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Statistical Methods for Analysis of Multi-Sample Copy Number Variants
and ChIP-seq Data

Abstract
This dissertation addresses the statistical problems related to multiple-sample copy number variants (CNVs)
analysis and analysis of differential enrichment of histone modifications (HMs) between two or more
biological conditions based on the Chromatin Immunoprecipitation and sequencing (ChIP-seq) data. The
first part of the dissertation develops methods for identifying the copy number variants that are associated
with trait values. We develop a novel method, CNVtest, to directly identify the trait-associated CNVs without
the need of identifying sample-specific CNVs. Asymptotic theory is developed to show that CNVtest controls
the Type I error asymptotically and identifies the true trait-associated CNVs with a high probability. The
performance of this method is demonstrated through simulations and an application to identify the CNVs
that are associated with population differentiation.

The second part of the dissertation develops methods for detecting genes with differential enrichment of
histone modification between two or more experimental conditions based on the ChIP-seq data. We apply
several nonparametric methods to identify the genes with differential enrichment. The methods can be
applied to the ChIP-seq data of histone modification even without replicates. It is based on nonparametric
hypothesis testing in order to capture the spatial differences in protein-enriched profiles. The key of our
approaches is to use null genes or input ChIP-seq data to choose the biologically relevant null values of the
tests. We demonstrate the method using ChIP-seq data on a comparative epigenomic profiling of adipogenesis
of murine adipose stromal cells. Our method detects many genes with differential H3K27ac levels at gene
promoter regions between proliferating preadipocytes and mature adipocytes in murine 3T3-L1 cells. The test
statistics also correlate well with the gene expression changes and are predictive of gene expression changes,
indicating that the identified differential enrichment regions are indeed biologically meaningful.

We further extend these tests to time-course ChIP-seq experiments by evaluating the maximum and mean of
the adjacent pair-wise statistics for detecting differentially enriched genes across several time points. We
compare and evaluate different nonparametric tests for differential enrichment analysis and observe that the
kernel-smoothing methods perform better in controlling the Type I errors, although the ranking of genes with
differentially enriched regions are comparable using different test statistics.
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ABSTRACT

STATISTICAL METHODS FOR ANALYSIS OF MULTI-SAMPLE COPY

NUMBER VARIANTS AND CHIP-SEQ DATA

Qian Wu

Hongzhe Li

This dissertation addresses the statistical problems related to multiple-sample copy

number variants (CNVs) analysis and analysis of differential enrichment of histone

modifications (HMs) between two or more biological conditions based on the Chro-

matin Immunoprecipitation and sequencing (ChIP-seq) data. The first part of the

dissertation develops methods for identifying the copy number variants that are asso-

ciated with trait values. We develop a novel method, CNVtest, to directly identify the

trait-associated CNVs without the need of identifying sample-specific CNVs. Asymp-

totic theory is developed to show that CNVtest controls the Type I error asymptot-

ically and identifies the true trait-associated CNVs with a high probability. The

performance of this method is demonstrated through simulations and an application

to identify the CNVs that are associated with population differentiation.

The second part of the dissertation develops methods for detecting genes with differen-

tial enrichment of histone modification between two or more experimental conditions

based on the ChIP-seq data. We apply several nonparametric methods to identify

the genes with differential enrichment. The methods can be applied to the ChIP-seq

data of histone modification even without replicates. It is based on nonparametric

hypothesis testing in order to capture the spatial differences in protein-enriched pro-

files. The key of our approaches is to use null genes or input ChIP-seq data to choose
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the biologically relevant null values of the tests. We demonstrate the method using

ChIP-seq data on a comparative epigenomic profiling of adipogenesis of murine adi-

pose stromal cells. Our method detects many genes with differential H3K27ac levels

at gene promoter regions between proliferating preadipocytes and mature adipocytes

in murine 3T3-L1 cells. The test statistics also correlate well with the gene expression

changes and are predictive of gene expression changes, indicating that the identified

differential enrichment regions are indeed biologically meaningful.

We further extend these tests to time-course ChIP-seq experiments by evaluating

the maximum and mean of the adjacent pair-wise statistics for detecting differen-

tially enriched genes across several time points. We compare and evaluate different

nonparametric tests for differential enrichment analysis and observe that the kernel-

smoothing methods perform better in controlling the Type I errors, although the

ranking of genes with differentially enriched regions are comparable using different

test statistics.
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CHAPTER 1

Introduction

Many problems in genomics can be formulated as signal detection problems in statis-

tics. They involve identification of genomic regions that show different characteristics

than the background regions. High-throughput technologies have been widely used

to generate data for detecting these important local genomic signals. This disser-

tation focuses on statistical methods for analysis of multiple-sample genomic data,

including development of a statistical procedure to identify the copy number variants

(CNVs) that are associated with phenotypes and nonparametric tests for differential

enrichment based on ChIP-seq data. Different from available methods that often

only consider one sample, the focus of our research is on multiple sample analysis in

order to detect differential signals, which include the CNVs that are associated with

outcomes and the genes that show differential enrichment of histone modifications

between two or more conditions.

Most available methods involve a two-step procedure to identify these genomic regions

of interest, where the local genomic signal such as CNVs or histone modification

regions are first identified for each of the samples. The frequencies of these local signals

are then compared and associated with trait values or experimental conditions. Such

approaches have two limitations: (1) the local genomic regions identified for different

samples may not have exactly the same boundaries, which makes the cross-sample

analysis difficult; (2) the local regions identified often strongly depend on certain

threshold values on the statistics such as p-value. Different thresholds can lead to

very different sets of signals, which also complicate the second stage analysis. We

aim to develop multi-sample approaches to both problems.
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1.1. Copy Number Variants

Structural variants in the human genome (Sebat et al., 2004; Feuk et al., 2006), in-

cluding copy number variants (CNVs) and balanced rearrangements such as inversions

and translocations, play an important role in the genetics of complex diseases. CNVs

are alternations of DNA of a genome that results in the cell having less or more than

two copies of segments of the DNA. CNVs correspond to relatively large regions of the

genome, ranging from about one kilobase to several megabases, that are deleted or

duplicated. CNVs represent an important type of genetic variants observed in human

genomes. Recent studies have shown that CNVs are associated with developmental

and neuropsychiatric disorders (Feuk et al., 2006; Walsh et al., 2008; Stefansson et al.,

2008; Stone et al., 2008) and cancer (Diskin et al., 2009). These findings have led

to the identification of novel disease-causing mutations other than single nucleotide

polymorphisms, thus contributing important new insights into the genetics of these

complex diseases. Changes in DNA copy number have also been highly implicated in

tumor genomes. The copy number changes in tumor genomes are often referred to

as copy number aberrations (CNAs). Compared to germline CNVs, these CNAs are

often longer, sometime involve the whole chromosome arms. In this dissertation, we

focus on the CNVs from the germline constitutional genome where most of the CNVs

are sparse and short (Zhang et al., 2009; Cai et al., 2012).

CNVs can be discovered by cytogenetic techniques, array comparative genomic hy-

bridization (Urban et al., 2006) and by single nucleotide polymorphism (SNP) arrays

(Redon et al., 2006). The emerging technologies of DNA sequencing have further

enabled the identification of CNVs by next-generation sequencing (NGS) in high res-

olution (Cai et al., 2012). NGS can generate millions of short sequence reads along the

whole human genome. When these short reads are mapped to the reference genome,
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both distances of paired-end data and read-depth (RD) data can reveal the possible

structure variations of the target genome (for reviews, see Medvedev et al. (2009) and

Alkan et al. (2011)). Novel statistical methods for CNVs analysis based on the NGS

data have been developed (Cai et al., 2012). We focus on CNV analysis based on

clone-based arrays or the SNP arrays, where the data can be approximately modeled

by sequences of ordered Gaussian random variables.

In Chapter 2, we consider the problem of identifying the CNVs that are associated

with the trait value such as disease status or quantitative traits. CNVs represent one

important type of genetic variants that are associated with many complex diseases.

Statistical methods have been developed for identifying the CNVs both at the indi-

vidual and at the population levels (Wang et al., 2007; Jeng et al., 2010; Zhang et al.,

2008a). However, methods for testing the CNV association are limited. Most avail-

able methods employ a two-step approach, where the CNVs carried by the samples

are identified first and then tested for association (Diskin et al., 2009). Because the

identified CNVs vary from sample to sample in their exact boundaries, one has to

first determine the shared CNV regions and then prepare a candidate CNV pool for

the second step testing. The results of such tests depend on the threshold used for

CNV identification and also the choice of the number of CNVs to be tested.

We develop a method, CNVtest, to directly identify the trait-associated CNVs with-

out the need of identifying sample-specific CNVs. The procedure scans the genome

with intervals of variable lengths and identifies the trait associated intervals based

on examining the score statistics. The procedure is computationally faster than the

two-step approaches and does not require the specification of the CNVs to be tested.

We show that CNVtest asymptotically controls the Type I error and identifies the

true trait-associated CNVs with a high probability. We demonstrate the methods

3



using simulations and an application to identify the CNVs that are associated with

population differentiation between Europeans and Asians (Redon et al., 2006).

1.2. ChIP-seq Experiments

ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein inter-

actions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with

massively parallel DNA sequencing to identify the binding sites of DNA-associated

proteins. The technologies have been widely applied in biomedical research to identify

the binding sites of important transcription factors (TFs) and genomic landscape of

histone modifications in living cells (Landt et al., 2012). In ChIP assays, a transcrip-

tion factor, cofactor, or other chromatin protein of interest is enriched by immuno-

precipitation from cross-linked cells, along with its associated DNA. Genomic DNA

sites enriched in this manner were initially identified by array-based data and more

recently by DNA sequencing (ChIP-seq) (Barski et al., 2007; Johnson et al., 2007;

Robertson et al., 2007). Often, it is also important in a ChIP-seq experiment to run a

control using “input DNA”, i.e. non-ChIP genomic DNA in the same cell types being

studied, so that sequencing biases can be identified and adjusted for (Landt et al.,

2012).

Previous research has largely focused on developing peak-calling procedures to detect

the binding sites for TFs (Zhang et al., 2008b; Kuan et al., 2011; Ji et al., 2008;

Schwartzman et al., 2013; Spyrou et al., 2009). However, these procedures may fail

when applied to ChIP-seq data of histone modifications, which have diffuse signals

and multiple local peaks (O’Geen et al., 2011). Histone marks are sometimes dif-

fusely enriched over several nucleosomes of hundreds of base pairs or in some cases

thousands or tens of thousands of base pairs. This often leads to peaks being over-
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called in a histone-modification-enriched region, where several peaks might be called

but a human would prefer to view the whole region as an enriched unit. The peak

calling algorithm can also fail to detect an enriched region where there is a subtle

but consistent enrichment but where no single locus is enriched enough to count as

a “peak” according to the algorithm’s criteria. There may also be apparent gaps in

regions that are actually enriched, as a result of insufficiently deep sequencing (Liu

et al., 2010).

Besides peaking finding, it is often very important to identify genomic regions or genes

with differential enrichment of histone modifications between two or more experimen-

tal conditions or cell types (Mikkelsen et al., 2010). In Chapters 3 and 4, we formulate

the differential enrichment problem as a hypothesis testing problem and investigate

several nonparametric tests for identifying genes with differentially enriched regions

based on ChIP-seq data. Parametric methods based on Poisson/Negative Binomial

distribution have been proposed to address this differential enrichment problem and

most of these methods require biological replications (Mikkelsen et al., 2010; Liang

and Keleş, 2012). However, many ChIP-seq data usually have a few or even no

replicates.

In Chapter 3, we apply a kernel smoothing-based nonparametric test to identify the

genes with differentially enriched regions that can be applied to the ChIP-seq data

even without any replicates. Our method is based on nonparametric hypothesis test-

ing and kernel smoothing in order to capture the spatial differences in histone-enriched

profiles. Using a large bandwidth, our method can smooth out potential systematic

biases that have been described in next-generation sequencing in general and ChIP-

seq in particular. Such biases can be due to a preference for sequencing GC rich

regions and mapping bias from the frequency of occurrence of particular short ho-
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mologous sequences in the genome and from genomic amplifications and repeats. We

demonstrate the method using a ChIP-seq data on comparative epigenomic profiling

of adipogenesis of adipose stromal cells. Our method detects many genes with differ-

ential H3K27ac levels at gene promoter regions between proliferating preadipocytes

and mature adipocytes. The test statistics also correlate well with the gene expres-

sion changes and are predictive of gene expression changes, indicating that the iden-

tified differential enrichment regions are indeed biologically meaningful. Extension to

ChIP-seq data from multiple experimental conditions is also presented.

In Chapter 4, we apply two other nonparametric tests that do not require smooth-

ing the data first. In the literature, there are few methods available to detect genes

with differentially enriched regions among more than two conditions, such as multiple

time-course ChIP-seq data. We investigate the time-course histone modification en-

richment changes of the genes across four time points. Multivariate test statistics are

derived as the mean (TSmean) or maximum (TSmax) of three adjacent pair-wise test

statistics. Methods for variance estimation under homoscedasticity and heteroscedas-

ticity in error variances are discussed. Comparing the performance of different test

statistics is conducted via ROC curves and True Positive Rate (TPR) curves in both

two-sample and multi-sample cases. Both real data and simulation results shows the

TSmax with kernel smoothing tends to outperform other methods.

Finally, in Chapter 5, we present conclusions and outline possible future research.
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CHAPTER 2

A Statistical Method for detecting trait-associated

Copy Number Variants

2.1. Introduction

Structural variants in the human genome (Sebat et al., 2004; Feuk et al., 2006), in-

cluding copy number variants (CNVs) and balanced rearrangements such as inversions

and translocations, play an important role in the genetics of complex disease. CNVs,

ranging from about one kilobase to several megabases, are alternations of DNA of

a genome that result in the cell having less or more than two copies of segments of

the DNA. CNVs represent an important type of genetic variants observed in human

genomes. Recent studies have shown that CNVs are associated with developmental

and neuropsychiatric disorders (Feuk et al., 2006; Walsh et al., 2008; Stefansson et al.,

2008; Stone et al., 2008) and cancer (Diskin et al., 2009). Identification of these novel

disease-causing CNV mutations has contributed important new insights into the ge-

netics of these complex diseases. Thus, identifying the CNVs that are associated with

complex traits is an important problem in human genetic research.

Many novel and powerful statistical methods have been developed recently for iden-

tifying the CNVs in a given sample based on array data, SNP chip intensity data,

and next generation sequencing data. Important examples include the optimal like-

lihood ratio selection method (Jeng et al., 2010), the hidden Markov model-based

method (Wang et al., 2007), and change-point based methods (Olshen et al., 2004).

To identify the recurrent copy number variants that appears in multiple samples,

Zhang et al. (2008a) introduced a method for detecting simultaneous change-points
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in multiple sequences that is only effective for detecting the common variants. Sieg-

mund et al. (2010) extended their method by introducing a prior variant frequency

that needs to be specified. Jeng et al. (2013) proposed a proportion adaptive sparse

segment identification procedure that is adaptive to the unknown CNV frequencies.

Despite these novel methods for CNV detection and identification, methods for testing

the CNV association are very limited. Current methods for CNV testing fall into two

categories. One is to assume that a set of CNVs are known and to test association of

these CNVs with complex phenotypes. Barnes et al. (2008) developed an approach

for testing CNV association using a latent variable framework. However, the current

databases of all CNVs are still very incomplete and testing only the known CNVs

can miss the new CNVs that are associated with the phenotype of interest. Another

common approach for CNV testing is a two-step approach, where CNVs are first

identified for each sample and the CNVs that appear in multiple samples are then

tested using chi-square or Fisher’s exact test (Diskin et al., 2009). One limitation

of such approaches is that the uncertainty associated with the inferred CNVs is not

accounted for in the testing and the CNVs identified depend on the threshold used.

In addition, since the CNVs identified may not have exactly the same boundaries,

one has to decide which CNV regions to test. Finally, it is not clear how one should

control for the genome-wide error rate since the number of CNVs to be tested is not

known before performing the single sample CNV analysis.

In this section, we propose a new statistical method for identifying trait-associated

CNVs. Instead of assuming a known set of CNVs or first identifying the CNVs

carried by the samples, the proposed method directly identifies the CNVs that are

associated with the trait of interest. The procedure scans the genome with intervals

of variable lengths and identifies the trait associated intervals based on examining the

8



score statistics. The procedure is computationally faster than the two-step approaches

and does not require the specification of the CNVs to be tested. We show that the

procedure can control the genome-wide error rate and also has a high probability of

identifying the trait-associated CNVs.

Chapter 2 is organized as follows. We present the statistical model representing

the relationship between CNVs and a phenotype in Section 2.2. In Section 2.3,

we present a scanning procedure for identifying trait-associated CNVs and give the

theoretical properties. The performance of our method is evaluated using simulations

in Section 2.4. In Section 2.5, we demonstrate our method in identifying the CNVs

that are associated with population differentiation. Finally, a brief discussion is given

in Section 2.6.

2.2. Statistical Model and CNV Association Test

Suppose that we have data on n independent individuals. Let Yi be the phenotype

value for the ith individual, Xij be the observed marker intensity (e.g., the log R

Ratio from the SNP chip data) for the ith individual and jth marker, i = 1, · · · , n

and j = 1, · · · ,m, where m = mn possibly increases with n. Here Yi can be a binary

variable as in case-control studies or continuous variable, e.g., in eQTL studies, Yi

can be the expression level of a gene. For the SNP chip data, the observed marker

intensity data is log R-Ratio, Xij = log2(Robs/Rref ), where Robs represents the total

intensity of two alleles at the jth SNP for the ith sample and Rref the corresponding

quantity for a reference sample. When there is no copy number change in a genomic

region for individual i, we expect that the Xij’s in that region are realizations of a

baseline distribution. In the following, for each sample, we normalize the intensity

data to have variance of 1 by dividing by the median absolute deviation. Suppose
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there is a total of q = qm,n CNVs in all n individuals with q possibly increasing with

m and n and is unknown. Let I = {I1, . . . , Iq} be the collection of the corresponding

CNV segments/intervals. The value Xij in a CNV segment deviates from 0 to the

negative or positive side depending on whether the segment is deleted or duplicated.

Since only a certain proportion of the samples carry a given CNV, we denote the

carriers’ proportion for CNV at Ik as πk, 1 ≤ k ≤ q. We assume

Xij ∼











(1 − πk)N(0, 1) + πkN(µk, σ
2
k), j ∈ Ik for some Ik ∈ I

N(0, 1), otherwise,
(2.1)

where µk 6= 0 represents the mean value of the jump sizes in the k-th CNV segment

and σk may or may not equal 1, which reflects the fact that different variation may

be introduced by the CNV carriers. Here πk, µk and σk are unknown for each Ik ∈ I.

For a given candidate interval τ and individual i, we summarize the marker intensity

data in this interval by the length-standardized sum

X̄iτ = (
∑

j∈τ

Xij)/
√

|τ |. (2.2)

Further, define

Ziτ = 1(|X̄iτ | > ν) (2.3)

for some ν > 0 to indicate whether or not the ith individual carries some copy number

changes in interval τ . The threshold ν will be specified in the next section. To link

carrier status at interval τ to the phenotype, we assume the following generalized

linear model (GLM) for the phenotype Yi with the likelihood function

exp{Yiψ − b(ψ)/γ + c(Yi, γ)}, (2.4)
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where ψ = g(α + βτZiτ ) is the link function for Ziτ and Yi and γ is the dispersion

parameter. In this model, α is the intercept and βτ is the regression coefficients that

associates the possible CNV at τ to the mean value of the phenotype. Our goal is to

identify the elements in I that have non-zero β coefficient. The identified elements

indicate the locations of the trait-associated CNVs.

2.3. A Procedure for Identifying the Trait-associated CNVs and Its

Theoretical Properties

In this section, we present a scanning procedure for identifying the trait-associated

CNVs followed by the theoretical analysis of its Type I error controls and power.

2.3.1. A scanning procedure for identifying the trait-associated CNVs

Since most CNVs are short, we only consider short intervals with length ≤ L in the

sequences of the observed genome-wide data. The L is chosen to satisfy the following

condition:

s̄ ≤ L < d, and logL = o(logm), (2.5)

where s̄ = max1≤k≤q |Ik| and d = min1≤k≤q−1{distance between Ik and Ik+1}. This

condition guarantees that all the CNV segments can be covered by some intervals

considered in the algorithm and, at the same time, none of the intervals is long

enough to reach more than one CNV segment. In the applications we consider, most

CNVs are very short and sparse, so condition (2.5) is easy to be satisfied. We usually

choose L = 20 for SNP chip data, because most of the CNVs are shorter than 20

SNPs. Let I be the collection of all mL intervals of length ≤ L. The threshold in

(2.3) is set at

ν =
√

2 log(mL). (2.6)
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This is the same threshold used in Jeng et al. (2010) for detecting CNVs in a long

sequence of m genome-wide observations for one individual. A threshold at this level

optimally controls false positive CNV identification for each individual asymptotically

and greatly reduces the number of intervals that need to be considered for association

tests.

We first select the intervals in I that have Ziτ = 1 for at least one individual and

denote the collection of such intervals as

R = {τ ∈ I : 0 <
n

∑

i=1

Ziτ < n}. (2.7)

Let r̂ = |R| be the total number of such intervals. Note that the collection R is much

smaller than I and only includes intervals where copy number changes are observed

in the samples. However, R is not simply the collection of identified sample-specific

CNVs as it includes all the intervals that may overlap with the true CNVs. Since

the CNV boundaries may vary from individual to individual, including the whole

collection R into the testing step below avoids identifying the sample-specific CNVs

and the shared CNV regions across the samples.

As a next step, based on the GLM model (2.4), we test

Hτ0 : βτ = 0 v.s. Hτ1 : βτ 6= 0

for any τ ∈ R using the score statistic

Sn,τ = n−1/2

n
∑

i=1

Ziτ (Yi − Ȳ )/SZτ
SY , (2.8)

where SZ̄τ
and SY are the sample standard deviations of Zτ and Y . The score
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statistic Sn,τ has an asymptotic standard normal distribution under Hτ0 for τ ∈ R.

Therefore, we reject Hτ0 if |Sn,τ | > λ, where λ is a threshold determined by the

limiting distribution of Sn,τ under Hτ0 and the number of score tests performed. We

set

λ =
√

2 log(r̂) (2.9)

in order to control the genome-wide errors.

Our scanning procedure, called CNVtest, identifies the elements in I that are signif-

icantly associated with the trait value Y by selecting the intervals in R with their

absolute score statistics above λ and achieving local maximums. Specifically, CNVtest

involves the following steps:

1. Pick an L. Select R as in (2.7).

2. Calculate Sn,τ as in (2.8) for all τ ∈ R.

3. Let I
(1) = {τ ∈ R : |Sn,τ | > λ}, where λ is defined in (2.9). Let l = 1.

4. Let Îl = arg maxτ∈I(l) |Sn,τ |, and update I
(l+1) = I

(l)\{τ ∈ I
(l) : τ ∩ Îl 6= ∅}.

5. Repeat Step 4-5 with l = l + 1 until I
(l) is empty.

Finally, we denote the trait-associated CNVs by Î = {Î1, Î2, . . .}. If this set is empty,

then we conclude that there is no trait-associated CNV.

2.3.2. Theoretical results on error control and power analysis

Recall that q = qm,n is the total number of true CNVs in n individuals. We assume

log q = o(logm) and q → ∞ as n→ ∞, (2.10)
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which means that the CNVs are sparse and their number increases with the number

of individuals. Further, for each CNV, we assume

µk

√

|Ik| ≥
√

2(1 + ǫ) logm, 1 ≤ k ≤ q. (2.11)

for some ǫ > 0. Condition (2.11) is a necessary condition for CNVs to be detectable

in a sequence of m genome-wide observations (Jeng et al., 2010).

The following theorem states that with a large probability, CNVtest controls the

genome-wide error rate. In other words, the CNVtest does not select the null intervals

in I.

Theorem 2.3.1 Assume (2.1), (2.4), (2.10), (2.11), and (2.5). Let I0 = {τ ∈ I :

τ ∩ Ik = ∅ for any Ik ∈ I} be the set of intervals that do not overlap with any of the

CNVs in the true CNV set I. Then

P (∃τ ∈ I0 : τ ∈ Î) → 0 as n→ ∞.

This theorem implies that the probability of CNVtest identifying wrong trait-associated

CNVs goes to zero when the sample size is large enough.

We next study the power of CNVtest in identifying the trait-associated CNVs. For a

given interval τ , define

D(τ) = g′(α)
√

Var(Zτ )b′′{g(α)}/γ, (2.12)

where g(·), b(·), α, and γ are defined in the GLM model (2.4). Note that Var(Zτ )

depends on the length of the interval |τ | and the corresponding CNV mean value µτ .
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Theorem 2.3.2 Assume the same conditions as in Theorem 2.3.1. Suppose there

exists an element Ik ∈ I such that

βIk
≥

√

2(1 + η) logm

D(Ik)
√
n

(2.13)

for some η > 0. Then, HIk0 is rejected by the CNVtest with probability going to 1 as

n→ ∞. Further, suppose πk < 1/2 and βIk
> βτ for any τ such that τ ∩ Ik 6= ∅ and

τ 6= Ik. Then, P (Sn,Ik
> Sn,τ ) → 1 as n→ ∞.

Theorem 2.3.2 shows that when βIk
is large enough, Ik is selected to enter the can-

didate set I
(1) in the algorithm with a high probability. The additional conditions in

the second part of the theorem imply the monotonicity of the mean value of the score

statistics Sn,τ with respect to how much τ overlaps with Ik, so that the score statistic

of the true segment Ik dominates the score statistics of other intervals overlapping

with Ik and the true segment Ik is selected by the algorithm.

2.4. Simulation Studies

In this section, Monte Carlo simulations are presented to evaluate the performance of

CNVtest. We simulate data sets with n = 1, 000 individuals, of whom 500 are cases

and 500 are controls. For each individual, the log-R intensity values are generated at

m = 5, 000 markers. We simulate three CNVs with their lengths set at s = 10. One of

them is a null CNV with the same frequency of 0.15 in both case and control groups.

Another is a disease-associated CNV with a frequency of 0.10 in the control group

and a frequency of p = 0.15, 0.20, 0.25, and 0.30 in the case group. We also consider

the case when the locations of a CNV are not exactly the same across individuals

and simulate the third CNV as a disease-associated CNV with locations varying

randomly within an interval of length 15. Therefore, the carriers for the third CNV
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have overlapping but not exactly the same CNV segments. We set the shifted mean

at µ = 1.5, 1.75, 2, 2.25 and 2.5. Each observation Xij, i = 1, ..., n, j = 1, ...,m is

generated from N(Aij, 1). If marker j is located in a CNV segment and the ith

individual is a carrier of the variant, Aij = µ; otherwise, Aij = 0. The phenotype

Yi, i = 1, ..., n takes value of 1 and 0 for case and control individual, respectively.

We apply CNVtest with L = 15 and ν =
√

2 log(mL) = 4.74 to select the disease-

associated CNVs. The simulations are repeated 50 times. To evaluate the perfor-

mance of CNVtest, we show three summary statistics: the score statistic as in (2.8),

the empirical power, which equals the proportion of times that a disease associated

segment is selected in the 50 replications, and the empirical over-selection, which

equals the proportion of times that an interval not overlapping with the disease-

associated CNV is selected. The estimated standard errors of the means of these

statistics are derived from calculating the standard deviation of 500 bootstrap means

of the 50 results from 50 replications.

We first examine the effects of CNV jump size µ on the CNVtest performances where

the CNV carrier frequency is fixed at 20% in cases and 10% in controls for the disease-

associated CNVs, and at 15% in both cases and controls for the null CNV. Figure

2.1 (a) shows the score statistics calculated for the null CNV and also the disease-

associated CNVs with the jump size changing from 1.5 to 2.5, together with the

threshold level determined by (2.9). We observe that the score statistics for the null

CNV is constant and is always much smaller than the threshold. On the other hand,

the score statistics for the disease associated CNVs increases as µ increases. In addi-

tion, shifts in exact CNV boundaries lead to smaller score statistics, especially when

µ is small. Figure 2.1 (b) shows the empirical power of CNVtest for identifying the

disease-associated CNVs. As expected, larger µ leads to a higher power of identifying
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the true CNVs. Again, shifts in exact CNV boundaries lead to a slight loss of power,

especially when µ is small. We observed that the empirical over-selections are always

zero for all data sets simulated, and they are not affected by the values of µ.

We then fix µ = 2.0 and examine how the carrier proportion in cases affects the power

of identifying the disease-associated CNVs. Figure 2.1 (c) shows the score statistics

evaluated for the null CNV and the disease-associated CNVs with carrier proportion

in cases changing from 15% to 30%, together with the threshold level determined

by (2.9). We observe that the score statistics for the null CNV are constant and

always much smaller than the threshold. On the other hand, the score statistics for

the disease associated CNVs increase as the carrier proportion in the cases increases.

Again, for all simulations, we did not observe any false identification.

2.5. Application to Population Differentiation CNV study

Redon et al. (2006) presented the first genome-wide global variation analysis of DNA

copy number in the human genome where DNA EBV-transformed lymphoblastoid

cell lines of the 270 HapMap samples was screened for CNVs using clone-based com-

parative genomic hybridization (Whole Genome TilePath, WGTP) array consisting

of 26,463 large-insert clones. To demonstrate our method, we consider data from

two populations: 89 of European descent from Utah (CEU), 45 unrelated Japanese

from Tokyo (JPT) and 45 unrelated Han Chinese from Beijing (CHB). Our goal is to

identify the genomic regions that show difference in copy number between CEU and

Asian populations (JPT+CHB). Such population differentiation in CNV can provide

important insights into genetic diversity and evolution.

For each individual, we first standardize the clone intensity data by mean and variance

calculated for this individual. Since one clone covers a longer region than the SNP
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Figure 2.1: Simulation results. (a)-(b): Effect of the CNV jump size µ from 1.5
to 2.25 on (a) score statistics for CNVs with carrier probability of 20% in case and
10% in control and (b) power of detecting the associated CNV. (c)-(d): Effect of
the CNV frequency in case p from 15% to 30% on (c) score statistics for CNVs with
carrier probability of 20% in case and 10% in control and (d) power of detecting the
associated CNV.

data, we choose L = 10 in our CNVtest so that the largest CNV covers at most 10

clones. Here we consider both duplication and deletion copy number variants and

modify (2.3) by Zdup
iτ = 1(X̄iτ > ν) for duplication and Zdel

iτ = 1(X̄iτ < −ν) for
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deletion, where ν =
√

2 log(mL) ≈ 4.997. The resulting r̂dup(= |Rdup|) = 26, 496

and r̂del(= |Rdel|) = 13, 585. Note that both r̂dup and r̂del are much smaller than

the number of possible intervals in the whole genome, which is at the order of m2.

Consequently, the threshold λdup =
√

2 log(r̂dup) ≈ 4.513 and λdel =
√

2 log(r̂del) ≈

4.363, respectively.

CNVtest identified five duplication CNVs and one deletion CNV that showed different

frequencies between the European and Asian populations. Table 2.1 shows their clone

locations, size, overlapping genes and their score statistics defined in (2.8). Figure

2.2 shows the scatter-plots of the length-adjusted sum of clone intensity statistics

defined in (2.2) for each of the samples for each of the six identified CNV regions,

clearly indicating the differences of the carrier frequencies. To show that the clones

in the identified CNV regions indeed have different intensities for samples in these

two different populations, we present in Figure 2.3 the observed clone intensities for

the clones within and outside the identified CNV regions respectively for each of the

samples. Again, the identified CNV regions indeed show some differences in clone

intensities from their neighboring clones. Note that the two CNVs on chromosome

9 are very close to each other and have similar intensity patterns in the samples. It

is likely that they form a large CNV. This is due to the fact that we chose L = 10

in CNVtest. However, as in any CNV analysis, a post-processing step may simply

combine these two CNVs into one.

Redon et al. (2006) reported two CNVs that exhibit the highest population differen-

tiation between CEU and JPT+CHB, one of which, the duplication CNV on chro-

mosomes 17 that includes gene MAPT, is also identified by CNVtest. CNVtest did

not identify the CNV on chromosome 3 reported by Redon et al. (2006). However,

this CNV only includes one clone and does not have any known genes in it. The
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deletion CNV identified by CNVtest, which includes gene DCTN4, was presented to

have the highest population differentiation between CEU and Yoruban samples. The

intensity plot in Figure 2.3 for this region shows clear a difference between the CEU

and JPT+CHB samples.

Besides samples from CEU and JPT+HCB, Redon et al. (2006) also obtained the

clone data for 90 Yoruban (YRI) samples. When comparing CEU and YRI, CNVtest

identified 4 deletion CNVs and 11 duplication CNVs that showed very different fre-

quencies. These CNVs include all 6 CNVs that were reported in Redon et al. (2006)

to have the highest population differentiation. When comparing YRI and JPT+HCB,

CNVtest identified 2 deletion CNVs and 12 duplication CNVs, including 2 CNVs that

were reported in Redon et al. (2006) to have the highest population differentiation.

2.6. Conclusion and Discussion

We have developed a new statistical method, CNVtest, for genome-wide CNV asso-

ciation studies. Compared with the commonly used two-step approaches, CNVtest

is computationally much faster because the genome is only scanned once. The com-

putational complexity of this method is the same as the likelihood ratio selector of

Jeng et al. (2010) and the multiple sample CNV analysis procedure of Jeng et al.

(2013), all in the order of O(mL). In addition, it avoids the often troublesome task

of determining which CNV regions one should test for association and how to adjust

for multiple comparisons. The method is particularly effective when the CNV regions

from the different carriers do not exactly cover the same intervals. The CNVtest is

also flexible and can be applied to identify CNVs associated with different phenotypes

through the use of the generalized linear models.

CNVtest can also be applied to CNV association study using the read depth data from
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Figure 2.2: Length-standardized sum of the clone intensities of the European (CEU)
and Asian samples (JPT+HCB) for the 6 CNVs identified by CNVtest. The estimated
CNV carrier proportions are also shown. 21
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Figure 2.3: The clone intensities around the 6 CNVs identified by CNVtest (marked
by dashed vertical lines) for each of the European (CEU) and Asian samples
(JPT+HCB). 22



Table 2.1: The CNVs identified by CNVtest that show different frequencies between
Europe and Asian populations. Clone locations, chromosome, CNV size, overlapping
genes (based on NCBI36, March 2006, Build 19) and the corresponding score statistics
(Score) are shown.

Clone Start - End Chrom Size Genes Score
Duplication CNV

22182-22186 31,239,836 17 741 Kb RDM1,CCL1/L2/L3/L4, -6.15
TBC1D3G/C,PRC17,

- 31,981,395 AK125932,LYZL6,
ZNHIT3,MY019,etc

22261-22264 41,439,751 17 282 Kb MAPT,KANSL1, 5.76
- 41,722,491 LOC284058

6769-6778 68,858,466 4 1414 Kb UGT2B, YTHDC1, 5.22
- 70,272,807 TMPRSS11E

14616-14623 44,819,176 9 979 Kb LOC100132167, -4.75
- 45,798,788 CR615666

14625-14630 64,368,148 9 1065 Kb LOC401507, -4.69
- 65,433,585 AL953854.2-002

Deletion CNV
9502-9503 150,080,197 5 186 Kb DCTN4, MST150, -4.77

- 150,265,935 ZNF300

the next generation sequencing. One can use the local median transformation proce-

dure proposed in Cai et al. (2012) to transform the read-depth data to approximately

normally distributed data and directly apply the CNVtest to the transformed data.

We expect to have similar power and genome-wide error control as the intensity-based

data.
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CHAPTER 3

Kernel-based Tests for Two-sample Differential

Enrichment Analysis Using ChIP-seq data

3.1. Introduction

Chromatin immunoprecipitation sequencing (ChIP-seq) technology is a powerful tool

for analyzing protein interactions with DNA (Park, 2009). ChIP-seq combines chro-

matin immunoprecipitation (ChIP) with massively parallel DNA sequencing to iden-

tify the binding sites of DNA-associated proteins. It can be used to map global

binding sites of transcription factors (TFs) and genomic landscape of histone modi-

fication marks (HMs). This high-throughput technology can create millions of short

parallel sequencing reads and provide more accurate mapping information for the

binding regions in the whole genome with lower cost (Johnson et al., 2007; Mikkelsen

et al., 2010; Mortazavi et al., 2008; Barski et al., 2007) than array-based methods.

Both TF binding and histone modification play important roles in gene regulation,

where TFs bind to DNA at a promoter region to promote or block gene transcription.

The signal of TFs usually shows one sharp peak at binding sites. Multiple histone

modification marks have been reported to be associated with transcription initial-

ization, open chromatin and repression of transcription (Mikkelsen et al., 2010; Hon

et al., 2009).

Most previous work in analysis of ChIP-seq data has focused on developing peak-

calling procedures to find the binding sites for TFs (Zhang et al., 2008b; Kuan et al.,

2011; Ji et al., 2008; Schwartzman et al., 2013; Spyrou et al., 2009). Identifying the

enriched region of histone modification marks is difficult since their signals are more
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spread out (O’Geen et al., 2011). The signals of HMs are diffuse and usually have

multiple local peaks, which are hard to identify by directly applying peak-calling

algorithms.

Another important question is to identify the genomic regions that show differential

enrichment of histone modification between two experimental conditions, such as dif-

ferent cellular states or different time points (Mikkelsen et al., 2010; Liang and Keleş,

2012). Indeed, different types of differential enrichment have been observed, includ-

ing shift of nucleosome positions, peak height differences and presence/absence of HM

marks (Chen et al., 2011; He et al., 2010). Chen et al. (2011) further demonstrated

that the spatial distributions of histone marks are predictive for promoter locations

and promoter usage. Angel et al. (2011) show that during cold, the H3K27me3 levels

progressively increase at a tightly localized nucleation region in Arabidopsis, indi-

cating the importance of studying the peak height, not just the presence/absence of

peaks.

One common approach to identifying differentially enriched regions is to apply a

peak-calling algorithm to identify the enriched regions for each of the two conditions.

The regions with peaks in one condition but without peaks in the other condition are

then selected. However, selection of enriched regions often depends on the thresholds

used in the peak-calling algorithm. Small differences in the calculated p-values or the

FDR threshold used by the peak-finding program can lead to very different sets of

peaks. Furthermore, this simple procedure has limitations in detecting the differential

enrichment of different peak heights or different peak locations.

Several parametric methods based on Poisson/negative binomial distribution have

been proposed to address this differential enrichment problem in ChIP-seq data such

as DiffBind and DBChIP (Stark and Brown, 2011; Liang and Keleş, 2012). Most of
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these methods require biological replications to estimate the parameters, especially

the dispersion parameter in the negative binomial model (Kuan et al., 2011). However,

many ChIP-seq data usually have a few or even no replicates. Taslim et al. (2009)

proposed a nonlinear method that uses locally weighted regression (Lowess) for ChIP-

seq data normalization. Shao et al. (2012) developed a method to quantitatively

compare ChIP-seq data sets. To circumvent the issue of differences in signal-to-noise

ratios between samples, they focused on ChIP-enriched regions and introduced the

idea that ChIP-seq common peaks could serve as a reference to build the rescaling

model for normalization. The inputs of all the methods mentioned rely on first

identifying the enriched regions and then obtaining the total tag or read counts in

these regions. Such approaches have two limitations. First, one has to identify the

regions using peak-finding algorithms. Second, by summarizing the number of tags

into one single number of the region, one can potentially lose important spatial profile

differences such as shifts of the signal region or shapes of signals.

In this Chapter , we propose a nonparametric method to identify the genes with

differentially enriched regions based on the ChIP-seq data. Instead of first identifying

the enriched regions or peaks as most of the existing methods do, we consider the

regions close to genes that may contain important regulatory elements such as the

promoter regions, the gene body and downstream regions of the genes. For each

of the regions, we summarize the data as counts of sequencing reads in each of the

bins of a given length (e.g., 25 bps). The counts in these candidate regions provide

important information about different HM levels between two cellular states. After

transforming the count data to approximately normal, we apply kernel smoothing to

the differences of the data and develop a nonparametric hypothesis testing based on

the kernel smoothing. Applying smoothing to the data helps to eliminate the small
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local differences that are unlikely to be biologically relevant.

We demonstrate the method using ChIP-seq data on a comparative epigenomic pro-

filing of adipogenesis of murine 3T3-L1 cells reported in Mikkelsen et al. (2010). Our

method detects genes with differential H3K27ac levels at gene promoter regions be-

tween proliferating preadipocytes and mature adipocytes, which agree with what were

observed in Mikkelsen et al. (2010) based on fold-change analysis. The test statis-

tics also correlate with the gene expression changes well, indicating that the identified

differences are indeed biologically meaningful. Our results also indicate that the com-

bination of different histone modification profiles can predict the fold changes of gene

expressions very well.

3.2. A Motivating Comparative ChIP-seq Study, Data Transformation

and Statistical Model

We consider the ChIP-seq experiments reported in Mikkelsen et al. (2010) on murine

3T3-L1 cells undergoing adipogenesis. Specifically, they generated genome-wide chro-

matin state maps using ChIP-seq profiling, where they mapped six HMs and two TFs

at four time points, including proliferating (day -2) and confluent (day 0) preadipocytes,

immature adpipocytes (day 2) and mature adipocytes (day 7). We focus our anal-

ysis on H3K27ac mark, which is expected to be enriched at active promoters or

enhancers. In order to identify the genes that show differential H3K27ac levels be-

tween the preadipocytes (day -2) and mature adipocytes (day 7), we consider the

upstream 5000 bp region and downstream 2000 bp regions around transcription start

site (TSS) for each gene and divide the regions into 280 bins of 25bps. We map the

raw data using Bowtie (Langmead et al., 2009), extend reads to the fragment size

and then obtain the genome wide coverage data with a fixed bin size of 25 bp. Since
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the two ChIP-seq samples usually are sequenced at different depths (total number of

reads). We scale the counts according to the sequencing depth ratio. Suppose that

there are m genes and for each gene i, there are n observed read counts Xikj in bin

k under condition j, for i = 1, · · · ,m, k = 1, · · · , n and j = 1, 2. Our goal is to find

the genes with differential H3K27ac levels at their promotor regions between mature

adipocytes and preadipocytes.

For each gene i and each condition j, we assume the data Xikj, k = 1, · · · , n are ap-

proximately Poisson with means µikj. We first apply variance-stabilizing transforma-

tion (VST) procedure to transform the variables to the variablesX∗
ikj = 2

√

Xikj + 0.25,

as recommended by Brown et al. (2010, 2005). Thus, we can treat X∗
ikj’s as approxi-

mate normal variables with mean 2
√

λikj and variance of 1. For the ith gene, in order

to test for differential enrichment between two conditions, we calculate the difference

between the two conditions as Yik = X∗
ik1−X∗

ik2. If there is no differential enrichment,

Y T
i = (Yik, ..., Yin) should have a mean value of zero.

We further denote Yi(tk) = Yik, for tk = k/n ∈ (0, 1], k = 1, ...., n. We assume the

following “signal+white noise” model for the normalized differences,

Yi(tk) = fi(tk) + σiWi(tk), (3.1)

where fi(t) is a smooth function that characterizes the difference of the ChIP-seq

enrichment profiles and Wi(tk) is Gaussian noise with mean 0 and variance 1. For

the ith gene, the null hypothesis that there is no differential enrichment between two

conditions is equivalent to testing

H0 : fi(t) = 0. (3.2)
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3.3. Kernel-smoothing-based Nonparametric Tests

For a given gene i, we propose a kernel-smoothing based nonparametric test (Lepski

and Spokoiny, 1999) to test the null hypothesis (3.2). For notational simplicity,

we omit the subscript i in the following. Let K be a proper kernel, which is a

symmetric, continuous density function with expectation zero. We use a normal

kernel function, which satisfies all these regularity conditions and fits the real data

well. For a fixed bandwidth value λ ∈ [0, 1], we consider the kernel estimator Ỹλ(t)

with t ∈ [0, 1],s ∈ [0, 1] and its standard decomposition as

Ỹλ(t) =
1

λ

∫

K

(

t− s

λ

)

Y (s)ds (3.3)

=
1

λ

∫

K

(

t− s

λ

)

f(s)ds+
σ

λ

∫

K

(

t− s

λ

)

W (s)ds

= fλ(t) + σξλ(t)

where fλ(t) = 1
λ

∫

K( t−s
λ

)f(s)ds and ξλ(t) = 1
λ

∫

K( t−s
λ

)W (s)ds.

Based on Lepski and Spokoiny (1999), we use the integral of the squared kernel

estimator Tλ defined as

Tλ =
||Ỹλ||2
σ̂2

=

∫ 1

0
Ỹ 2

λ (t)dt

σ̂2
(3.4)

to test the null hypothesis H0 : ||f(t)|| = 0, where σ̂2 is some estimate of the error

variance, which we discuss in Section 3.3.2. Under the null H0, one has

Ỹ0λ(t) = σξλ(t) (3.5)
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and the test statistic becomes T0λ =
∫ 1

0
ξ2
λ(t)dt. Since W (ti) follows N(0, 1), we have

ξλ(t) =
1

λ

∫ 1

0

K

(

t− s

λ

)

W (s)ds

For the Gaussian kernel, the expectation of T0λ is given by

E(T0λ) =
1

nλ
||K||2 =

1

nλ

1

2
√
π
.

We derived the closed-form variance as

Var(T0λ) =
1

n2λ

1√
2π
.

(see Appendix B.1 for derivation). We can then define the test statistic as

Z0λ =
Tλ − E(T0λ)
√

Var(T0λ)
, (3.6)

which follows N(0, 1) as n→ ∞ under the null hypothesis.

3.3.1. An alternative derivation of the test statistic

We present in this section an alternative derivation of the test statistic that has better

finite sample performance than the statistic (3.6) when n is not too large (see Section

3.4 for an illustration). Note that the kernel smoother Ỹλ(t) can be written as a linear

combination of Y T = (Y1, ..., Yn),

Ỹλ(t) = SλY, (3.7)
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where Sλ is considered as the hat matrix,

Sλ =
1

nλ













K( t1−s1

λ
) . . . K( t1−sn

λ
)

...
. . .

...

K( tn−s1

λ
) . . . K( tn−sn

λ
)













.

and the trace of Sλ is the degrees of freedom (df) of the kernel smoother (Hastie and

Tibshirani, 1990).

Based on (3.3), (3.4) and (3.7), the statistic Tλ can be approximated by

Tλ =
1

nσ2

n
∑

k=1

Ỹk
2

λ =
1

nσ2
Y TST

λSλY (3.8)

where the n× n matrix ST
λ is the transpose of Sλ. Let M = ST

λSλ with the following

eigen-decomposition, V TM V = D, where D = diag(d1, ..., dn), d1 ≥ ... ≥ dn, are

the eigenvalues and V is the orthogonal matrix of the eigenvectors. Under the null,

based on (3.5), Y/σ follows a multivariate normal distribution Nn(0, In). Let UT =

(U1, ..., Un) = V TY/σ, we can rewrite Tλ as

Tλ =
1

n
UTDU =

1

n

n
∑

k=1

dkU
2
k .

Since V is an orthogonal matrix, under the null hypothesis, the vector U follows

Nn(0, V V T) = Nn(0, In) and therefore U2
k are i.i.d random variables following χ2

1 and

Tλ follows a mixture of n χ2 distributions with weights dk/n. Furthermore, based on

Bentler and Xie (2000), under the null, Tλ can be approximated by a weighted χ2

distribution, δχ2
d, where

d = ⌈(
n

∑

k=1

dk)
2/

n
∑

k=1

d2
k⌉, δ =

( n
∑

k=1

dk/n

)

/d.
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Alternatively, using the Wilson-Hilferty transformation (Wilson and Hilferty, 1931),

we have

Z0λ,WH =

3

√

Tλ

δd
−

(

1 − 2
9d

)

√

2
9d

, (3.9)

which follows a N(0, 1) under the null hypothesis (see Appendix B.2 for details). We

use this statistic in our analysis.

3.3.2. Estimate σ for each gene

In order to calculate the test statistic specified as (3.4) or (3.8), we need the variance

estimate σ̂i
2 for each gene i. After the transformation steps in Section 3.2, for each

gene i, we assume that the observations Yik have the same variance σ2
i . We consider

the Nadaraya-Watson nonparametric regression with kernel smoothers as (3.3),

Ỹλ(t) = SλY

where df = tr(Sλ) is the degrees of freedom of the kernel smoother (Hastie and

Tibshirani, 1990). We can estimate the variance σ2
i by calculating the residual sum

of squares

σ̂2 =
[Ỹλ(t) − Y (t)]T[Ỹλ(t) − Y (t)]

n− df
=

∑n
k=1[Yk − Ỹλ(tk)]

2

n− df
. (3.10)

Since we consider the ChIP-seq data with very few or no replications, the estimates

σ̂2
i can be too small for very small counts. To improve precision, we use an approach

similar to Efron et al. (2001) and Tusher et al. (2001): we add a constant a0 = 90th

percentile of the standard deviations to make the standard deviation of each gene
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bigger to avoid false identification of genes with differential enrichment. The final

modified estimator of the variance is σ̃2
i = (σ̂i + a0)

2.

Finally, we choose the bandwidth in the kernel smoothing λ relatively large to avoid

fitting the very small local changes. In our analysis of the real data sets with n = 280

observations, we choose λ = 20/280. The details of bandwidth selection are discussed

in Chapter 3.5.

3.4. Application to a Comparative ChIP-seq Study During Mouse Adi-

pogenesis

We present results of our analysis of the comparative ChIP-seq data described in

Section 3.2. Our initial analysis focused on H3K27ac at gene promoter regions since

it is known that H3K27ac is positively associated with gene expression (Mikkelsen

et al., 2010). We divided the DNA region around the transcription starting site (-

5000 to 2000 bp) into n=280 bins, where the length of each bin is 25 bps. The

data set includes m=29,716 genes. Our goal is to identify the genes with differential

H3K27ac levels at the promoter regions between proliferating preadipocytes (day -2)

and mature adipocytes (day 7).

3.4.1. Comparison of the Z0λ,WH statistics and fold-change statistics

For each gene, after the normal-transformation as in Section 3.2, we fit a kernel-

smoothing function to the difference data using a bandwidth of λ = 20/280, which

over-smooth the very small signals that are likely due to noise. We calculate the

test statistic for each of the 29,716 genes. To compare different test statistics Z0λ,

and Z0λ,WH , we plot the histograms of these two test statistics in Figure 3.1 for

9,874 genes with the maximum number of read counts in both days fewer than 5.
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Due to the very small read counts in these genes, these genes are most likely not

differentially enriched and therefore the test statistics should follow the standard

normal distribution. Clearly, Z0λ,WH follows N(0, 1) closer than Z0λ. We therefore

use this statistic in all the following analyses.
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Figure 3.1: Histograms of two test statistics for the mouse adipogenesis ChIP-seq
data, (a) Z0λ and (b) Z0λ,HW , for 9,874 genes with the maximum number of read
counts in both day -2 and day 7 fewer than 5. The red curve in each plot represents
the standard normal density.

Using the test statistic Z0λ,HW , we observed that about one-third of the genes showed

differential enrichment between preadipocytes and mature adipocytes using a Bonferroni-

adjusted p-value of 0.05. This is expected since the cells are very different between

these two days. Large-scale differential enrichment was also observed in Mikkelsen

et al. (2010). We observe different patterns of differential enrichment. Figure 3.2

shows the observed data for 12 genes with the largest test statistics. Clearly, for

some genes, H3K27ac is only present in one condition. Genes that were enriched at

both time points showed clearly different H3K27ac levels.
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Figure 3.2: Observed mouse adipogenesis ChIP-seq bin-counts for top twelve genes
ranked by the test statistics Z0λ,WH over the promoter region for day -2 (red) and
day 7 (black). Vertical line represents the transcription starting site.
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As a comparison, for each of the genes, we also calculate the simple fold-change

statistics and the statistics used in DBChIP(Liang and Keleş, 2012). Figure 3.3 (a)

and (b) shows the plots of our proposed statistics versus the fold-change statistics

and the DBChIP statistics. Since the DBChIP statistics are almost identical to the

fold-change statistics in (c), we only compare results with the fold-change statistics in

the following. In general, we observe that large Z0λ,HW statistics correspond to large

fold-changes or large DBChIP statistics. We observed a small set of genes that have

very small Z0λ,WH-statistics, but with very large fold changes or DBChIP statistics.

These genes tend to have very small read counts. We also observe that some genes

have very small fold-changes, but with large Z0λ,HW -statistics. Figure 3.4 shows the

plots of 12 such genes. Many of such genes show a clear shift of peaks between two

different cell states, which cannot be captured simply using total read counts as in

fold-changes and the DBChIP statistics. This indicates the importance of modeling

the spatial ChIP-seq enrichment profiles.

3.4.2. Differential enrichment statistics and gene expression changes

We next investigate the relationship between our test statistics Z0λ,WH and changes

in expressions of the genes between the two time points. The gene expression data

contains two replicates for each condition, and we take the average of two replicates

as the mean value Wij for each gene i = 1, · · · ,m and condition j = 1, 2. We define

the log2 of the fold-change of the expression levels as

∆Wi = log2

Wi2

Wi1

for the ith gene. We then divided genes into two groups depending on whether higher

enrichment was observed at day 7 or day -2. Specifically, we fit the kernel smoothing
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Figure 3.3: Comparison of (a) the proposed statistics and the fold-changes statis-
tics, (b) the proposed statistics and the DBChIP statistics, and (c) the fold-change
statistics and the DBChIP statistics for the mouse adipogenesis ChIP-seq data.
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Figure 3.4: Observed mouse adipogenesis ChIP-seq bin-counts over the promoter
region for day -2 (red) and day 7 (black) for twelve genes with large Z0λ,WH but small
fold changes. Vertical line represents the transcription starting site.
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curve to data for each gene under day 7 and day -2 and obtain the maximum of

the curves. The genes are classified as being enriched at day 7 (or day -2) if the

maximum height is higher at day 7 (or day -2). Figure 3.5 shows the gene expression

fold changes against the test statistics Z0λ,WH together with the Lowess fit for genes

that are enriched at day -2. We observe that larger enrichment statistics correspond

to down-regulation of these genes. Similarly, Figure 3.5 also shows the gene expression

fold changes against the test statistics Z0λ,WH together with Lowess fit for genes that

are enriched at day 7. We observe that larger statistics correspond to up-regulation of

these genes. Both plots make biological sense since enrichment of H3K27ac is known

to activate gene expression. As comparisons, similar plots are given in Figure 3.5 for

the fold-change statistics. The patterns from fold-change statistics are not as clear as

using our proposed statistics Z0λ,WH .

To demonstrate this further, we define gene i as being up-regulated if ∆Wi > 1 and

down-regulated if ∆Wi < −1. In Figure 3.6 (a), we divide our test statistics Z0λ,WH

into equal-length intervals (< 0, 0−5, 5−10, 10−15, 15−20, > 20) for the genes that

have higher enrichment at day -2. We observe that the proportion of down-regulated

genes increases as test statistics increase. One the other hand, the proportions remain

almost constant and close to zero for up-regulated genes. On the other hand, in Figure

3.6 (b), for the genes that have higher enrichment at day 7, we observe exactly the

opposite. This indicates that our statistics correspond to gene expression changes

very well. As a comparison, we present similar plots based on dividing the genes

based on fold changes of the total reads counts (See Figure 3.6 (c) and (d)). We

observed that the separations are not as clear as using our proposed statistics.
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Figure 3.5: Plots of gene expression fold changes as a function of two different test
statistics for the mouse adipogenesis ChIP-seq. Top: proposed smoothing-kernel test
statistics; bottom: fold changes. Left panel: genes with enriched H3K27ac at day -2;
right panel: genes with enriched H3K27ac at day 7.
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Figure 3.6: Plots of proportions of up/down-regulated genes in different intervals
of the test statistics for the mouse adipogenesis ChIP-seq data. (a)-(b): proposed
smoothing-kernel test statistics; (c)-(d): fold change statistics. (a), (c): genes with
enriched H3K27ac at day -2; (b), (d): genes with enriched H3K27ac at day 7.
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3.4.3. Prediction of gene expression fold changes using histone modification profiles

We next evaluate how well our proposed statistics can be used for predicting the fold

changes of gene expression using ChIP-seq data. Besides the H3K27ac ChIP-seq data,

we also have data from another five histone modification marks, including H3K4me1,

H3K4me2, H3K4me3, H3K27me3 and H3K36me3. In addition, for each gene, besides

the promoter region, we also consider the histone modifications in gene body and

downstream regions. We evaluate the prediction for fold changes of gene expression

by randomly selecting half of the genes as the training set and fit a linear regression

model,

∆Wi = β0 +
6

∑

h=1

3
∑

l=1

βhlTSi,hl, (3.11)

where h indexes the six histone modification marks and h indexes promoter region,

gene body and downstream region, TSi,hl is the differential histone enrichment statis-

tics for HM h for the ith gene at the lth location. Using the fitted model, we then

predict the gene expression for the left-out genes. We repeated this 100 times and

calculated the average R2 for model fits for the training genes and the prediction error

for genes in the testing sets. As a comparison, we also considered the same model as

(3.11) using the simple fold change statistics as the predictors. Figure 3.7 shows the

model fit for training genes and prediction results for testing genes using our proposed

statistics Z0λ,WH and the fold change statistics as predictors. Clearly we observe that

our proposed statistics give a much better model fit and better prediction results.

The average R2 over 100 random splitting of the genes is 0.57 using our statistics

and 0.46 using simple fold changes, and the average prediction error is 0.47 using our

statistics and 0.59 using simple fold changes.
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We also observed that histone modification dynamics at the promoter and gene body

are more predictive than the signals in the downstream regions for predicting the gene

expression changes (see Table 3.1 for details). This is expected since the histone mod-

ification marks we used are associated with transcription initiation (H3K4me3), open

chromatin (H3K4me1/me2 and H3K27ac), transcription elongation (H3K36me3) and

Polycomb-mediated repression (H3K27me3).

Table 3.1: Comparison of model fit R2 and prediction (PE) of gene expression fold
changes using the proposed statistic Z0λ,WH and fold change based on ChIP-seq data
of promoter, gene body and downstream regions of all six histone modification marks
as predictors and models using all three regions. The results are based on 100 runs
of randomly selecting half of the genes as training set and another half as testing set.
Numbers in parentheses are standard errors.

Z0λ,WH Fold change
R2 PE R2 PE

Promotor 0.45 (0.009) 0.60 (0.012) 0.35 (0.009) 0.72 (0.015)
Gene body 0.49 (0.008) 0.57 (0.015) 0.40 (0.011) 0.66 (0.014)
Downstream 0.30 (0.009) 0.78 (0.018) 0.18 (0.007) 0.90 (0.023)
All regions 0.57 (0.008) 0.47 (0.013) 0.46 (0.009) 0.59 (0.012)

3.5. Effects of Bandwidth Selection on Identifying the Genes with Dif-

ferential Enrichment

In applying our kernel-based test in analyzing the mouse ChIP-seq data, we used a

global bandwidth of λ = 20/280 for all the genes. Since the algorithm performs around

30,000 tests to find a list of genes with significant differentially enriched regions,

the bandwidth used in the tests should be fixed to the same value. In addition,

any reasonable test should capture the spatial profiles of signals in the gene regions

of interest. On the other hand, the test should also smooth out the small local

noises, which are not biologically interesting. We suggest using a relatively large

bandwidth to reduce possible false positives. Alternatively, the standard method is
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Figure 3.7: Model fit (left panel) and prediction (right panel) for log of the gene
expression fold changes using the proposed statistics Z0λ,HW and fold changes of six
histone-modification ChIP-seq data at promoter, gene body and downstream region.
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using cross-validation to find the optimal rate c(1/n)1/5 (Gasser et al., 1991). In

addition, Neumeyer and Dette (2003) suggests to obtain the nonparametric variance

estimator σ̂2
i (Rice, 1984) for each gene. We can then summarize these variance

estimates using the median value and to estimate the bandwidth by

λ =

{

median(σ̂2
i , i = 1, ..., n)

n

}1/5

.

We further check the sensitivity of bandwidth selection on the performance of our

proposed kernel-based test by considering a set of different bandwidth values, λ1 =

5/280, λ2 = 20/280, λ3 = 60/280, and λ4 = 90/280. Here, λ3 and λ4 correspond to

the bandwidths chosen by the nonparametric variance estimation method (Neumeyer

and Dette, 2003) and the optimal rate (1/n)1/5 (Gasser et al., 1991), respectively.

We calculate the kernel-based test statistics and denote these statistics as Zλl,WH ,

l = 1, 2, 3, 4. We present in Figure 3.8 the histograms of Zλl,WH , l = 1, 2, 3, 4 for

the 9,874 genes with the maximum number of read count in both days fewer than 5,

which are analogues to the plot (b) in Figure 3.1. Clearly, the statistics Zλ1,WH with

a relatively small bandwidth lead to false positive detection where the distribution of

null genes clearly deviates to the right side of N(0, 1). On the other hand, when a

large bandwidth is used, as in statistics Zλ3,WH and Zλ4,WH , the tests are conservative,

although they still fit the standard normal density curves (red line) reasonably well.

We also examine how different bandwidths affect the ability of identifying differen-

tially expressed genes, where a gene is defined as a true differentially expressed gene

if |∆Wi| > 1. The ROC curves in Figure 3.9 show that in general, larger bandwidth

gives better results than smaller one. Overall, we observe that it is essential to smooth

out the small local signals in order to reduce false positive identification of genes with
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Figure 3.8: Histogram of the test statistics Zλt,WH with the different bandwidths: (a)
λ1 = 5/280 (b) λ2 = 20/280 (c) λ3 = 60/280 (d) λ4 = 90/280 for 9,874 genes with
the maximum number of read count in both day -2 and day 7 fewer than 5 in mouse
adipogenesis ChIP-seq data.
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Figure 3.9: ROC curves for identifying differentially expressed genes between day
-2 and day 7 using test statistics Zλt,WH with the different bandwidths: (a) λ1 =
5/280 (b) λ2 = 20/280 (c) λ3 = 60/280 (d) λ4 = 90/280 for all the genes in mouse
adipogenesis ChIP-seq data.
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3.6. Application to an ENCODE ChIP-seq Data with Two Replicates

To further evaluate the possible false positives in identifying genes with differential

enrichment of histone modification, we analyze the ChIP-seq data sets reported in the

ENCODE project (ENCODE Project Consortium et al., 2012) for a B-lymphoblastoid

cell line of human GM12878, which is also part of the 1000 Genomes project, and

HeLa-S3 cervical carcinoma cells. Our analysis still focuses on the H3K27ac mark at

the promoter regions of the genes with count data available in n = 280 bins for each

gene. In this experiment, there are a total of m∗ = 23807 genes. Besides the ChIP-

seq data for two biological replicates, two input data are also available. Ideally, we

should not expect any genes with differential enrichment between the two replicates.

We apply the same procedure as in our analysis of the mouse data in Section 3.4

to the data between two ChIP-seq replicates and calculate test statistics Znew,i for

each gene i, i = 1, ...,m = 23807. The histogram of Znew for all the genes in Figure

3.10 (top plot) shows that the majority of the test statistics follow the standard

normal distribution. In addition, using a Bonferroni adjusted p-value of 0.05, our

procedure identifies only 263 genes that show differential enrichment between two

replicates, which results in a less than 1.5 % false discovery rate. This analysis further

demonstrates that our proposed kernel-based nonparametric testing procedure is not

only powerful enough to detect the true differentially enriched regions but also makes

fewer false detections.

Finally, we also perform an analysis to identify the genes with differential enrichment

of histone modification between a B-lymphoblastoid cells and HeLa-S3 cervical car-

cinoma cells. Figure 3.10 (bottom plot) shows the histogram of the test statistics

for all 23807 genes. Using a Bonferroni threshold for genome-wide level of 0.05, we

identify 6647 genes that show differential H3K27ac levels at their promoter regions.
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Figure 3.10: Top: Histogram of differential enrichment test statistics Znew between
two biological replicates of the ENCODE data for all 23807 genes. Bottom: His-
togram of differential enrichment test statistics Znew between two cell types (B-
lymphoblastoid cell vs HeLa-S3 cervical carcinoma cells) of the ENCODE data for
all 23807 genes. The red curve represents the standard normal density.
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3.7. Extension to Multiple Experimental Conditions and ANOVA-type

Test Statistics

Our proposed method can also be extended to identify differential enrichment in

multiple conditions. Motivated by the same ChIP-seq data of Mikkelsen et al. (2010)

with H3K27ac at four time points, we are interested in identifying genes that show any

changes of H3K27ac levels at promoter regions during the four time points. Instead

of fitting kernel smoothing curves on one-sample difference Y (t) = X∗
1 (t) − X∗

2 (t),

we fit the kernel on Xj(t) for each condition j. For each gene k and condition j,

k = 1, ...,m = 29716 and j = 1, 2, 3, J = 4, we assume the data follow a “signal +

noise” model (omitting k ),

Xj(t) = fj(t) +Wj(t).

For each gene, the null hypothesis of interest is

H0 : f1(t) = f2(t) = f3(t) = f4(t) = f(t). (3.12)

Motivated by the ANOVA statistics to test the equality of the means in multiple-

sample cases (Young and Bowman, 1995; Dette and Neumeyer, 2001), we propose the

following statistic for testing the null hypothesis (3.12),

TSanova =

∑J
j n( 1

n

∑n
i=1 f̂j(ti) − f̄(ti))

2

∑J
j

∑n
i=1(Xj(ti) − f̂j(ti))2

(3.13)

=

∑J
j n( 1

n

∑n
i=1 f̂j(ti) − f̄(ti))

2

∑J
j σ̃j(n− df)

where f̂j(t) = Ỹλ(t) and σ̃j is defined similar as (3.7) (3.10) for each condition j, and
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f̄(t) =
∑J

j=1 f̂j(t)/J. The statistic should follow an F -distribution,

F = TSanova × J(n− df)

J − 1

=

∑J
j n( 1

n

∑n
i=1 f̂j(ti) − f̄(ti))

2/(J − 1)
∑J

j σ̃j/J

H0−→ F (J − 1, J(n− df)) (3.14)

To demonstrate the F distribution of ANOVA-type statistics, we apply the methods

on a simple simulated data and the ChIP-seq data H3K27ac measured in four time

points. In the simulation, we define the null genes that satisfy (3.12), which means

Xj(t) are just i.i.d white noises. We simulate m = 10000 null genes with 4 obser-

vations over n = 280 bins. In Figure 3.11, the left panel shows the histogram and

p-value of ANOVA-type test statistics for all the simulated genes. Clearly, the test

statistics for these null genes follow an F distribution and the p-values follow a uni-

form distribution. This demonstrates that the null distribution of our test statistics

indeed follows an F distribution.

Furthermore, we calculate the ANOVA-type statistics for each gene on the real data.

We use a similar idea as in Chapter 3.3.2 to add a small constant a0 = 80% percentile

of the denominator of TSanova. We observe about one-forth of the genes showing

differential enrichment during the four time points. In Figure 3.11, the right panel

shows the histogram and p-values of ANOVA-type test statistics for the genes with

maximum number of read counts in all four conditions fewer than 5. We observe

that the distribution of test statistics is close to an F distribution but with a slightly

long tail, and the corresponding p-values slightly deviate from a uniform U(0, 1)

distribution.
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Figure 3.11: F -distributions of null genes for simulated data set (left panel) and mouse
adipogenesis ChIP-seq data set (right panel). Top: histogram of the test statistics;
Bottom: histogram of the p-values.
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3.8. Conclusions and Discussion

We have proposed a kernel-smoothing based nonparametric test to identify genes

with differential enrichment for ChIP-seq data. Different from all the currently avail-

able methods, our method models the spatial histone enrichment profiles at the pro-

moter regions of the genes, rather than simply modeling the total read counts in a

given window. The method can therefore capture different types of differences in

histone-enriched profiles between two experimental conditions. To detect differences

in enrichment profiles, we constructed a nonparametric statistic based on kernel-

smoothing on the differences of the profiles after approximate normal transformation

of the data. We have shown that the proposed statistics corresponds to the gene

expression changes better than other statistics and the models based on a combina-

tion of different histone modification marks can effectively predict the gene expression

fold changes. Although prediction of gene expression using the ChIP-seq data has

been studied in many published works (Karlic et al., 2010; Dong et al., 2012), these

papers focused only on prediction of gene expression at a static state. Our results

further demonstrate that change of histone modifications and the dynamic chromatin

signatures can also be very predictive for the fold-changes of gene expression between

two different cellular states.

We considered only the problem of identifying the differential enrichment regions

between two or more conditions, where we fit the kernel-smoothing to the differences

of the normal transformed data in order to further smooth out the small local changes

that might be due to differences in GC contents or mappability of the sequencing

reads. By smoothing, we expect that our procedure is robust to such small changes

due to genomic features. To identify differential enrichment in multiple conditions,

we propose an ANOVA-type statistics (3.14). In Chapter 4, we will introduce new
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statistics for multiple-sample enrichment analysis by taking the mean or maximum

of the pair-wise statistics defined in this Chapter.
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CHAPTER 4

Two Alternative Nonparametric Tests for Differential

ChIP-seq Data Analysis

4.1. Introduction

In ChIP-seq studies, one important biological problem is to identify the genomic

regions that show differential enrichment of the same histone modification mark (HM)

between two or more experimental conditions (Mikkelsen et al., 2010). It is also

important to detect the change of bivalent states between two or more HM marks

(Xie et al., 2013). The ChIP-seq data can be summarized as counts of short reads

in non-overlapping bins in the genomic regions of interest, e.g., promoter region or

gene body. After an appropriate transformation, statistically, this problem can be

formulated as testing the equality of L (L ≥ 2) mean functions. The observed data

at the kth bin on each condition j Xj(tk) could be modeled as

Xj(tk) = fj(tk) + σj(tk)Wj(tk), (4.1)

where tk = k/n ∈ [0, 1], k = 1, ..., n, Wjk = Wj(tk) are i.i.d errors, fj(t) is a smooth

function that characterizes the spatial enrichment profile of ChIP-seq data and σj(t) is

the variance function for condition j. We are interested in testing the null hypothesis,

H0 : f1(t) = · · · = fL(t) (4.2)

with L ≥ 2.
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Nonparametric tests of the equality of functions in the two-sample case have been

extensively studied (Hall and Hart, 1990; King et al., 1991; Munk and Dette, 1998;

Lepski and Spokoiny, 1999; Neumeyer and Dette, 2003). In Chapter 3, this disser-

tation discussed a two-sample kernel based nonparametric testing procedure based

on Lepski and Spokoiny (1999) and King et al. (1991). We applied the method to

a ChIP-seq data from Mikkelsen et al. (2010) and identified genes with differential

H3K27ac levels at promoter regions between two cellular states.

However, this method requires the following assumptions on error terms: 1) Gaussian

error, Wj(tk) follows standard normal distribution; 2) variance of error term is a con-

stant across bins (homoscedastic errors, σj(tk) = σj). Furthermore, kernel smoothing

requires one to choose a proper kernel function K and bandwidth λ for each gene.

In many cases, the results would be sensitive to the choice of bandwidth or kernel

functions (discussed in Section 3.5).

In this Chapter, we explore the nonparametric tests developed by Munk and Dette

(1998) without using smoothing. In addition, the nonparametric tests relax the as-

sumption of Gaussian errors with constant variances across n bins. Section 4.2 dis-

cusses the application of nonparametric tests to two-sample ChIP-seq comparisons.

Two new test statistics proposed by Munk and Dette (1998) under homoscedasticity

and heteroscedasticity assumptions are computed and discussed in Section 4.2.2 and

4.2.3, respectively. In Section 4.3.2, the performance of the new statistics is compared

with the kernel-smoothing test statistic and fold changes statistic. We again analyze

the ChIP-seq data obtained from Mikkelsen et al. (2010) and analyzed in Chapter

3. It includes histone modification data in four cellular states: proliferating (day -2),

confluent preadipocytes (day 0), immature adipocytes (day 2) and mature adipocytes

(day 7).
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Besides differential enrichment analysis between two time points, it is also of inter-

est to identify genes that show differential enrichment in any of these four cellular

states. This motivates us to consider the problem of multi-sample ChIP-seq com-

parisons in Section 4.4 and to propose tests for testing the equality of L (L > 2)

functions. Current approaches on multiple sample tests (Hardle and Marron, 1990;

Young and Bowman, 1995; Munk and Dette, 1998; Neumeyer and Dette, 2003; Dette

and Neumeyer, 2001; Cuevas et al., 2004) are mostly based on ANOVA-type statistics

(discussed in Section 3.7) or sum of all pairwise two-sample statistics. In Section 4.4,

we consider test statistics that are based on the maximum (or mean) of the pairwise

statistics in order to test the equality of L functions.

We apply the methods to the same ChIP-seq comparative epigenomic profiling of

adipogenesis of murine 3T3-L1 cells data as in Chapter 3. Our method detects many

genes with differential H3K27ac levels at gene promoter regions across day -2, 0, 2, and

day 7, which agree with what were observed in Mikkelsen et al. (2010). Furthermore,

we compare these nonparametric test statistics with the kernel-based statistics in

differential enrichment analysis and in associating the differential enrichment statistics

to gene expression changes.

4.2. Two-sample Non-parametric Tests

In Chapter 3, we developed a kernel-based nonparametric procedure to identify the

genes with differential enrichment regions between two conditions. To eliminate pos-

sible false positives due to small local changes, we used a relative large bandwidth

λ = 20/280 in the analysis to over-smooth the data. Alternatively, we propose to ap-

ply non-parametric tests that do not require kernel smoothing. We consider two such

tests: one assumes homoscedastic error variances, another allows heteroscedasticity
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in error variances.

We use a similar pre-processing normalization method as in Chapter 3. For each gene i

and each condition j, after square root transformation, the data X∗
ij(tk), k = 1, · · · , n

are approximately normal variables with mean 2
√

λij(tk) and variance of 1. For each

condition j, j = 1, 2, we assume the data follow “signal + noise” model as (4.1)

(omitting index i),

X1(tk) = f1(tk) + σ1(tk)W1(tk),

X2(tk) = f2(tk) + σ2(tk)W2(tk).

This model does not make parametric distributional assumptions on the noises.

It only requires the errors to be symmetric around 0 and to have finite, twice-

differentiable variance functions, σ1(tk) and σ2(tk).

For a given gene, the null hypothesis of interest is

H0 : f1(t) = f2(t),

which can also be written as

H0 : TS = ||f1(t) − f2(t)||2 = 0. (4.3)

However, due to issues related to data normalization and noises, in real ChIP-seq

applications, we are more interested in testing the null hypothesis

H0 : ||f1(t) − f2(t)||2 = c vs Ha : ||f1(t) − f2(t)||2 > c,
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for some biologically meaningful null value c, which represents the minimal difference

between the two functions, ||f1(t)− f2(t)||2. For example, if input ChIP-seq data are

available, we can estimate c for each gene based on input data. Alternatively, we can

treat the genes with only very small tag counts as the null genes and use these null

genes to estimate the c value.

4.2.1. Non-parametric tests of Munk and Dette (1998)

Munk and Dette (1998) proposed the following test statistic for the null hypothesis

(4.3),

T̂ S = Tdiff =

∑n−1
k=1(X1(tk) −X2(tk)) × (X1(tk+1) −X2(tk+1))

(n− 1)
, (4.4)

where the expectation of Tdiff is given by

TS = E(Tdiff ) = ||f1 − f2||2 =

∫

(f1(t) − f2(t))
2dt, (4.5)

and the variance of Tdiff is given by

V ar(Tdiff ) =
||σ2

1||2 + ||σ2
2||2 + 2||σ1σ2||2 + 4||(f1 − f2)σ1||2 + 4||(f1 − f2)σ2||2

n− 1

=
1

n− 1

∫

(σ2
1(t) + σ2

2(t))
2 + 4(f1 − f2)

2(σ2
1(t) + σ2

2(t))dt. (4.6)

We discuss the variance estimation in detail in Sections 4.2.2 and 4.2.3. Following

the central limit theorem, we can define the new test statistics as

Zdiff =
Tdiff − E(Tdiff )
√

V ar(Tdiff )
(4.7)

which follows N(0, 1) under the null hypothesis as n → ∞. We then reject the null
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hypothesis (4.3) if Zdiff > z1−α, where z1−α is the (1−α) percentile of N(0, 1), which

should be adjusted to account for multiple testing in applications.

4.2.2. Variance estimation under homogeneous variance assumption

Under the homoscedastic error variance assumption,

σ1(t) = σ1 , σ2(t) = σ2

σ1 and σ2 are not always the same and need to be estimated separately. For notational

simplicity, we omit the subscript j in the following discussion and only show how to

estimate the variance σ2. If f(t) = 0, the most common estimator would be the sample

standard deviation. We use the estimator proposed by Rice (1984) to estimate the

noise variance for nonparametric regression,

σ̂2
j =

1

2(n− 1)

n
∑

k=2

(Xj(tk) −Xj(tk−1))
2. (4.8)

Plugging (4.8) into (4.6), and based on (4.4) and (4.5), the estimation of variance of

the test statistic under the equal variance assumption is

σ̂2
eql =

(σ̂2
1 + σ̂2

2)
2 + 4||f1 − f2||2(σ̂2

1 + σ̂2
2)

n− 1

Slutsky−→ (σ̂2
1 + σ̂2

2)
2 + 4T̂ S(σ̂2

1 + σ̂2
2)

n− 1
. (4.9)

4.2.3. Variance estimation under heterogeneous variance assumption

In the real applications, the variance may not always satisfy homoscedasticity as-

sumption and may change as a function of the mean values. Munk and Dette (1998)
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proposed the following variance estimate under unequal variance assumption,

||σ̂2
j ||2 =

1

4(n− 3)

n−2
∑

k=2

(Xj(tk) −Xj(tk−1))
2(Xj(tk+2) −Xj(tk+1))

2,

||(f1−f2)σ̂j||2 =
1

2(n− 3)

n−2
∑

k=2

(X1(tk−1)−X2(tk−1))(X1(tk)−X2(tk))(Xj(tk+2)−Xj(tk+1))
2,

|| ˆσ1σ2||2 =
1

4(n− 1)

n
∑

k=2

(X1(tk) −X1(tk−1))
2(X2(tk) −X2(tk−1))

2.

We then obtain the following variance estimate of the test statistic,

σ̂2
unv =

1

4(n− 3)

n−2
∑

k=2

2
∑

j=1

(Xj(tk) −Xj(tk−1))
2(Xj(tk+2) −Xj(tk+1))

2

+
1

2(n− 1)

n
∑

k=2

(X1(tk) −X1(tk−1))
2(X2(tk) −X2(tk−1))

2 (4.10)

+
2

(n− 3)

n−2
∑

k=2

2
∑

j=1

(X1(tk−1) −X2(tk−1))(X1(tk) −X2(tk))(Xj(tk+2) −Xj(tk+1))
2.

In real applications, for the genes that are not enriched by the histone under the

study, we often observe data with very small or even zero counts, in which case the

variance estimation σ̂2 can be too small, which can lead to identifying biologically

uninteresting genes. To modulate this effect, we add a small constant a0 = 90%

percentile of the estimated standard standard deviations to each of the estimated

standard deviations. This variance modulation has also been used in the variance

estimation of kernel-smoothing based method.
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Figure 4.1: Histograms of the two test statistics, (a)Zdiff, eqlvar and (b) Zdiff, unvar, for
9874 genes with maximum number of read count in both day -2 and day 7 fewer than
5 in the mouse adipogenesis ChIP-seq data. The red curve in each plot represents
the standard normal density.
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4.3. Application to ChIP-seq Study During Mouse Adipogenesis

4.3.1. Null distribution of the test statistics

We apply these two nonparametric tests to the same comparative ChIP-seq data of

H3K27ac mark between day -2 and day 7 as in Section 3.4. In order to determine the

biologically relevant value c in the null hypothesis H0 : TS = c, we treat the same set

of 9874 genes with read counts fewer than 5 as the null genes. We calculate T̂i,diff

for the ith null gene, i = 1, ..., C = 9874 and then take the mean of T̂i,diff to obtain

the value c,

c = E(T̂diff |i ∈ NULL) =
1

C

C
∑

i=1

T̂i,diff . (4.11)

Here, c ≈ 0.78 is the minimal distance of two signal functions between day 7 and

day -2 for H3K27ac. In Figure 4.1, we present the histograms of two new statistics

Zdiff, eqlvar and Zdiff, unvar by testing H0 : TS = c for these null genes. Clearly, both

of the statistics are close to standard normal distribution, which is very similar to

Figure 3.1 for Z0λ,WH . Therefore, the null distributions of these two test statistics

are reasonable.

4.3.2. Comparison of different test statistics

Figure 4.2 (a) shows that the two test statistics Zdiff, eqlvar and Zdiff, unvar are almost

identical. Since Zdiff, unvar requires fewer assumptions, we use this to represent the

Zdiff in the following discussion unless otherwise noted. Thus we only check the

plots of Zdiff, unvar versus Zλ,WH and fold-change statistics. Figure 4.2 (b) shows

that Zdiff, unvar is positively correlated with Zλ,WH and plots (c) show that between

Zdiff, unvar and fold-change statistics have very similar pattern as in Figure 3.3. In
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general, large Zdiff values correspond to large fold-changes or large Zλ,WH . The top

12 genes with largest test statistics identified by Zλ,WH and Zdiff are almost the

same set of genes with differentially enriched regions, which show either peak shift,

enrichment intensity difference or peak/no peak (results not shown).

Table 4.1 compares the numbers of genes with differential enrichment (DE) regions

identified using different statistics at the Bonferonni adjusted p-value of 0.05. For the

9874 null genes with the maximum number of read counts in both day -2 and day 7

fewer than 5, DBChIP identifies many of these genes as differentially enriched genes.

The number of genes with DE regions identified by DBChIP also heavily depends on

the threshold c used.

Table 4.1: Numbers of genes with DE regions identified by different tests in the
mouse adipogenesis ChIP-seq data, including Z0λ,WH , Zdiff,unequal and DBChIP test
with fold change value c=1.5 (default), c=1 and c=2 (max). 9874 Null genes: genes
with the maximum number of read counts in both day -2 and day 7 fewer than 5.

DBChIP
Z0λ,WH Zdiff,unequal c = 1.5 c = 1 c = 2

Null genes 3 0 888 2707 399
DB genes 10,467 13,677 6918 17206 3597

4.3.3. Correlation between ChIP-seq differential enrichment statistics and gene ex-

pression fold-changes

We next compare how different test statistics for differential enrichment are correlated

with gene expression fold changes between the two time points. We define for gene k,

∆k = 1 if the kth gene has a more than 2δ fold change between the two time points,

∆k = I{| log2

Wk1

Wk2

| > δ}, (4.12)
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Figure 4.2: Comparison of different statistics for the mouse adipogenesis ChIP-seq
data: (a) the proposed statistics with unequal variance estimation vs the statistics
with equal variance estimation; (b) the proposed statistics with unequal variance
estimation and the kernel-smoothing based statistics; (c) the proposed statistics with
unequal variance estimation and the fold-change statistics.
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where δ = 1 represents at least two-fold change in gene expression. Figure 4.3 shows

the ROC curves for gene expression changes using different statistics and different

cutoff values. We observed that both Zλ,WH and Zdiff outperform the fold-change

statistics in the ROC curves for different cutoff value δ from 0.5, 1, 1.5 to 2, especially

when a smaller cutoff value is used.

Finally, we also calculate the proportions of true differentially expressed genes among

the top 100 to 10000 genes selected by each method as the True Positive Rate (TPR).

The definition of true differentially expressed gene is the same as we used in (4.12). In

Figure 4.4, we observe that Zλ,WH shows a much higher proportions of true positives

among the very top genes (100-2000) than the other methods. The performance

between Zdiff, eqlvar and Zdiff, unvar are almost the same, which is reasonable since we

use the rank list to make TPR plots and the two statistics only differ in the variance

estimates. The TPR of fold-change statistics is much lower than other methods,

especially for the top 500 genes, where the fold change statistics have very low TPR

due to the small counts in both experimental conditions. This results are consistent

with what we observed in Section 3.4 that a large proportion of top-ranked genes

selected by fold-change is probably false. As a comparison, we found a similar pattern

with different cutoff values between these test statistics as in Figure 4.3.

These results indicate that both the kernel-based statistics and nonparametric statis-

tics with equal variance or unequal variances correspond to gene expression changes

very well. As a comparison, kernel based methods with a fixed bandwidth have a

slightly better performance. We also observe that the fold-change statistics perform

the worst in detecting the genes with real differential histone enrichments.
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Figure 4.3: Plots of ROC curves for gene expression fold changes (2δ) using four test
statistics for different fold-change cutoff values: (a) δ = 0.5, (b) δ=1.0, (c) δ=1.5, (d)
δ=2.
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Figure 4.4: Plots of true positive rate curves for gene expression fold changes (2δ)
using four test statistics for different cutoff values: (a) δ = 0.5, (b) δ=1.0, (c) δ=1.5,
(d) δ=2.
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4.3.4. Application to an ENCODE ChIP-seq Study with two replicates

To further demonstrate these nonparametric tests in term of false discovery, we an-

alyze the ChIP-seq data reported in ENCODE Project Consortium et al. (2012) for

two cell lines of human GM12878, B-lymphoblastoid cell and HeLa-S3, cervical carci-

noma cell. Our analysis still focuses on H3K27ac mark at promoter regions of genes

with n = 280 bins. There is a total of m = 23807 transcripts that can be mapped to

23807 genes. The data set includes two replicates for ChIP-seq data and two repli-

cates for input data. Biologically, we should not expect many genes with differential

enrichment between the two replicates.

We first compare the ChIP-seq profiles of the two input replicates where we calculate

the test statistics Zall,uneql for each of the genes i, i = 1, ...,m = 23807. Based on

(4.11), we obtain T̂diff for 20300 genes with maximum value less than 5 and take the

mean of T̂diff as the value c. The histogram of Zall,uneql for all m genes in Figure

4.5 shows that the test statistics roughly follow the standard normal distribution.

In addition, using a Bonferroni adjusted p-value of 0.05, our procedure only iden-

tifies 9 genes with test statistics greater than the threshold, which results in a less

than 0.025 % false discovery rate. This example further demonstrates that our pro-

posed nonparametric testing procedure is not only powerful enough to detect the true

differential enrichment regions but also makes only a few false detections.

We also apply the nonparametric test to the two ChIP-seq replicates and calculate

test statistics Zall,uneql for each gene i, i = 1, ...,m = 23807. We first normalize

the reads counts data using a Poisson sampling (Li and Tibshirani, 2011), and then

take 2 ∗
√

count + 1/4 for the normalized data and also for the input ChIP-seq data.

We then subtract the input counts from the ChIP-seq counts and calculate the test
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Figure 4.5: Comparison between two replicated ENCODE input data sets. Top:
Histogram of test statistics Znull,uneql for 20300 NULL genes in the new data sets.
Bottom: Histogram of test statistics Zall,uneql for all 23807 genes in the new data sets.
The red curve represents the standard normal density.
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statistic Zall,uneql for each gene. Figure 4.6 shows the histograms of the test statistics

for genes with fewer than 5 read counts and for all the genes, which closely follow

the standard normal distribution. We therefore should not expect many significant

differentially enriched genes.

Table 4.2 shows the number of genes with DE regions identified by the different tests

for several different comparisons. In general, we observe that both kernel smoothing

and the nonparametric tests give a small number of false positives when we compare

two the replicates of the GM12878 cell lines, or the two replicate of the input ChIP-seq

data. The proposed procedures also give a very small number of false positives when

we compare the genes that have only small number of counts. In contrast, results of

the DBChIP test greatly depend on the threshold c used. For a small threshold, we

observe many false positives. However, when the threshold is set too large, the test

loses power to detect genes with differentially enriched regions.

Table 4.2: Numbers of genes with DE regions identified for the ENCODE data sets
using different test statistics, Z0λ,WH , Zdiff,unequal and DBChIP test with allowable
fold change value c = 1.5 (default), c = 1 and c = 2 (max). Four different comparisons
are performed: (a) two GM12878 ChIP replicates; (b) two GM12878 Input replicates;
(c) 9124 Null genes with maximum number of read count in both GM12878 and HeLa-
S3 cell lines fewer than 5; (d) Two cell lines GM12878 and HeLa-S3.

DBChIP
Z0λ,WH Zdiff,unequal c = 1.5 c = 1 c = 2

GM12878 ChIP replicates 263 134 0 529 0
GM12878 Input replicates 11 9 0 222 0
9124 Null genes 23 14 2 333 0
GM12878 vs HeLa-S3 6647 7691 2202 7444 1074

4.3.5. A simulation comparison

We present Monte Carlo simulation to evaluate the performance of the different two-

sample statistics, Zλ,WH , Zdiff, eqlvar and Zdiff, unvar. We demonstrate that these

methods can control the Type I error at the desired levels, when we simulate data

71



Znull,uneql

De
ns

ity

−4 −2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

N(0,1)

Zall,uneql

De
ns

ity

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

N(0,1)

Figure 4.6: Histogram of test statistics Zall,uneql for all 23807 genes in the ENCODE
data sets. The red curve represents the standard normal density.
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under the null where signal functions are the same f1 = fN(0,1)(t) and f2 = fN(0,1)(t).

We simulate the spatial histone enrichment profiles by a normal density function,

fN(µ,s) with mean µ and variance σ2, where different parameters µ and s represent dif-

ferent differential enrichment profiles. The errors are still simulated from N(0, σ2(t)).

We consider three cases for the variance functions: (a) homoscedasticity and equal

variance σ2
1 = σ2

2 = 1; (b) homoscedasticity and unequal variance σ2
1 = 0.5, σ2

2 = 1;

(c) heteroscedastic variances σ2
1(t) = σ2

2(t) = sin(t).

We simulate data for m = 10, 000 genes and let the sample size for each gene be

n = 280. The results are shown in Table 4.3. For simulations (a) and (b) under

homoscedasticity assumption, all three statistics can control the type-I error reason-

ably well, where kernel-smoothing based methods show a slight inflation that may be

due to the fixed bandwidth. The nonparametric tests are on the other hand slightly

conservative since they do not make any assumptions on errors. For simulation (c)

where we have heteroscedastic variances, only Zdiff, unvar controls the type I error at

the specified level. The other two methods have inflated errors, which implies that

Zdiff, unvar is robust and stable if the variance function is not always a constant across

different bins. In real applications, we recommend using the test statistic Zdiff, unvar

for differential enrichment analysis.

Table 4.3: Simulation to evaluate the type 1 errors of three different two-sample
test statistics under three different settings: (a) homoscedasticity and equal variance
σ2

1 = σ2
2 = 1; (b) homoscedasticity and unequal variance σ2

1 = 0.5, σ2
2 = 1; (c)

heteroscedastic variances, with σ2
1(t) = σ2

2 = sin(t).
Zλ,WH Zdiff,eql Zdiff,uneql

0.05 0.01 0.05 0.01 0.05 0.01
(a) 0.0517 0.0122 0.0374 0.0034 0.0411 0.0049
(b) 0.0509 0.0146 0.0393 0.0046 0.0429 0.0062
(c) 0.0840 0.0357 0.0865 0.0212 0.0434 0.0080
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4.4. Extension to Time-Course ChIP-seq Data

The two-sample nonparametric tests presented in Section 4.2 can also be extended to

multiple-sample cases, in particularly to time-course ChIP-seq data. The ChIP-seq

data sets (Mikkelsen et al., 2010) we analyzed include H3K27ac marks at four differ-

ent time points, including proliferating (day -2) and confluent (day 0) preadipocytes,

immature adipocytes (day 2) and mature adipocytes (day 7). Let Xikj denote ob-

served read counts Xikj in bin k under condition j, for i = 1, · · · ,m, k = 1, · · · , n and

j = 1, 2, 3, L = 4. The goal is to test the equality of functions among these 4 time

points. For each gene, we assume the data follow a “signal + noise” model (omitting

k ),

Xj(t) = fj(t) +Wj(t).

The null hypothesis of interest is

H0 : f1(t) = f2(t) = f3(t) = f4(t) = f(t). (4.13)

4.4.1. TSmax and TSmean test statistics

For the time-course ChIP-seq data with L time points, we are interested in changes

of histone modification enrichment states between L − 1 adjacent time points. Let

TSL(L−1), · · · ,TS21 be the pair-wise test statistics between two neighbouring time

points. Based on (3.9) and (4.7), we know that under the H0 : fi(t) = fj(t), the

two-sample statistic follows a N(0, 1). Thus, under the global null hypothesis (4.13),

the joint distribution of TS = (TSL(L−1),...,TS21)
T follows a multivariate normal

distribution NL−1(µ,Σ). Note that TS(j+2)(j+1) is independent with TSj(j−1), so ρij =
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0, for all j > i+ 1.
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. (4.14)

Based on this joint null distribution of the pair-wise test statistics, we use the mean of

TS (TSmean) or the maximum of TS (TSmax) as the test statistics for the hypothesis

(4.13). Intuitively, TSmax is expected to perform better than TSmean since a larger

value of the positive test statistic represents differential enrichment. However, the

signal of TSmean can be diluted by taking the average of the pair-wise test statistics

when some pair-wise statistics are negative.

4.4.2. Distribution of TSmean

Based on the joint distribution of the pair-wise test statistics given in (4.14), the

distribution of TSmean = 1
L−1

∑L−1
j=1 TS(j+1)j follows N(0, σ2

mean), where

σ2
mean =

(L− 1 + 2
∑

i<j ρij)

(L− 1)2
,

and therefore

Zmean =
TSmean

σmean

H0−→ N(0, 1) (4.15)

We discuss the estimation of ρ in Section 4.4.4 and the Appendix B.3.
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4.4.3. Distribution of TSmax

The distribution of TSmax = max(TSjj+1, j = 1, ..., L−1) is not simple since the pair-

wise statistics TSjj+1 are not independent. Arellano-Valle and Genton (2007, 2008)

provided the exact distribution of the maximum of X = (X1, ..., Xn)T ∼ Nn(µ,Σ).

Let X−i = (X1, · · · , Xi−1, Xi+1, · · · , Xn)T for each i. We partition X by

X =

(

X−i

Xi

)

, µ =

(

µ−i

µi

)

,

and

Σ =







Σ−i−i Σ−ii

Σi−i Σii






.

Further we define µ−i,i = µ−i + (x− µi)Σ−ii/Σii, and Σ−i−i,i = Σ−i−i − Σ−iiΣ
T
−ii/Σii.

Using the general results of Arellano-Valle and Genton (2008) together with the co-

variance matrix Σ given in (4.14), the density function (PDF) of Tmax can be written

as

fmax(x) =
n

∑

i=1

φ(x)ΦL−2(X(L−2)×1;µ−i,i,Σ−i−i,i), (4.16)

where φ(x) is the PDF of N(0, 1), ΦL−2 is the cumulative distribution function (CDF)

of multivariate normal distribution.

Jamalizadeh and Balakrishnan (2009) further provided the moment generating func-

tion of the maximum of a trivariate normal distribution and define this distribution

as a sum of weighted generalized skew-normal (WGSN) distributions. Consider the
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setting where we have L=4 time points, we have

TS = (TS12, TS23, TS34)
T ∼ N3

























0

0

0













,













1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

























where ρ13 = 0. The PDF of TSmax is given by

fmax(t) =
3

∑

i=1

φ(t)Φ2(Xait,bit;ρi
), (4.17)

where Φ2(Xait,bit;ρi
) is the CDF of bivariate normal distribution with correlation co-

efficient ρi, and

a = (a1, a2, a3) = (
1 − ρ12

√

1 − ρ2
12

,
1 − ρ12

√

1 − ρ2
12

,
1 − ρ13

√

1 − ρ2
13

= 1),

b = (b1, b2, b3) = (
1 − ρ13

√

1 − ρ2
13

= 1,
1 − ρ23

√

1 − ρ2
23

,
1 − ρ23

√

1 − ρ2
23

),

ρ = (ρ1, ρ2, ρ3) = (
ρ23 − ρ12ρ13

√

1 − ρ2
12

√

1 − ρ2
13

,
ρ13 − ρ12ρ23

√

1 − ρ2
12

√

1 − ρ2
23

,
ρ12 − ρ13ρ23

√

1 − ρ2
13

√

1 − ρ2
23

).

Further, the expectation and variance of TSmax is given by Jamalizadeh and Balakr-

ishnan (2009)

E(TSmax) =
1

2
√
π

(
√

1 − ρ12 +
√

1 − ρ13 +
√

1 − ρ23), (4.18)

Var(TSmax) = 1 +

√
M

2π
− E(TSmax)

2 (4.19)

where M = 6 + 2(ρ12ρ13 + ρ12ρ23 + ρ23ρ13) − (1 + ρ12)
2 − (1 + ρ13)

2 − (1 + ρ23)
2.

To verify these results, we simulate 10,000 multivariate normal distributed samples
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for TS = (TS12, TS23, TS34)
T with µ = (0, 0, 0)T and

Σ =













1 0.25 0

0.25 1 0.25

0 0.25 1













.

We then calculate the test statistics TSmax = max(TS12, TS23, TS34) for all 10,000

samples. Figure 4.7 shows the histogram of these statistics together with the fitted

exact WGSN curve as the red line and normal density curve with mean (4.18) and

variance (4.19) as the blue line. We observe that the WGSN curve is a little skewed

to the left but both curves almost overlap in the tails. In real applications, we may

use the normal distribution

Zmax =
TSmax − E(TSmax)

√

V ar(TSmax)

H0−→ N(0, 1) (4.20)

to approximate the WGSN, especially at the tail.

4.4.4. Estimation of Covariance Matrix for Multiple-Sample Test Statistics

To calculate the statistics TSmax and TSmean, we need the estimates of ρ12 and ρ23

(ρ13 = 0) in the covariance matrix Σ. Based on Munk and Dette (1998) (Appendix

Lemma A3), ρ̂12 and ρ̂23 depend on the estimates of f̂j f̂j, and f̂j f̂g, j = 1, .., L,

g = 1, .., L, and g 6= j. We present these estimates in the Appendix B.3 and B.4

under both equal variance and unequal variance assumptions. Here we only show the

results of the estimates of ρ12 and ρ23 under the unequal variance assumption, which

are given as
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Figure 4.7: Histogram of the test statistics Tmax for 10,000 samples simulated under
the null multivariate normal distribution with WGSN and normal curves fitted.
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ρuneql
12 =

||σ2
2||2 + 4(||σ2f2||2 − ||σ2

2f1f2|| − ||σ2
2f2f3|| + ||σ2

2f1f3||)
(n− 1) σunv

1,2 σunv
2,3

, (4.21)

and

ρuneql
23 =

||σ2
3||2 + 4(||σ3f3||2 − ||σ2

3f2f3|| − ||σ2
3f3f4|| + ||σ2

3f2f4||)
(n− 1) σunv

2,3 σunv
3,4

. (4.22)

Under the null hypothesis (4.13), we have

ρ12
H0−→ ||σ2

2||2
√

||σ2
1||2 + ||σ2

2||2 + 2||σ1σ2||2
√

||σ2
2||2 + ||σ2

3||2 + 2||σ2σ3||2
,

ρ23
H0−→ ||σ2

3||2
√

||σ2
2||2 + ||σ2

3||2 + 2||σ2σ3||2
√

||σ2
3||2 + ||σ2

4||2 + 2||σ3σ4||2
,

If we further assume constant variance σj(tk) = σj, j = 1, 2, 3, 4 and σ2
1 = σ2

2 = σ2
3 =

σ2
4, we can obtain ρ12 = ρ23 = 1

4
. This value is used in the simulation presented in

Figure 4.7.

4.5. Application to a Comparative Time Course ChIP-seq Study Dur-

ing Mouse Adiopogenesis

We apply the multi-sample test to the same ChIP-seq experiments data described

in Section 4.3. Recall that there are m = 29716 genes and for each gene i, there

are n = 280 observed read counts in bin k under condition j, for i = 1, · · · ,m,

k = 1, · · · , n and j = 1, 2, 3, L = 4. For each gene, after the normal-transformation

as in Section 3.2, we calculate the pair-wise statistics for each adjacent pair and their

correlations and use mean or max of all the pair-wise statistics to identify genes with
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differential enrichment during the time course experiment.

4.5.1. Comparison between TSmax, TSmean for the ChIP-seq time-course experiments

We calculate the adjacent pair of test statistics TS12, TS23 and TS34 for each gene.

For each test, using the same procedure as in Section 4.2, we identify the genes with

max counts in both conditions less than 5 and use these genes to estimate the c

value, respectively. Here, the c value used in the test is c12 = 0.805, c23 = 0.693,

and c34 = 0.675, respectively. The test statistics for these null genes should follow a

N(0, 1) distribution. Figure 4.8 shows the histograms of the statistics for these null

genes, which are very close to the standard normal distribution.

To perform overall tests for differential enrichment over time, we calculate the statis-

tics Zmean and Zmax for each gene. Figure 4.8 also shows the histograms of these two

statistics for the null genes, which closely follow the standard normal distribution.

Figure 4.9 and Figure 4.10 show the top 12 genes with largest test statistics by

TSmax and TSmean. Both plots show some genes with clear differences in ChIP-

enriched profiles between all four time points and some genes are enriched in only

one condition. For genes enriched at all four time points, the peak heights are very

different. It seems that the top genes selected by TSmax show stronger differential

enrichment among the four conditions than those identified by TSmean.

4.5.2. Association with gene expression changes

We can similarly define test statistics based on pair-wise kernel-based statistics Zλ,12,

Zλ,23 and Zλ,34 between each pair of adjacent time points,

Zλ,max = max(Zλ,12, Zλ,23, Zλ,34), Zλ,mean =
Zλ,12 + Zλ,23 + Zλ,34

3
.
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Figure 4.8: Histogram sof the test statistics for genes with reads counts fewer than 5
between each two adjacent time points and the overall test statistics. (a) TS43; (b)
TS32; (c) TS21; (d) TSmean; (e) TSmax.
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Figure 4.9: Observed ChIP-seq bin-counts for top twelve genes ranked by TSmax

statistics over the promotor region for day -2 (black), day 0 (red), day 2 (green) and
day 7 (blue). Vertical line represents the transcription starting site.
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Figure 4.10: Observed ChIP-seq bin-counts for top twelve genes ranked by TSmean

statistics over the promotor region for day -2 (black), day 0 (red), day 2 (green) and
day 7 (blue). Vertical line represents the transcription starting site.
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To see how well these statistics are associated with gene expression changes over four

time points, we define the classification indicator ∆k = 1 if the kth gene has at least

one pair of gene expression change greater than two-fold,

∆k = I{| log2

Wk1

Wk2

| > 1| or | log2

Wk2

Wk3

| > 1| or | log2

Wk3

Wk4

| > 1|}, (4.23)

where Wkt is the gene expression level for the kth gene at time point t, for t = 1, 2, 3, 4.

Figure 4.11 shows ROC curves using various multi-sample test statistics. We observe

that in general using the maximum of the pair-wise statistics tends to result in better

ROC curves than using the mean. In addition, Zλ,max seems to outperform other

methods. Similar pattern are also observed in Figure 4.12, where Zλ,max shows a

slightly higher proportion of true positive than the other methods, although overall

they are close.

4.6. Conclusions and Discussion

We have applied two nonparametric test statistics for differential histone enrichment

analysis between two or more conditions. The key of our approach is to apply the null

genes or the input ChIP-seq data to define the biologically relevant null values. Com-

pared to the kernel-based tests developed in Chapter 3, these two tests do not require

smoothing and bandwidth selection. In addition, no parametric error assumption

is needed for these two nonparametric tests. The test with heterogeneous variances

also allows for heteroscedasticity where the variance function is no longer a constant

across bins in a region.

The kernel smoothing-based test statistics minimize false positive identification of

genes by choosing a relatively large bandwidth in order to smooth out the small local
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Figure 4.11: Plots of ROC curves for gene expression fold changes using four different
test statistics.
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Figure 4.12: Plots of the TPR curves for gene expression fold changes using four
different test statistics.
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noises. The nonparametric tests considered in this chapter minimize possible false

identification of genes with differential enrichment regions by using null genes or by

using the input data. Overall, we observe that kernel-based tests slightly outperform

the nonparametric tests in identifying genes with DE regions that show large gene

expression changes.

Finally, we have also extended the two-sample statistics to multi-sample ChIP-seq

analysis, such as time-course ChIP-seq experiments, by using the maximum or mean of

the pair-wise test statistics. Such extensions allow us to identify genes with differential

enrichment in multiple conditions or over time. We observe that TSmax tends to

outperform the TSmean since the signal of the mean statistic can be diluted by the

negative values of the pair-wise test statistics but the maximum statistic always keeps

the strongest signal.
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CHAPTER 5

Conclusions and Future Work

This dissertation concerns the problem of signal detection in genomics in multiple-

sample settings. We focus on the problem of identifying the genomic regions that

show different characteristics than the background regions. The two problems we

considered in this dissertation include copy number variants analysis and ChIP-seq

data analyses, both have important biological applications.

In Chapter 2, we have developed a procedure to scan the genomes using score statis-

tics in order to identify the CNVs that are associated with the phenotype. This

procedure, CNVtest, identifies the CNVs and tests for the association between po-

tential CNVs regions and the phenotype simultaneously. The power of identifying

the trait-associated CNVs depends both on the jump size of the CNVs and also the

strength of CNV association. CNVtest automatically allows for some shifts in the

CNV boundaries among the carriers. The method is particularly effective when the

CNV regions from the different carriers do not exactly cover the same intervals. The

CNVtest is also flexible and can be applied to identify CNVs associated with different

phenotypes through the use of generalized linear models (GLMs).

One interesting extension of CNVtest is to apply the test to CNV association analysis

based on the next generation sequencing data. One can use the local median trans-

formation procedure proposed in Cai et al. (2012) to transform the read-depth data

to approximately normally distributed data and directly apply the CNVtest to the

transformed data. We expect to have similar power and genome-wide error control

as the intensity-based data. Similarly, since large-scale exome sequencing data have
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been generated to study many diseases, it is also important to extend CNVtest to

such data in order to identify the CNVs in the coding regions that are associated

with phenotypes. In order to adjust for differential capture efficiencies of different

exons or the GC contents, we can simple include the GC contents and the first few

principal components of the exon counts data in the GLMs and develop similar score

statistics for testing phenotype association.

In Chapters 3 and 4, we have developed methods for identifying genes with differential

enrichment of histone modifications between two or more conditions. Instead of scan-

ning the whole genomes, we take a hypothesis testing approach to test several specific

regions of a given gene, including promoter, gene body and downstream region. We

then apply several nonparametric tests for testing differential enrichment between

two conditions for a given gene and a given region. In Chapter 3, we have developed

kernel-based nonparametric tests to identify genes with differentially enriched regions

between two or more conditions. The key of this approach is to smooth small local

signals using a relatively large bandwidth. The top genes selected by our procedure

clearly show patterns of differential enrichment and the test statistics correlate with

gene expression changes well. In addition, it can be used to predict the fold changes

of gene expressions.

In Chapter 4, we have investigated the use of two nonparametric tests without smooth-

ing for differential enrichment analysis, which allow for possible heteroscedasticity in

error variances. In addition, the tests do not make any parametric assumption on

the error terms. The key of this approach is to use the input ChIP-seq data or null

genes to choose the biologically meaningful null values in the hypothesis testing. The

methods provide an effective way of applying the input data in differential enrichment

analysis of ChIP-seq data.
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In both Chapters 3 and 4, we have also extended the methods for differential en-

richment analysis to multi-sample cases. These tests can be applied to time-course

ChIP-seq experiments. We have investigated ANOVA-type statistics based on kernel-

smoothing, and two nonparametric multivariate test statistics. In general, we observe

that kernel-smoothing with large bandwidth performs better than nonparametric tests

without smoothing in identification of genes with differential enrichment. However,

kernel smoothing-based tests can be sensitive to the bandwidth used. One interest-

ing idea that we explored in this dissertation is use the null genes to calibrate the

bandwidth selection so that the test statistics of these null genes follow the expected

null distribution.

It should be emphasized that the statistical validity of the proposed tests in Chapters

3 and 4 relies rather critically on the fact that the p-values are uniformly distributed in

(0,1) under the null hypothesis of no differential enrichment. However, due to issues

of ChIP-seq data normalization and local genome sequencing biases, the reference

distributions used in calculating the p-values might be inaccurate and the statistical

models on which the tests are based can be inadequate for rigorous statistical infer-

ences. To deal with these potential issues, we took an approach of calibrating the

Type I errors to the null genes. We used the genes with very small numbers of read

counts as null genes and used their test statistics to calibrate the null distribution.

This provides one feasible method for choosing the bandwidth in kernel-smoothing

based tests discussed in Chapter 3. Alternatively, when input ChIP-seq data are

available, we can use these data to determine the minimum biologically interesting

null values when applying the nonparametric tests for differential enrichment analy-

sis. Because of these complications, we should emphasize that the p-values from these

nonparametric tests are indeed very useful for ranking the differentially enriched can-
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didates, but the conventional use of significance tests based on these p-values should

not be taken for granted. Similar conclusions have also been drawn for searching for

genes with alternative splicing in term of using the p-values (Hu and He, 2012).

Although the real applications in this dissertation have no biological replications, it

should be noted that our proposed tests in both Chapters 3 and 4 can be equally

applied to differential enrichment analysis when biological replications are available.

Since recent studies have indicated that global histone modification patterns predict

risk of prostate cancer recurrence (Seligson et al., 2005) and breast cancer patient’

outcome, we expect to see many large-scale ChIP-seq data being generated, especially

for cancer studies. New statistical methods are needed to identify the genes whose

histone modification differences are associated with cancer outcome.
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APPENDIX A

Proof

Proof of Theorems in Chapter 2

A.1. Proof of Theorem 2.3.1

According to the construction of Sn,τ in the algorithm, we only need to show

P{ max
τ∈I0∩R

|Sn,τ | >
√

2 log(r̂)} → 0.

Based on the standard result for the score statistic, Sn,τ →L N(0, 1) for τ ∈ I0. Then

it is enough to show

P{max
τ∈R

|N(0, 1)| >
√

2 log(r̂)} → 0. (A.1)

The r̂ is a random variable determined by the number of intervals included in R. It

can be shown that

P (r̂ < q) ≤ P (∃Ik ∈ I : |X̄iIk
| ≤ ν for all i ∈ {1, . . . , n})

≤
∑

Ik∈I

P (|X̄iIk
| ≤ ν for i being a carrier)

=
∑

Ik∈I

P (|N(µk

√

|Ik|, σ2
k)| ≤ ν)

≤
∑

Ik∈I

P{N(0, σ2
k) ≤

√

2 log(mL) −
√

2(1 + ǫ) log(m)}

≤ qm−C → 0, (A.2)
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for some C > 0. The first inequality is by the definition of R and the condition

s̄ ≤ L < d in (2.5); the third inequality is by the choice of ν and condition (2.11); the

forth inequality is by Mills’ ratio and the condition logL = o(logm) in (2.5); and the

last step is by log q = o(logm) in (2.10). Next, we have

P{max
τ∈R

|N(0, 1)| >
√

2 log(r̂)}

=
mL
∑

r=q

P{max
τ∈R

|N(0, 1)| >
√

2 log r̂ | r̂ = r}P (r̂ = r) + P (r̂ < q)

≤
mL
∑

r=q

rP{|N(0, 1)| >
√

2 log r}P (r̂ = r) + P (r̂ < q)

≤
mL
∑

r=q

(C/
√

log r)P (r̂ = r) + P (r̂ < q)

≤ C/
√

log q + P (r̂ < q).

Then (A.1) follows by (A.2) and the condition q → ∞ as n→ ∞ in (2.10).

A.2. Proof of Theorem 2.3.2

By the asymptotic results for score statistic, Sn,Ik
is asymptotically normally dis-

tributed with mean
√
nβIk

D(Ik) and variance 1. Then PH1Ik
{|Sn,Ik

| >
√

2 log(r̂)} is

approximately equal to

P{|N(
√
nβIk

D(Ik), 1)| >
√

2 log(r̂)}

≥ P{|N(0, 1)| >
√

2 log(r̂) −√
nβIk

D(Ik)}

≥ P{|N(0, 1)| >
√

2 log(mL) −
√

2(1 + η) logm}

≥ 1 − Cm−C
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for some C > 0, where the second inequality is by (2.13), and the last step is by

η = O(1) and Mill’s Ratio. Therefore, HIk0 is rejected with probability going to 1.

Now consider the rest of Theorem 2.3.2. By the asymptotic results of score statistics

, P (Sn,Ik
> Sn,τ ) is approximately equal to

P{N(
√
nβIk

D(Ik), 1) −N(
√
nβτD(τ), 1) > 0}

≥ P [N(0, 2) >
√
nβIk

{D(τ) −D(Ik)}] (A.3)

≥ P [N(0, 2) >
√
nβIk

g′(α)
√

b′′{g(α)}/γ{
√

V ar(Zτ ) −
√

V ar(ZIk
)}], (A.4)

where the first inequality is by βIk
> βτ for any τ s.t. τ ∩ Ik 6= ∅ and τ 6= Ik. Then

it is left to show that

V ar(Zτ ) < V ar(ZIk
). (A.5)

Since

V ar(Zτ ) = P (|X̄τ | > ν){1 − P (|X̄τ | > ν)},

then by the monotonicity of function f(x) = x(1 − x) with x < 1/2, (A.5) is implied

by

P (|X̄τ | > ν) < 1/2 (A.6)

and

P (|X̄τ | > ν) < P (|X̄Ik
| > ν) (A.7)
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for any τ s.t. τ ∩ Ik 6= ∅ and τ 6= Ik. Note that by (2.1) and (2.2), we have

X̄τ ∼ (1 − πk)N(0, 1) + πkN(
|τ ∩ Ik|
√

|τ |
µk, σ

2
k).

Since (1−πk)P{|N(0, 1)| > ν} = o(1) given ν ≫ 1, and πkP{|N(|τ∩Ik|µk/
√

|τ |, σ2
k)| >

ν} < 1/2 given πk < 1/2, (A.6) follows. It is also easy to show that

P (|X̄τ | > ν)−P (|X̄Ik
| > ν) = πk[P{|N(

|τ ∩ Ik|
√

|τ |
µk, σ

2
k)| > ν}−P{|N(

√

|Ik|µk, σ
2
k)| > ν}],

then (A.7) follows given the fact that |τ ∩ Ik|/
√

|τ | <
√

|Ik| for any τ s.t. τ ∩ Ik 6= ∅

and τ 6= Ik.
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APPENDIX B

Derivation

Derivations of E(TS0λ), V ar(TS0λ), d and δ in Chapter 3

B.1. Derivation of E(TS0λ) and V ar(TS0λ)

From (3.3) and (3.5), Ỹλ(t) can be approximated by

Ỹλ(t) =
1

nλ

n
∑

i=1

K(
t− si

λ
)Y (si)

=
1

nλ

[

K(
t− s1

λ
), ..., K(

t− sn

λ
)

]T

[Y (s1), ..., Y (sn)]

= Sλ(t)Y.

Based on (3.5), under the null hypothesis,

Y = (Y1, ..., Yn)
H0= σ(Wt1 , ...,Wtn) = σ(N1(0, 1), ..., Nn(0, 1)) = σX,

where Ni(0, 1) represents for i.i.d. standard normal random variable, i = 1, ..., n and

X = (N1(0, 1), ..., Nn(0, 1)). Based on (3.8), it can be shown that

T0λ =
1

nσ2
Y TST

λSλY =
1

n
XTST

λSλX = XT

(

1

n
ST

λSλ

)

X = XTAX,

where A = 1/nST
λSλ. Since X ∼ Nn(µ,Σ), where µ = (0, ..., 0)n×1 and Σ = In, we

have

E(T0λ) = E(XTAX) = trace(AΣ) = trace(A)
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where

aii =
1

n3λ2

n
∑

j=1

K2(
tj − si

λ
) ≈ 1

n2λ

∫

K2(
tj − si

λ
)d
tj − si

λ
=

1

n2λ
||K||2,

and

aik =
1

n3λ2

n
∑

j=1

K(
tj − si

λ
)K(

tj − sk

λ
).

Then we can get

E(T0λ) = trace(A) =
1

nλ
||K||2,

which is the same as given by Eubank (1999). For Gaussian kernel, we have

E(T0λ) =
1

nλ2
√
π
.

To derive the variance of the test statistics, it can be shown that

Var(T0λ) = Var(XTAX) = {E[(XTAX)2] − E2(XTAX)}

and

(XTAX)2 =
∑

i

∑

j

∑

k

∑

l

aijaklxixjxkxl,

where aij, akl are the elements of the A matrix. In addition, we have µ4 = E(x4
i ) = 3,

µ2 = E(x2
ix

2
j) = 1, i 6= j, E(xi) = 0,E(x3

ixj) = 0,..., and all other combinations equal

to zero. Based on Theorem 1.6 of Seber and Lee (2003),

E[(XTAX)2] = (µ4 − 3µ2
2)a

Ta+ µ2
2[trace(A)2 + 2trace(A2)]
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where a is the n× 1 vector of the diagonal elements of A, and

Var(
1

n
XTAX) = trace(A)2 + 2trace(A2) − trace(A)2 = 2trace(A2)

Let B = A2, and we only need the elements on the diagonal of B, where trace(B) =

trace(A2),

bii =
n

∑

j=1

a2
ij = a2

ii +
∑

j 6=i

a2
ij =

1

n4λ2
||K||4 +

∑

j 6=i

a2
ij.

For Gaussian kernel,

aik =
1

n3λ2

∑

n

1

2π
exp

[

−2(tj − si+sk

2
)2 + s2

i + s2
k − (si+sk)2

2

2λ2

]

=
1

2
√
πλ

exp

[

− (si − sk)
2

4λ2

]

.

So with ||K||4 = 1
4π

,

bii =
1

n4λ2
||K||4 +

∑

j 6=i

a2
ij

=
1

4πn4λ2

n
∑

j=1

exp

[

−1

2
(
si − sj

λ
)

]

=

√
2πλn

4πn4λ2

∫

1√
2π

exp

[

−1

2
(
si − sj

λ
)d
si − sj

λ

]

=

√
2π

4πn3λ
,

and therefore Var(TS0λ) = 2trace(B) = 1√
2π

1
n2λ

.
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B.2. Derivation of d and δ

We have the approximate expectation and variance of the test statistics for Gaussian

kernel under the null,

E(TS0λ|Gaussian Kernel) =
1

2
√
π

1

nλ
,

V ar(TS0λ|Gaussian Kernel) =

√
2π

2π

1

n2λ
.

It is easy to show that

E(TS0λ) = δ × d,

V ar(TS0λ) = δ2 × 2d.

This gives us the closed expressions for δ and d for Gaussian kernel:

δ =
1

n

1√
2
,

d =
1√
2π

1

λ
.

If d > 50, based on central limited theorem,

Zλ,CLT =
TSλ − E(TS0λ)
√

V ar(TS0λ)

H0→ N(0, 1)

But in our real data application with Gaussian kernel function and bandwidth λ =

20/280, d = 5.59 is far less than 10. Instead, we use Wilson-Hilferty transformation
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to transform the χ2 distribution to a standard normal distribution,

Zλ,WH =

3

√

TSλ

δd
− (1 − 2

9d
)

√

2
9d

H0→ N(0, 1)

Derivation of ρ̂j,j+1 in Chapter 4

B.3. Derivation of ρ̂j,j+1 under homoscedasticity assumption

Under the homoscedasticity assumption, ρ̂eql is derived as follows,

ρeql
j−1,j = cov(T̂ Sj−1,j , T̂ Sj,j+1)

=
σ4

j + 4σ2
j [

∫

f 2
j (t)dt−

∫

fj−1(t)fj(t)dt−
∫

fj+1(t)fj(t)dt+
∫

fj−1(t)fj+1(t)dt]

n σj−1,j σj,j+1

.

From (4.6) and (4.8), the estimates for σj,j+1 and σj are known.

We can estimate
∫

f 2
j (t)dt and

∫

fj(t)fl(t)dt by

∫

f 2
j (t)dt =

∑n−1
k=1 Xj(tk) ×Xj(tk+1)

n− 1

and

∫

fj(t)fl(t)dt =

∑n−1
k=1 Xj(tk) ×Xl(tk+1) +Xl(tk) ×Xj(tk+1)

2(n− 1)

where j 6= l. We therefore obtain

ρeql
1,2 =

σ4
2 + 4σ2

2[
∫

f 2
2 −

∫

f1f2 −
∫

f2f3 +
∫

f1f3]

(n− 1) σ1,2 σ2,3

,
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and

ρeql
2,3 =

σ4
3 + 4σ2

3[
∫

f 2
3 −

∫

f2f3 −
∫

f3f4 +
∫

f2f4]

(n− 1) σ2,3 σ3,4

.

B.4. Derivation of ρ̂j,j+1 under heteroscedasticity assumption

ρuneql
j,j+1 =

||σ2
j ||2 + 4(||σjfj||2 − ||σ2

j fj−1fj|| − ||σ2
j fj+1fj|| + ||σ2

j fj−1fj+1||)
(n− 1) σunv

j−1,j σ
unv
j,j+1

based on (4.6) and (4.10), under the heteroscedasticity assumption, we have estimates

for σunv
j,j+1 and ||σ2

j ||2, and can estimate other terms by

||σjfj||2 =

∑n−3
k=1 Xj(tk+1)Xj(tk)(Xj(tk+3) −Xj(tk+2))

2

2(n− 3)
,

and

||σ2
i fjfl|| =

∑n−3
k=1(Xj(tk+1)Xl(tk) +Xl(tk+1)Xj(tk))(Xi(tk+3) −Xi(tk+2))

2

4(n− 3)

where j 6= l. Therefore we have

ρuneql
1,2 =

||σ2
2||2 + 4(||σ2f2||2 − ||σ2

2f1f2|| − ||σ2
2f2f3|| + ||σ2

2f1f3||)
(n− 1) σunv

1,2 σunv
2,3

,

and

ρuneql
2,3 =

||σ2
3||2 + 4(||σ3f3||2 − ||σ2

3f2f3|| − ||σ2
3f3f4|| + ||σ2

3f2f4||)
(n− 1) σunv

2,3 σunv
3,4

.
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