretation. An initial state is a state (go,vo) where ¢o € Qo and
vo(z) = 0 for every x € C. A final state is a state (q,v) where ¢ € F. The
semantics of a timed automaton is given by a transition system over the set of
its states. The transitions of this system are divided into discrete steps and time
steps. A discrete step is of the form (¢q,v) - (¢,7') where there is an edge
(g,0,6,\,¢") € A such that v satisfies § and v/ = [A < O]v. A time step is of

the form (g, v) 4, (q,V') where v' =v+d,d € Ry. A step is (q,v) o4 (¢',v)

where (g, v) 4, (¢,v") and (q,v") %5 (¢', V"), for some clock interpretation »".
A timed word (o,7) over the alphabet ¥ is such that 0 € X*, 7 € R},
|o| = ||, and if 7 = 7 ... 7%, then for each i < k, 7; < Ti41.
Let (o,7) be a timed word with ¢ = 61...0p and 7 = 74 ... 7. A run r

of a timed automaton A on (o,7) is a sequence (qo,v9) = (qi,v1) 25"
OksTk—Tk—1
— (ak,vr)-

The timed word (o, 7) is accepted by a timed automaton A if there is a run
r of A on (o, 7) starting from an initial state and ending in a final state. The
(timed) language accepted by A, denoted L(A), is defined as the set {(o, 7) | (o, T)
is accepted by A}.

Nondeterministic timed automata are more powerful than their determinis-
tic counterparts. For example, consider the language L! of timed words over the
single symbol a such that there are two occurrences of a one unit apart. A timed

Fig. 1. Timed automaton accepting words with two occurrences of a one unit apart.

automaton accepting L' is shown in Figure 1. This automaton nondeterministi-
cally guesses an occurrence of a on which it resets the clock x and then checks
that there is a following occurrence of @ when x = 1.

Any deterministic strategy to check a pair of occurrences of a with the above
property would need to reset a clock on each occurrence of a. Intuitively, since a
clock cannot be reused until time 1 has elapsed and there could be an arbitrary
number of a occurrences in a time interval of length 1, in a deterministic au-
tomaton we would need to use an unbounded number of clocks, and thus there
is no deterministic timed automaton accepting this language (see [2] for a formal
proof).

Perturbed semantics for Timed Automata

The clocks of a timed automaton are assumed to be perfect, and all clocks
increase at the exact rate 1 with respect to time. We proceed to introduce errors
in clock rates to model imprecision.

Let A be a timed automaton (X,Q,Qo,A,C,F) and let 0 < & < 1 be a

rational number. An e-perturbed time step of Ais (g,v) i>E(q, V') where v(z) +
d(1—¢) <V'(z) <v(z)+d(1+¢). An e-perturbed step of A is (¢, v) a—’d)E(q’, V')

where (g, v) BN (q,v") and (q,v") =% (¢',v"), for some clock interpretation
v
An e-perturbed run r of A on a timed word (o, 7), where ¢ = 07 ...0} and

. 01,71 02,72 —T1 OksTek—Tk—1
T =Ti...Ty, is a sequence (go,v0) = <(qu,v1) = ... <@k i)

The e-perturbed language accepted by A, denoted L.(A), is the language of all
the timed words (o, 7) such that there is an e-perturbed run r of 4 on (o, 7)
starting from an initial state and ending in a final state.

As an example of an e-perturbed language, consider again the timed au-
tomaton in Figure 1. For a given ¢, the language L.(A) contains all the timed
words over the symbol a such that some two a’s occur at a distance d, for some
del—e,1+¢].

Note that according to the definitions, Lo(A) = L(A) for any timed automa-
ton A. Also, note that during a perturbed time step, the drifts in the clocks
are independent. Perturbation in the language of a timed automaton can also
be expressed by transforming a timed automaton into an initialized rectangular
automaton where the rate of change of each clock z is modeled by the differential

inclusion & € [1 —¢,1 + €]. From the results on rectangular automata, it follows
that the timed language of the transformed automaton can be captured by a
(nondeterministic) timed automaton [15].

Proposition 1. For every timed automaton A and a rational constant 0 < e <
1, the perturbed language L.(A) is a timed regular language.

3 Determinization

For the automaton A of Figure 1, while, as observed before, L(A) is not accepted
by any deterministic timed automaton, for each 0 < € < 1 it is possible to
construct a deterministic timed automaton B that accepts L.(A).

Let us say that two a events, or their occurrence times, are matching if they
are separated by a distance d € [1 —¢,1 +¢]. A timed word is in L.(A) if it
contains a matching pair. Consider any three events within a time interval of
length 2e occurring respectively at time t1, t2 and t3 with ¢; < t2 < t3. If an
event a occurs at a time t € [ta+1—¢,ta+1+4¢],thenalsot € [t1+1—¢,t1+1+
€]U[ts +1—¢,t3+1+¢] holds. In other words, if the events at occurrence times
t2 and t are matching, then either the occurrences at ¢; and ¢ are matching, or
the occurrences at times t3 and ¢t are matching. This property is easily shown
by observing that since t3 — t; < 2¢, we have that t3+1—¢ <t; +1+¢€ and
thus the interval [t; + 1 — &,t2 + 1 + €] is contained in the union of the intervals
[t1+1—¢,t1 +1+¢] and [t3 +1—¢,t3 + 1 + £]. This implies that to search for
matching pairs, the event at time 2, and in fact, at any time between ¢; and t3,
is not needed.

This property suggests to split any timed word into intervals such that each
interval has length at least 2e and any two occurrences of a in it are at most 2¢
apart from each other. This can be achieved by resetting a clock z° every time it
exceeds 2¢. A reset of this clock corresponds to the beginning of a new interval.
Note that the total length of any [5=]+ 1 consecutive intervals is at least 1 +¢.

Then, we can use separate clocks to remember the time elapsed since the first
and the last occurrences of a in each such interval. A clock can be reused once it
exceeds 1 + ¢ (recall that the only time constraint in the timed automaton A is
z = 1). By a simple counting we just need [%] + 1 pairs of clocks to handle the
sampling. Since we need a clock for splitting the timed word into intervals, the
deterministic timed automaton B has exactly 2([5=] + 1) + 1 clocks. The role
of the guard z = 1 in A is played in B by guards of the form 1 —e <y <1 +¢,
where y is one of the clocks assigned to a 2¢ interval.

3.1 Determinization construction for perturbed one-clock automata

In this section, we outline the determinization for the perturbed languages of
1-clock timed automata.

Theorem 1. Let A be a timed automaton with one clock, ¢ be the largest con-
stant used in A, and Q be the set of A locations. For a rational number 0 <

€ < 1, the language L (A) is accepted by a deterministic timed automaton with
O([111Ql¢) clocks and 20([£11Q1e) [ocations.

Proof. Consider a timed automaton A = (¥, Q4, Q¢, {z}, A%, F4) with a single
clock variable z. For the ease of presentation, we consider here the case when
the only constants used in the clock constraints of A are 0 and 1, and the atomic
clock constraints using constant 1 are of the form ¢ < 1, z < 1 or x = 1. The
general case reduces to this case simply constructing an equivalent automaton
that keeps track of the integral part of the clock value in the location. (This
automaton also needs to reset the clock every time it reaches 1. To trigger the
resets, we require that the input words contain a dummy event at each integral
time. Note that this does not add to the recognizing power of timed automata

(2].)

Fix n = f%] + 1. Let Q* = {q1,---,qm}- In the following, we describe the
construction of a deterministic automaton B = (X, Q%, {q}, CB, AZ, FP) such
that L(B) = L.(A).

The set of clocks CP contains a clock 2¢ and clocks y¢ and 2% for all g¢; € QA
and a € {0,1,...,n}. Clock 2¢ is used, as in the example discussed above, to
split the input word in intervals such that each interval has length at least 2¢
and any two symbols in it are at most 2¢ apart from each other.

Let us number modulo (n + 1) these intervals in the order they appear,
starting from 0 for the first interval and so on. In the following, we refer to an
interval numbered with « also as an a-interval.

For a given timed word w as input, consider all the e-perturbed runs of A
on w ending at g; such that the last reset of z is in the last a-interval. Clock y*
is used to store the mazimum value of x that is reached at the end of the above
runs, i.e., this clock is reset in correspondence to the earliest among the last
resets of z in the above runs. Similarly, clock 2 is used to store the minimum
value of x that is reached at the end of the above runs, i.e., this clock is reset in
correspondence to the latest reset of z in the above runs. Since these two events
are at most 2¢ time apart from each other, after 1 unit of time has elapsed, any
possible value of x that can be reached on an e-perturbed run of A resetting x
at any point in between these events can be reached by resetting x at one of
these two extreme points. Thus, sampling these events for each a-interval and
for each location ¢; suffices to capture all the e-perturbed runs of A that end in
g;- Also, since the largest constant in the clock constraints of A is 1, the largest
value that needs to be compared with y* and z{* is 1 + €. Recall that the total
length of any n consecutive intervals in the considered splitting is at least 1 +¢.
Thus, after n + 1 intervals these clocks can be reused since they have exceeded
the value 1+ . At this point, in case there are edges of A from ¢; on which z is
not reset, then when reusing y¢* (resp. z{*), we need to remember in the location
of B the fact that the value of the clock is larger than the maximum constant.
For this purpose, we just use a bit for each ¢; € Q4.

More precisely, the set of locations of B contains locations of the form
(Q,a,b,a), where a € {0,1,...,n} and:

ad ...dd,

QcQt as= | b=t
at ...a}
.o.al

Each component b; is either 0 or 1. Value 1 denotes that from ¢; we can
take edges as if there is a clock zf whose value is larger than 1 + €. Note that
this implies that also the value of yf is larger than 1 4+ ¢. Each component af
is 1 if the pair of clocks yZB and yf are used, and is 0 otherwise. The set @ is
a set of locations of A. In this construction, the component (@ is used as in the
usual subset construction for determinizing finite automata. In particular, after
reading a timed word w, B will reach a location (Q, a, b, a) where @) contains all
the locations ¢ such that there is an e-perturbed run of A over w ending at (g, v)
for some clock valuation v. Component « simply implements a modulo (n + 1)
counter that stores the number of the current interval and gets incremented
whenever clock z° is reset.

The construction of B aims at maintaining the following invariant:

P1. For a timed word w, the run of the automaton B on w ends at a
state ((@, a, b, a),v) such that

— @ is exactly the set of A locations ¢; such that there is an e-
perturbed run of A over w ending at a state (g;, v;);

- af = 1 iff there is an e-perturbed run of A on w ending at a
state (g;, ;) such that the last reset of z happened in the last 8
interval;

— for each aiﬁ =1, I/(yiﬁ) and u(zf) are the (upper and lower)
bounds on the values of z in the A states that can be reached by
an e-perturbed run on w ending at location ¢; and such that the
last reset of x happened in the last 3 interval;

— b; = 1 iff there is an e-perturbed run of A on w ending at a state
(gi, vi) such that v;(x) > 1.

The initial state go is (Q¢', ao, bo, 0), where:

ad...a?
ao = 0...0 ’ bo = (0, ...,0)
0...0

and a? =1 if and only if ¢; € Q4 (the active clocks are those of the first interval
that correspond to the initial locations of A).

The set of final locations F'Z is the set of all locations {Q, a, b, a) such that
QNFA#£(.

For describing the edges of B we need to introduce first some notation. We
also assume that the guards of A edges are conjunctions of atomic constraints.

This is without loss of generality since the automaton A is nondeterministic and
top level disjunction can be modelled with nondeterminism. Let I.(d,y) be a
mapping that transforms every clock constraint § involving only z into a clock
constraint involving a clock y, as follows:

— if 6 is ~ ¢ with ~€ {<, <}, then I.(d,y) is y ~ c(1 +¢);
— if § is z ~ ¢ with m€ {>, >}, then I.(4,y) is y = ¢(1 — &);
—if§ = 51 A 52, then IE((S, y) = Is(él,y) A 15(527:[/).

For a guard § and clocks y, z, we denote by g(d,y,2) the clock constraint
I.(6,y) V I (6,). For a B location s = {Q,a,b,a), a clock constraint § over x
and a location ¢; € @, let h(d,i,s) = § if b; = 0 and otherwise, let h(d,%,s) be
§ with every term z > 1 in it replaced by TRUE. For a location ¢; € Q*, we
denote by A; the set of all edges contained in A4 from ¢;. Given an edge e, we
denote by 4. its guard and d(e) = i if the location entered when e is taken is g;.
Given a set X, we denote by P(X) the set of partitions of X into two sets. A
two-set partition is denoted by a pair of sets.

Consider a location s = (@, a, b, a). For each ¢; € () fix a partition (A}, AY)
of A;. For each of such choice of partitions, we insert in Ag an edge such that:

— the guard is the conjunction of z¢ < 2e and
Navea A, (Vi=o(a? = 1) Ag(h(de.i,),u7,2)) A

/\eeAg’ (/\Z:O(aiﬂ = 1) — _'g(h(éea i; 8)7 yzﬂa Z;B))a
— the destination location is (@', a’,b',a’) where:
e Q' is the set of all g; such that j = d(e) for some e € A} and ¢; € Q;
a'¥ = 1if and only if either:
* [= a and there is an edge in A} on which z is reset, or
* a'f =1 and there is an edge in A} on which is not reset;
(clocks yf and zf are in use in the new location either if they refer to
the current interval and z is reset on a possible edge from the current
state, or they inherit the values of previously used clocks that still
need to be considered)

e b’ = b (these bits can change only when entering the next interval in the
splitting of the input word);

e o =q

— clocks are updated according to the following rules:

e for each edge e € Al from ¢; to g; on which z is reset: if aj = 0 then
both y and 2§ are reset, otherwise only 27 is reset; (recall that by Y5
and 2z we wish to capture the time elapsed respectively from the earliest
among the last resets and the latest reset of z over all the runs ending at
gj for which the reset happens in the last a-interval. Thus, if the clocks
are already in use, we only have to reset the z-clock since the earliest
reset is captured when the y-clock starts being used.)

e let A; be the set of edges e in U; AL on which z is not reset and such
that d(e) = j. Also, for an edge e from a location g; denote o(e) = 4. In
case there is an edge in A; whose guard contains only atomic constraints

using constant 0 (that is, they are of the form z > 0 or > 0), then for
B # «a, clock yf is assigned with the maximum of yﬁ over h = d(e) for
e € A; and clock zJB is assigned with the minimum of zf over h = d(e)
for e € A; (we aim to keep the largest possible interval of z-values). In
the other cases, we compute for each edge e € Al:
% y2 as the minimum between 1+ ¢ and the value of yf for h = d(e),
and
% 25 as the maximum between 1 — ¢ and the value of z,'E: for h = d(e),
if there is a conjunct of §. (the guard of e) of the form = = 1, and
as the value of zf for h = d(e), otherwise.
The choice of the values y? and 22 aims to rule out all runs that cannot
be continued with A; edges. Then, for 8 # a, yf is assigned with the

maximum of y? over A; and zf is assigned with the minimum of 27 over
A;. If £ < 1is a conjunct of the guards of all the A; edges and the value
assigned to a y-clock is 1 + €, we also need to remember that for this
clock, its value is actually the supremum of the actual values of x in the
represented runs (this can be handled with an additional bit).

With respect to the same partition we also insert in AP edges that differ
from the ones described above for the conjunct z* > 2¢ instead of z° < 2¢ in
their guards, the clock z¢ is reset, and o’ = (a + 1) (mod(n + 1)). Moreover, b;
is set to 1 if there is an i such that there is an edge e € A} from g¢; to g; that
does not reset x, and either a;?‘l =1lorb; =1 (ie., clock y;?" is active or its value
is larger than 1 + ¢). In fact, in both cases, there is a run of A that reaches g;

o

with the value of = larger than 1. Also, a;

edge e € Al from ¢; to g; that resets z.

The automaton B so defined is clearly deterministic (we use disjoint guards
on edges from a given location and symbol) but does not respect the definition of
a timed automaton. In fact, we use updates (that compute minimum and maxi-
mum over clock values) instead of resets. To determine the minimum /maximum
over clock values on an edge we can split an edge into several edges each corre-
sponding in turn to a variable being the minimum/maximum. For this purpose,
we can just add on each such edge an appropriate conjunct and then rename
the clock corresponding to the minimum/maximum with y¢. Thus, we are done
since clock renaming does not add expressiveness to timed automata (see [25]
for example).

It is possible to prove by induction on the number of steps that the above
construction preserves the invariant P1. Thus, by the definition of FB, we can
conclude that L(B) = L.(A). [|

is set to 1 if and only if there is a

3.2 Lower Bounds

The determinization was based on “forgetting” events by covering them with
extreme events. This idea fails when there are 2 or more clocks in an automa-
ton. To see this consider the automaton A given in Figure 2. For ¢ = %, the

Fig. 2. Automata %—accepting timed words with two occurrences of a at distance %

language L.(A) contains all the timed words over the symbol a such that there
is a subsequence aaa where both pairs of events are distance % apart. In fact,
the only way to fulfill the constraints z = 1 and y = 1 on the edge from location
2 to location 3 is to let clock y increase at the fastest possible rate (i.e., 3) and
clock z increase at the slowest possible rate (i.e., %) This timed language is ba-
sically the same as language L' except for the fact that we require that the two
occurrences of a are 3 (instead of 1) time apart. Thus, using the same argument
as in [2], the complement of the language L%(A) cannot be accepted by any
timed automaton. Therefore, L%(A) cannot be accepted by any deterministic
timed automaton as deterministic timed automata are complementable. For any
choice of a rational number £ € [0, 1], we can generalize the intuition behind the
above example and construct a timed automaton that is not complementable.

Thus, we have the following:

Proposition 2. For each perturbation 0 < & < 1, there is a timed automaton A
with two clocks such that the complement of L.(A) is not accepted by any timed
automaton.

We proceed to show that our construction of determinization for perturbed 1-
clock automata is essentially tight. Recall that for a perturbed timed automaton
A with locations @), we built a deterministic timed automaton with O([1/¢]Q|)
clocks. We can show that both these factors are unavoidable:

Theorem 2. Let n € N and let € = 1/n. Then there exists a 1-clock timed
automaton A, with a constant number of locations such that any deterministic
timed automaton B accepting L.(Ay) has at least n/4 clocks.

Proof. Consider the language L' consisting of timed words over {a} where there
are two events a that are one unit apart. It is accepted by the 1-clock nonde-
terministic timed automaton A shown in Figure 1. Now let n € N and ¢ = 1/n.
Let B be a deterministic timed automaton accepting L.(A4). Consider an in-
put where there are n/4 a events at times t;,...t,/4 where t; = d; and each
t; = ti—1 + 2¢ + d;, where each d; < . In order to accept an extension of this
word, it is easy to see that an a-event is required in the range [1,2] in subranges
defined by the set of all the values dy,...d, /4. If B uses less than n/4 clocks,
then there must be some a-event on which a clock was not reset. By making

small changes to the values d;, we can show that B cannot accept the language
L.(A).]

—0 O O e e e O
z:=0 z:=0 z:=0 z:=0
«(D) el) e ¢ e e @)
rz=1 rz=1 z=1 rz=1
O O o N T T S S——— P

Fig. 3. Automaton used in the lower bound proof of Theorem 3

Theorem 3. Let 0 < € < 1 be any fixed rational number. For any n € N, there
exists a 1-clock timed automaton A,, with O(n) states such that any deterministic
timed automaton B accepting L.(A,) has at least n clocks.

Proof. For any n, consider the language over X' = {a}, consisting all timed words
(a*,71,79,...7;) such that there exist 1 < i < j < k with i+ k —j = n and
7; — 7 = 1. In other words, there are two events separated by exactly one unit
such that the length of the prefix till the first event and the length of the suffix
from the latter event add up to n. Figure 3 illustrates a 1-clock timed automaton
with O(n) states that guesses these events and accepts the language.

Now consider any deterministic automaton B accepting L.(4,). Consider a
word where n events all before time ¢ are fed to B. If B had less than n clocks,
then there must be some event where a clock was not reset; let this be the i’th
event. By suitably extending the word using n — i events after time unit 1 and
by timing the first such event after time 1, one can show that B either rejects a
word that is in L.(A4,,) or accepts a word that is not in L.(4,). [|

4 Language Inclusion

Let us now consider the inclusion problem for timed automata, which is the
problem of deciding whether L(B) C L(A), for two given timed automata B
and A. This question is relevant in the verification context where B can model a
timed system and A the safety specification. This problem however turns out to
be undecidable; in fact, checking whether L(A) is universal, which is a simpler
problem, is itself undecidable [1].

However, if A is a 1-clock timed automaton, then since we can build a deter-
ministic timed automaton A’ that accepts the perturbed language of A, it follows
that we can decide the language inclusion L(B) C L.(A) by complementing A’,
taking its product with B and solving for emptiness. From the results in the
previous section, A’ has O([1/e]Q|c) clocks, if A has locations @ and c is the
maximum constant in its guards. Since the emptiness problem for timed au-
tomata is in PSPACE, it follows that the inclusion problem can be solved in
ExpSPACE. Note that the only exponential factor is in £ and ¢. For a fixed & (or
if ¢ was presented in unary) and bounded constants, the inclusion problem is in
PSPACE:

Theorem 4. Given timed automata B and A, where A is a 1-clock automaton,
and a perturbation 0 < € < 1, the problem of checking whether L(B) C L.(A) is
decidable in EXPSPACE. If € and the constants in the clock constraints of A are
bounded, then the problem is in PSPACE.

Turning to lower bounds for the above inclusion problem, it is easy to show
that the inclusion problem is PSPACE-hard (using a reduction from QBF), and
this hardness holds for any fixed € as well. However, we do not know whether
the EXPSPACE upper bound is tight.

The double restriction to 1-clock automata and e-perturbation is however
not necessary to obtain decidability. It turns out that the inclusion problem
L(B) C L(A) is solvable even when A is a 1-clock automaton [12]. However,
the decision procedure for this is extremely involved and uses techniques similar
to those used in solving questions on (unbounded) Petri nets, and no upper
bounds on the complexity are reported. In fact, recent results suggest that the
universality problem for 1-clock automata requires non-primitive-recursive space
complexity [24]. We note here that the problem is at least EXPSPACE-hard:

Theorem 5. The universality problem for 1-clock timed automata is EXPSPACE-
hard.

Proof. The proof proceeds by a reduction from the membership problem for
any EXPSPACE Turing machine. Given an input of length n to such a Turing
machine M, we construct a 1-clock timed automaton that accepts the set of all
timed words that do not correspond to accepting runs of M on that word. Each
configuration of M is encoded as a string ¢;a1¢2az2 - - . ¢ @y, Where ay ... ay, is
the contents of the tape cell, m is the space required by M (m is exponential in
n) and each ¢; is a word of log m-bits that encodes the cell number i in binary.
A sequence of configurations is then encoded using strings of such sequences. In
addition, we require that an encoding of a sequence of configurations be timed
correctly, where the distance between a particular bit of ¢; in a configuration
is encoded exactly one unit from the corresponding bit of ¢; in the previous
configuration. A timed automaton with O(n) states and 1-clock can easily check
if the ¢;’s in each configuration are encoded correctly, and also check whether the
corresponding cells in successive configurations match using the fact that they
are exactly one unit of time apart. It follows that this automaton is universal iff
M does not accept the input word. [|

Perturbing 1-clock automata with bounded constants by a fixed € however re-
sults in a simpler determinization construction (non-perturbed 1-clock automata
are not determinizable) and a reduction in complexity for the inclusion problem
to PSPACE.

The restriction to 1-clock automata is crucial. Recall Proposition 2 which
states that there exist automata (in fact with two clocks) such that the com-
plement of its perturbed language is not timed regular. Using the property that
using two perturbed clocks one can require two events to be some precise distance
apart, we can encode computations of Turing machines to show that:

Theorem 6. Given timed automata B and A, and a perturbation € > 0, the
problem of deciding whether L(B) C L.(A) is undecidable.

4.1 Checking refinement

An application of our results on perturbed timed automata is to check refine-
ment for systems modeled as products of 1-clock automata. Systems such as
asynchronous circuits can be modeled using products of nondeterministic 1-clock
automata: each gate in the circuit is modeled as a timed automaton where the
upper and lower bounds on the delay between the excitation of the gate and the
triggering of its output is captured using a single clock [16-19]. It is common
to model the uncertainty of switching of gates (gates can miss unstable signals,
switching of gates can be after varying delays, etc.) using nondeterminism. The
asynchronous circuit itself is then a product of 1-clock automata, where the au-
tomata synchronize on input-output signals of the respective gates, capturing
the design of the circuit.

Consider two systems I and S, each modeled as a product of 1-clock au-
tomata, where S is a specification and I is a refinement of S, where some com-
ponents in S have been implemented using lower level components. We are in-
terested in checking whether all behaviors of I are behaviors of S as well. Let X
be the set of events present in the higher level specification S and let I contain
events over the set X UY, where Y is the new set of events introduced in the
implementation.

The problem of checking whether the timed behaviors of I are included in
that of S translates into checking if L(Ar) C L(As), where Ar models the
behaviors of I and Ag models the behaviors of S in which the new events Y can
occur at any time and are ignored. Our results suggest a new way to answer this
question. If Ag = A;]|A4s||... Ak, where each A; is a 1-clock timed automaton,
then we can perturb each component A; of S and then take the product. Such
a perturbation is natural in the setting of asynchronous circuits as they anyway
model unpredictable perturbation of their signals. We can hence proceed to
check whether L(Ar) C L.(A1)||Le(A2)]] - - - Le (Ag), which we know is decidable
using the results of the previous sections. Notice that in the above expression,
we first compute the e-perturbed languages corresponding to each component
and then take the product, which ensures that synchronization is “fudged”. This
fudging of synchronization is crucial: if we consider L.(4:||...A), then since

the automata can synchronize precisely on events, they can accept languages
that check whether two events are precisely one unit apart, and the perturbed
language of the products of 1-clock automata are not determinizable.

5 Conclusions

Motivated by the gap in the expressiveness in the nondeterministic and deter-
ministic timed automata, and undecidability of the language inclusion problem
for nondeterministic timed automata, we initiated the study of timed automata
with perturbation in the clock rates. We have proved that one-clock automata
are determinizable in presence of perturbation. For systems expressed as prod-
ucts of one-clock automata, this leads to a decidable language inclusion if we
perturb individual components. However, if we allow perfect synchronization,
and perturb the product, we lose determinization and complementability. The
complexity of the inclusion test is exponential in the number of locations as
well as the magnitudes of the constants. It remains open whether exponential
dependence on the constants, including the perturbation error, can be avoided.
There is an alternative way of introducing errors by perturbing the guards of
the automaton instead of the clock rates: replace each atomic constraint z < ¢
by z < c+¢,and x > d by £ > d—e. The resulting class of perturbed languages
has similar properties as the class studied in the paper. Finally, perturbed lan-
guages are not closed under projection, and thus, checking language inclusion
L(I) C L(S), when the specification S has internal events not mentioned in the
implementation I, is not possible by our techniques even when S is a product of
perturbed one-clock components. Thus, checking equivalence of timed circuits
composed of components with imperfect clocks, in terms of timed languages over
inputs and outputs, remains an interesting open problem.

Acknowledgments We thank Radha Jagadeesan for helpful discussions.

References

1. Alur, R., Dill; D.: A theory of timed automata. Theoretical Computer Science
126 (1994) 183-235.

2. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:
Formal Methods for the Design of Real-Time Systems. LNCS 3185, Springer (2004)
1-24.

3. Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Springer International
Journal of Software Tools for Technology Transfer 1 (1997).

4. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Hybrid
Systems III: Verification and Control. LNCS 1066, Springer-Verlag (1996) 208—
219.

5. Wang, F.: Efficient data structures for fully symbolic verification of real-time
software systems. In: TACAS ’00: Sixth Intl Conf on Tools and Algorithms for the
Construction and Analysis of Software. LNCS 1785 (2000) 157-171.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Henzinger, T., Manna, Z., Pnueli, A.: What good are digital clocks? In: ICALP
92: Automata, Languages, and Programming. LNCS 623. Springer-Verlag (1992)
545-558.

Alur, R., Fix, L., Henzinger, T.: Event-clock automata: a determinizable class of
timed automata. Theoretical Computer Science 211 (1999) 253-273 A preliminary
version appears in Proc. CAV’94, LNCS 818, pp. 1-13.

Alur, R., Courcoubetis, C., Henzinger, T.: The observational power of clocks. In:
CONCUR ’94: Fifth International Conference on Concurrency Theory. LNCS 836.
Springer-Verlag (1994) 162-177.

Alur, R., Henzinger, T.: Back to the future: Towards a theory of timed regular lan-
guages. In: Proceedings of the 33rd IEEE Symposium on Foundations of Computer
Science. (1992) 177-186.

Henzinger, T., Raskin, J., Schobbens, P.: The regular real-time languages. In:
ICALP’98: Automata, Languages, and Programming. LNCS 1443. Springer (1998)
580-593.

QOuaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for
timed automata. In: Proc. of the 18th IEEE Symp. on Logic in Comp. Sc. (2003).
Quaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
Closing a decidability gap. In: Proceedings of the 19th IEEE Symposium on Logic
in Computer Science. (2004).

Gupta, V., Henzinger, T., Jagadeesan, R.: Robust timed automata. In: Hybrid
and Real Time Systems: International Workshop (HART’97). LNCS 1201, Springer
(1997) 48-62.

Henzinger, T., Raskin, J.: Robust undecidability of timed and hybrid systems. In:
Hybrid Systems: Computation and Control, Third International Workshop. LNCS
1790 (2000) 145-159.

Henzinger, T., Kopke, P., Puri, A., Varaiya, P.. What’s decidable about hybrid
automata. Journal of Computer and System Sciences 57 (1998) 94-124.
Brzozowski, J., Seger, C.: Advances in asynchronous circuit theory, Part II:
Bounded inertial delay models, MOS circuit design techniques. In: Bulletin of
the European Assoc. for Theoretical Comp. Sc. Volume 43. (1991) 199-263.
Rokicki, T.: Representing and modeling digital circuits. PhD thesis, Stanford
University (1993).

Maler, O., Pnueli, A.: Timing analysis of asynchronous circuits using timed au-
tomata. In: Proc. of CHARME’95. LNCS 987, Springer (1995) 189-205.

Tasiran, S., Brayton, R.: STARI: a case study in compositional and hierarchi-
cal timing verification. In: Proceedings of the Ninth International Conference on
Computer Aided Verification. LNCS 1254, Springer-Verlag (1997) 191-201.

Puri, A.: Dynamical properties of timed automata. In: Proceedings of the 5th
International Symposium on Formal Techniques in Real Time and Fault Tolerant
Systems. LNCS 1486 (1998) 210-227.

De Wulf, M., Doyen, L., Markey, N., Raskin, J.: Robustness and implementability
of timed automata. In: Proc. FORMATS. (2004).

Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. Journal
of the ACM 43 (1996) 116-146.

Agrawal, M., Thiagarajan, P.S.: Lazy rectangular hybrid automata. In: Hybrid
Systems: Computation and Control, Proc. of 7th Intl. Workshop. LNCS 2993,
Springer (2004) 1-15.

Ouaknine, J.: Personal communication. (2004).

Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in
System Design 24 (2004) 281-320.

	University of Pennsylvania
	ScholarlyCommons
	March 2005

	Perturbed Timed Automata
	Rajeev Alur
	Salvatore La Torre
	P. Madhusudan
	Recommended Citation

	Perturbed Timed Automata
	Abstract
	Comments

	tmp.1117746652.pdf.YhLYA

