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Models for Improved Tractability and Accuracy in Dependency Parsing

Abstract
Automatic syntactic analysis of natural language is one of the fundamental problems in natural language
processing. Dependency parses (directed trees in which edges represent the syntactic relationships between
the words in a sentence) have been found to be particularly useful for machine translation, question
answering, and other practical applications.

For English dependency parsing, we show that models and features compatible with how conjunctions are
represented in treebanks yield a parser with state-of-the-art overall accuracy and substantial improvements in
the accuracy of conjunctions.

For languages other than English, dependency parsing has often been formulated as either searching over trees
without any crossing dependencies (projective trees) or searching over all directed spanning trees. The former
sacrifices the ability to produce many natural language structures; the latter is NP-hard in the presence of
features with scopes over siblings or grandparents in the tree.

This thesis explores alternative ways to simultaneously produce crossing dependencies in the output and use
models that parametrize over multiple edges. Gap inheritance is introduced in this thesis and quantifies the
nesting of subtrees over intervals. The thesis provides O(n6) and O(n5) edge-factored parsing algorithms for
two new classes of trees based on this property, and extends the latter to include grandparent factors.

This thesis then defines 1-Endpoint-Crossing trees, in which for any edge that is crossed, all other edges that
cross that edge share an endpoint. This property covers 95.8% or more of dependency parses across a variety
of languages. A crossing-sensitive factorization introduced in this thesis generalizes a commonly used third-
order factorization (capable of scoring triples of edges simultaneously).

This thesis provides exact dynamic programming algorithms that find the optimal 1-Endpoint-Crossing tree
under either an edge-factored model or this crossing-sensitive third-order model in O(n4) time, orders of
magnitude faster than other mildly non-projective parsing algorithms and identical to the parsing time for
projective trees under the third-order model. The implemented parser is significantly more accurate than the
third-order projective parser under many experimental settings and significantly less accurate on none.
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ABSTRACT

MODELS FOR IMPROVED TRACTABILITY AND ACCURACY IN DEPENDENCY

PARSING

Emily Pitler

Mitchell P. Marcus

Sampath Kannan

Automatic syntactic analysis of natural language is one of the fundamental problems in nat-

ural language processing. Dependency parses (directed trees in which edges represent the

syntactic relationships between the words in a sentence) have been found to be particularly

useful for machine translation, question answering, and other practical applications.

For English dependency parsing, we show that models and features compatible with

how conjunctions are represented in treebanks yield a parser with state-of-the-art overall

accuracy and substantial improvements in the accuracy of conjunctions.

For languages other than English, dependency parsing has often been formulated as ei-

ther searching over trees without any crossing dependencies (projective trees) or searching

over all directed spanning trees. The former sacrifices the ability to produce many natu-

ral language structures; the latter is NP-hard in the presence of features with scopes over

siblings or grandparents in the tree.

This thesis explores alternative ways to simultaneously produce crossing dependencies

in the output and use models that parametrize over multiple edges.

Gap inheritance is introduced in this thesis and quantifies the nesting of subtrees over

intervals. The thesis provides O(n6) and O(n5) edge-factored parsing algorithms for two

new classes of trees based on this property, and extends the latter to include grandparent

factors.

This thesis then defines 1-Endpoint-Crossing trees, in which for any edge that is crossed,

all other edges that cross that edge share an endpoint. This property covers 95.8% or more

of dependency parses across a variety of languages. A crossing-sensitive factorization in-

troduced in this thesis generalizes a commonly used third-order factorization (capable of

v



scoring triples of edges simultaneously).

This thesis provides exact dynamic programming algorithms that find the optimal 1-

Endpoint-Crossing tree under either an edge-factored model or this crossing-sensitive third-

order model in O(n4) time, orders of magnitude faster than other mildly non-projective

parsing algorithms and identical to the parsing time for projective trees under the third-

order model. The implemented parser is significantly more accurate than the third-order

projective parser under many experimental settings and significantly less accurate on none.
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Chapter 1

Introduction

Automatic syntactic analysis of natural language has been one of the fundamental problems

in natural language processing research. Dependency parses, directed trees that represents

the syntactic structure of natural language sentences, have proven useful for a variety of

practical applications, including machine translation (Ding and Palmer, 2005), question

answering (Cui, Sun, Li, Kan, and Chua, 2005), and information extraction (Culotta and

Sorensen, 2004). See Figure 1.1 for an example of a dependency parse.

* She cut the scarf with scissors

Figure 1.1: A dependency parse tree

There are some theoretical and practical issues, however, that impact the current use-

fulness of today’s dependency parsers:

1. Low Accuracies on Consequential Parsing Decisions: Prepositions and conjunc-

tions are two cases that present ambiguities when parsing English, and in fact have

been treated as stand-alone tasks (Hindle and Rooth, 1993; Ratnaparkhi, Reynar, and

Roukos, 1994; Collins and Brooks, 1995; Goldberg, 1999; Resnik, 1999; Bergsma,

Yarowsky, and Church, 2011). Different attachment decisions of prepositions and
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conjunctions in an English parse may correspond to different translations in another

language, and so correctly attaching these are particularly important for a dependency

parser’s usefulness. Within English dependency parsing, however, the accuracies for

attaching prepositions and conjunctions are well below the overall attachment accu-

racies.

2. Intractability of Current Formulations: Dependency parsing is often cast dichoto-

mously as either searching over trees without any crossing dependencies (Eisner,

2000) or searching over all directed spanning trees (in which any pattern of cross-

ing edges is allowed) (McDonald, Pereira, Ribarov, and Hajič, 2005b). The first

approach sacrifices coverage of many natural language structures, especially in lan-

guages other than English. The second approach has efficient algorithms (Chu and

Liu, 1965; Edmonds, 1967) with very simple statistical models that parametrize over

only individual edges, but this problem becomes NP-hard in the presence of factors

over siblings or grandparents in the tree (McDonald and Pereira, 2006; McDonald

and Satta, 2007), which have been found to greatly improve accuracy in the English

case (McDonald and Pereira, 2006; Carreras, 2007; Koo and Collins, 2010).

In this thesis, we will show how characterizations of dependency tree structures can be

used to improve the tractability and accuracy of parsing. In particular, we will show that:

1. Models and features compatible with how linguistic constructions of interest are rep-

resented in natural language treebanks lead to state-of-the-art accuracies for English

dependency parsing and substantial improvements in the accuracy of conjunctions.

2. Novel definitions of the dependency parsing output space include the vast majority of

structures seen in treebanks for a variety of natural languages, tractably allow richer

features, and have efficient exact parsing algorithms.

3. A generalization of the grandparent-sibling model that accounts for crossing edges

allows a parser to search over the output space mentioned above without any increase

in the asymptotic complexity compared with the non-crossing case.
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1.1 Background: Framework

A dependency tree is a rooted, directed spanning tree that represents a set of dependencies

between words in a sentence. The tree has one artificial root node and vertices that corre-

spond to the words in an input sentence w1, w2,...,wn. There is an edge from h to m if m

depends on (or modifies) h.

The goal of a dependency parser is to output the “best” dependency parse analysis given

an input of a natural language sentence. Note that “outputting the best” requires:

1. Scoring: How is “best” defined? For a given tree, what is its score?

2. Searching: Given a scoring procedure, how does the parser find the best?

These two questions are coupled: different scoring functions affect the ease of search-

ing, and different search spaces affect what scoring functions can be easily used. Scoring

and searching become even more intertwined with a data-driven discriminative approach,

in which the scoring function is not given a priori, but is learned from data by repeatedly

parsing sentences from the training set, comparing the tree the search procedure found to

the gold-standard tree, and then updating the scoring function accordingly.

There are exponentially many dependency trees for a sentence, making it intractable

to find the best tree in the presence of arbitrary features that scope over the entire tree.

Therefore, one common approach that allows efficient searching is to assume the score of

a tree decomposes into the sum of scores of local parts (such as edges or constant-sized

local sets of edges). This thesis and a large portion of related work characterize the parsing

problem according to the following framework of structured linear models:

y∗ = argmaxy∈Y
∑

p∈P (y)

w · φ(p, x) (1.1)

where the input x is a sequence of words, each y is a valid dependency tree over the words

in x, Y defines the set of all possible dependency tree structures, P (y) defines the set of

parts that a given y can be decomposed into, each p is one such part (for example, an edge
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of the tree), φ(p, x) defines a feature vector over a local part p and the input sentence x1,

and w is a weight vector. Related work and our own work here can be characterized by the

choices they make for each of these variables.

A parsing algorithm computes the argmax tree under such a model. Various combi-

natorial algorithms are used to efficiently find the maximum scoring tree y∗ within various

choices of the search space Y .

We focus on two design decisions here: (i) the choice of the factorization function

P (Section 1.2), (ii) the choice of the search space Y (Section 1.3), how these choices

can complement each other (Section 1.4) and the implications of these choices for the

tractability of the parsing problem and the accuracy of a trained dependency parser.

1.2 Scoring

Scoring a tree requires a factorization function P that defines a set of local tree parts, and a

score for each of these parts, based on a feature function φ and weight vector w.

1.2.1 Factorizations

Factorizations that have been used in dependency parsing include decompositions of trees

into sets of: edges (McDonald, Crammer, and Pereira, 2005a), pairs of edges representing

siblings (McDonald and Pereira, 2006), pairs of edges representing siblings and pairs of

edges representing outermost grandchildren (Carreras, 2007), and triples of edges repre-

senting a grandparent, a parent, and two siblings (Koo and Collins, 2010).

Figures 1.2 and 1.3 show two examples of prepositional phrase attachment (the phrases

with scissors and with stripes), which correctly attach to the verb cut and the noun scarf,

respectively. For each factorization mentioned above, we consider which parts appear in

nominal versus verbal attachments in the two examples.

1Assuming a discriminatively trained model in which the features can freely condition globally over the

input, but are locally constrained over the output.
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* She cut the scarf with scissors

Figure 1.2: The prepositional phrase attaches to the verb.

* She cut the scarf with stripes

Figure 1.3: The prepositional phrase attaches to the noun.

One possibility is that P decomposes any tree y into independent edges. In that case,

the set of parts relevant to identifying the parent of with would be identical in the two

sentences: in both cases we would have one potential part Edge(cut ,with) and one com-

peting potential part Edge(scarf ,with). These parts appear as options in both sentences

and therefore the parts alone do not distinguish between the two cases.

Another possibility is that P corresponds to a sibling factorization. In this case, the

verbal attachment uses the part Sib(cut ,with, scarf ) (indicating scarf is the adjacent in-

ner sibling to with and that both modify cut), while the noun attachment uses the part

Sib(scarf ,with,NULL) (indicating with is the innermost modifier to scarf ). Again, both

of these parts would appear as options for both of the sentences.

Under a grandparent factorization, the set of parts relevant to attaching with in the two

sentences finally differ. In Figure 1.2, the two potential parts are Grand(cut ,with, scissors)

versus Grand(scarf ,with, scissors), while in Figure 1.3, two relevant potential parts are

Grand(cut ,with, stripes) and Grand(scarf ,with, stripes). If we have features capable

of capturing this distinction, we should be able to learn an appropriate weight vector so

that Score(Grand(cut ,with, scissors)) > Score(Grand(scarf ,with, scissors)), and con-

versely, Score(Grand(scarf ,with, stripes)) > Score(Grand(cut ,with, stripes)).

The above example motivated why we might want a factorization that includes grand-

parent substructures to improve preposition accuracy. Conjunctions have been represented
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in a variety of ways in different dependency treebanks. Two possible representations are

in Figure 1.4. In Figure 1.4a, only factorizations which include sibling features would

ever have the conjunction and both conjuncts in the same scope; in Figure 1.4b, only fac-

torizations which include grandparent features would ever have the conjunction and both

conjuncts in the same scope. Chapter 2 will further investigate this relationship between

treebank representations of conjunctions and the accuracy of dependency parsers using

various factorizations.

dogs and cats

(a) One conjunct is the sibling of the

conjunction

dogs and cats

(b) One conjunct is the grandparent of

the other conjunct

Figure 1.4: Conjunction representations

1.2.2 Features

Besides a factorization that scopes over the relevant substructures, one also needs appro-

priate features. Common features for dependency parsers include the words and part-of-

speech tags of the parent, child, and their surrounding words (McDonald et al., 2005a).

Learning to prefer Grand(cut ,with, scissors) over Grand(scarf ,with, scissors), and also

Grand(scarf ,with, stripes) over Grand(cut ,with, stripes) requires features capable of

capturing the relevant differences. The words stripes and scissors have the same part-of-

speech, so features based on part-of-speech tags should not differentiate between these two

cases. The words themselves are different, however features based on the words themselves

are unlikely to have appeared many times in the training set; generally, lexical statistics

based on the training set only are typically sparse and have only a small effect on overall

parsing performance (Gildea, 2001).

Features derived from unlabeled data, such as clusters (Koo, Carreras, and Collins,
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2008) and web counts (Bansal and Klein, 2011) may help, but might not be fully effective

if a) the phenomenon are represented inconsistently in the data, or b) none of the features

scope over the relevant words involved.

1.2.3 Parsing with Unlabeled Data and Relevant Factorizations

In Chapter 2, we show the practicality of considering the compatibility between data repre-

sentations and factorizations by modifying the parsing system of Koo and Collins (2010) to

incorporate features from web-scale association statistics, and perform experiments show-

ing the accuracies overall and on prepositions and conjunctions in particular for each type

of factorization and each type of data representation. Table 1.1 shows how the accuracy

of attaching conjunctions varies widely under different combinations of factorizations and

data representations. This work achieves a new state-of-the-art for English dependencies

with 93.55% correct attachments on the current standard. Furthermore, conjunctions are

attached with an accuracy of 90.8% and prepositions with an accuracy of 87.4%. This

chapter contains material previously published in Pitler (2012).

Conjunction Accuracy

Conversion 1 Conversion 2

Scoring (deprecated)

Edge 86.3 85.3

Sib 87.8 85.5

Grand 87.2 90.6

GrandSib 88.3 90.8

Table 1.1: Unlabeled attachment accuracy for conjunctions under different factorizations and de-

pendency representations.

7



1.3 Searching

Dependency parsers vary in what space of possible tree structures they search over when

parsing a sentence. Existing options include projective trees, all arborescences, or existing

definitions of mildly non-projective trees.

1.3.1 Projective Trees

Many high-accuracy dependency parsers today (Koo and Collins, 2010; Rush and Petrov,

2012; Zhang and McDonald, 2012) search only over trees without crossing edges (projec-

tive trees). In a projective tree, each subtree (i.e., each word and its descendants) form a

consecutive sequence in the input sentence. Figure 1.5 shows an example of an English

sentence that is not projective: note that the subtree rooted at scarf does not form a single

interval in the sentence, and that the edges (scarf,with) and (cut,yesterday) cross when both

are drawn above the sentence.

* She cut the scarf yesterday with stripes

Figure 1.5: A dependency tree with crossing edges

Finding the optimal tree in the set of projective trees can be done efficiently (Eisner,

2000), even when the score of a tree depends on higher order factors (McDonald and

Pereira, 2006; Carreras, 2007; Koo and Collins, 2010). However, the projectivity assump-

tion excludes many natural language dependency trees, especially in languages with freer

word orders; for example, only 63.6% of Dutch sentences from the CoNLL-X training set

are projective (Table 1.2).

2Coverage is the range of empirical coverage of sentences in the training sets of CoNLL-X for Arabic,

Czech, Danish, Dutch, Portuguese, and Swedish; Parsing is the asymptotic parsing time for an edge-factored

model; Extensible indicates whether it is tractable to extend the model to grandparent and/or sibling factors.
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Set of Trees Coverage Parsing Extensible

Projective 63.6-90.2% O(n3) Yes

Arborescences 100% O(n2) No

Well-nested and block degree 2 95.4-99.9% O(n7) Yes

Table 1.2: Existing search spaces for dependency parsers2

1.3.2 Arborescences

At the other end of the spectrum, some parsers search over all arborescences (directed

spanning trees), a class of structures much larger than the set of plausible linguistic struc-

tures. McDonald et al. (2005b) proposed casting the dependency parsing problem as that

of finding the maximum scoring directed spanning tree, which can be found in O(n2) time

(Tarjan, 1977) with a variant of the Chu-Liu-Edmonds (Chu and Liu, 1965; Edmonds,

1967) algorithm when scores are over edges only.

Unfortunately, finding the maximum scoring arborescence is NP-hard with features

over siblings (McDonald and Pereira, 2006) or with features over grandparents (McDonald

and Satta, 2007). After learning, some parsers are able to find the optimal arborescence, at

least in the majority of cases (Riedel and Clarke, 2006; Martins, Smith, and Xing, 2009;

Koo, Rush, Collins, Jaakkola, and Sontag, 2010). However, many discriminative machine

learning methods for structured prediction, such as structured perceptron (Collins, 2002),

structural SVMs (Tsochantaridis, Joachims, Hofmann, and Altun, 2006), or max-margin

Markov networks (Taskar, Guestrin, and Koller, 2003) rely on an inference step during

learning, and no MST parser with features over grandparents and/or siblings has used ex-

act inference during learning. Kulesza and Pereira (2007) and Finley and Joachims (2008)

show theoretical and empirical results on the effects of approximate inference during learn-

ing.
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1.3.3 Existing Definitions of Mildly Non-projective Trees

A third alternative is to consider existing definitions of mildly non-projective trees that are

strictly larger than the set of projective trees and strictly smaller than the set of all arbores-

cences. See Kuhlmann and Nivre (2006) for a nice overview of various constraints that

have been proposed and their respective coverages of natural language treebank structures.

However, few of these existing definitions have corresponding exact parsing algorithms;

moreover, the known parsing algorithms are orders of magnitude slower than algorithms

for parsing projective trees.

For example, one definition of mildly non-projective trees is the set of well-nested

dependency trees for which the words in each subtree form at most two maximal intervals

(i.e., block degree 2/gap degree 1) (Kuhlmann, 2013). This definition also has a connection

to a type of mildly context-sensitive grammar: all Lexicalized Tree Adjoining Grammar

(LTAG) (Joshi and Schabes, 1997) derivation trees are well-nested and have gap degree at

most one (Bodirsky, Kuhlmann, and Möhl, 2005). This set of trees is extensible and has

higher coverage of treebank structures than projective trees do (95-4%-99.9%, Table 1.2),

but its parsing algorithm takes O(n7) time (Gómez-Rodrı́guez, Carroll, and Weir, 2011),

which is prohibitive for practical purposes.

1.3.4 Classes of Trees Proposed in this Thesis

Each of the classes of trees discussed so far has had different tradeoffs between coverage,

parsing time, and extensibility:

• Projective trees have fast parsing and extensibility, but low coverage

• Arborescences have high coverage and fast parsing, but are not extensible

• Well-nested and block degree 2 trees have high coverage and extensibility, but slow

parsing time.

Are there other well-defined classes of trees that allow rich models, cover a large pro-

portion of naturally occurring treebank structures, and can be parsed efficiently? Such
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Set of Trees Coverage Parsing Extensible

Projective 63.6-90.2% O(n3) Yes

Arborescences 100% O(n2) No

Well-nested and block degree 2 95.4-99.9% O(n7) Yes

and Inherit-1 (Chapter 3) 95.4-99.9% O(n6) Yes

and Inherit-0 (Chapter 3) 90.4-97.7% O(n5) Yes

1-Endpoint-Crossing (Chapter 4) 95.8-99.8% O(n4) Yes

Table 1.3: Classes of trees and parsing algorithms proposed in this thesis, compared with existing

tree classes.

classes and parsing algorithms would increase the applicability of parsers to non-English

languages. This thesis defines such tree classes, summarized in Table 1.3.

In Chapter 3, we introduce gap inheritance: a child node inherits a gap of its parent if

the child has descendants in more than one of its parent’s intervals of descendants. A corpus

analysis shows that none of the examples of well-nested trees with block degree at most

two contain more than one gap inheriting child per node. Adding this 1-Inherit restriction

to the class of well-nested and block degree at most two trees therefore causes no drop in

coverage, yet the optimal scoring tree can be found in O(n6). We also show that 0-Inherit

trees (in which no node has any gap-inheriting child) cover 90.4% or more of treebank

structures and can be parsed with an O(n5) algorithm. This chapter contains material

published in Pitler, Kannan, and Marcus (2012). This chapter also includes a previously

unpublished result showing how the 0-Inherit property allows an extension to an arbitrary

number of gaps without any increase in the complexity of the parsing algorithm.

Chapter 4 proposes 1-Endpoint-Crossing trees: trees in which whenever an edge is

crossed, the edges that cross it all have a common vertex. While simple to state, this class

of trees has both better coverage and faster parsing. We prove that any such 1-Endpoint-

Crossing tree can be decomposed into sets of intervals with one exterior point. This insight

allows efficient parsing and we present an O(n4) dynamic programming parsing algorithm
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that recursively combines forests over intervals with one exterior point that finds the opti-

mal 1-Endpoint-Crossing tree. We situate the 1-Endpoint-Crossing tree class in relation to

other graph theoretic descriptions, proving that 1-Endpoint-Crossing trees are a subclass of

2-page graphs (Bernhart and Kainen, 1979), or alternatively, 2-planar graphs as have been

described in the transition-based parsing literature (Gómez-Rodrı́guez and Nivre, 2010).

In contrast, we show that 1-Endpoint-Crossing and 2-planarity are orthogonal to other es-

tablished properties such as gap degree and well-nestedness. The work in this chapter

appeared in Pitler, Kannan, and Marcus (2013).

1.4 Factorizations that Facilitate Search

Factorizations developed for projective dependency parsing include independence assump-

tions that allow more efficient search over the set of projective trees. For example, the pars-

ing algorithm of Eisner (2000) derives efficiency from assuming that left and right mod-

ifiers of a head word are independent of each other and so can be parsed independently.

The sibling factorization of McDonald and Pereira (2006) continues this assumption by

only conditioning on siblings on the same side of the parent. Higher order models such

as the parser of Carreras (2007) and the tri-sibling (Model 2) parser of Koo and Collins

(2010) have avoided increases in the asymptotic parsing time of their algorithms by defin-

ing grandparent features for only the outermost children of a parent.

In a similar spirit, we define a grandparent-sibling factorization tailored to allow ef-

ficient search over 1-Endpoint-Crossing trees (a superset of projective trees). Chapter

5 proposes a crossing-sensitive third-order factorization. The decomposition of the tree

depends on the pattern of crossing edges, using full grandparent and sibling parts in the

locally projective portions of the tree and less surrounding context in the presence of

crossings. When applied to a projective tree, the crossing-sensitive factorization simpli-

fies exactly to the grand-sibling factorization of Koo and Collins (2010). We show an

algorithm that finds the optimal 1-Endpoint-Crossing tree under this model in O(n4) time,

matching the time of both the third-order projective parser (Koo and Collins, 2010) and
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that of the edge-factored 1-Endpoint-Crossing parser (Chapter 4). In experiments with

a variety of languages and treebank representations, the implemented crossing-sensitive

third-order 1-Endpoint-Crossing parser is significantly more accurate than the projective

third-order parser in nine out of the sixteen set-ups and significantly less accurate on none.

When evaluated on normalized treebanks (Zeman, Mareček, Popel, Ramasamy, Štěpánek,

Žabokrtský, and Hajič, 2012) with Stanford-style conjunction representations (De Marneffe

and Manning, 2008), the 1-Endpoint-Crossing parser has an unlabeled attachment accuracy

0.38-3.51% higher than the third-order projective parser (Table 1.4).

Model Dutch Czech Portuguese Danish Swedish

Proj GSib 81.16 86.83 88.80 88.84 87.27

1-EC CS-GSib 84.67 88.34 90.20 89.22 88.15

Table 1.4: Overall Unlabeled Attachment Scores (UAS) for all words. Proj GSib is a third or-

der projective parser (Koo and Collins, 2010); 1-EC CS-GSib is a crossing-sensitive third-order

1-Endpoint-Crossing parser (Chapter 5). Data sources: CoNLL-2006 shared task (Buchholz and

Marsi, 2006) (Danish, Dutch, Portuguese, Swedish); CoNLL-2007 shared task (Nivre et al., 2007a)

(Czech), normalized and then transformed to use the Stanford-style conjunction representation us-

ing HamleDT (Zeman et al., 2012). Bold indicates the more accurate model and models not sig-

nificantly different from the most accurate (sign test, p < .05). Languages are sorted in increasing

order of projectivity (Table A.1). For more details see Table 5.5 in Chapter 5.

1.5 Thesis Contributions

This thesis shows that non-projective dependency parsing is tractable even in the presence

of higher order factors under new formulations that cover 90% or more of the structures

found in dependency treebanks. We provide new definitions of classes of trees and algo-

rithms for efficient optimal search within these classes. We also show the effect of the

compatibility between the scope of features in the parsing model and the representations
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of difficult constructions in treebanks on the accuracy of trained parsers. In particular, this

thesis contributes:

• An overview of the differences in representations between two different constituency-

to-dependency conversion procedures (Section 2.2)

• An empirical demonstration of the effect of varying model factorizations on the ac-

curacy of overall parsing, conjunctions, and prepositions (Section 2.6)

• A demonstration that unlabeled data features lead to a statistically significant im-

provement over the prior state-of-the-art in unlabeled attachment accuracy (Section

2.6)

• A definition of gap inheritance, and a demonstration that 1-Inheritance reduces com-

plexity by a factor of n without any loss in empirical coverage over prior work (Sec-

tions 3.3-3.4)

• Exact O(n5) algorithms for finding the maximum well-nested, 0-inherit tree either

with gap degree 1 or with unbounded gap degree (Sections 3.5 and 3.8))

• A definition of 1-Endpoint-Crossing, a property over graphs with linearly ordered

vertices novel to both linguistics and to graph theory (Sections 4.2 and 4.6)

• An O(n4) exact parsing algorithm for finding the optimal 1-Endpoint-Crossing tree

under an edge-factored model (Section 4.4)

• A proof that 1-Endpoint-Crossing trees are a subclass of 2-planar graphs (Section

4.6)

• Examples that prove these are two distinct hierarchies capturing different dimensions

of non-projectivity: 1-Endpoint-Crossing 6⊆ well-nested with block degree 2 and gap-

minding 6⊆ 2-planar (Figure 4.1)

• A novel crossing-sensitive grandparent-sibling factorization that generalizes the third-

order projective case (Section 5.3)
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• A parsing algorithm that finds the optimal 1-Endpoint-Crossing tree according to this

crossing-sensitive grandparent-sibling factorization in O(n4) time (Section 5.4)

• An empirical demonstration that the third-order 1-Endpoint-Crossing parser is more

accurate than the third-order projective parser on several different languages and tree-

bank representations (Section 5.5)
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Chapter 2

Attacking Parsing Bottlenecks with

Unlabeled Data and Relevant

Factorizations

Much of this chapter was originally published in Pitler (2012).

2.1 Introduction

Prepositions and conjunctions are two large remaining bottlenecks in parsing. Across var-

ious existing parsers, these two categories have the lowest accuracies, and mistakes made

on these have consequences for downstream applications. Machine translation is sensi-

tive to parsing errors involving prepositions and conjunctions, because in some languages

different attachment decisions in the parse of the source language sentence produce dif-

ferent translations. Preposition attachment mistakes are particularly bad when translating

into Japanese (Schwartz, Aikawa, and Quirk, 2003) which uses a different postposition

for different attachments; conjunction mistakes can cause word ordering mistakes when

translating into Chinese (Huang, 1983).

Prepositions and conjunctions are often assumed to depend on lexical dependencies for
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correct resolution (Jurafsky and Martin, 2008). However, lexical statistics based on the

training set only are typically sparse and have only a small effect on overall parsing perfor-

mance (Gildea, 2001). Unlabeled data can help ameliorate this sparsity problem. Backing

off to cluster membership features (Koo et al., 2008) or by using association statistics from

a larger corpus, such as the web (Bansal and Klein, 2011; Zhou, Zhao, Liu, and Cai, 2011),

have both improved parsing.

Unlabeled data has been shown to improve the accuracy of conjunctions within complex

noun phrases (Pitler, Bergsma, Lin, and Church, 2010; Bergsma et al., 2011). However, it

has so far been less effective within full parsing — while first-order web-scale counts no-

ticeably improved overall parsing in Bansal and Klein (2011), the accuracy on conjunctions

actually decreased when the web-scale features were added (Table 4 in that paper).

In this paper we show that unlabeled data can help prepositions and conjunctions, pro-

vided that the dependency representation is compatible with how the parsing problem is

decomposed for learning and inference. By incorporating unlabeled data into factoriza-

tions which capture the relevant dependencies for prepositions and conjunctions, we pro-

duce a parser for English which has an unlabeled attachment accuracy of 93.5%, over an

18% reduction in error over the best previously published parser (Bansal and Klein, 2011)

on the current standard for dependency parsing. The best model for conjunctions attaches

them with 90.8% accuracy (42.5% reduction in error over MSTParser), and the best model

for prepositions with 87.4% accuracy (18.2% reduction in error over MSTParser).

We describe the dependency representations of prepositions and conjunctions in Section

2.2. We discuss the implications of these representations for how learning and inference

for parsing are decomposed (Section 2.3) and how unlabeled data may be used (Section

2.4). We then present experiments exploring the connection between representation, fac-

torization, and unlabeled data in Sections 2.5 and 2.6.
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2.2 Conversion to Dependency Representations

The Wall Street Journal Penn Treebank (PTB) (Marcus, Marcinkiewicz, and Santorini,

1993) contains parsed constituency trees (where each sentence is represented as a context-

free-grammar derivation). Dependency parsing requires a conversion from these con-

stituency trees to dependency trees. The Treebank constituency trees left noun phrases

(NPs) flat, although there have been subsequent projects which annotate the internal struc-

ture of noun phrases (Vadas and Curran, 2007; Weischedel, Palmer, Marcus, Hovy, Prad-

han, Ramshaw, Xue, Taylor, Kaufman, Franchini, et al., 2011). The presence or absence of

these noun phrase internal annotations interacts with constituency-to-dependency conver-

sion program in ways which have effects on conjunctions and prepositions.

We consider two such mapping regimes here:

1. PTB trees→ Penn2Malt1→ Dependencies

2. PTB trees patched with NP-internal annotations (Vadas and Curran, 2007) → pen-

nconverter2 → Dependencies

Regime (1) is very commonly done in papers which report dependency parsing experi-

ments (e.g., McDonald and Pereira (2006); Nivre, Hall, Nilsson, Chanev, Eryigit, Kübler,

Marinov, and Marsi (2007b); Zhang and Clark (2008); Huang and Sagae (2010); Koo and

Collins (2010)). Penn2Malt uses the head finding table from Yamada and Matsumoto

(2003).

Regime (2) is based on the recommendations of the two converter tools; as of the date

of this writing, the Penn2Malt website says: “Penn2Malt has been superseded by the more

sophisticated pennconverter, which we strongly recommend”. The pennconverter website

“strongly recommends” patching the Treebank with the NP annotations of Vadas and Cur-

ran (2007). A version of pennconverter was used to prepare the data for the CoNLL Shared

1http://w3.msi.vxu.se/∼nivre/research/Penn2Malt.html
2Johansson and Nugues (2007) http://nlp.cs.lth.se/software/treebank converter/

18

http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html
http://nlp.cs.lth.se/software/treebank_converter/


Tasks of 2007-2009, so the trees produced by Regime 2 are similar (but not identical)3 to

these shared tasks. As far as we are aware, Bansal and Klein (2011) is the only published

work which uses both steps in Regime (2).

The dependency representations produced by Regime 2 are designed to be more useful

for extracting semantics (Johansson and Nugues, 2007). The parsing attachment accuracy

of MALTPARSER (Nivre et al., 2007b) was lower using pennconverter than Penn2Malt,

but using the output of MALTPARSER under the new format parses produces a much better

semantic role labeler than using its output with Penn2Malt (Johansson and Nugues, 2007).

Figures 2.1 and 2.2 show how conjunctions and prepositions, respectively, are repre-

sented after the two different conversion processes. These differences are not rare–70.7%

of conjunctions and 5.2% of prepositions in the development set have a different parent un-

der the two conversion types. These representational differences have serious implications

for how well various factorizations will be able to capture these two phenomena.

3The CoNLL data does not include the NP annotations; it does include annotations of named entities

(Weischedel and Brunstein, 2005) so had some internal NP edges.
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Conversion 1 Conversion 2

Committee

the House
Ways

and Means

(a)

Committee

the House
Ways

and

Means

(b)

debt

notes and other

(c)

notes

and

debt

other

(d)

sell

or merge 600 by

(e)

sell

or

merge

600 by

(f)

Figure 2.1: Examples of conjunctions: the House Ways and Means Committee, notes and other

debt, and sell or merge 600 by. The conjunction is bolded, the left conjunct (in the linear order of

the sentence) is underlined, and the right conjunct is italicized.
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Conversion 1 Conversion 2

plan

in

law

(a)

plan

in

law

(b)

yesterday

opening of

trading

here

(c)

opening

of

trading

here yesterday

(d)

whose

plans
for

issues

(e)

plans

whose
for

issues

(f)

Figure 2.2: Examples of prepositions: plan in the S&L bailout law, opening of trading here yester-

day, and whose plans for major rights issues. The preposition is bolded and the (semantic) head is

underlined.
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2.3 Implications of Representations on the Scope of Fac-

torization

Parsing requires a) learning to score potential parse trees, and b) given a particular scor-

ing function, finding the highest scoring tree according to that function. The number of

potential trees for a sentence is exponential, so parsing is made tractable by decompos-

ing the problem into a set of local substructures which can be combined using dynamic

programming. Four possible factorizations are: single edges (edge-based), pairs of edges

which share a parent (siblings), pairs of edges where the child of one is the parent of the

other (grandparents), and triples of edges where the child of one is the parent of two others

(grandparent+sibling). In this section, we discuss these factorizations and their relevance

to conjunction and preposition representations.

2.3.1 Edge-based Scoring

One possible factorization corresponds to first-order parsing, in which the score of a parse

tree y decomposes completely across the edges in the tree:

Score(y) =
∑

(h,m)∈y

Score(Edge(h,m)) (2.1)

Conjunctions: Under Conversion 1, we can see three different representations of conjunc-

tions in Figures 2.1a, 2.1c, and 2.1e. Under edge-based scoring, the conjunction would be

scored along with neither of its conjuncts in 2.1a. In Figure 2.1c, the conjunction is scored

along with its right conjunct only; in figure 2.1e along with its left conjunct only. The in-

consistency here is likely to make learning more difficult, as what is learned is split across

these three cases. Furthermore, the conjunction is connected with an edge to either zero or

one of its two arguments; at least one of the arguments is completely ignored in terms of

scoring the conjunction.

In Figures 2.1c and 2.1e, the words being conjoined are connected to each other by

an edge. This overloads the meaning of an edge; an edge indicates both a head-modifier
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relationship and a conjunction relationship. For example, compare the two natural phrases

dogs and cats and really nice. dogs and cats are a good pair to conjoin, but cats is not a good

modifier for dogs, so there is a tension when scoring an edge like (dogs, cats): it should

get a high score when actually indicating a conjunction and low otherwise. (nice, really)

shows the opposite pattern–really is a good modifier for nice, but nice and really are not

two words which should be conjoined. This may be partially compensated for by including

features about the surrounding words (McDonald et al., 2005a), but any feature templates

which would be identical across the two contexts will be in tension.

In Figures 2.1b, 2.1d and 2.1f, the conjunction participates in a directed edge with each

of the conjuncts. Thus, in edge-based scoring, at least under Conversion 2 neither of the

conjuncts is being ignored; however, the factorization scores each edge independently, so

how compatible these two conjuncts are with each other cannot be included in the scoring

of a tree.

Prepositions: For all of the examples in Figure 2.2, there is a directed edge from the head

of the phrase that the preposition modifies to the preposition. Differences in head finding

rules account for the differences in preposition representations. In the second example, the

first conversion scheme chooses yesterday as the head of the overall NP, resulting in the

edge yesterday→ of, while the second conversion scheme ignores temporal phrases when

finding the head, resulting in the more semantically meaningful opening→of. Similarly, in

the third example, the preposition for attaches to the pronoun whose in the first conversion

scheme, while it attaches to the noun plans in the second.

With edge-based scoring, the object is not accessible when scoring where the preposi-

tion should attach, and PP-attachment is known to depend on the object of the preposition

(Hindle and Rooth, 1993).
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2.3.2 Sibling Scoring

Another alternative factorization is to score siblings as well as parent-child edges (McDon-

ald and Pereira, 2006). Scores decompose as:

Score(y) =
∑


(h,m, s) (h,m) ∈ y, (h, s) ∈ y,

(s,m) ∈ Siblings(y)



Score(Sib(h,m, s)) (2.2)

where Siblings(y) is the set containing ordered and adjacent sibling pairs in y: if (s,m) ∈

Siblings(y), there must exist a shared parent h such that (h,m) ∈ y and (h, s) ∈ y, m and

s must be on the same side of h, s must be closer to h than m in the linear order of the

sentence, and there must not exist any other children of h in between m and s.

Under this factorization, two of the three examples in Conversion 1 (and none of

the examples in Conversion 2) in Figure 2.1 now include the conjunction and both con-

juncts in the same score (Figures 2.1c and 2.1e). The scoring for head-modifier depen-

dencies and conjunction dependencies are again being overloaded: (debt, notes, and) and

(debt, and, other) are both sibling parts in Figure 2.1c, yet only one of them represents

a conjunction. The position of the conjunction in the sibling is not enough to determine

whether one is scoring a true conjunction relation or just the conjunction and a different

sibling; in 2.1c the conjunction is on the right of its sibling argument, while in 2.1e the

conjunction is on the left.

For none of the other preposition or conjunction examples does a sibling factoriza-

tion bring more of the arguments into the scope of what is scored along with the preposi-

tion/conjunction. Sibling scoring may have some benefit in that prepositions/conjunctions

should have only one argument, so for prepositions (under both conversions) and conjunc-

tions (under Conversion 2), the model can learn to disprefer the existence of any siblings

and thus enforce choosing a single child.
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2.3.3 Grandparent Scoring

Another alternative over pairs of edges scores grandparents instead of siblings, with factor-

ization:

Score(y) =
∑

{
(h,m, c) (h,m) ∈ y, (m, c) ∈ y

}Score(Grand(h,m, c)) (2.3)

Under Conversion 2, we would expect this factorization to perform much better on con-

junctions and prepositions than edge-based or sibling-based factorizations. Both conjunc-

tions and prepositions are consistently represented by exactly one grandparent relation

(with one relevant argument as the grandparent, the preposition/conjunction as the parent,

and the other argument as the child), so this is the first factorization that has allowed the

compatibility of the two arguments to affect the attachment of the preposition/conjunction.

Under Conversion 1, this factorization is particularly appropriate for prepositions, but

would be unlikely to help conjunctions, which have no children.

2.3.4 Grandparent-Sibling Scoring

A further widening of the factorization takes grandparents and siblings simultaneously:

Score(y) =
∑


(g, h,m, s) (g, h) ∈ y, (h,m) ∈ y,

(h, s) ∈ y, (s,m) ∈ Sib(y)



Score(GrandSib(g, h,m, s)) (2.4)

For projective parsing, dynamic programming for this factorization was derived in Koo and

Collins (2010) (Model 1 in that paper), and for non-projective parsing, dual decomposition

was used for this factorization in Koo et al. (2010).

This factorization should combine all the benefits of the sibling and grandparent fac-

torizations described above–for Conversion 1, sibling scoring may help conjunctions and

grandparent scoring may help prepositions, and for Conversion 2, grandparent scoring

should help both, while sibling scoring may or may not add some additional gains.
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2.4 Using Unlabeled Data Effectively

Associations from unlabeled data have the potential to improve both conjunctions and

prepositions. We predict that web counts which include both conjuncts (for conjunctions),

or which include both the attachment site and the object of a preposition (for prepositions)

will lead to the largest improvements.

For the phrase dogs and cats, edge-based counts would measure the associations be-

tween dogs and and, and and and cats, but never any web counts that include both dogs

and cats. For the phrase ate spaghetti with a fork, edge-based scoring would not use any

web counts involving both ate and fork.

We use associations rather than raw counts. The phrases trading and transacting versus

trading and what provide an example of the difference between associations and counts.

The phrase trading and what has a higher count than the phrase trading and transacting,

but trading and transacting are more highly associated. In this paper, we use point-wise

mutual information (PMI) to measure the strength of associations of words participating in

potential conjunctions or prepositions.4 For three words h, m, c, this is calculated with:

PMI(h,m, c) = log
P (h .* m .* c)
P (h)P (m)P (c)

(2.5)

The probabilities are estimated using web-scale n-gram counts, which are looked up using

the tools and web-scale n-grams described in Lin, Church, Ji, Sekine, Yarowsky, Bergsma,

Patil, Pitler, Lathbury, Rao, Dalwani, and Narsale (2010). Defining the joint probability us-

ing wildcards (rather than the exact sequence h m c) is crucially important, as determiners,

adjectives, and other words may naturally intervene between the words of interest.

Approaches which cluster words (i.e., (Koo et al., 2008)) are also designed to identify

words which are semantically related. As manually labeled parsed data is sparse, this may

help generalize across similar words. However, if edges are not connected to the semantic

head, cluster-based methods may be less effective. For example, the choice of yesterday as

the head of opening of trading here yesterday in Figure 2.2c or whose in 2.2e may make
4PMI can be unreliable when frequency counts are small (Church and Hanks, 1990), however the data

used was thresholded, so all counts used are at least 10.
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cluster-based features less useful than if the semantic heads were chosen (opening and

plans, respectively).

2.5 Experiments

The previous section motivated the use of unlabeled data for attaching prepositions and

conjunctions. We have also hypothesized that these features will be most effective when

the data representation and the learning representation both capture relevant properties

of prepositions and conjunctions. We predict that Conversion 2 and a factorization which

includes grand-parent scoring will achieve the highest performance. In this section, we

investigate the impact of unlabeled data on parsing accuracy using the two conversions and

using each of the factorizations described in Section 2.3.1-2.3.4.

2.5.1 Unlabeled Data Feature Set

Clusters: We replicate the cluster-based features from (Koo et al., 2008), which includes

features over all edges (h,m), grand-parent triples (h,m, c), and parent sibling triples

(h,m, s). The features were all derived from the publicly available clusters produced by

running the Brown clustering algorithm (Brown, Desouza, Mercer, Pietra, and Lai, 1992)

over the BLLIP corpus (Charniak, Blaheta, Ge, Hall, Hale, and Johnson, 2000, about 30

million words of Wall Street Journal text) with the Penn Treebank sentences excluded.5

Preposition and conjunction-inspired features (motivated by Section 2.4) are described

below:

Web Counts: The web counts data (Lin et al., 2010) is derived from 1 trillion tokens of

Web text. The source text is identical to the source text used in the data of the Google N-

gram Corpus (Brants and Franz, 2006), but additional filtering of duplicate sentences and

other noise was done prior to computing the counts (Lin et al., 2010). Search tools6 allow

5people.csail.mit.edu/maestro/papers/bllip-clusters.gz
6https://code.google.com/p/ngramtools/
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look-ups with wildcard queries. For each set of words of interest, we compute the PMI

between the words, and then include binary features for whether the mutual information is

undefined, if it is negative, and whether it is greater than each positive integer.

For conjunctions, we only do this for triples of both conjunct and the conjunction (and

if the conjunction is and or or and the two potential conjuncts are the same coarse grained

part-of-speech). For prepositions, we consider only cases in which the parent is a noun

or a verb and the child is a noun (this corresponds to the cases considered by (Hindle and

Rooth, 1993) and others). Prepositions use association features to score both the triple

(parent, preposition, child) and all pairs within that triple. The counts features are not used

if all the words involved are stopwords. For the scope of this paper we use only the above

counts related to prepositions and conjunctions.

2.5.2 Parser

We use the Model 1 version of dpo3, a state-of-the-art third-order dependency parser (Koo

and Collins, 2010))7. We augment the feature set used with the web-counts-based features

relevant to prepositions and conjunctions and the cluster-based features. The only other

change to the parser’s existing feature set was the addition of binary features for the part-

of-speech tag of the child of the root node, alone and conjoined with the tags of its children.

For further details about the parser, see Koo and Collins (2010).

2.5.3 Experimental Set-up

Training was done on Section 2-21 of the Penn Treebank (39,832 sentences). Section 22

was used for development (1700 sentences), and Section 23 for test (2416 sentences). We

use automatic part-of-speech tags for both training and testing (Ratnaparkhi, 1996). The set

of potential edges was pruned using the marginals produced by a first-order parser trained

using exponentiated gradient descent (Collins, Globerson, Koo, Carreras, and Bartlett,

2008) as in Koo and Collins (2010). We train the full parser for 15 iterations of averaged

7http://groups.csail.mit.edu/nlp/dpo3/
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perceptron training (Collins, 2002), choose the iteration with the best unlabeled attachment

score (UAS) on the development set, and apply the model after that iteration to the test set.

We also ran MSTParser (McDonald and Pereira, 2006), the Berkeley constituency

parser (Petrov and Klein, 2007), and the unmodified dpo3 Model 1 (Koo and Collins, 2010)

using Conversion 2 (the current recommendations) for comparison. Since the converted

Penn Treebank now contains a few non-projective sentences, we ran both the projective

and non-projective versions of the second order (sibling) MSTParser. The Berkeley parser

was trained on the constituency trees of the PTB patched with (Vadas and Curran, 2007),

and then the predicted parses were converted using pennconverter.

Evaluation Metric The main evaluation metric used here is that of unlabeled attachment

score (UAS), defined as the percentage of words that have the correct parent. Each word has

exactly one parent in both the gold tree and the predicted tree, so the unlabeled attachment

score is the number of words for which the parent is correct divided by the total number of

words.

2.6 Results and Discussion

Table 2.1 shows the unlabeled attachment scores, complete sentence exact match accura-

cies, and the accuracies of conjunctions and prepositions under Conversion 2.8 The incor-

poration of the unlabeled data features (clusters and web counts) into the dpo3 parser yields

a significantly better parser than dpo3 alone (93.54 UAS versus 93.21)9, and is more than

a 1.5% improvement over MSTParser.

8As is standard for English dependency parsing, five punctuation symbols :, ,, “, ”, and . are excluded

from the results (Yamada and Matsumoto, 2003).
9If the (deprecated) Conversion 1 is used, the new features improve the UAS of dpo3 from 93.04 to 93.51.
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Model UAS Exact Match Conjunctions Prepositions

MSTParser (proj) 91.96 38.9 84.0 84.2

MSTParser (non-proj) 91.98 38.7 83.8 84.6

Berkeley (converted) 90.98 36.0 85.6 84.3

dpo3 (GrandSib) 93.21 44.8 89.6 86.9

dpo3+Unlabeled (Edge) 93.12 43.6 85.3 87.0

dpo3+Unlabeled (Sib) 93.15 43.7 85.5 86.8

dpo3+Unlabeled (Grand) 93.55 46.1 90.6 87.5

dpo3+Unlabeled (GrandSib) 93.54 46.0 90.8 87.4

- Clusters 93.10 45.0 90.5 87.5

- Prep,Conj Counts 93.52 45.8 89.9 87.1

Table 2.1: Test set accuracies under Conversion 2 of unlabeled attachment scores, complete sentence

exact match accuracies, conjunction accuracy, and preposition accuracy. Bolded items are the best

in each column, or not significantly different from the best in that column (sign test, p < .05).

2.6.1 Impact of Factorization

In all four metrics (attachment of all non-punctuation tokens, sentence accuracy, preposi-

tions, and conjunctions), there is no significant difference between the version of the parser

which uses the grandparent and sibling factorization (GrandSib) and the version which

uses just the grandparent factorization (Grand). A parser which uses only grandparents

(referred to as Model 0 in Koo and Collins (2010)) may therefore be preferable, as it con-

tains far fewer parameters than a third-order parser.

While the grandparent factorization and the sibling factorization (Sib) are both “second-

order” parsers, scoring up to two edges (involving three words) simultaneously, their results

are quite different, with the sibling factorization scoring much worse. This is particularly

notable in the conjunction case, where the sibling model is over 5% absolute worse in accu-

racy than the grandparent model. This relative difference holds regardless of whether one

computes the attachment accuracy of conjunctions or whether one computes the accuracy

of getting all edges involved with the conjunction correct (Table 2.4).
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2.6.2 Impact of Unlabeled Data

The unlabeled data features improved the already state-of-the-art dpo3 parser in UAS, com-

plete sentence accuracy, conjunctions, and prepositions. However, because the sample sizes

are much smaller for the latter three cases, only the UAS improvement is statistically sig-

nificant.10 Overall, the results in Table 2.1 show that while the inclusion of unlabeled data

improves parser performance, increasing the size of factorization matters even more. Ab-

lation experiments showed that cluster features have a larger impact on overall UAS, while

count features have a larger impact on prepositions and conjunctions.

2.6.3 Comparison with Other Parsers

The dpo3+Unlabeled parser is significantly better than both versions of MSTParser and the

Berkeley parser converted to dependencies across all four evaluations. dpo3+Unlabeled

has an UAS 1.5% higher than MSTParser, which has an UAS 1.0% higher than the con-

verted constituency parser. The MSTParser uses sibling scoring, so it is unsurprising that

it performs less well on the new conversion.

While the converted constituency parser is not as good on dependencies as MSTParser

overall, note that it is over a percent and a half better than MSTParser on attaching con-

junctions (85.6% versus 84.0%). Conjunction scope may benefit from parallelism and

higher-level structure, which is easily accessible when joining two matching non-terminals

in a context-free grammar, but much harder to determine in the local views of graph-based

dependency parsers. The dependencies arising from the Berkeley constituency trees have

higher conjunction accuracies than either the edge-based or sibling-based dpo3+Unlabeled

parser. However, once grandparents are included in the factorization, the dpo3+Unlabeled

is significantly better at attaching conjunctions than the constituency parser, attaching con-

junctions with an accuracy over 90%. Therefore, some of the disadvantages of dependency

parsing compared with constituency parsing can be compensated for with larger factoriza-

10There are 49,892 non-punctuation tokens in the test set, compared with 2416 sentences, 1373 conjunc-

tions, and 5854 prepositions.
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tions.

Conjunctions

Conversion 1 Conversion 2

Scoring (deprecated)

Edge 86.3 85.3

Sib 87.8 85.5

Grand 87.2 90.6

GrandSib 88.3 90.8

Table 2.2: Unlabeled attachment accuracy for conjunctions. Bolded items are the best in each

column, or not significantly different (sign test, p < .05).

Prepositions

Conversion 1 Conversion 2

Scoring (deprecated)

Edge 87.4 87.0

Sib 87.5 86.8

Grand 87.9 87.5

GrandSib 88.4 87.4

Table 2.3: Unlabeled attachment accuracy for prepositions. Bolded items are the best in each col-

umn, or not significantly different (sign test, p < .05).

2.6.4 Impact of Data Representation

Tables 2.2 and 2.3 show the results of the dpo3+Unlabeled parser for conjunctions and

prepositions, respectively, under the two different conversions. The data representation

has an impact on which factorizations perform best. Under Conversion 1, conjunctions are

more accurate under a sibling parser than a grandparent parser, while the pattern is reversed

for Conversion 2.
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Scoring Child=CC Parent=CC All Edges Incident to CC

Edge 85.3 90.7 78.9

Sib 85.5 91.1 80.3

Grand 90.6 92.6 85.9

GrandSib 90.8 91.6 85.6

Table 2.4: Different ways of measuring the accoracy of edges involving conjunctions: Child=CC

is the accuracy of edges in which the child is the conjunction; Parent=CC is the accuracy of edges

in which the parent is the conjunction in the gold-standard; the third column is the most strict,

counting a conjunction as correct only if the set of edges incident to it exactly match between the

gold-standard and the predicted tree (not counting excluded punctuation edges).

Conjunctions show a much stronger need for higher order factorizations than preposi-

tions do. This is not too surprising, as prepositions have more of a selectional preference

than conjunctions, and so the preposition itself is more informative about where it should

attach. While prepositions do improve with larger factorizations, the improvement beyond

edge-based is not significant for Conversion 2. One hypothesis for why Conversion 1 shows

more of an improvement is that the wider scope leads to the semantic head being included;

in Conversion 2, the semantic head is chosen as the parent of the preposition, so the wider

scope is less necessary.

2.6.5 Preposition Error Analysis

Prepositions are still the largest source of errors in the dpo3+Unlabeled parser. We there-

fore analyze the errors made on the development set to determine whether the difficult re-

maining cases for parsers correspond to the (Hindle and Rooth, 1993) style PP-attachment

classification task. In the PP-attachment classification task, the two choices for where the

preposition attaches are the previous verb or the previous noun, and the preposition itself

has a noun object. The ones that do attach to the preceeding noun or verb (not necessar-

ily the preceeding word) and have a noun object (2323 prepositions) are attached by the
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dpo3+Unlabeled grandparent-scoring parser with 92.4% accuracy, while those that do not

fit that categorization (1703 prepositions) have the correct parent only 82.7% of the time.

Local attachments are more accurate — prepositions are attached with 94.8% accuracy

if the correct parent is the immediately preceeding word (2364 cases) and only 79.1% accu-

racy if it is not (1662 cases). The preference is not necessarily for low attachments though:

the prepositions whose parent is not the preceeding word are attached more accurately if

the parent is the root word (usually corresponding to the main verb) of the sentence (90.8%,

587 cases) than if the parent is lower in the tree (72.7%, 1075 cases).

2.7 Conclusion

Features derived from unlabeled data (clusters and web counts) significantly improve a

state-of-the-art dependency parser for English. We showed how well various factoriza-

tions are able to take advantage of these unlabeled data features, focusing our analysis on

conjunctions and prepositions. Including grandparents in the factorization increases the

accuracy of conjunctions over 5% absolute over edge-based or sibling-based scoring. The

representation of the data is extremely important for how the problem should be factored–

under the old Penn2Malt dependency representation, a sibling parser was more accurate

than a grandparent parser. As some important relationships were represented as siblings

and some as grandparents, there was a need to develop third-order parsers which could ex-

ploit both simultaneously (Koo and Collins, 2010). Under the new pennconverter standard,

a grandparent parser is significantly better than a sibling parser, and there is no significant

improvement when including both.
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Chapter 3

Dynamic Programming for Higher

Order Parsing of Gap-Minding Trees

Most of this chapter was originally published as Pitler et al. (2012). The extension to an

arbitrary number of gaps is new and is presented in Section 3.8.

3.1 Introduction

We propose two new classes of trees between projective trees and the set of all spanning

trees. These two classes provide a closer approximation to the set of plausible natural

language dependency trees: unlike projective trees, a word can have descendants in more

than one interval; unlike spanning trees, these intervals cannot be nested in arbitrary ways.

We introduce gap inheritance, a new structural property on trees, which provides a way to

quantify the degree to which these intervals can be nested. Different levels of gap inheri-

tance define each of these two classes (Section 3.3).

The 1-Inherit class of trees (Section 3.4) has exactly the same empirical coverage (Table

3.1) of natural language sentences as the class of well-nested block degree 2 trees (Bodirsky

et al., 2005), yet the optimal scoring tree can be found in an order of magnitude less time

(Section 3.4.1).
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Gap-minding trees (the second class) have the property that all edges into an interval

of descendants come from the same node. Non-contiguous intervals are therefore decou-

pled given this single node, and thus an algorithm which uses only single intervals (as in

projective parsing) can produce trees in which a node has descendants in multiple intervals

(as in parsing for well-nested block degree 2 trees (Gómez-Rodrı́guez et al., 2011)). A

procedure for finding the optimal scoring tree in this space is given in Section 3.5, which

can be searched in yet another order of magnitude faster than the 1-Inherit class.

Unlike the class of spanning trees, it is still tractable to find the optimal tree in these

new spaces when higher order factors are included. An extension which finds the optimal

scoring gap-minding tree with scores over pairs of adjacent edges (grandparent scoring) is

given in Section 3.6. These gap-minding algorithms have been implemented in practice

and empirical results are presented in Section 3.7.

3.2 Preliminaries

In this section, we review some relevant definitions from previous work that characterize

degrees of non-projectivity. We also review how well these definitions cover empirical data

from six languages: Arabic, Czech, Danish, Dutch, Portuguese, and Swedish. These are the

six languages whose CoNLL-X shared task data are either available open source1 or from

the LDC2. The CoNLL-X shared task converted parsed data into a standardized format.

The standardized format contains one token per line and tab-separated fields including

the word, part-of-speech tag, parent and other information (see http://ilk.uvt.nl/

conll/example.html for examples). Arabic, Czech, Danish, and Swedish data came

from existing dependency treebanks, while the Dutch and Portuguese data were converted

from phrase structure trees.

Definition 1. The projection of a node is the set of words in the subtree rooted at it (includ-

ing itself).
1http://ilk.uvt.nl/conll/free data.html
2LDC catalogue numbers LDC2006E01 and LDC2006E02
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A tree is projective if, for every node in the tree, that node’s projection forms a contigu-

ous interval in the input sentence order.

A tree is non-projective if the above does not hold, i.e., there exists at least one word

whose descendants do not form a contiguous interval.

Definition 2. For each node u in the tree, a block of the node is “a longest segment con-

sisting of descendants of u.” (Kuhlmann, 2013). The block-degree of u is “the number of

distinct blocks of u”. The block degree of a tree is the maximum block degree of any of its

nodes. The gap degree is the number of gaps between these blocks, and so by definition is

one less than the block degree. (Kuhlmann, 2013)

Note that a projective tree will have block degree 1 (gap degree 0).

Two subtrees interleave if there are vertices l1, r1 from one subtree and l2, r2 from the

other such that l1 < l2 < r1 < r2.

Definition 3. A tree is well-nested if no two disjoint subtrees interleave (Bodirsky et al.,

2005).

Arabic Czech Danish Dutch Portuguese Swedish Parsing

Well-nested
1458 (99.9) 72321 (99.5) 5175 (99.7) 12896 (96.6) 8650 (95.4) 10955 (99.2) O(n7)

+block degree 2

+1-Inherit 1458 (99.9) 72321 (99.5) 5175 (99.7) 12896 (96.6) 8650 (95.4) 10955 (99.2) O(n6)

+0-Inherit 1394 (95.5) 70695 (97.2) 4985 (96.1) 12068 (90.4) 8481 (93.5) 10787 (97.7) O(n5)

Projective 1297 (88.8) 55872 (76.8) 4379 (84.4) 8484 (63.6) 7353 (81.1) 9963 (90.2) O(n3)

# Sentences 1460 72703 5190 13349 9071 11042

Table 3.1: The number of sentences from the CoNLL-X training sets whose parse trees fall into each

of the above classes. The two new classes of structures have more coverage of empirical data than

projective structures, yet can be parsed faster than well-nested block degree 2 structures. Parsing

times assume an edge-based factorization with no pruning of edges. The corresponding algorithms

for the 1-Inherit and 0-Inherit classes are in Sections 3.4 and 3.5.

Well-nested trees that have block degree at most 2 (gap degree at most 1) are of both

theoretical and practical interest, as they correspond to derivations in Lexicalized Tree Ad-
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joining Grammar (Bodirsky et al., 2005) and cover the overwhelming majority of sentences

found in treebanks for Czech and Danish (Kuhlmann and Nivre, 2006).

Table 3.1 shows the proportion of well-nested and block degree 2 sentences for Ara-

bic, Czech, Danish, Dutch, Portuguese, and Swedish, ranging from 95.4% of Portuguese

sentences to 99.9% of Arabic sentences.3 This definition covers a substantially larger set

of sentences than projectivity does — an assumption of projectivity covers only 63.6%

(Dutch) to 90.2% (Swedish) of examples (Table 3.1).

3.3 Gap Inheritance

Empirically, natural language sentences seem to be mostly well-nested block degree 2 trees,

but well-nested block degree 2 trees are quite expensive to parse (O(n7) (Gómez-Rodrı́guez

et al., 2011)). The parsing complexity comes from the fact that the definition allows two

non-contiguous intervals of a projection to be tightly coupled, with an unbounded number

of edges passing back and forth between the two intervals; however, this type of structure

seems unusual for natural language. We therefore investigate if we can define further struc-

tural properties that are both appropriate for describing natural language trees and which

admit more efficient parsing algorithms.

Let us first consider an example of a tree which both has gap degree at most one and

satisfies well-nestedness, yet appears to be an unrealistic structure for a natural language

syntactic tree. Consider a tree which is rooted at node xn+2, which has one child, node

xn+1, whose projection is [x1, xn+1] ∪ [xn+3, x2n+2], with n children (x1, ..., xn), and each

child xi has a child at x2n−i+3. This tree is well-nested, has gap degree 1, but all n of xn+1’s

children have edges into the other projection interval.

We introduce a further structural restriction in this section, and show that trees satisfy-

ing our new property can be parsed more efficiently with no drop in empirical coverage.

3While some of the treebank structures are ill-nested or have a larger gap degree because of annotation

decisions, some linguistic constructions in German and Czech are ill-nested or require at least two gaps under

any reasonable representation (Chen-Main and Joshi, 2010, 2012).
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Definition 4. A child is gap inheriting if its parent has gap degree 1 and it has descendants

on both sides of its parent’s gap. The inheritance degree of a node is the number of its

children which inherit its gap. The inheritance degree of a tree is the maximum inheritance

degree over all its nodes.

Figure 3.1 gives examples of trees with varying degrees of gap inheritance. Each projec-

tion of a node with a gap is shown with two matching rectangles. If a child has a projection

rectangle nested inside each of the parent’s projection rectangles, then that child inherits the

parent’s gap. Figure 3.1a shows a well-nested, block degree 2 tree (with inheritance degree

2), with both node 2 and node 11 inheriting their parent (node 3)’s gap (note that both the

dashed and dotted rectangles each show up inside both of the solid rectangles). Figure 3.1b

shows a tree with inheritance degree 1: there is now only one pair of rectangles (the dotted

ones) which show up in both of the solid ones. Figure 3.1c shows a tree with inheritance

degree 0: while there are gaps, each set of matching rectangles is contained within a single

rectangle (projection interval) of its parent, i.e., the two dashed rectangles of node 2’s pro-

jection are contained within the left interval of node 3; the two dotted rectangles of node

12’s projection are contained within the right interval of node 3, etc.

We now ask:

1. How often does gap inheritance occur in the parses of natural language sentences

found in treebanks?

2. Furthermore, how often are there multiple gap inheriting children of the same node

(inheritance degree at least two)?

Table 3.1 shows what proportion of well-nested and block degree 2 trees have the added

property of gap inheritance degree 0 or have gap inheritance degree 1. Over all six lan-

guages, there are no examples of multiple gap inheritance — trees with the 1 inheritance

restriction have exactly the same empirical coverage as the unrestricted set of well-nested

block degree 2 trees.
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(a) Well-nested and Block Degree 2: The projections of both node 2 (the dashed red

rectangles) and node 11 (dotted magenta) appear in both of node 3’s intervals (the solid

blue rectangles).
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(b) +1-Inherit: Only node 2 inherits node 3’s gap: the dashed red rectangles appear in

each of the two solid blue rectangles.
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(c) +0-Inherit: Even though node 3 has children with gaps (node 2 and node 12), neither

of them inherit node 3’s gap. There are several nodes with gaps, but every node with a

gap is properly contained within just one of its parent’s intervals.

Figure 3.1: Rectangles that match in color and style indicate the two projection intervals of a node,

separated by a gap. In all three trees, node 3’s two projection intervals are shown in the two solid

blue rectangles. The number of children which inherit its gap vary, however; in 3.1a, two children

have descendants within both sides; in 3.1b only one child has descendants on both sides; in 3.1c,

none of its children do.
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3.4 1-Inherit Trees

There are some reasons from syntactic theory why we might expect at most one child to

inherit its parent’s gap. Traditional Government and Binding theories of syntax (Chom-

sky, 1981) assume that there is an underlying projective (phrase structure) tree, and that

gaps primarily arise through movement of subtrees (constituents). One of the fundamental

assumptions of syntactic theory is that movement is upward in the phrase structure tree.4

Consider one movement operation and its effect on the gap degree of all other nodes in

the tree: (a) it should have no effect on the gap degree of the nodes in the subtree itself,

(b) it can create a gap for an ancestor node if it moves out of its projection interval, and

(c) it can create a gap for a non-ancestor node if it moves in to its projection interval.

Now consider which cases can lead to gap inheritance: in case (b), there is a single path

from the ancestor to the root of the subtree, so the parent of the subtree will have no gap

inheritance and any higher ancestors will have a single child inherit the gap created by this

movement. In case (c), it is possible for there to be multiple children that inherit this newly

created gap if multiple children had descendents on both sides. However, the assumption of

upward movement in the phrase structure tree should rule out movement into the projection

interval of a non-ancestor. Therefore, under these syntactic assumptions, we would expect

at most one child to inherit a parent’s gap.

3.4.1 Parsing Well-nested, Block degree 2, 1-Inherit Trees

Finding the optimal well-nested, block degree 2, 1-Inherit tree can be done by bottom-up

constructing the tree for each node and its descendants. We can maintain subtrees with two

intervals (two endpoints each) and one root (O(n5) space). Consider the most complicated

possible case: a parent that has a gap, a (single) child which inherits the gap, and additional

4The Proper Binding Condition (Fiengo, 1977) asserts that a moved element leaves behind a trace (unpro-

nounced element), which must be c-commanded (Reinhart, 1976) by the corresponding pronounced material

in its final location. Informally, c-commanded means that the first node is descended from the lowest ancestor

of the other that has more than one child.
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children. An example of this is seen with the parent node 3 in Figure 3.1b.

This subtree can be constructed by first starting with the child spanning the gap, up-

dating its root index to be the parent, and then expanding the interval indices to the left

and right to include the other children. In each case, only one index needs to be updated

at a time, so the optimal tree can be found in O(n6) time. In the Figure 3.1b example, the

subtree rooted at 3 would be built by starting with the intervals [1, 2] ∪ [12, 13] rooted at

2, first adding the edge from 3 to 2 (so the root is updated to 3), then adding an edge from

3 to 4 to extend the left interval to [1, 5], and then adding an edge from 3 to 11 to extend

the right interval to [8, 13]. The subtree corresponds to the completed item [1, 5] ∪ [8, 13]

rooted at 3.

This procedure corresponds to (Gómez-Rodrı́guez et al., 2011)’s O(n7) algorithm for

parsing well-nested block degree 2 structures if the most expensive step (Combine Shrink-

ing Gap Centre) is dropped; this step would only ever be needed if a parent node has more

than one child inheriting its gap.

This is also similar in spirit to the algorithm described in (Satta and Schuler, 1998)

for parsing a restricted version of TAG, in which there are some limitations on adjunction

operations into the spines of trees.5 That algorithm has similar steps and items, with the

root portion of the item replaced with a node in a phrase structure tree (which may be a

non-terminal).

3.5 Gap-minding Trees

The algorithm in the previous section used O(n5) space and O(n6) time. While more effi-

cient than parsing in the space of well-nested and block degree 2 trees, this is still probably

not practically implementable. Part of the difficulty lies in the fact that gap inheritance

causes the two non-contiguous projection intervals to be coupled.

5That algorithm has a running time of O(Gn5), where as written G would likely add a factor of n2 with

bilexical selectional preferences; this can be lowered to n using the same technique as in (Eisner and Satta,

2000) for non-restricted TAG.
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Definition 5. A tree is called gap-minding6 if it has gap degree at most one, is well-nested,

and has gap inheritance degree 0.

Gap-minding trees still have good empirical coverage (between 90.4% for Dutch and

97.7% for Swedish). We now turn to the parsing of gap-minding trees and show how a few

consequences of its definition allow us to use items ranging over only one interval.

In Figure 3.1c, notice how each rectangle has edges incoming from exactly one node.

This is not unique to this example; all projection intervals in a gap-minding tree have

incoming edges from exactly one node outside the interval.

Claim 1. Within a gap-minding tree, consider any node h with a gap (i.e., h’s projection

forms two non-contiguous intervals [xi, xj] ∪ [xk, xl]). Let g be the parent of h.

1. For each of the intervals of h’s projection:

(a) If the interval contains h, the only edge incoming to that interval is from g to h.

(b) If the interval does not contain h, all edges incoming to that interval come from

h.

2. For the gap interval ([xj+1, xk−1]):

(a) If the interval contains g, then the only edge incoming is from g’s parent to g

(b) If the interval does not contain g, then all edges incoming to that interval come

from g.

As a consequence of the above, [xi, xj]∪{h} forms a gap-minding tree rooted at h, [xk, xl]∪

{h} also forms a gap-minding tree rooted at h, and [xj+1, xk−1]∪{g} forms a gap-minding

tree rooted at g.

Proof. (Part 1): Assume there was a directed edge (x, y) such that y is inside a projection

interval of h and x is not inside the same interval, and x 6= y 6= h. y is a descendant of h
6The terminology is a nod to the London Underground but imagines parents admonishing children to

mind the gap.
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since it is contained in h’s projection. Since there is a directed edge from x to y, x is y’s

parent, and thus x must also be a descendant of h and therefore in another of h’s projection

intervals. Since x and y are in different intervals, then whichever child of h that x and y

are descended from would have inherited h’s gap, leading to a contradiction.

(Part 2): First, suppose there existed a set of nodes in h’s gap which were not descended

from g. Then g has a gap over these nodes. (g clearly has descendants on each side of the

gap, because all descendants of h are also descendants of g). h, g’s child, would then

have descendants on both sides of g’s gap, which would violate the property of no gap

inheritance. It is also not possible for there to be edges incoming from other descendants

of g outside the gap, as that would imply another child of g being ill-nested with respect to

h.

From the above, we can build gap-minding trees using only single intervals, potentially

with a single node outside of the interval. Our objective is to find the maximum scoring

gap-minding tree, in which the score of a tree is the sum of the scores of its edges. Let

Score(Edge(h,m)) indicate the score of the directed edge from h to m.

Therefore, the main type of sub-problems we will use are:

1. C[i, j,h]: The maximum score of any gap-minding tree, rooted at h, with vertices

[i, j] ∪ {h} (h may or may not be within [i, j]).

This improves our space requirement, but not necessarily the time requirement. For

example, if we built up the subtree in Figure 3.1c by concatenating the three intervals [1, 5]

rooted at 3, [6, 7] rooted at 6, and [8, 13] rooted at 3, and add the edge 6→ 3, we would still

need 6 indices to describe this operation (the four interval endpoints and the two roots), and

so we have not yet improved the running time over the Inherit-1 case.

By part 2, we can concatenate one interval of a child with its gap, knowing that the gap is

entirely descended from the child’s parent, and forget the concatenation split point between

the parent’s other descendants and this side of the child. This allows us to substitute all

operations involving 6 indices with two operations involving just 5 indices. For example,
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in Figure 3.1c, we could first merge [6, 7] rooted at 6 with [8, 13] rooted at 3 to create an

interval [6, 13] and say that it is descended from 6, with the rightmost side descended from

its child 3. That step required 5 indices. The following step would merge this concatenated

interval ([6, 13] rooted at 6 and 3) with [1, 5] rooted at 3. This step also requires only 5

indices.

Our helper subtype we make use of is then:

2. D[i, j,h,m,b]: The maximum score of any set of two gap-minding trees, one rooted

at h, one rooted at m, with vertices [i, j]∪{h,m} (m /∈ [i, j], h may or may not be in

[i, j]), such that for some k, vertices [i, k] are in the tree rooted at h if b = true (and

at m if b = false), and vertices [k + 1, j] are in the tree rooted at m (h).

Consider an optimum scoring gap-minding tree T rooted at p with vertices V = [i, j]∪

{h} and edgesE, whereE 6= ∅. The form of the dynamic program may depend on whether:

• h is within (i, j) (I) or external to [i, j] (E)7

We can exhaustively enumerate all possibilities for T by considering all valid combinations

of the following binary cases:

• h has a single child (S) or multiple children (M)

• i and j are descended from the same child of h (C) or different children of h (D)

Note that case (S/D) is not possible: i and j cannot be descended from different children

of h if h has only a single child. We therefore need to find the maximum scoring tree over

the three cases of S/C, M/C, and M/D.

Claim 2. Let T be the optimum scoring gap-minding tree rooted at h with vertices V =

[i, j] ∪ {h}. Then T and its score are derived from one of the following:

7In the discussion we will assume that h 6= i and h 6= j, since any optimum solution with V = [i, j]∪{i}

and a root at i will be equivalent to V = [i+ 1, j] ∪ {i} rooted at i (and similarly for h = j).
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S/C If h has a single childm in T , then if h ∈ (i, j) (I), T ’s score is Score(Edge(h,m))+

C[i,h−1,m] +C[h+ 1, j,m]; if h /∈ [i, j] (E), T ’s score is Score(Edge(h,m))+

C[i, j,m].

M/C If h has multiple children in T and i and j are descended from the same child m

in T , then there is a split point k such that T ’s score is: Score(Edge(h,m)) +

C[i,k,m] +D[k+ 1, j,h,m,T] if x is on the left side of its own gap, and T ’s score

is: Score(Edge(h,m))+C[k, j,m]+D[i,k− 1,h,m,F] if m is on the right side.

M/D If h has multiple children in T and i and j are descended from different children in

T , then there is a split point k such that T ’s score is C[i,k,h] +C[k+ 1, j,h].

T has the maximum score over each of the above cases, for all valid choices of m and k.

Proof. Case S/C: If h has exactly one child m, then the tree can be decomposed into the

edge from h tom and the subtree rooted atm. If h is outside the interval, then the maximum

scoring such tree is clearly Score(Edge(h,m)) + C[i, j,m]. If h is inside, then m has a

gap across h, and so using Claim 1, the maximum scoring tree rooted at h with a single

child m has score of Score(Edge(h,m)) +C[i,h− 1,m] +C[h+ 1, j,m].

Case M/C: If there are multiple children and the endpoints are descended from the

same child m, then the child m has to have gap degree 1. m itself is on either the left or

right side of its gap. For the moment, assume m is in the left interval. By Claim 1, we can

split up the score of the tree as the score of the edge from h tom (Score(Edge(h,m))), the

score of the subtree corresponding to the projection of m to the left of its gap (C[i,k,m]),

and the score of the subtrees rooted at h with its remaining children and the subtree rooted

at m corresponding to the right side of m’s projection (D[k+ 1, j,h,m,T]). The case in

which m is on the right side of its gap is symmetric.

Case M/D: If there are multiple children and the endpoints are descended from different

children of h, then there must exist a split point k that partitions the children of h into two

non-empty sets, such that each child’s projection is either entirely on the left or entirely on

the right of the split point. We show one such split point to demonstrate that there always
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exists at least one. Let m be the child of h that i is descended from, and let ml and mr

be m’s leftmost and right descendants, respectively.8 Consider all the children of h (whose

projections taken together partition [i, j]−{h}). No child can have descendants both to the

left of mr and to the right of mr, because otherwise that child and m would be ill-nested.

Therefore we can split up the interval at mr to have two gap-minding trees, both rooted at

h. The score of T is then the sum of the scores of the best subtree rooted at h over [i, k]

(C[i,k,h]) and the score of the best subtree rooted at h over [k + 1, j] (C[k+ 1, j,h]).

The above cases cover all non-empty gap-minding trees, so the maximum will be found.

Using Claim 2 to Devise an Algorithm The above claim showed that any problem of type

C can be decomposed into subproblems of types C and D. From the definition of D, any

problem of type D can clearly be decomposed into two problems of type C — simply split

the interval at the split point known to exist and assign h or m as the roots for each side of

the interval, as prescribed by the boolean b:

D(i, j,h,m,T) = maxkC[i,k,h] +C[k+ 1, j,m] (3.1)

D(i, j,h,m,F) = maxkC[i,k,m] +C[k+ 1, j,h]

Algorithm 1 makes direct use of the above claims. Algorithm 1 builds up trees in

increasing sizes of [i, j] ∪ {h}. The tree in C[i, j,h] corresponds to the maximum of

four subroutines: SingleChild (S/C), EndpointsDiff (M/D), EndsFromLeftChild (M/C),

and EndsFromRightChild (M/C). The D subproblems are filled in with the subroutine

Max2Subtrees, which uses the above discussion. The maximum score of any gap-minding

tree is then found in C[1,n,0], and the tree itself can be found using backpointers.

8Note that ml = i by construction, and mr 6= j (because the endpoints are descended from different

children).
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Algorithm 1: MaxGapMindingTree
Init: ∀i∈[1,n]C[i, i, i] = 0

for size = 0 to n− 1 do

for i = 1 to n− size do
j = i+ size

/* Endpoint parents */

if size > 0 then
C[i, j, i] = C[i+ 1, j, i]

C[i, j, j] = C[i, j − 1, j]

/* Interior parents */

for h = i+ 1 to j − 1 do
C[i, j, h] = max (SingleChild(i,j,h),

EndpointsDiff(i,j,h),

EndsFromLeftChild(i,j,h),

EndsFromRightChild(i,j,h))

/* Exterior parents */

forall the h ∈ [0, i− 1] ∪ [j + 1, n] do
C[i, j, h] = max (SingleChild(i,j,h),

EndpointsDiff(i,j,h),

EndsFromLeftChild(i,j,h),

EndsFromRightChild(i,j,h))

/* Helper subproblems */

for h ∈ [0, n] do

forall the m ∈ PosChild[h] ∧m /∈ [i, j] do

if h 6= j then
D[i, j, h,m, T ] =Max2Subtrees(i, j, h,m, T )

if h 6= i then
D[i, j, h,m, F ] =Max2Subtrees(i, j, h,m, F )

Final answer: C[1, n, 0]
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Function SingleChild(i,j,h)
M = PosChild[h] ∩ [i, j]

/* Interior h */

if h > i ∧ h < j then
return maxm∈M C[i, h− 1,m] + C[h+ 1, j,m] + Score(Edge(h,m))

/* Exterior h */

else
return maxm∈M C[i, j,m] + Score(Edge(h,m))

Function EndpointsDiff(i,j,h)
return maxk∈[i,j−1]C[i, k, h] + C[k + 1, j, h]

Function EndsFromLeftChild(i,j,h)

/* Interior h */

if h > i ∧ h < j then
M = PosChild[h] ∩ [i, h− 1]

forall the m ∈M ∧m < h do
K[m] = [m,h− 1]

/* Exterior h */

else
M = PosChild[h] ∩ [i, j]

forall the m ∈M do
K[m] = [m, j − 2]

return maxm∈M,k∈K[m]C[i, k,m] + Score(Edge(h,m)) +D[k + 1, j, h,m, T ]
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Function EndsFromRightChild(i,j,h)

/* Interior h */

if h > i ∧ h < j then
M = PosChild[h] ∩ [h+ 1, j]

forall the m ∈M ∧m > h do
K[m] = [h+ 1,m]

/* Exterior h */

else
M = PosChild[h] ∩ [i, j]

forall the m ∈M do
K[m] = [i+ 2,m]

return maxm∈M,k∈K[m]C[k, j,m] + Score(Edge(h,m)) +D[i, k − 1, h,m, F ]

Function Max2Subtrees(i,j,h,m,hOnLeft)

/* Interior h */

if h ≥ i ∧ h ≤ j then

if hOnLeft then
K = [h, j − 1]

return maxk∈K C[i, k, h] + C[k + 1, j,m]

else
K = [i, h− 1]

return maxk∈K C[i, k,m] + C[k + 1, j, h]

/* Exterior h */

else
K = [i, j − 1]}

if hOnLeft then
return maxk∈K C[i, k, h] + C[k + 1, j,m]

else
return maxk∈K C[i, k,m] + C[k + 1, j, h]
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3.5.1 Runtime analysis

If the input is assumed to be the complete graph (any word can have any other word as its

parent), then the above algorithm takes O(n5) time. The most expensive steps are M/C,

which take O(n2) time to fill in each of the O(n3) C cells. and solving a D subproblem,

which takes O(n) time on each of the O(n4) possible such problems.

Pruning: In practice, the set of edges considered (m) is not necessarilyO(n2). Many edges

can be ruled out beforehand, either based on the distance in the sentence between the two

words (Eisner and Smith, 2010), the predictions of a local ranker (Martins et al., 2009), or

the marginals computed from a simpler parsing model (Carreras, Collins, and Koo, 2008).

If we choose a pruning strategy such that each word has at most k potential parents

(incoming edges), then the running time drops to O(kn4). The five indices in an M/C

step were: i, j, k, h, and m. As there must be an edge from h to m, and m only has k

possible parents, there are now only O(kn4) valid such combinations. Similarly, each D

subproblem (which ranges over i, j, k, h,m) may only come into existence because of an

edge from h to m, so again the runtime of these such steps drops to O(kn4).

3.6 Extension to Grandparent Factorizations

The ability to define slightly non-local features has been shown to improve parsing per-

formance. In this section, we assume a grandparent-factored model, where the score of

a tree is now the sum over scores of Grand(g, h,m) triples, where (g, h) and (h,m) are

both directed edges in the tree. Let Score(Grand(g,h,m)) indicate the score of this

grandparent-parent-child triple. We now show how to extend the above algorithm to find

the maximum scoring gap-minding tree with grandparent scoring.

Our two subproblems are now C[i, j,h,g] and D[i, j,h,m,b,g]; each subproblem has

been augmented with an additional grandparent index g, which has the meaning that g is

h’s parent. Note that g must be outside of the interval [i, j] (if it were not, a cycle would be

introduced). Edge scores are now computed over (g, h,m) triples. In particular, claim 2 is
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modified:

Claim 3. Let T be the optimum scoring gap-minding tree rooted at h with vertices V =

[i, j]∪ {h}, where h ∈ (i, j) (I), with a grandparent index g (g /∈ V ). Then T and its score

are derived from one of the following:

S/C If h has a single childm in T , then if h ∈ (i, j) (I), T ’s score is Score(Grand(g,h,m))

+C[i,h−1,m,h] +C[h+ 1, j,m,h]; if h /∈ [i, j] (E), T ’s score is

Score(Grand(g,h,m)) +C[i, j,m,h].

M/C If h has multiple children in T and i and j are descended from the same child m in

T , then there is a split point k such that T ’s score is: Score(Grand(g,h,m)) +

C[i,k,m,h] +D[k+ 1, j,h,m,T,g] if m is on the left side of its own gap, and T ’s

score is: Score(Grand(g,h,m)) + C[k, j,m,h] + D[i,k− 1,h,m,F,g] if m is

on the right side.

M/D If h has multiple children in T and i and j are descended from different children in

T , then there is a split point k such that T ’s score is C[i,k,h,g] +C[k+ 1, j,h,g].

T has the maximum score over each of the above cases, for all valid choices of m and k.

Note that for subproblems rooted at h, g is the grandparent index, while for subproblems

rooted at m, g is the updated grandparent index. The D subproblems with the grandparent

index are shown below:

D(i, j,h,m,T,g) = maxkC[i,k,h,g] +C[k+ 1, j,m,h] (3.2)

D(i, j,h,m,F,g) = maxkC[i,k,m,h] +C[k+ 1, j,h,g]

We have added another index which ranges over n, so without pruning, we have now

increased the running time to O(n6). However, every step now includes both a g and a h

(and often an m), so there is at least one implied edge in every step. If pruning is done in

such a way that each word has at most k parents, then each word’s set of grandparent and
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parent possibilities is at most k2. To run all of the S/C steps, we therefore need O(k2n3)

time; for all of the M/C steps, O(k2n4) time; for all of the M/D steps, O(kn4); for all of

the D subproblems, O(k2n4). The overall running time is therefore O(k2n4), and we have

shown that when edges are sufficiently pruned, grandparent factors add only an extra factor

of k, and not a full extra factor of n.

3.7 Experiments

The space of projective trees is strictly contained within the space of gap-minding trees

which is strictly contained within spanning trees. Which space is most appropriate for nat-

ural language parsing may depend on the particular language and the type and frequencies

of non-projective structures found in it. In this section we compare the parsing accuracy

across languages for a parser which uses either the Eisner algorithm (projective), MST

(spanning trees), or MaxGapMindingTree (gap-minding trees) as its decoder for both train-

ing and inference.

We implemented both the basic gap-minding algorithm and the gap-minding algorithm

with grandparent scoring as extensions to MSTParser9. MSTParser (McDonald et al.,

2005b,a) uses the Margin Infused Relaxed Algorithm (Crammer and Singer, 2003) for dis-

criminative training. Training requires a decoder which produces the highest scoring tree

(in the space of valid trees) under the current model weights. This same decoder is then

used to produce parses at test time. MSTParser comes packaged with the Eisner algorithm

(for projective trees) and MST (for spanning trees). MSTParser also includes two second

order models: one of which is a projective decoder that also scores siblings (Proj+Sib) and

the other of which produces non-projective trees by rearranging edges after producing a

projective tree (Proj+Sib+Rearr). We add a further decoder with the algorithm presented

here for gap minding trees. The gap-minding decoder has both an edge-factored imple-

mentation and a version which scores grandparents as well.10

9http://sourceforge.net/projects/mstparser/
10 The grandparent features used were identical to the features provided within MSTParser for the second-
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The gap-minding algorithm is much more efficient when edges have been pruned so

that each word has at most k potential parents. We use the weights from the trained MST

models combined with the Matrix Tree Theorem (Smith and Smith, 2007; Koo, Globerson,

Carreras, and Collins, 2007; McDonald and Satta, 2007) to produce marginal probabilities

of each edge. We wanted to be able to both achieve the running time bound and yet take

advantage of the fact that the size of the set of reasonable parent choices is variable. We

therefore use a hybrid pruning strategy: each word’s set of potential parents is the smaller

of a) the top k parents (we chose k = 10) or b) the set of parents whose probabilities are

above a threshold (we chose th = .001). The running time for the gap-minding algorithm

is then O(kn4); with the grandparent features the gap-minding running time is O(k2n4).

Arabic Czech Danish Dutch Portuguese Swedish

Training 1460 72703 5190 13349 9071 11042

Testing 146 365 322 386 288 389

Table 3.2: Number of sentences in the CoNLL-X shared task datasets.

The training and test sets for the six languages come from the CoNLL-X shared task.11

We train the gap-minding algorithm on sentences of length at most 10012 (the vast majority

of sentences). The projective and MST models are trained on all sentences and are run

without any pruning. The Czech training set is much larger than the others (Table 3.2) and

so for Czech only the first 10,000 training sentences were used. Testing is on the full test

set, with no length restrictions.

The results are shown in Table 3.3. The first three lines show the first order gap-minding

decoder compared with the first order projective and MST decoders. The gap-minding

order sibling parsers, with one exception — many features are conjoined with a direction indicator, which in

the projective case has only two possibilities. We replaced this two-way distinction with a six-way distinction

of the six possible orders of the grandparent, parent, and child.
11MSTParser produces labeled dependencies on CoNLL formatted input. We replace all labels in the

training set with a single dummy label to produce unlabeled dependency trees.
12Because of long training times, the gap-minding with grandparent models for Portuguese and Swedish

were trained on only sentences up to 50 words.
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Arabic Czech Danish Dutch Portuguese Swedish

Proj. 78.0 80.0 88.2 79.8 87.4 86.9

MST 78.0 80.4 88.1 84.6 86.7 86.2

Gap-Mind 77.6 80.8 88.6 83.9 86.8 86.0

Proj+Sib 78.2 80.0 88.9 81.1 87.5 88.1

+Rearr 78.5 81.3 89.3 85.4 88.2 87.7

GM+Grand 78.3 82.1 89.1 84.6 87.7 88.5

Table 3.3: Unlabeled Attachment Scores on the CoNLL-X shared task test set.

decoder does better than the projective decoder on Czech, Danish, and Dutch, the three

languages with the most non-projectivity, even though it was at a competitive disadvantage

in terms of both pruning and (on languages with very long sentences) training data. The

gap-minding decoder with grandparent features is better than the projective decoder with

sibling features on all six of the languages. On some languages, the local search decoder

with siblings has the absolute highest accuracy in Table 3.3; on other languages (Czech

and Swedish) the gap-minding+grandparents has the highest accuracy. While not directly

comparable because of the difference in features, the promising performance of the gap-

minding+grandparents decoder shows that the space of gap-minding trees is larger than

the space of projective trees, yet unlike spanning trees, it is tractable to find the best tree

with higher order features. It would be interesting to extend the gap-minding algorithm to

include siblings as well.

3.8 Extension to Arbitrary Gap Degree

For well-nested structures generally, the running time increases exponentially with the gap

degree: well-nested structures with a gap degree bounded by a constant k can be parsed

in time O(n5+2k) (Gómez-Rodrı́guez et al., 2011). When k = 1, this gives us the familiar

O(n7) parsing time for well-nested structures with gap degree at most 1.
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However, with the added restriction of no gap inheritance, the restriction to gap degree

one is unnecessary. In this section, we show how to modify Algorithm 1 to find the max-

imum scoring tree that has no gap inheritance, is well-nested, and can have arbitrary gap

degree. This change has no effect on the running time of the algorithm: the maximum

scoring tree in this class can still be found in O(n5).

Arabic Czech Danish Dutch Portuguese Swedish Parsing

Well-nested
1458 (99.9) 72321 (99.5) 5175 (99.7) 12896 (96.6) 8650 (95.4) 10955 (99.2) O(n7)

+block degree 2

+0-Inherit 1394 (95.5) 70695 (97.2) 4985 (96.1) 12068 (90.4) 8481 (93.5) 10787 (97.7) O(n5)

Well-nested
1394 (95.5) 70883 (97.5) 4986 (96.1) 12116 (90.8) 8825 (97.3) 10792 (97.7)

O(n5)

+ 0-Inherit

Table 3.4: Empirical coverage when the gap degree restriction is dropped.

The effect on empirical coverage of dropping the gap degree restriction is in Table

3.4. For Portuguese, the coverage is actually higher for no inheritance but unbounded gap

degree than the case with gap degree 1 (block degree 2) but unbounded inheritance degree.

We can parse well-nested trees with no gap inheritance by modifying the definition of

the D helper function:

D′[i, j,h,m,b]: The maximum score of the score of the edge from h to m plus the

scores of any set of two or more gap-minding trees, alternating between trees rooted at h

and rooted at m with vertices [i, j]∪ {h,m} such that vertex i is in a tree rooted at h if b =

true (and at m if b = false), and vertex j is always in a tree rooted at m.

The intuition is that now, rather than concatenating together just one pair of a node’s

interval and its gap, we can repeatedly alternate between concatenating on another interval

or concatenating on another gap. No gap inheritance means that all the projection intervals

of a node are independent given that node, and this holds equally well for an arbitrary

number of intervals as it did when we had just two (gap degree one).

The two cases which need to be updated are below:

Claim 4. Let T be the optimum scoring tree with no gap inheritance rooted at h with
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vertices V = [i, j] ∪ {h}. Then T and its score are derived from one of the following:

M/C If h has multiple children in T and i and j are descended from the same childm in T ,

then there is a split point k such that T ’s score is: C[i,k,m]+D′[k+ 1, j,h,m,T].

M/C: Let k be the rightmost vertex in m’s leftmost projection interval. By no gap in-

heritance, we can split up the score of the tree as the the score of the subtree corresponding

to m’s leftmost interval (C[i,k,m]), and the score of the edge from h to m, the score of the

subtrees rooted at h with its remaining children and the subtrees rooted at m corresponding

to all the other intervals of x’s projection (D′[k+ 1, j,h,m,T,F]).

The other case which needs to be updated is the definition of D′:

D′(i, j,h,m,T) = max
k

 C[i, k, h] +D′[k + 1, j, h,m, F ]

C[i, k, h] + C[k + 1, j,m] + Score(Edge(h,m))
(3.3)

D′(i, j,h,m,F) = max
k
C[i, k,m] +D′[k + 1, j, h,m, T ]

When b = true, D′ is made up of two or more trees that alternate being rooted at h

and m such that the leftmost subtree is rooted at h and the rightmost subtree is rooted at

m. This could either have exactly two subtrees (base case), in which we concatenate two

individual trees (C[i,k,h] and C[k+ 1, j,m]) and add the score of the edge from h to m.

Otherwise, this interval has four or more subtrees and so is created by concatenating an

interval rooted at h (C[i,k,h]) to a D′ alternating interval that begins with a tree rooted at

m (and so b = false).

When b = false, then the number of subtrees is at least three and odd, and so this can

only be built by concatenating a interval rooted at m to an existing alternating interval that

begins with a tree rooted at h.

We do not pursue this modification experimentally at this time, as the next chapter will

show a different type of non-projectivity (defined over edges, rather than subtrees) that has

higher coverage in every language and lower asymptotic parsing time.
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3.9 Conclusion

Gap inheritance, a structural property on trees, has implications both for natural language

syntax and for natural language parsing. We have shown that the well-nested block degree

2 trees present in natural language treebanks all have zero or one children inherit each

parent’s gap. We also showed that the assumption of 1 gap inheritance removes a factor of

n from parsing time, and the further assumption of 0 gap inheritance removes yet another

factor of n. More recent work has shown that restricting the 1 gap inherit class to trees that

are head-split (requiring a child that gaps over its parent to also inherit its parent’s gap) can

also be parsed in O(n5), with almost the same coverage as the 1 gap inherit class (Satta

and Kuhlmann, 2013). The space of gap-minding trees provides a closer fit to naturally

occurring linguistic structures than the space of projective trees, and unlike spanning trees,

the inclusion of higher order factors does not substantially increase the difficulty of finding

the maximum scoring tree in that space. Furthermore, we showed that unlike general well-

nested trees, which have a parsing complexity that increases exponentially with the gap

degree, arbitrarily large gap degrees pose no additional complexity for well-nested trees

without gap inheritance.
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Chapter 4

Finding Optimal 1-Endpoint-Crossing

Trees

Material in this chapter previously appeared in Pitler et al. (2013).

4.1 Introduction

We propose 1-Endpoint-Crossing trees, in which for any edge that is crossed, all other

edges that cross that edge share an endpoint. While simple to state, this property cov-

ers 95.8% or more of dependency parses in natural language treebanks (Table 4.1). The

optimal 1-Endpoint-Crossing tree can be found in faster asymptotic time than any previ-

ously proposed mildly non-projective dependency parsing algorithm. We show how any 1-

Endpoint-Crossing tree can be decomposed into isolated sets of intervals with one exterior

point (Section 4.3). This is the key insight that allows efficient parsing; the O(n4) parsing

algorithm is presented in Section 4.4. 1-Endpoint-Crossing trees are a subclass of 2-planar

graphs (Section 4.6.1), a class that has been studied in NLP. 1-Endpoint-Crossing trees

also have some linguistic interpretation (pairs of cross serial verbs produce 1-Endpoint-

Crossing trees, Section 4.6.2; additional examples of other phenomena are discussed in

Section 6.1.3).
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a b c d e f

(a)

a b c d fe g h

(b)

Figure 4.1: 4.1a is 1-Endpoint-Crossing, but is neither block degree 2 nor well-nested; 4.1b is gap-

minding but not 2-planar.

4.2 Additional Definitions of Non-Projectivity

Definition 6. Edges e and f cross if e and f have distinct endpoints and exactly one of the

endpoints of f lies between the endpoints of e.

Definition 7. A dependency tree is 1-Endpoint-Crossing if for any edge e, all edges that

cross e share an endpoint p.

Table 4.1 shows the percentage of dependency parses in the CoNLL-X training sets

that are 1-Endpoint-Crossing trees. Across six languages with varying amounts of non-

projectivity, 95.8-99.8% of dependency parses in treebanks are 1-Endpoint-Crossing trees.1

Definition 8. A tree is 2-planar if each edge can be drawn either above or below the

sentence such that no edges cross (Gómez-Rodrı́guez and Nivre, 2010).

Gómez-Rodrı́guez and Nivre (2010) presented a transition-based parser for 2-planar

trees, but there is no known globally optimal parsing algorithm for 2-planar trees.

Clearly projective⊂ gap-minding⊂ well-nested with block degree at most 2. In Section

4.6.1, we prove the somewhat surprising fact that 1-Endpoint-Crossing ⊂ 2-planar. These

are two distinct hierarchies capturing different dimensions of non-projectivity: 1-Endpoint-

Crossing 6⊆ well-nested with block degree 2 (Figure 4.1a), and gap-minding 6⊆ 2-planar

(Figure 4.1b).
1Conventional edges from the artificial root node to the root(s) of the sentence reduce the empirical cov-

erage of 1-Endpoint-Crossing trees. When these artificial root edges are excluded, 97.0-99.8% of trees are

1-Endpoint-Crossing (Table 4.2). These edges have no effect on the coverage of well-nested trees with block

degree at most 2, gap-minding trees, or projective trees.
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Arabic Czech Danish Dutch Portuguese Swedish Parsing

1-Endpoint-Crossing 1457 (99.8) 71810 (98.8) 5144 (99.1) 12785 (95.8) 9007 (99.3) 10902 (98.7) O(n4)

Well-nested
1458 (99.9) 72321 (99.5) 5175 (99.7) 12896 (96.6) 8650 (95.4) 10955 (99.2) O(n7)

+block degree 2

Gap-Minding 1394 (95.5) 70695 (97.2) 4985 (96.1) 12068 (90.4) 8481 (93.5) 10787 (97.7) O(n5)

Projective 1297 (88.8) 55872 (76.8) 4379 (84.4) 8484 (63.6) 7353 (81.1) 9963 (90.2) O(n3)

# Sentences 1460 72703 5190 13349 9071 11042

Table 4.1: Over 95% of the dependency parse trees in the CoNLL-X training sets are 1-Endpoint-

Crossing trees. Coverage statistics and parsing times of previously proposed properties are shown

for comparison.

Arabic Czech Danish Dutch Portuguese Swedish

1-Endpoint-Crossing 1457 (99.8) 71810 (98.8) 5144 (99.1) 12785 (95.8) 9007 (99.3) 10902 (98.7)

Excluding artificial root edges 1457 (99.8) 72094 (99.2) 5156 (99.3) 12949 (97.0) 9007 (99.3) 10906 (98.8)

Table 4.2: Proportion of dependency trees that are 1-Endpoint-Crossing when edges from the artifi-

cial root are excluded.

4.3 Edges (and their Crossing Point) Define Isolated Cross-

ing Regions

We introduce notation to facilitate the discussion:

Definition 9. Within a 1-Endpoint-Crossing tree, the (crossing) pencil2 of an edge e (P(e))

is defined as the set of edges (sharing an endpoint) that cross e. The (crossing pencil) point

of an edge e (Pt(e)) is defined as the endpoint that all edges in P(e) share.

We will use euv to indicate an edge in either direction between u and v, i.e., either

u→ v or u← v.

Before defining the parsing algorithm, we first give some intuition by analogy to parsing

for projective trees. (This argument mirrors that of Eisner (2000, pps.38-39).) Projective

trees can be produced using dynamic programming over intervals. Intervals are sufficient

2This notation comes from an analogy to geometry: “A set of distinct, coplanar, concurrent lines is a

pencil of lines” (Ringenberg, 1967, p. 221); concurrent lines all intersect at the same single point.
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u v p

(a) [u, v] ∪ {p}

u v p

(b) [v, p] ∪ {u}

u p v

(c) [u, p] ∪ {v}

u p v

(d) [p, v] ∪ {u}

Figure 4.2: An edge euv and Pt(euv) = p form two sets of isolated crossing regions (Lemma 1).

4.2a and 4.2b show p /∈ (u, v); 4.2c and 4.2d show p ∈ (u, v).

for projective trees: consider any edge euv in a projective tree.

The vertices in (u, v) must only have edges to vertices in [u, v]. If there were an edge

between a vertex in (u, v) and a vertex outside [u, v], such an edge would cross euv, which

would contradict the assumption of projectivity. Thus every edge in a projective tree creates

one interior interval isolated from the rest of the tree, allowing dynamic programming over

intervals. We can analyze the case of 1-Endpoint-Crossing trees in a similar fashion:

Definition 10. An isolated interval [i, j] has no edges between the vertices in (i, j) and the

vertices outside of [i, j]. An interval and one exterior vertex [i, j]∪{x} is called an isolated

crossing region if the following two conditions are satisfied:

1. There are no edges between the vertices ∈ (i, j) and vertices /∈ [i, j] ∪ {x}

2. None of the edges between x and vertices ∈ (i, j) are crossed by any edges with both

endpoints ∈ (i, j)

Lemma 1. Consider any edge euv and Pt(euv) = p in a 1-Endpoint-Crossing forest F . Let

l, r, and m denote the leftmost, rightmost, and middle point out of {u, v, p}, respectively.

Then the three points u, v, and p define two isolated crossing regions: (1) [l,m]∪ {r}, and

(2) [m, r] ∪ {l}.
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Proof. First note that as p = Pt(euv), P(euv) is non-empty: there must be at least one edge

between vertices ∈ (u, v) and vertices /∈ [u, v]. p is either /∈ [u, v] (i.e., p = l ∨ p = r) or

∈ (u, v) (i.e., p = m):

Case 1: p = l ∨ p = r: Assume without loss of generality that u < v < p (i.e., p = r).

(a) [u, v] ∪ {p} is an isolated crossing region (Figure 4.2a): Condition 1: Assume for

the sake of contradiction that there were an edge between a vertex ∈ (u, v) and a vertex

/∈ [u, v] ∪ {p}. Then such an edge would cross euv without having an endpoint at p, which

contradicts the 1-Endpoint-Crossing property for euv.

Condition 2: Assume that for some epa such that a ∈ (u, v), epa was crossed by an edge

in the interior of (u, v). The interior edge would not share an endpoint with euv; since euv

also crosses epa, this contradicts the 1-Endpoint-Crossing property for epa.

(b) [v, p]∪{u} is an isolated crossing region (Figure 4.2b): Condition 1: Assume there

were an edge eab with a ∈ (v, p) and b /∈ [v, p] ∪ {u}. b cannot be in (u, v) (by above).

Thus, b /∈ [u, p], which implies that eab crosses the edges in P(euv); as euv does not share a

vertex with eab, this contradicts the 1-Endpoint-Crossing property for all edges in P(euv).

Condition 2: Assume that for some eua such that a ∈ (v, p), eua was crossed by an edge in

the interior of (v, p). eua would also be crossed by all the edges in P(euv); as the interior

edge would not share an endpoint with any of the edges in P(euv), this would contradict

the 1-Endpoint-Crossing property for eua.

Case 2: p = m :

(a) [u, p]∪{v} is an isolated crossing region (Figure 4.2c): Condition 1: Assume there

were an edge eab with a ∈ (u, p) and b /∈ [u, p]∪ {v} (b ∈ (p, v)∨ b /∈ [u, v]). First assume

b ∈ (p, v). Then eab crosses all edges in P(euv); as eab does not share an endpoint with euv,

this contradicts the 1-Endpoint-Crossing property for the edges in P(euv). Next assume

b /∈ [u, v]. Then eab crosses euv; since a 6= p∧ b 6= p, this violates the 1-Endpoint-Crossing

property for euv.
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Condition 2: Assume that for some eva with a ∈ (u, p), eva was crossed by an edge in the

interior of (u, v). eva is also crossed by all the edges in P(euv); as the interior edge will

not share an endpoint with the edges in P(euv), this contradicts the 1-Endpoint-Crossing

property for eva.

(b) [p, v] ∪ {u} is an isolated crossing region (Figure 4.2d): Symmetric to the above.

4.4 Parsing Algorithm

The optimal 1-Endpoint-Crossing tree can be found using a dynamic programming algo-

rithm that exploits the fact that edges and their crossing points define intervals and isolated

crossing regions. This section assumes an arc-factored model, in which the score of a tree

is defined as the sum of the scores of its edges; scoring functions for edges are generally

learned from data.

The dynamic program uses five types of sub-problems: interval sub-problems for each

interval [i, j], denoted Int[i, j], and four types of isolated crossing region sub-problems for

each interval and exterior point [i, j]∪{x}, which differ in whether edges from the exterior

point may be crossed by edges with an endpoint at the Left point of the interval, the Right

point, both LR, or Neither (Figure 4.3). L[i, j, x], for example, refers to an isolated crossing

region over the interval [i, j] with an exterior point of x, in which edges incident to i (the

left boundary point) can cross edges between x and (i, j).

These distinctions allow the 1-Endpoint-Crossing property to be globally enforced;

crossing edges in one region may constrain edges in another. For example, consider that

Figure 4.2a allows edges with an endpoint at v to cross the edges from p, while Figure 4.2b

allows edges from u into (v, p). Both simultaneously would cause a 1-Endpoint-Crossing

violation for the edges in P(euv). Figures 4.4 and 4.6 show valid combinations of the

sub-problems in Figure 4.3.

The full dynamic program is shown in Section 4.5. The final answer must be a valid
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(a) Only edges incident to the Left

point of the interval may cross the

edges from the exterior point

(b) Only edges incident to the Right

point of the interval may cross the

edges from the exterior point

(c) both (LR) (d) Neither

Figure 4.3: Isolated crossing region sub-problems.

dependency tree, which requires each word to have exactly one parent and prohibits cycles.

We use booleans (bi, bj , bx) for each sub-problem, in which the boolean is set to true if

and only if the solution to the sub-problem must contain the incoming (parent) edge for the

corresponding boundary point. We use the suffix AFromB for a sub-problem to enforce that

a boundary point A must be descended from boundary point B (to avoid cycles). We will

occasionally mention these issues, but for simplicity focus the discussion on the decom-

position into crossing regions and the maintenance of the 1-Endpoint-Crossing property.

Edge direction does not affect these points of focus, and so we will refer simply to S[euv]

to mean the score of either the edge from u to v or vice-versa.

In the following subsections, we show that the optimal parse for each type of sub-

problem can be decomposed into smaller valid sub-problems. If we take the maximum

over all these possible combinations of smaller solutions, we can find the maximum scoring

parse for that sub-problem. Note that the overall tree is a valid sub-problem (over the

interval [0, n]), so the argument will also hold for finding the optimal overall tree. Each

individual vertex and each pair of adjacent vertices (with no edges) trivially form isolated

intervals (as there is no interior); this forms the base case of the dynamic program.
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(a) If l ∈ (k, j]:

ki l j

(b) If l ∈ (i, k):

li k j

(i) If the dashed edge exists:

All the edges from l into (i, k) must choose k

as their Pt. The interval decomposes into

S[eik] +R[i, k, l] + Int[k, l] + L[l, j, k]:

ki l j

(ii) If no edges like the dashed edge

exist:

All edges from l into (i, k) may choose either i

or k as their Pt. The interval decomposes into

S[eik] + LR[i, k, l] + Int[k, l] + Int[l, j]:

i k l j

(i) If dashed edge exists: All the edges

from l into (k, j] must choose i as

their Pt. The interval decomposes into

S[eik] + Int[i, l] + L[l, k, i] +N [k, j, l]:

li k j

(ii) If no edges like the dashed edge

exist: All edges from l may choose k as

their Pt. The interval decomposes into

S[eik] +R[i, l, k] + Int[l, k] + L[k, j, l]:

li k j

Figure 4.4: Decomposing an Int[i, j] sub-problem, with Pt(eik) = l

The overall dynamic program takesO(n4) time: there areO(n2) interval sub-problems,

each of which needs two free split points to find the maximum, and O(n3) region sub-

problems, each of which is a maximization over one free split point.

4.4.1 Decomposing an Int sub-problem

Consider an isolated interval sub-problem Int[i, j]. There are three cases: (1) there are no

edges between i and the rest of the interval, (2) the longest edge incident to i is not crossed,
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(3) the longest edge incident to i is crossed. An Int sub-problem can be decomposed into

smaller valid sub-problems in each of these three cases. Finding the optimal Int forest can

be done by taking the maximum over these cases:

No edges between i and [i + 1, j]: The same set of edges is also a valid Int[i + 1, j]

sub-problem. bi must be true for the Int[i + 1, j] sub-problem to ensure i + 1 receives a

parent.

Furthest edge from i is not crossed: If the furthest edge is to j, the problem can be

decomposed into S[eij] + Int[i, j], as that edge has no effect on the interior of the interval.

Clearly, this is only applicable if the boundary point needed a parent (as indicated by the

booleans) and the boolean must then be updated accordingly. If the furthest edge is to some

k in (i, j), the problem is decomposed into S[eik] + Int[i, k] + Int[k, j].

Furthest edge from i is crossed: This is the most interesting case, which uses two split

points: the other endpoint of the edge (k), and l = Pt(eik). The dynamic program depends

on the order of k and l.

l /∈ (i,k) (Figure 4.4a): By Lemma 1, [i, k] ∪ {l} and [k, l] ∪ {i} form isolated regions.

(l, j] is the remainder of the interval, and the only vertex from [i, l) that can have edges into

(l, j] is k: (i, k) and (k, l) are part of isolated regions, and i is ruled out because k was i’s

furthest neighbor.

If at least one edge from k into (l, j] (the dashed line in Figure 4.4a) exists, the decom-

position is as in Figure 4.4a, Case i; otherwise, it is as in Figure 4.4a, Case ii. Figure 4.5

gives an example of Case i. The crossed edge eik is the edge from * to do, the crossing

point l is favor, and there exists an edge from k into (l, j] (from do into (favor, ?]). In Case

i, eik and the edge(s) between k and (l, j] force all of the edges between l and (i, k) to have

k as their Pt. Thus, the region [i, k] ∪ {l} must be a sub-problem of type R (Figure 4.3b),

as these edges from l can only be crossed by edges with an endpoint at k (the right endpoint

of [i, k]). All of the edges between k and (l, j] have l as their Pt, as they are crossed by all

the edges in P(eik), and so the sub-problem corresponding to the region [l, j] ∪ {k} is of

type L (Figure 4.3a). In Case ii, each of the edges in P(eik) may choose either i or k as
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* Which cars do Americans
0 1 2 3 4

?daysfavor most these
98765

(a)

do Americans favor

do ?daysfavor most these

* do

* Which cars do favor

(b) The sentence in (a) is constructed according to Figure 4.4a, Case i.

Figure 4.5: Constructing a 1-Endpoint-Crossing non-projective English sentence from the WSJ

Penn Treebank (Marcus et al., 1993), converted to dependencies with PennConverter (Johansson

and Nugues, 2007).
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their Pt, so the sub-problem [i, k] ∪ {l} is of type LR (Figure 4.3c). Note that l = j is a

special case of Case ii in which the rightmost interval Int[l, j] is empty.

l ∈ (i,k) (Figure 4.4b): [i, l]∪{k} and [l, k]∪{i} form isolated crossing regions by Lemma

1. There cannot both be edges between i and (l, k) and between k and (i, l), as this would

violate 1-Endpoint-Crossing for the edges in P(eik). If there are any edges between i and

(l, k) (i.e., Case i in Figure 4.4b), then all of the edges in P(eik) must choose i as their Pt,

and so these edges cannot be crossed at all in the region [k, j]∪{l}, and there cannot be any

edges from k into (i, l). If there are no such edges (Case ii in 4.4b), then k must be a valid

Pt for all edges in P(eik), and so there can both be edges from k into (i, l) and [k, j] ∪ {l}

may be of type L (allowing crossings with an endpoint at k).

4.4.2 Decomposing an LR sub-problem

An LR sub-problem is over an isolated crossing region [i, j]∪ {x}, such that edges from x

into (i, j) may be crossed by edges with an endpoint at either i or j. This sub-problem is

only defined when neither i nor j get their parent from this sub-problem. From a top-down

perspective, this case is only used when there will be an edge between i and j (as in one of

the sub-problems in Figure 4.4a, Case ii).

If none of the edges from x are crossed by any edges with an endpoint at i, this can

be considered an R problem. Similarly, if none are crossed by any edges with an endpoint

at j, this may be considered an L sub-problem. The only case which needs discussion is

when both edges with an endpoint at i and also at j cross edges from x; see Figure 4.3c

for a schematic. In that scenario, there must exist a split point such that: (1) to the left of

the point, all edges crossing x-edges have an endpoint at i, and to the right of the point, all

such edges have an endpoint at j, and (2) no edges in the region cross the split point.

Let ri be i’s rightmost child in (i, j); let lj be j’s leftmost child in (i, j). Every edge

from x into (i, ri) is crossed by eiri; every edge between x and (lj, j) is crossed by eljj .

eiri cannot cross eljj , as that would either violate 1-Endpoint-Crossing (because of the x-

interior edges) or create a cycle (if both children are also connected by an edge to x). ri
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and lj also cannot be equal: as neither i nor j may be assigned a parent, they must both be

in the direction of the child, and the child cannot have multiple parents. Thus, ri is to the

left of lj .

Any split point between ri and lj clearly satisfies (1). There is at least one point within

[ri, lj] that satisfies (2) as long as there is not a chain of crossing edges from eiri to eljj .

Such a chain can be ruled out using a counting argument similar to that in the proof in

Section 4.6.1. The decomposition is: L[i, k, x] +R[k, j, x] for some k ∈ (i, j).

4.4.3 Decomposing an N sub-problem

Consider the maximum scoring forest of type N over [i, j] ∪ {x} (Figure 4.3d; no edges

from x are crossed in this sub-problem). If there are no edges from x, then it is also a valid

Int[i, j] sub-problem. If there are edges between x and the endpoints i or j, then the forest

with that edge removed is still a valid N sub-problem (with the ancestor and parent book-

keeping updated). Otherwise, if there are edges between x and (i, j), choose the neighbor

of x closest to j (call it k). Since the edge exk is not crossed, there are no edges from [i, k)

into (k, j]; since k was the neighbor of x closest to j, there are no edges from x into (k, j].

Thus, the region decomposes into S[eik] + Int[k, j] +N [i, k, x].

As an aside, if bx was true (x needed a parent from this sub-problem), and k was a child

of x, then x’s parent must come from the [i, k] ∪ {x} sub-problem. However, it cannot be

a descendant of k, as that would cause a cycle. Thus in this case, we call the sub-problem

a N XFromI problem, to indicate that x needs a parent, i and k do not, and x must be

descended from i, not k.

4.4.4 Decomposing an L or R sub-problem

An L sub-problem over [i, j]∪{x} requires that any edges in this region that cross an edge

with an endpoint at x have an endpoint at i (the left endpoint). If there are no edges between

x and [i, j] in an L sub-problem, then it is also a valid Int sub-problem over [i, j]. If there

are edges between x and i or j, then the sub-problem can be decomposed into that edge
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x k ji

Figure 4.6: An L sub-problem over [i, j] ∪ {x}, k is the neighbor of x furthest from i in the interval.

(i) If dashed edge exists: All the edges

from i into (k, j] must choose x as

their Pt. The interval decomposes into

S[exk] + L[i, k, x] +N [k, j, i]:

x k ji

(ii) If no edges like the dashed edge

exist: Edges from i into (k, j] may

choose k as their Pt. The interval

decomposes into S[exk] + Int[i, k] +

L[k, j, i]:

x k ji

plus the rest of the forest with that edge removed.

The interesting case is when there are edges between x and the interior (Figure 4.6).

Let k be the neighbor of x within (i, j) that is furthest from i. As all edges that cross exk

will have an endpoint at i, there are no edges between (i, k) and (k, j]. Combined with the

fact that k was the neighbor of x closest to j, we have that [i, k]∪{x}must form an isolated

crossing region, as must [k, j] ∪ {i}.

If there are additional edges between x and the interior (Case i in 4.6), all of the edges

from i into (k, j] cross both the edge exk and the other edges from x into (i, k). The Pt for

all these edges must therefore be x, and as x is not in the region [k, j] ∪ {i}, those edges

cannot be crossed at all in that region (i.e., [k, j] ∪ {i} must be of type N ). If there are

no additional edges from x into (i, k) (Case ii in Figure 4.6), then all of the edges from

i into (k, j) must choose either x or k as their Pt. As there will be no more edges from

x, choosing k as their Pt allows strictly more trees, and so [k, j] ∪ {i} can be of type L

(allowing edges from i to be crossed in that region by edges with an endpoint at k).

An R sub-problem is identical, with k instead chosen to be the neighbor of x furthest

from j.
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4.5 Dynamic Program to find the maximum scoring

1-Endpoint-Crossing Tree

Input: Matrix S: S[i, j] is the score of the directed edge (i, j)

Output: Maximum score of a 1-Endpoint-Crossing tree over vertices [0, n], rooted at 0

Init: ∀i Int[i, i, F, F ] = Int[i, i+ 1, F, F ] = 0

Int[i, i, T, F ] = Int[i, i, F, T ] = Int[i, i, T, T ] = −∞

Final: Int[0, n, F, T ]

Shorthand for booleans: T F (x, S) :=
if x = T , exactly one of the set S is true

if x = F , all of the set S must be false
bi, bj , bx are true iff the corresponding boundary point has its incoming edge (parent) in

that sub-problem. For the LR sub-problem, bi and bj are always false, and so omitted. For

all sub-problems with the suffix AFromB, the boundary point A has its parent edge in the

sub-problem solution; the other two boundary points do not. For example, L XFromI

would correspond to having booleans bi = bj = F and bx = T , with the restriction that x

must be a descendant of i.
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Int[i, j, F, bj]← max

Int[i+ 1, j, T, F ] if bj = F

S[i, j] + Int[i, j, F, F ] if bj = T

max
k∈(i,j)

S[i, k]+

Int[i, k, F, F ] + Int[k, j, F, bj]

max
T F (bj ,{bl,br})

LR[i, k, j, bl] + Int[k, j, F, br]

maxl∈(k,j),T F (T,{bl,bm,br}) R[i, k, l, F, F, bl] + Int[k, l, F, bm] + L[l, j, k, br, bj, F ]

LR[i, k, l, bl] + Int[k, l, F, bm] + Int[l, j, br, bj]

maxl∈(i,k),T F (T,{bl,bm,br}) Int[i, l, F, bl] + L[l, k, i, bm, F, F ] +N [k, j, l, F, bj, br]

R[i, l, k, F, bl, F ] + Int[l, k, bm, F ] + L[k, j, l, F, bj, br]

Int[i, j, T, F ]← symmetric to Int[i, j, F, T ]

Int[i, j, T, T ]← −∞

LR[i, j, x, bx]← max

L[i, j, x, F, F, bx]

R[i, j, x, F, F, bx]

maxk∈(i,j)

L[i, k, x, F, T, bx] +R[k, j, x, F, F, F ]

L[i, k, x, F, F, F ] +R[k, j, x, T, F, bx]

L JFromI[i, k, x] +R[k, j, x, F, F, T ] if bx = T

L JFromX[i, k, x] +R XFromJ [k, j, x] if bx = T

L[i, k, x, F, F, T ] +R IFromJ [k, j, x] if bx = T

L XFromI[i, k, x] +R JFromX[k, j, x] if bx = T
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N [i, j, x, bi, bj, F ]← max

Int[i, j, bi, bj]

S[x, i] +N [i, j, x, F, bj, F ] if bi = T

S[x, j] +N [i, j, x, bi, F, F ] if bj = T

max
k∈(i,j)

S[x, k] +N [i, k, x, bi, F, F ] + Int[k, j, F, bj]

N [i, j, x, F, bj, T ]← max

S[i, x] +N [i, j, x, F, bj, F ]

S[x, j] +N XFromI[i, j, x] if bj = T

S[j, x] +N [i, j, x, F, F, F ] if bj = F

S[j, x] + Int[i, j, F, T ] if bj = T

max
k∈(i,j)

S[x, k] +N XFromI[i, k, x] + Int[k, j, F, bj]

max
k∈(i,j)

S[k, x]+ Int[i, k, F, T ] + Int[k, j, F, bj]

N [i, k, x, F, F, F ] + Int[k, j, T, bj]

N [i, j, x, T, F, T ]← symmetric to N [i, j, x, F, T, T ]

N [i, j, x, T, T, T ]← −∞

N XFromI[i, j, x]← max

S[i, x] +N [i, j, x, F, F, F ]

maxk∈(i,j) S[x, k] +N XFromI[i, k, x] + Int[k, j, F, F ]

S[k, x] + Int[i, k, F, T ] + Int[k, j, F, F ]

N IFromX[i, j, x]← max
S[x, i] +N [i, j, x, F, F, F ]

max
k∈(i,j)

S[x, k] +N [i, k, x, T, F, F ] + Int[k, j, F, F ]
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N XFromJ [i, j, x]← symmetric to N XFromI[i, j, x]

N JFromX[i, j, x]← symmetric to N IFromX[i, j, x]

L[i, j, x, bi, bj, F ]← max

Int[i, j, bi, bj]

S[x, i] + L[i, j, x, F, bj, F ] if bi = T

S[x, j] + L[i, j, x, bi, F, F ] if bj = T

max
k∈(i,j),T F (bi,{bl,br})

S[x, k]+ L[i, k, x, bl, F, F ] +N [k, j, i, F, bj, br]

Int[i, k, bl, F ] + L[k, j, i, F, bj, br]

L[i, j, x, F, bj, T ]← max

S[i, x] + L[i, j, x, F, bj, F ]

S[x, j] + L XFromI[i, j, x] if bj = T

S[j, x] + L[i, j, x, F, F, F ] if bj = F

S[j, x] + L JFromI[i, j, x] if bj = T

max
k∈(i,j)

S[x, k] + L XFromI[i, k, x] +N [k, j, i, F, bj, F ]

max
k∈(i,j)

S[k, x]+
L JFromI[i, k, x] +N [k, j, i, F, bj, F ]

L[i, k, x, F, F, F ] +N [k, j, i, T, bj, F ]

max
T F (T,{bl,br})

Int[i, k, F, bl] + L[k, j, i, br, bj, F ]

L[i, j, x, T, bj, T ]← not reachable
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L XFromI[i, j, x]← max

S[i, x] + L[i, j, x, F, F, F ]

max
k∈(i,j)

S[x, k] + L XFromI[i, k, x] +N [k, j, i, F, F, F ]

max
k∈(i,j)

S[k, x]+

L JFromI[i, k, x] +N [k, j, i, F, F, F ]

L[i, k, x, F, F, F ] +N IFromX[k, j, i]

Int[i, k, F, T ] + L[k, j, i, F, F, F ]

Int[i, k, F, F ] + L IFromX[k, j, i]

L IFromX[i, j, x]← max

S[x, i] + L[i, j, x, F, F, F ]

max
k∈(i,j)

S[x, k]+

L[i, k, x, T, F, F ] +N [k, j, i, F, F, F ]

L[i, k, x, F, F, F ] +N XFromI[k, j, i]

Int[i, k, T, F ] + L[k, j, i, F, F, F ]

Int[i, k, F, F ] + L XFromI[k, j, i]

L JFromX[i, j, x]← max

S[x, j] + L[i, j, x, F, F, F ]

max
k∈(i,j)

S[x, k]+ L[i, k, x, F, F, F ] + Int[k, j, F, T ]

Int[i, k, F, F ] + L JFromI[k, j, i]

L JFromI[i, j, x]← max

Int[i, j, F, T ]

max
k∈(i,j)

S[x, k]+ L[i, k, x, F, F, F ] +N JFromX[k, j, i]

Int[i, k, F, F ] + L JFromX[k, j, i]
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R[i, j, x, bi, bj, F ]← symmetric to L[i, j, x, bi, bj, F ]

R[i, j, x, bi, F, T ]← symmetric to L[i, j, x, F, bj, T ]

R[i, j, x, bi, T, T ]← not reachable

R XFromJ [i, j, x]← symmetric to L XFromI[i, j, x]

R JFromX[i, j, x]← symmetric to L IFromX[i, j, x]

R IFromX[i, j, x]← symmetric to L JFromX[i, j, x]

R IFromJ [i, j, x]← symmetric to L JFromI[i, j, x]
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a b c d e f

Figure 4.7: 2-planar but not 1-Endpoint-Crossing

4.6 Connections

4.6.1 Graph Theory: All 1-Endpoint-Crossing Trees are 2-Planar

The 2-planar characterization of dependency structures in Gómez-Rodrı́guez and Nivre

(2010) exactly correspond to 2-page book embeddings in graph theory: an embedding of

the vertices in a graph onto a line (by analogy, along the spine of a book), and the edges

of the graph onto one of 2 (more generally, k) half-planes (pages of the book) such that

no edges on the same page cross (Bernhart and Kainen, 1979). The problem of finding an

embedding that minimizes the number of pages required is a natural formulation of many

problems arising in disparate areas of computer science, for example, sorting a sequence

using the minimum number of stacks (Even and Itai, 1971), or constructing fault-tolerant

layouts in VLSI design (Chung, Leighton, and Rosenberg, 1987).

In this section we prove 1-Endpoint-Crossing ⊆ 2-planar. These classes are not equal

(Figure 4.7). We first prove some properties about the crossings graphs (Gómez-Rodrı́guez

and Nivre, 2010) of 1-Endpoint-Crossing trees. The crossings graph of a graph has a vertex

corresponding to each edge in the original, and an edge between two vertices if the two

edges they correspond to cross. The crossings graphs for the dependency trees in Figures

4.1a and 4.1b are shown in Figures 4.8a and 4.8b, respectively.

Lemma 2. No 1-Endpoint-Crossing tree has a cycle of length 3 in its crossings graph.

Proof. Assume there existed a cycle e1, e2, e3. e1 and e3 must share an endpoint, as they

both cross e2. Since e1 and e3 share an endpoint, e1 and e3 do not cross. Contradiction.

Lemma 3. Any odd cycle of size n (n ≥ 4) in a crossings graph of a 1-Endpoint-Crossing
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(a,b) (a,c)

(b,d) (c,e)

(d,f)

(a)

(a,b) (a,c)

(b,e)

(g,d)
(h,f)

(b,g)

(g,h)

(b)

Figure 4.8: The crossing graphs for Figures 4.1a and 4.1b.

tree uses at most n distinct vertices in the original graph.

Proof. Let e1, e2, ..., en be an odd cycle in a crossings graph of a 1-Endpoint-Crossing tree

with n ≥ 4. Since n ≥ 4, e1, e2, en−1, and en are distinct edges. Let a be the vertex that

e1 and en−1 share (because they both cross en) and let b be the vertex that e2 and en share

(both cross e1). Note that e1 and en−1 cannot contain b and that e2 and en cannot contain a

(otherwise they would not cross an edge adjacent to them along the cycle).

We will now consider how many vertices each edge can introduce that are distinct from

all vertices previously seen in the cycle. e1 and e2 necessarily introduce two distinct vertices

each.

Let eo be the first odd edge that contains b (we know one exists since en contains b). (o

is at least 3, since e1 does not contain b.) eo’s other vertex must be the one shared with eo−2

(eo−2 does not contain b, since eo was the first odd edge to contain b). Therefore, both of

eo’s vertices have already been seen along the cycle.

Similarly, let ee be the first even edge that contains an a. By the same reasoning, ee

must not introduce any new vertices.

All other edges ei such that i > 2 and ei 6= eo and ei 6= ee introduce at most one new

vertex, since one must be shared with the edge ei−2. There are n− 4 such edges.

Counting up all possibilities, the maximum number of distinct vertices is 4+(n− 4) =

n.

Theorem 4.1. 1-Endpoint-Crossing trees ⊆ 2-planar.
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Proof. Assume there existed an odd cycle in the crossings graph of a 1-Endpoint-Crossing

tree. The cycle has size at least 5 (by Lemma 2). There are at least as many edges as

vertices in the subgraph of the forest induced by the vertices used in the cycle (by Lemma

3). That implies the existence of a cycle in the original graph, contradicting that the original

graph was a tree.

Since there are no odd cycles in the crossings graph, the crossings graph of edges is

bipartite. Each side of the bipartite graph can be assigned to a page, such that no two edges

on the same page cross. Therefore, the original graph was 2-planar.

4.6.2 Linguistics: Cross-serial Verb Constructions and

Successive Cyclicity

Cross-serial verb constructions were used to provide evidence for the “non-context-freeness”

of natural language (Shieber, 1985). Cross-serial verb constructions with two verbs form

1-Endpoint-Crossing trees. Below is a cross-serial sentence from Swiss-German, from (1)

in Shieber (1985):

das mer em Hans es huus hälfed aastriiche
that we HansDAT the houseACC helped paint

The edges (that , helped), (helped ,we), and (helped ,Hans) are each only crossed by

an edge with an endpoint at paint; the edge (paint , house) is only crossed by edges with

an endpoint at helped. More generally, with a set of two cross serial verbs in a subordinate

clause, each verb should suffice as the crossing point for all edges incident to the other verb

that are crossed.

Cross-serial constructions with three or more verbs would have dependency trees that

violate 1-Endpoint-Crossing. Psycholinguistically, between two and three verbs is exactly

where there is a large change in the sentence processing abilities of human listeners (based
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What did say BA C ... Z ate t ?nsaid 1 said 2t1 t2

Figure 4.9: An example of wh-movement over a potentially unbounded number of clauses. The

edges between the heads of each clause cross the edges from trace to trace, but all obey 1-Endpoint-

Crossing.

on both grammatical judgments and scores on a comprehension task) (Bach, Brown, and

Marslen-Wilson, 1986).

More speculatively, there may be a connection between the form of 1-Endpoint-Crossing

trees and phases (roughly, propositional units such as clauses) in Minimalism (Chomsky,

1998). Figure 4.9 shows an example of wh-movement over a potentially unbounded num-

ber of clauses. The phase-impenetrability condition (PIC) states that only the head of the

phase and elements that have moved to its edge are accessible to the rest of the sentence

(Chomsky, 1998, p.22). Movement is therefore required to be successive cyclic, with a

moved element leaving a chain of traces at the edge of each clause on its way to its final

pronounced location (Chomsky, 1981). In Figure 4.9, notice that the crossing edges form

a repeated pattern that obeys the 1-Endpoint-Crossing property. More generally, we sus-

pect that trees satisfying the PIC will tend to also be 1-Endpoint-Crossing. Furthermore,

if the traces were not at the edge of each clause, and instead were positioned between a

head and one of its arguments, 1-Endpoint-Crossing would be violated. For example, if t2

in Figure 4.9 were between C and said2, then the edge (t1, t2) would cross (say, said1),

(said1, said2), and (C, said2), which do not all share an endpoint. An exploration of these

linguistic connections may be an interesting avenue for further research.

4.7 A Simplified Form

The exact form of the dynamic program for projective dependency parsing can vary, with

different forms using the same fundamental reasoning but leading to different constant
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x ji

Figure 4.10: An L sub-problem over [i, j] ∪ {x} with at least two edges between x and (i, j). k is

the vertex furthest from i connected to either x or i.

(i) If no edges like the dashed edge

exist: exk had to choose i as its cross-

ing point, so since no edges from i

cross into (k, j], [k, j] is an isolated in-

terval. The interval decomposes into

S[exk] + L[i, k, x] + Int[k, j]:

x k ji

(ii) If the dashed edge exist: eik

had to choose x as its crossing point,

so since no edges from x cross

into (k, j], [k, j] is an isolated inter-

val. The interval decomposes into

S[eik] + L[i, k, x] + Int[k, j]:

x k ji

factors (Eisner, 1996; Eisner and Satta, 1999). In a similar vein, we remark that the dy-

namic program in Section 4.5 can be simplified by eliminating all of the charts of types

N XFromI , N IFromX , N XFromJ , and N JFromX . These charts are used in two

places and are not essential in either: (i) constructing a L or R sub-problem and (ii) con-

structing an N sub-problem in which x receives its parent (bx = T ).

For L or R sub-problems, we remove the construction in Figure 4.6i (that uses variants

ofN sub-problems) and replace it with the constructions shown in Figures 4.10i and 4.10ii.

Construction when there is only one edge incident to the exterior point remains the same

(Figure 4.6ii).

For the N sub-problem in which exterior vertex x receives its parent, we note that any

edge incident to the exterior point is a valid split point since none of these edges can be

crossed inside the interval. Therefore, rather than choosing the vertex incident to x that is

furthest to one side, we could go ahead and choose x’s parent as our split point immediately.

These changes do not affect the asymptotic space or time, but reduce constant factors
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somewhat, which may be useful for an implementation. The next chapter takes this modi-

fied form as its starting point.

4.8 Conclusions

1-Endpoint-Crossing trees characterize over 95% of structures found in natural language

treebank, and can be parsed in only a factor of n more time than projective trees for an

edge-factored model. The next chapter examines parsing with 1-Endpoint-Crossing trees

with more complex models.

1-Endpoint-Crossing is a condition on edges, while properties such as well-nestedness

or block degree are framed in terms of subtrees. Three edges will always suffice as a

certificate of a 1-Endpoint-Crossing violation (two vertex-disjoint edges that both cross a

third). In contrast, for a property like ill-nestedness, two nodes might have a least common

ancestor arbitrarily far away, and so one might need the entire graph to verify whether the

sub-trees rooted at those nodes are disjoint and ill-nested. We have discussed cross-serial

dependencies; a further exploration of which linguistic phenomena would and would not

have 1-Endpoint-Crossing dependency trees may be revealing.
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Chapter 5

A Crossing-Sensitive Third-Order

Factorization for Dependency Parsing

Features over grandparents and siblings have greatly improved the accuracy of projective

parsers, but have so far required large increases in complexity when applied to arbores-

cences or mildly non-projective models. We introduce a “crossing-sensitive” generaliza-

tion of the third-order factorization of Koo and Collins (2010) that trades off complexity

in the model structure (i.e. scoring with features over pairs and triples of edges) with

complexity in the output structure (i.e. producing crossing edges). When applied to a

projective tree, the crossing-sensitive factorization exactly simplifies to Koo and Collins’

Grand-Sibling model. Under this model, the optimal 1-Endpoint-Crossing tree (Chapter

4) can be found in O(n4) time, matching the asymptotic run-time of both the third-order

projective parser and the edge-factored 1-Endpoint-Crossing parser. The crossing-sensitive

third-order parser is significantly more accurate than the third-order projective parser under

many experimental settings and significantly less accurate on none. Besides the asymptotic

guarantees, the cost of running the crossing-sensitive third-order parser is low in practice,

running at 0.37-0.47 times the speed of the third-order projective parser.
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5.1 Introduction

Incorporating features with wider scope than single edges greatly improves the accuracy of

projective parsers (McDonald and Pereira, 2006; Carreras, 2007; Koo and Collins, 2010).

The third-order parser of Koo and Collins (2010) (named as such because it includes fea-

tures over triples of edges connecting a grandparent, parent, and two siblings) has a run-

time of O(n4), just one factor of n more expensive than the edge-factored model of Eisner

(2000).

Incorporating these richer features and producing trees with crossing edges has been

a challenge, however. For arborescences, including grandparent and/or sibling features is

NP-hard (McDonald and Pereira, 2006; McDonald and Satta, 2007); for various definitions

of mildly non-projective trees, even edge-factored versions are expensive and their exten-

sions even more so. For example, even an edge-factored model takes O(n7) for parsing

well-nested trees with block degree at most two (Gómez-Rodrı́guez et al., 2011); while an

edge-factored model for 1-Endpoint-Crossing trees has an O(n4) parsing algorithm (Chap-

ter 4), a straight-forward approach to including grandparent features would raise the run-

time to O(n7) (Section 5.2.2).

The third-order projective parser of Koo and Collins (2010) and the edge-factored 1-

Endpoint-Crossing parser described in Chapter 4 have some similarities: both use O(n4)

time and O(n3) space, using sub-problems over intervals with one exterior vertex, which

are constructed using one free split point.

The two parsers differ in how the exterior vertex is used: Koo and Collins (2010) use

the exterior vertex to store a grandparent index, while Chapter 4 uses the exterior vertex to

introduce crossed edges between the point and the interval.

Here we propose merging the two to achieve the best of both worlds – producing the

best tree in the wider range of 1-Endpoint-Crossing trees while incorporating the iden-

tity of the grandparent and/or sibling of the child in the score of an edge whenever the

local neighborhood of the edge is projective. The crossing-sensitive grandparent-sibling

1-Endpoint-Crossing parser proposed here takes O(n4) time, matching the runtime of both
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Projective 1-Endpoint-Crossing

Edge
O(n3) O(n4)

Eisner (2000) Chapter 4

CS-GSib
O(n4) O(n4)

Koo and Collins (2010) This chapter

Table 5.1: Parsing time for various output spaces and model factorizations. CS-GSib refers to the

(crossing-sensitive) grand-sibling factorization described in this chapter.

the third-order projective parser and of the edge-factored 1-Endpoint-Crossing parser (see

Table 5.1).

Section 5.2 introduces some notation, reviews the grandparent-sibling factorization and

parsing algorithm of Koo and Collins (2010) as well as the edge-factored 1-Endpoint-

Crossing algorithm of Chapter 4, and discusses a naı̈ve approach to applying the Grand-Sib

factorization directly to 1-Endpoint-Crossing trees. The proposed crossing-sensitive factor-

ization is defined in Section 5.3. The main technical difficulty for the parsing algorithm is

showing that grandparent and/or sibling factors are used if and only if no crossings oc-

cur in the local neighborhood (Section 5.4). The implemented parser is significantly more

accurate than the third-order projective parser in a variety of languages and treebank repre-

sentations (Section 5.5).

5.2 Preliminaries

For any particular input sentence x, x = w1 w2 ... wn, let YProj (x) be the set of projective

trees over the set of vertices in the sequence {w0, w1, w2, ..., wn} (where w0 is the root

node) and let Y1−EC be the set of 1-Endpoint-Crossing trees over the same. Note that both

YProj (x) and Y1−EC (x) are exponentially large in n, the length of the sentence, and that

YProj (x) ⊂ Y1−EC (x).

To avoid confusion between open intervals and edges, ~eij denotes the directed edge
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from i to j (i.e. i is the parent of j) and (i, j) denotes the set of vertices in the open interval

between i and j.

In all of the models described in this chapter, the score of a tree decomposes into

the sum of scores of its edges. However, the various models differ in both the set of

trees they search over (YProj (x) or Y1−EC (x)) and in the amount of context they use to

score an edge. The score for an edge ~ehm always depends on at least its endpoints (i.e.,

Score(Edge(h,m)) over the parent h and the child m), and may also depend on whether

~ehm is crossed (Score(CrossedEdge(h,m))) or uncrossed (Score(Edge(h,m))); on g: the

parent of h (Score(Grand(g, h,m))); s: the sibling of m inner to it (Score(Sib(h,m, s)));

or both g and s (Score(GrandSib(g, h,m, s))).

5.2.1 Grand-Sibling Projective Parsing

The grand-sibling projective parser of Koo and Collins (2010) produces the highest-scoring

tree in YProj (x) with each edge ~ehm in the tree scored under the grandparent-sibling model

(Score(GrandSib(g, h,m, s))). The parser accomplishes this by adding an external grand-

parent index to each of the sub-problems used in the sibling factorization (McDonald and

Pereira, 2006). Figure 6 in Koo and Collins (2010) provided a pictorial view of the algo-

rithm; for convenience, we replicate it here in Figure 5.1.

The definitions of these sub-problems are as follows:

TriG[h,e,g] (Figure 5.1a): Maximum scoring projective tree over vertices [h, e] rooted at

h, with g the implied parent of h used to score edges from h to h’s children; vertices in

(h, e] have no edges to vertices /∈ [h, e]

TrapG[h,m,g] (Figure 5.1b): Maximum scoring projective tree over vertices [h,m] rooted

at h that includes the edge ~ehm, with g the implied parent of h used to score edges from h

to h’s children; vertices in (h,m) have no edges to vertices /∈ [h,m]

BoxG[s,m,h] (Figure 5.1c): Maximum scoring pair of projective trees over vertices [s,m],

with one tree rooted at s and the other at m, with h the implied parent of both m and s;

vertices in (s,m) have no edges to vertices /∈ [s,m]
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g h e

=

g h m

+

h m e

(a) m is the child of h that e is descended from

g h

=

g h

+

hm ss m

(b) The edge ~ehm is added to the tree; s is m’s adjacent inner sibling

= +

hm h s r+1r msh

(c) r is s’s outermost descendant; r + 1 is m’s innermost descendant

Figure 5.1: Algorithm for grand-sibling projective parsing; figures are replications of those in Figure

6 in Koo and Collins (2010).

An edge ~ehm is added to the tree in the “trapezoid” step (Figure 5.1b); this allows the

edge to be scored conditioned on m’s grandparent (g) and its adjacent inner sibling (s), as

all four relevant indices are accessible. The algorithm uses the external grandparent index

to score edges from the sub-problem root(s) to its children within the sub-problem. Even

though there are two interval endpoints, only one grandparent index is necessary — for the

“trapezoid” and “box” sub-problems, the parent of both interval endpoints is determined;

for the “triangle”, the non-root interval endpoint is forbidden to have any children outside

of the interval, so its parent (within the interval) may be safely forgotten.

5.2.2 Edge-factored 1-Endpoint-Crossing Parsing

The edge-factored 1-Endpoint-Crossing parser of Chapter 4 produces the highest scoring

tree in Y1−EC with each edge ~ehm scored according to Score(Edge(h,m)). The 1-Endpoint-

Crossing property allows the tree to be built up in edge-disjoint pieces each consisting of

intervals with one exterior point that has edges into the interval. For example, the tree in

Figure 5.2 would be built up with the sub-problems shown in Figure 5.3.

To ensure that crossings within a sub-problem are consistent with the crossings that
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happen as a result of combination steps, the algorithm uses four different “types” of sub-

problems, indicating whether the edges incident to the exterior point may be internally

crossed by edges incident to the left interval boundary point (L), right boundary point (R),

either (LR), or neither (N ). In Figure 5.3, the sub-problem over [*, do] ∪ {favor} would

be of type R, and [favor, ?] ∪ {do} of type L. In the figure, the same set of edges over

[favor, ?] ∪ {do} could also have been a valid type R problem, and indeed that version

would be used if those edges were instead combining with a sub-problem that had ? (the

Right endpoint) as its external vertex.

* Which cars do Americans
0 1 2 3 4

?daysfavor most these
98765

Figure 5.2: (Repeats Figure 4.5a) A 1-Endpoint-Crossing non-projective English sentence from the

WSJ Penn Treebank (Marcus et al., 1993), converted to dependencies with PennConverter (Johans-

son and Nugues, 2007).

do Americans favor

do ?daysfavor most these

* do

* Which cars do favor

Figure 5.3: (Repeats Figure 4.5b) The sentence in Figure 5.2 is constructed using intervals with one

exterior vertex to include the crossed edges (Chapter 4).
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Naı̈ve Approach to Including Grandparent Features

The example in Figure 5.2 illustrates the difficulty of incorporating grandparents into 1-

Endpoint-Crossing parsing. The vertex favor has a parent or child in all three of the sub-

problems (taking on the role of the exterior point, the right interval boundary point, and the

left interval boundary point in turn). favor gets its parent (do) from exactly one of these

sub-problems (in this case, the middle one). While in this example the parent happened to

also be a boundary point, the parent could have been anywhere in the interval. In order to

use grandparent scoring for the edges from favor to favor’s children in the other two sub-

problems, we would need to augment the problems with the grandparent index do. We also

must add the parent index do to the middle sub-problem to ensure consistency (i.e., that

do is in fact the parent assigned). Thus, a first attempt to include grandparent features into

1-Endpoint-Crossing tree raises the runtime from O(n4) to O(n7) (all of the four indices

need a “predicted parent” additional index; at least one edge is always implied so one of

the “predicted parent” indices can be dropped).

5.3 Crossing-Sensitive Factorization

Factorizations for projective dependency parsing have often been designed to allow effi-

cient parsing. For example, the algorithms in Eisner (2000) and McDonald and Pereira

(2006) achieve their efficiency by assuming that children to the left of the parent and to

the right of the parent are independent of each other. The algorithms of Carreras (2007)

and Model 2 in Koo and Collins (2010) include grandparents for only the outermost grand-

children of each parent for efficiency reasons.

In a similar spirit, we avoid the blow-up in parent indices described in Section 5.2.2

by introducing a variant of the Grand-Sib factorization that scores crossed edges inde-

pendently (as a CrossedEdge part) and uncrossed edges under either a grandparent-sibling,

grandparent, sibling, or edge-factored model depending on whether relevant edges in its lo-

cal neighborhood are crossed (see Table 5.2). Whether the part includes the sibling depends
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Local Neighborhood Crossings Crossed(~ehs) ¬Crossed(~ehs)

¬GProj (~ehm) Edge(h,m) Sib(h,m, s)

GProj (~ehm) Grand(g, h,m) GrandSib(g, h,m, s)

Table 5.2: Part type for an uncrossed edge ~ehm for the crossing-sensitive third-order factorization

(g is m’s grandparent; s is m’s inner sibling).

on whether the edge ~ehs from the parent to the sibling is crossed. GProj (~ehm) (Definition

13) determines whether ~ehm’s local neighborhood is sufficiently projective to include the

grandparent in the part.

Our parser will find the optimal 1-Endpoint-Crossing tree under this new factorization,

solving the optimization problem below:

argmax
y∈Y1−EC

∑
g,h,m,s |
~egh∈y,
~ehm∈y,

Sib(m,s)∈y

Score(Part(g, h,m, s)) (5.1)

Part(g, h,m, s) =

GrandSib(g, h,m, s) : ¬Crossed(~ehm) ∧GProj (~ehm) ∧ ¬Crossed(~ehs)

Grand(g, h,m) : ¬Crossed(~ehm) ∧GProj (~ehm) ∧ Crossed(~ehs)

Sib(h,m, s) : ¬Crossed(~ehm) ∧ ¬GProj (~ehm) ∧ ¬Crossed(~ehs)

Edge(h,m) : ¬Crossed(~ehm) ∧ ¬GProj (~ehm) ∧ Crossed(~ehs)

CrossedEdge(h,m) : Crossed(~ehm))

A fully projective tree would decompose into exclusively GrandSib parts (as all edges

would be uncrossed and GProj ). As all projective trees are within the 1-Endpoint-Crossing

search space, the optimization problem above includes all projective trees scored with

grand-sibling features everywhere. Projective parsing with grand-sibling scores can be

seen as a special case, as the crossing-sensitive 1-Endpoint-Crossing parser can simulate a

grand-sibling projective parser by setting all Crossed(h,m) scores to −∞.

This factorization allows the parser to learn different weight functions for crossed and

uncrossed edges. Adding variables that indicate non-projectivity of edges into an integer
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e1 e2i1i2i3 hge3 e4

Figure 5.4: The exterior children are numbered first beginning on the side closest to the parent, then

the side closest to the grandparent. There must be a path from the root to g, so the edges from h to

its exterior children on the far side of g are guaranteed to be crossed.

linear programming formulation of dependency parsing has previously been found to im-

prove a parser’s accuracy (Martins et al., 2009).

To define GProj , we first need a few auxiliary definitions:

Definition 11. Consider any edge ~egh in a given tree y. We can partition h’s children

into two disjoint sets: Interiorg(h), and Exteriorg(h). Interior g(h) consists of those

children of h that lie between g and h (in the linear order of words in the sentence).

Exterior g(h) consists of the complementary set of children.

For each parent h, grandparent g, and subset Interior g(h) and Exterior g(h), we enu-

merate the children in each subset in the following order: for Interior g(h) the vertices are

numbered from closest to h through furthest from h; for Exterior g(h), we first number the

vertices on the side closest to h from closest to h through furthest, then wrap around to

include the vertices on the side closest to g. Figure 5.4 shows a parent h, its grandparent g,

and a possible sequence of three interior and four exterior children.

Note that for a projective tree, there would not be any children on the far side of g.

Definition 12. Outer(m) is the set of siblings to m that are in the same subset of children

and are later in the enumeration than m is.

For example, in the tree in Figure 5.2, Outer(most) = {days, cars}.

Definition 13. An uncrossed edge ~ehm is GProj if both of the following hold:

1. The edge ~egh from the parent of h to h is not crossed

2. None of the edges from h to Outer(m) (m’s outer siblings) are crossed
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CrossedEdge(*,do) Sib(cars, Which, -)

CrossedEdge(favor,cars) Sib(do, Americans, -)

Sib(do, favor, Americans) CrossedEdge(do,?)

Sib(favor, most, -) Sib(favor, days, most)

GSib(favor, days, these, -)

Table 5.3: Decomposing Figure 5.2 according to the crossing-sensitive third-order factorization

described in Section 5.3. Null inner siblings are indicated with -.

In Figure 5.2, the edge from do to Americans is not GProj because Condition (1) is

violated, while the edge from favor to most is not GProj because Condition (2) is violated.

Table 5.3 lists the parts in the tree in Figure 5.2 according to this crossing-sensitive third-

order factorization.

This definition eliminates the problematic grandparent cases discussed in Section 5.2.2,

assuming that (1) for any sub-problem with an exterior point, all edges incident to the

exterior point are crossed and (2) there exists at least one such edge (Section 5.4.1 will

discuss how these assumptions are enforced).

Consider again the problematic case of the vertex favor in Figure 5.2, with children in

both [*, do] ∪ {favor} and [favor, ?] ∪ {do}. Under a standard grandparent-sibling factor-

ization, all three sub-problems would have needed an additional index noting the parent

of favor. Under the crossing-sensitive grandparent-sibling factorization, the sub-problem

[*, do]∪{favor} now no longer needs this grandparent index, as all edges from favor to the

interval are guaranteed to be crossed and thus scored independently.

Since the parent of favor is found in [do, favor], all children of favor in (favor, ?] are

Exterior children. There must exist at least one child of favor in [*, do] ∪ {favor} (As-

sumption 2) and the edge to such a child must be crossed (Assumption 1). This child is on

the opposite side of favor’s parent, and so would be an Outer sibling to all of the children

of favor in (favor, ?] (by “wrapping around”). Therefore all of the edges from favor to

children in (favor, ?] would violate Condition (2) and be ¬GProj , avoiding the need for a

grandparent index.
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Finally, since no children outside [do, favor] will need to know favor’s parent, the mid-

dle sub-problem does not need to add a grandparent index for consistency reasons.

This section described the crossing-sensitive third-order factorization. The next section

describes the parsing algorithm that finds the optimal 1-Endpoint-Crossing tree according

to this factorization.

5.4 Parsing Overview

The GrandSib-Crossing parser finds the maximum scoring tree according to Expression 5.1

with a dynamic programming procedure reminiscent of Koo and Collins (2010) (for scoring

projective portions of the tree with grandparent and/or sibling features) and of Chapter

4 (for including crossed edges). The parser also uses additional novel sub-problems for

transitioning between the projective and non-projective portions of a tree.

Optimizing Expression 5.1 presents two technical difficulties:

1. The parser must know whether an edge is crossed when it is added

2. When adding an uncrossed edge, the parser must use the appropriate part for scoring

according to whether other edges are crossed (Table 5.2).

Difficulty 1 is solved by adding crossed and uncrossed edges to the tree in distinct

sub-problems (Section 5.4.1). Difficulty 2 is solved by producing different versions of

subtrees over the same sets of vertices, both with and without a grandparent index, which

differ in their assumptions about the tree outside of that set (Section 5.4.2). Section 5.4.3

contains the main statements of results. The list of all sub-problems and their corresponding

invariants is given in Appendix B and the full dynamic program is in Appendix C.

5.4.1 Enforcing Crossing Edges

The parser adds crossed and uncrossed edges in distinct portions of the dynamic program.

Uncrossed edges are added only through trapezoid sub-problems (that may or may not
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have an additional grandparent index), while crossed edges are added in non-trapezoid

sub-problems.

To add all uncrossed edges in trapezoid sub-problems, we (a) enforce that any edge

added anywhere else must be crossed, and (b) introduce transitional sub-problems in order

to build trapezoids when the edge ~ehm is not crossed, but the edge to its inner sibling ~ehs is

(and so the construction step shown in Figure 5.1b cannot be used).

Crossing Conditions

The parsing algorithm in Chapter 4 included crossing edges by using “crossing region” sub-

problems over intervals with an external vertex that optionally contained edges between

the interval and the external vertex. An uncrossed edge could then be derived in multiple

ways — either from a derivation that prohibited it from being crossed or from a derivation

which allowed (but did not force) it to be crossed. The Crossing Conditions (Definition 15)

remove this ambiguity and force the exterior point in a crossing region to be used only for

crossed edges. Edges between the exterior point and the interior of the interval are now

always crossed; edges to the interval boundary points are either guaranteed to be crossed

or prohibited.

Each crossing region of Chapter 4 has a signature of type[i, j, x, bi, bj, bx]. i, j, and

x are in [0, n] and indicate that the sub-problem is over vertices [i, j] ∪ {x}; type ∈

{L,R, LR,N} and indicates whether i and/or j can be the crossing point for edges be-

tween x and (i, j); bi, bj , and bx are booleans indicating whether i, j, or x, respectively,

receives its incoming edge from its parent within this sub-problem. This signature is used

to divide the interval vertices [i, j] into those that can be directly connected by an edge to

x in this sub-problem (and such an edge is guaranteed to be crossed) and those that cannot

be directly connected to x.

Definition 14. VCross(i , j , bi , bj , type) is the interval of vertices that are neither roots

nor crossing points of the sub-problem. All internal vertices in (i, j) are never roots nor

crossing points, yielding four possible cases that vary in whether the boundary vertices i
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and/or j are included. In particular:

VCross(i , j , bi , bj , type) =

(i, j) : type = LR ∨

 (type = L ∨ bi = F )

∧(type = R ∨ bj = F ))


[i, j) : bi = T ∧ (type = R ∨ (type = N ∧ bj = F ))

(i, j] : bj = T ∧ (type = L ∨ (type = N ∧ bi = F ))

[i, j] : type = N ∧ bi = T ∧ bj = T

The Crossing Conditions (Definition 15) are enforced by construction, and taken to-

gether ensure that whenever a crossing region is used, edges between the exterior point

and the interval are crossed. For example, by requiring at least one edge between do and

(favor, ?] and also between favor and (*, do), the edges in the two sets are guaranteed to

cross each other.

Definition 15. The Crossing Conditions of a crossing region type[i, j, x, bi, bj, bx] are:

• All edges in the sub-problem incident to x have the other endpoint of the edge in

VCross(i , j , bi , bj , type)

• There exists at least one edge between x and VCross(i , j , bi , bj , type)

• All edges between x and vertices in VCross(i , j , bi , bj , type) will be crossed by an

edge outside of the sub-problem.

Consider again the decomposition in Figure 5.3. Vertices do and favor co-occur in

each of the three sub-problems, but now the uncrossed edge from do to favor is prohibited

from being added in [*, do] ∪ {favor} or [favor, ?] ∪ {do}. Consider the L sub-problem

over [favor, ?] ∪ {do} (dashed edges). The Crossing Conditions for this sub-problem are

satisfied: do only has edges to vertices in (favor, ?] (the only edge incident to do is to ? and

? ∈ (favor, ?]), there exists at least one edge between do and (favor, ?], and the edge from

do to ? is crossed by an edge outside the sub-problem (the edge from favor to cars). At
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least one edge like the one from favor to cars that crosses the edge from do to ? must exist,

because the same set of Crossing Conditions also apply to the dotted edge sub-problem of

type R over [*, do] ∪ {favor}, requiring an edge between favor and (*, do).

Trapezoids with Edge to Inner Sibling Crossed

To add all uncrossed edges in trapezoid-style sub-problems, we must be able to construct

a trapezoid over vertices [h,m] whenever the edge ~ehm is not crossed. The construction

used in Koo and Collins (2010), repeated graphically in Figure 5.5a, cannot be used if the

edge ~ehs is crossed, as there would then exist edges between (h, s) and (s,m), making s an

invalid split point. We therefore add some “transitional glue” to allow alternative ways to

construct the trapezoid over [h,m] when ~ehm is not crossed but the edge ~ehs to m’s inner

sibling is.

g h

=

g h

+

hm ss m

(a) Case 1: Edge from h to inner sibling s is not crossed (repeats Figure 5.1b)

g h

=

hm mh

+

ee−1

(b) Case 2: ~ehs is crossed, but the chain of crossing edges involving ~ehs does not include any

descendants of m. e is m’s descendant furthest from m within (h,m). s ∈ (h, e− 1).

h m

+

d
=

mg h h d

(c) Case 3: ~ehs is crossed, and the chain of crossing edges involving ~ehs includes descendants of m.

Of m’s descendants that are incident to edges in the chain, d is the one closest to m (d can be m

itself). s ∈ (h, d).

Figure 5.5: Ways to build a trapezoid when the edge ~ehs to m’s inner sibling may be crossed

The two additional ways of building trapezoids are shown graphically in Figures 5.5b

and 5.5c. Consider the “chain of crossing edges” that includes the edge ~ehs. If none of
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= +

h s k s k

+

s k dh d

di k

x i d di k

= +

k k

+

x i

x i d

= +

k k

+

x idx i

= +

i d x i d

Figure 5.6: Constructing a chain of crossing edges

these edges are in the subtree rooted at m, then we can build the tree involving m and its

inner descendants separately (Figure 5.5b) from the rest of the tree rooted at h. [h, e− 1] is

now an interval with the furthest edge incident to h (~ehs) crossed: these intervals are parsed

choosing s and the crossing point of ~ehs simultaneously (see Figure 4.4 in Chapter 4 for

details).

Otherwise, the sub-tree rooted at m is involved in the chain of crossing edges (Figure

5.5c). The chain of crossing edges between h and d (m’s descendant, which may be m

itself) is built up first (Figure 5.6, discussed below), then concatenated with the triangle

rooted at m containing m’s inner descendants not involved in the chain (Figure 5.5c).

Chains of crossing edges are constructed using a combination of existing sub-problems

from Chapter 4 and some additional specialized versions.

If an edge incident to d crosses ~ehs directly, then the chain can be constructed with a

few crossing region sub-problems, with the exact form varying depending on the choices

of crossing points for the two edges in question.

Otherwise there are at least two internal edges connecting ~ehs and an edge incident

to d in this chain. The chain construction is shown pictorially in Figure 5.6. The chain is

constructed from one side to the other, repeatedly applying two specialized types of L items

that require an edge incident to the left endpoint to cross the edge from the exterior point,
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h d m

+

h d m h me

=

h s m h s d

=

d e

+

Figure 5.7: Constructing a box when edges in m and s’s subtrees cross each other

and require this chain to extend all the way to the right endpoint. The chain alternates

between adding an edge from the interval to the exterior point (right-to-left) or from the

exterior point to the interval (left-to-right). The boundary edges of the chain can be crossed

more times without violating the 1-Endpoint-Crossing property, and so the beginning and

end of the chain can be unrestricted crossing regions.

These specialized chain sub-problems are also used to construct boxes (Figure 5.1c)

over [s,m] with shared parent h when neither edge ~ehs nor ~ehm is crossed, but the subtrees

rooted at m and at s cross each other. The alternate way to construct a box is shown in

Figure 5.7.

Lemma 4. The GrandSib-Crossing parser adds all uncrossed edges and only uncrossed

edges in a tree in a “trapezoid” sub-problem.

The only part is easy: when a trapezoid is built over an interval [h,m], all edges are

internal to the interval, so no earlier edges could cross ~ehm. After the trapezoid is built,

only the interval endpoints h and m are accessible for the rest of the dynamic program,

and so an edge between a vertex in (h,m) and a vertex /∈ [h,m] can never be added.

The Crossing Conditions ensure that every edge added in a non-trapezoid sub-problem is

crossed.

Lemma 5. The GrandSib-Crossing parser considers all 1-Endpoint-Crossing trees and

only 1-Endpoint-Crossing trees.

All trees that could have been built in Pitler et al. (2013) are still possible. It can be

verified that the additional sub-problems added all obey the 1-Endpoint-Crossing property.
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5.4.2 Reduced Context in Presence of Crossings

A crossed edge (added in a non-trapezoid sub-problem) is scored as a CrossedEdge part.

An uncrossed edge added in a trapezoid sub-problem, however, may need to be scored

according to a GrandSib, Grand, Sib, or Edge part, depending on whether the relevant

other edges are crossed. In this section we show that sibling and grandparent features are

included in the GrandSib-Crossing parser as specified by Table 5.2.

Sibling Features

Lemma 6. The GrandSib-Crossing parser scores an uncrossed edge ~ehm with a Sib or

GrandSib part if and only if ~ehs is not crossed.

Proof. Whether the edge to an uncrossed edge’s inner sibling is crossed is known bottom-

up through how the trapezoid is constructed, since the inner sibling is internal to the sub-

problem. When ~ehs is not crossed, the trapezoid is constructed as in Figure 5.1b, using the

inner sibling as the free index split point. When the edge is not ~ehs is crossed, the trapezoid

is constructed as in Figure 5.5b or 5.5c; note that both ways force the edge to the inner

sibling to be crossed.

Grandparent Features for GProj Edges

Koo and Collins (2010) include an external grandparent index for each of the sub-problems

that the edges within use for scoring. We want to avoid adding such an external grandparent

index to any of the crossing region sub-problems (to stay within the desired time and space

constraints) or to interval sub-problems when the external context would make all internal

edges ¬GProj . For each interval sub-problem, the parser constructs versions both with and

without a grandparent index (Figure 5.8). Which version is used depends on the external

context. In a bad context, all edges to children within an interval are guaranteed to be

¬GProj . We show that all boundary points in crossing regions are placed in bad contexts,

and then that edges are scored with grandparent features if and only if they are GProj .
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do favor most these days

(a) For good contexts

favor most these daysdo

(b) For bad contexts

Figure 5.8: For each of the interval sub-problems in Koo and Collins (2010), the parser constructs

versions with and without the additional grandparent index. Figure 5.8b is used if the edge from do

to favor is crossed, or if there are any crossed edges from favor to children to the left of do or to the

right of days. Otherwise, Figure 5.8a is used.

Bad Contexts for Interval Boundary Points For exterior vertex boundary points, all

edges from it to its children will be crossed (Definition 15), so it does not need a grandpar-

ent index.

Lemma 7. If a boundary point i’s parent (call it g) is within a sub-problem over vertices

[i, j] or [i, j] ∪ {x}, then for all uncrossed edges ~eim with m in the sub-problem, the tree

outside of the sub-problem is irrelevant to whether ~eim is GProj .

Proof. The sub-problem contains the edge ~egi, so Condition (1) is checked internally. m

cannot be x, since ~eim is uncrossed. If g is x, then ~eim is ¬GProj regardless of the outer

context. If both g and m ∈ (i, j]), then Outer(m) ⊆ (i, j]: If m is an interior child of i

(m ∈ (i, g)) then Outer(m) ⊆ (m, g) ⊆ (i, j]. Otherwise, m is an exterior child (m ∈

(g, j]) and so by the “wrapping around” definition of Outer , Outer(m) ⊆ (g,m) ⊆ (i, j].

Thus Condition (2) is also checked exclusively within the sub-problem.

We can therefore focus on interval boundary points that receive their parent outside of

the sub-problem.

Definition 16. The left boundary vertex of an interval [i, j] is in a bad context

(BadContext(i, j, L)) if i receives its parent (call it g) from outside of the sub-problem and

either of the following hold:

1. Grand-Edge Crossed: ~egi is crossed
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2. Outer-Child-Edge Crossed: An edge from i to a child of i outside of [i, j] and Outer

to j will be crossed (recall this includes children on the far side of g if g is to the left

of i)

BadContext(i, j, R) is defined symmetrically regarding j and j’s parent and children.

Corollary 1. If BadContext(i, j, L), then for all ~eim with m ∈ (i, j], ~eim is ¬GProj .

Similarly, if BadContext(i, j, R), for all ~ejm with m ∈ [i, j), ~ejm is ¬GProj .

No Grandparent Indices for Crossing Regions We would exceed our desired O(n4)

run-time if any crossing region sub-problems needed any grandparent indices. For all cross-

ing region sub-problems over [i, j]∪{x}, the dynamic program ensures BadContext(i, j, L)

if i gets its parent outside and BadContext(i, j, R) if j gets its parent outside. Recall the

example in Figure 5.3. For the crossing region over [*, do] ∪ {favor}, the left boundary

point is in a bad context because an outer child edge is crossed, while the right boundary

point is in a bad context because the grand-edge is crossed. Similarly for the crossing re-

gion over [favor, ?] ∪ {do}, the left boundary point is in a bad context because an outer

child edge is crossed, while the right boundary point gets its parent edge from within the

sub-problem. Similar reasoning holds for all other ways crossing regions can be combined

to construct an interval with its furthest edge crossed.

Crossing region sub-problems can also be combined to form larger crossing regions.

Split points for the L/R/N sub-problems by construction are incident to a crossed edge to a

further vertex. If the crossed edge is the edge from the split point’s parent to the split point,

then the grand-edge is crossed and so both sides are in a bad context. If the crossed edge

is from the split point to a child, then that child is Outer to all other children on the side in

which it does not get its parent (see Figure 5.9 for examples).

In Chapter 4, if an LR sub-problem had edges from the exterior point crossed by both

the left and the right boundary points, it was constructed by concatenating an L and an

R sub-problem. Since the split point wasn’t necessarily incident to a crossed edge, the

split point might have GProj edges to children on the side other than where it gets its
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x i k j

(a) Because k’s parent is in [i, k), x is Outer to all children of k in (k, j]

x i k j

(b) Because k’s parent is in (k, j], x is Outer to all children of k in [i, k)

Figure 5.9: The edge ~ekx is guaranteed to be crossed, so k is in a BadContext for whichever side it

does not get its parent from.

parent; accommodating this would add another factor of n to the running time and space

requirements to store the split point’s parent. To avoid this increase in running time, they

are instead built up as in Figure 5.10, which chooses the split point so that the edge from

the parent of the split point to it is crossed.

x k jx i j
= +

kix

Figure 5.10: For all split points k, the edge from k’s parent to k is crossed, so all edges from k to

children on either side were ¬GProj . The case when the split point’s parent is from the right is

symmetric.

Lemma 8. For all crossing region sub-problems [i, j] ∪ {x} with i’s parent /∈ [i, j] ∪ {x},

BadContext(i, j, L). Similarly, when j’s parent /∈ [i, j] ∪ {x}, BadContext(i, j, R).

Corollary 2. No grandparent indices are needed for any crossing region sub-problem.

Triangles and Trapezoids with and without Grandparent Indices The presentation

that follows assumes left-headed versions. Uncrossed edges are added in two distinct

types of trapezoids: (1) TrapG[h,m, g,L] with an external grandparent index g, scores

the edge ~ehm with grandparent features, and (2) Trap[h,m,L] without a grandparent in-

dex, scores the edge ~ehm without grandparent features. Triangles also have versions with
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(TriG[h, e, g,L] and without (Tri[h, e,L]) a grandparent index. We show below that all

GProj edges are added in TrapG sub-problems, and all¬GProj uncrossed edges are added

in Trap sub-problems.

Lemma 9. For all k ∈ (i, j), if BadContext(i, j, L), then BadContext(i, k, L). Similarly,

if BadContext(i, j, R), then BadContext(k, j, R).

Proof. BadContext(i, j, L) implies either the edge from i’s parent to i is crossed and/or an

edge from i to a child of i outer to j is crossed. If the edge from i’s parent to i is crossed,

that also implies BadContext(i, k, L). If a child of i is outer to j, then since k ∈ (i, j),

such a child is also outer to k.

Lemma 10. All left-rooted triangle sub-problems Tri[i, j,L] without a grandparent index

are in a BadContext(i, j, L). Similarly for all Tri[i, j,R], BadContext(i, j, R).

Proof. All triangles without grandparent indices are either placed immediately into a bad

context (either by adding a crossed edge to the triangle’s root from its parent, or by adding

a crossed edge from the root to an outer child) or are combined with other sub-trees to form

larger crossing regions (and therefore the triangle is in a bad context, using Lemmas 8 and

9).

Lemma 11. All triangle sub-problems with a grandparent index TriG[h, e, g,L] are placed

in a ¬BadContext(h, e, L). Similarly, TriG[e, h, g,R] are only placed in

¬BadContext(h, e, R).

Proof. We will consider where a triangle with a grandparent index TriG[h, e, g,L] can be

placed in the full dynamic program and what each step would imply about the rest of the

tree.

It can combine with a trapezoid to form another larger triangle (as in Figure 5.1a),

which forces both ~egh to not be crossed and h is never accessible again and so can have no

outer crossed children.
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It can combine with another adjacent triangle to form a box with a grandparent index,

which then combines with another trapezoid to form a larger trapezoid (Figure 5.1c fol-

lowed by 5.1b). Again ~egh is not crossed and h is now internal to the larger trapezoid and

so has no exterior children.

It can combine with a triangle (Figure 5.5b) or a chain of crossing edges (Figure 5.5c)

to form a trapezoid from g to h, so ~egh is not crossed and the other sub-problem had no

children of m.

Finally, it can be used to build a box with a grandparent index (Figure 5.7), combin-

ing with a chain of crossing edges which is then combined with another triangle with a

grandparent index to form a box with a grandparent index, which can then only form a

larger trapezoid. This last step enforces that ~egh cannot be crossed, and m is either an inner

child of h (and h has no more children in g’s direction by combining with the adjacent

sub-problems), or m is an outer child of h (in which case h is no longer accessible after

being absorbed into the interior of the trapezoid to its adjacent outer sibling).

Lemma 12. In a TriG[h, e, g,L] sub-problem, if an edge ~ehm is not crossed and no edges

from i to siblings of m in (m, e] are crossed, then ~ehm is GProj .

Proof. This follows from (1) the edge ~ehm is not crossed, (2) the edge ~egh is not crossed by

Lemma 11, and (3) no outer siblings are crossed (outer siblings in (m, e] are not crossed by

assumption and siblings outer to e are not crossed by Lemma 11).

Lemma 13. An uncrossed edge ~ehm scored with a GrandSib or Grand part (added through

a TrapG[h,m, g, L] or TrapG[m,h, g, R] sub-problem) is GProj .

Proof. A TrapG can be placed in only one of two places: (1) combining with descendants

of m to form a triangle with a grandparent index rooted at h (indicating that m is the

outermost inner child of h) or (2) combining with descendants of m and of m’s adjacent

outer sibling (call it o), forming a trapezoid from h to o (indicating that ~eho is not crossed).

Such a trapezoid could again only be combined with further uncrossed outer siblings until

the final triangle rooted at hwith grandparent index g is built, indicating that h has collected
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all its children to that side. As ~ehm was not crossed, no edges from h to outer siblings within

the triangle are crossed, and ~ehm is within a TriG sub-problem, ~ehm is GProj by Lemma

12.

Lemma 14. An uncrossed edge ~ehm scored with a Sib or Edge part (added through a

Trap[h,m,L] or Trap[m, h,L] sub-problem) is ¬GProj .

Proof. A Trap can only (1) form a triangle without a grandparent index, or (2) form a

trapezoid to an outer sibling of m, until eventually a final triangle rooted at h without a

grandparent index is built. This triangle without a grandparent index is then placed in a bad

context (Lemma 10) and so ~ehm is ¬GProj (Corollary 1).

5.4.3 Summary

Lemma 15. The algorithm for the GrandSib-Crossing parser runs in O(n4) time and

O(n3) space.

Proof. All sub-problems are either over intervals (two indices), intervals with a grandparent

index (three indices), or crossing regions (three indices). No crossing regions require any

grandparent indices (Corollary 2). The only sub-problems that require a maximization over

two internal split points are over intervals and need no grandparent indices (as the furthest

edges from each root are guaranteed to be crossed within the sub-problem).

Theorem 4.2. The GrandSib-Crossing parser correctly finds the maximum scoring 1-Endpoint-

Crossing tree according to the crossing-sensitive third-order factorization (Expression 5.1)

in O(n4) time and O(n3) space.

Proof. The correctness of scoring follows from Lemmas 6, 13, and 14. The search space of

1-Endpoint-Crossing trees was in Lemma 5 and the time and space complexity described

in Lemma 15.
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like   cats   and   dogs

(a) Prague style

like   cats   and   dogs

(b) Mel’čukian style

like   cats   and   dogs

(c) Stanford style

Figure 5.11: Different representations for the conjunction in the phrase “like cats and dogs”.

5.5 Experiments

The crossing-sensitive third-order parser was implemented as an alternative parsing algo-

rithm within dpo3, the third-order parsing implementation of Koo and Collins (2010)1.

In Chapter 2, we saw how the accuracy of parsers with various factorizations was im-

pacted by how conjunctions were represented in treebanks. The treebanks used to prepare

the CoNLL shared task data vary widely in their conventions for representing conjunc-

tions, modal verbs, determiners, and other decisions (Zeman et al., 2012). Our experiments

use the newly released HamleDT software (Zeman et al., 2012) that normalizes these tree-

banks into one standard format and also provides built-in transformations to other widely

used conjunction styles. The relative proportions of 1-Endpoint-Crossing and projective

trees are similar to the unnormalized case (see Table A.1 in Appendix A).

The three conjunction styles we experiment with are the default Prague style (Böhmová,

Hajič, Hajičová, and Hladká, 2001, Figure 5.11a), Mel’čukian style (Mel’čuk, 1988, Figure

5.11b), and Stanford style (De Marneffe and Manning, 2008, Figure 5.11c). Examining

Figure 5.11, we see that under our grandparent-sibling factorization, cats and dogs would

never appear in the same scope for the Prague style (as they are siblings on different sides

of the head and). As in Chapter 2, cats, and, and dogs do appear together in a grandparent

relationship in the Mel’čukian style and in a sibling relationship in the Stanford style. We

would therefore expect to see larger gains for including grandparents and siblings under

the latter two representations.

The experiments also include a nearly projective dataset, the English Penn Treebank

1http://groups.csail.mit.edu/nlp/dpo3/
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(Marcus et al., 1993), converted to dependencies with PennConverter (Johansson and Nugues,

2007). Table 5.4 gives the number of sentences in each of the training and test sets used.

We use marginal-based pruning based on an edge-factored arborescence model (Mc-

Donald et al., 2005b). For each word, we limit its set of potential parents to those with a

marginal probability of at least .1 times the probability of the most probable parent, and cut

off this list at a maximum of 20 potential parents per word. To ensure that there is always

at least one projective and/or 1-Endpoint-Crossing tree achievable, we always include the

artificial root as an option. Note that since we have limited the number of parents per word

to a constant k (20), since each step of our parsing algorithm always includes at least one

edge, the top-down implementation runs in O(kn3).

Following standard practice, English results use automatically produced part-of-speech

tags and results exclude punctuation, while the results for all other languages use gold part-

of-speech tags and include punctuation. Following Carreras (2007) and Koo and Collins

(2010), before training we transform the training set trees to be the best achievable within

the model class (i.e., the closest projective tree or 1-Endpoint-Crossing tree). We train

all models for five iterations of averaged structured perceptron training. For English, we

use the model after the iteration that performs best on the development set; for all other

languages, we simply take the model produced after the fifth iteration.

Dutch Czech Portuguese Danish Swedish English

Training 13349 25364 9071 5190 11042 39832

Testing 386 286 288 322 389 2416

Table 5.4: Number of sentences in the datasets

5.5.1 Results

Results for edge-factored and (crossing-sensitive) grandparent-sibling factored models for

both projective and 1-Endpoint-Crossing parsing are in Tables 5.5 and 5.6. In 14 out of the

16 experimental set-ups, the third-order 1-Endpoint-Crossing parser is more accurate than
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the third-order projective parser. It is significantly better than the projective parser in 9 of

the set-ups and significantly worse in none.

Impact of Data Representation

For the datasets using Mel’čukian and Stanford style conjunctions, the third-order 1-EC

parser is always more accurate than the edge-factored 1-EC model. With Prague style

conjunctions, the edge-factored model is more accurate for two of the five languages. Con-

junctions are one of the main examples for which the independence assumptions implied by

an edge-factored model are most strongly violated, and so the grandparent-sibling model’s

inability to include both conjuncts in the same scope for the Prague-style conjunctions

negates much of the expected benefit of the grandparent-sibling factorization.

The most significant benefit from incorporating grandparent-sibling features into the 1-

Endpoint-Crossing parser occurs with Stanford-style conjunctions. Unlike the GSib model,

in which all edges receive grandparent and sibling contexts, in the CS-GSib an edge may

lose access to its grandparent and/or sibling based on the pattern of crossing edges in its

local neighborhood. With Mel’čukian style conjunctions, it might be more detrimental to

lose access to the grandparent, while with Stanford style conjunctions, it might be worse to

lose access to the adjacent sibling.

Table 5.7 shows how often each of the GrandSib, Grand, Sib, Edge, and CrossedEdge

parts would have been used when the 1-EC CS-GSib parser was producing the trees for

the Mel’čukian and Stanford style test sets. In both representations, the parser is able to

score with a sibling context more often than it is able to score with a grandparent, perhaps

explaining why the datasets using the Stanford conjunction representation saw the largest

gains from including the higher order factors into the 1-Endpoint-Crossing parser.

Speed

While the asymptotic times of the projective and 1-Endpoint-Crossing third order parsers

match exactly (O(n4) for an unpruned model and O(kn3) with pruning), one may wonder
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how large the hidden constants are in practice.

Table 5.8 shows the parsing speed of the trained parsers when parsing the Stanford-

style data sets.2 The third-order 1-Endpoint-Crossing parser runs only a small constant

times slower than the third-order projective parser, running at a relative speed of .37-.47

times the speed of the third-order projective parser.

2Parsing speed is correlated with the amount of pruning. The level of pruning mentioned earlier is rela-

tively permissive, retaining 39.0-60.7% of the edges in the complete graph; a higher level of pruning could

likely achieve much faster parsing times with the same underlying parsing algorithms.
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Model Dutch Czech Portuguese Danish Swedish

Prague

Proj GSib 80.45 85.12 88.85 88.17 85.50

Proj Edge 80.38 84.04 88.14 88.29 86.09

1-EC CS-GSib 82.78 85.90 89.74 88.64 85.70

1-EC Edge 83.33 84.97 89.21 88.19 86.46

Mel’čukian

Proj GSib 82.26 87.96 89.19 90.23 89.59

Proj Edge 82.09 86.18 88.73 89.29 89.00

1-EC CS-GSib 86.03 87.89 90.34 90.50 89.34

1-EC Edge 85.28 87.57 89.96 90.14 88.97

Stanford

Proj GSib 81.16 86.83 88.80 88.84 87.27

Proj Edge 80.56 86.18 88.61 88.69 87.92

1-EC CS-GSib 84.67 88.34 90.20 89.22 88.15

1-EC Edge 83.62 87.13 89.43 88.74 87.36

Table 5.5: Overall Unlabeled Attachment Scores (UAS) for all words. CS-GSib refers to the

crossing-sensitive grandparent-sibling factorization proposed in this chapter. Data sources: CoNLL-

2006 shared task (Buchholz and Marsi, 2006) (Danish, Dutch, Portuguese, Swedish); CoNLL-2007

shared task (Nivre et al., 2007a) (Czech), normalized and then transformed to use one of three dif-

ferent conjunction representation styles using HamleDT (Zeman et al., 2012). For each data set, we

bold the most accurate model and those not significantly different from the most accurate (sign test,

p < .05). Languages are sorted in increasing order of projectivity (Table A.1).
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Model UAS

Proj GSib 93.10

Proj Edge 92.63

1-EC CS-GSib 93.22

1-EC Edge 92.80

Table 5.6: English results

Part Used Dutch Czech Portuguese Danish Swedish

Mel’čukian

CrossedEdge 8.5 4.5 3.2 1.4 1.2

GrandSib 81.2 89.1 90.7 95.7 96.2

Grand 1.1 0.5 0.8 0.3 0.2

Sib 9.0 5.8 5.2 2.6 2.3

Edge < 0.1 < 0.1 0 < 0.1 0

Stanford

CrossedEdge 8.4 5.1 3.3 2.0 1.8

GrandSib 81.4 87.8 90.5 94.2 95.2

Grand 1.1 0.5 0.7 0.3 0.3

Sib 8.9 6.5 5.2 3.5 2.6

Edge < 0.1 0.1 0 < 0.1 0

Table 5.7: The proportion of edges in the output trees from the CS-GSib 1-Endpoint-Crossing parser

that would have used each of the five part types for scoring to produce the predicted trees.

Model Dutch Czech Portuguese Danish Swedish

Proj GSib 222 w/s 189 w/s 231 w/s 268 w/s 183 w/s

1-EC CS-GSib 100 w/s 89 w/s 86 w/s 104 w/s 71 w/s

Table 5.8: Parsing speed measured in words per second.
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Chapter 6

Conclusions and Future Work

This thesis showed alternative factorizations and classes of output spaces for the depen-

dency parsing problem, and provided efficient exact algorithms for solving these new for-

mulations of the dependency parsing optimization problem.

In Chapter 2, we examined English dependency parsing using an existing projective

parser capable of factorizations including grandparents and siblings. We showed that the

accuracy gains from various features depended on how linguistic constructions (such as

conjunctions) were represented in dependencies and whether the factorizations used in-

cluded all relevant words within the same scope.

We then broadened our outlook to consider other languages besides English, which

pose computational challenges due to crossing dependencies. Existing definitions of out-

put spaces that allowed crossing dependencies become NP-hard for factorizations beyond

single edges or require a prohibitive O(n7) parsing time for even an edge-factored model.

Chapter 3 introduced the characterization of gap inheritance, referring to whether a

child node has descendants in more than one of its parent’s descendant intervals. Our

corpus analysis showed that across tens of thousands of trees for sentences in a variety of

natural languages, all well-nested, block degree 2 dependency trees had gap inheritance

degree at most 1. Further restricting the gap inheritance degree to be 0 still covered 90.4%

of the structures in these corpora. We showed O(n6) and O(n5) edge-factored parsing
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algorithms for well-nested, block degree 2 trees restricted to at most one gap inheriting

child per parent and trees with no gap inheritance, respectively.

In Chapter 4 we defined the 1-Endpoint-Crossing property: whether all edges that

cross a common edge are incident to a common vertex. This property holds for 95.8-99.8%

of dependency parses across a variety of natural languages. We provided an O(n4) edge-

factored parsing algorithm, continuing to narrow the gap between the time required for

parsing projective and mildly non-projective languages.

Finally in Chapter 5 we introduced a crossing-sensitive third-order factorization that

simplifies to the standard grandparent-sibling factorization when applied to projective trees.

We provided a parsing algorithm that finds the optimal 1-Endpoint-Crossing tree under

this factorization in O(n4) time. The implemented parser is significantly more accurate

than the third-order projective parser in nine out of sixteen experimental set-ups and is

significantly less accurate on none. Moreover this benefit comes at no additional asymptotic

cost, thereby providing us with a parser capable of producing a wider variety of structures

that can be used in contexts where the third-order projective parser may have been used

(see Table 6.1 for a summary).

6.1 Future Directions

We see several avenues for future work that builds on this thesis, which can be loosely

divided into three categories: (i) faster and more accurate parsing, (ii) theoretical questions

about these new tree classes, and (iii) applications to other natural language processing

problems.

6.1.1 Developing Faster Variants of 1-Endpoint-Crossing Parsing

Most edges in dependency trees are short. When the length of edges is bounded by a con-

stant, the maximum scoring sequence of projective trees can be found in O(n) time (Eisner

and Smith, 2010). This algorithm was used as a first-stage pruning step in a structured
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Output Space Coverage Edge CS-GrandSib

Projective 63.6-90.2% O(n3) O(n4)

Arborescences 100% O(n2) ?

Well-nested, block degree 2 95.4-99.9% O(n7) ?

1-Endpoint-Crossing 95.8-99.8% O(n4) O(n4)

Table 6.1: Coverage and (factorization-dependent) parsing time for classes of trees. Coverage is

measured by proportion of training set sentences from CoNLL-X data (see Table 4.1 in Chapter

4 for details). CS-GrandSib is the crossing-sensitive grandparent-sibling factorization proposed in

Chapter 5. When applied to projective trees, the CS-GrandSib factorization exactly simplifies to the

GrandSib factorization of Koo and Collins (2010). For arborescences, incorporating grandparents

and/or siblings everywhere has been shown to be NP-hard; the status of the problem of producing

the maximum arborescence under the CS-GrandSib model is so far unknown. Similarly, it is so

far not known what the parsing time would be for the well-nested block degree 2 trees under this

model.

prediction cascade (Weiss and Taskar, 2010) that culminated in a full third-order projective

parser which maintained comparable accuracy while parsing about 200 times faster (Rush

and Petrov, 2012). It would be interesting to consider what could be done in a linear-time

pass if the final output desired is a 1-Endpoint-Crossing tree.

While in the projective case it was sufficient to consider edge length, there is another

distance to consider bounding in the 1-Endpoint-Crossing case: the distance between the

endpoints of an edge and its crossing point. The linguistic examples of cross-serial depen-

dencies and wh-movement presented in Chapter 4 tend to have crossing points immediately

adjacent to one of the endpoints of the edge. Table 6.2 shows the coverage of various

constant-sized maximum distances between one of the endpoints of an edge and its cross-

ing point.
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Arabic Czech Danish Dutch Portuguese Swedish

1-Endpoint-Crossing 1457 (99.8) 71810 (98.8) 5144 (99.1) 12785 (95.8) 9007 (99.3) 10902 (98.7)

b=1 1418 (97.1) 69513 (95.6) 5023 (96.8) 12169 (91.2) 8532 (94.1) 10524 (95.3)

b=2 1440 (98.6) 71157 (97.9) 5099 (98.2) 12576 (94.2) 8872 (97.8) 10712 (97.0)

b=3 1449 (99.2) 71500 (98.3) 5125 (98.7) 12683 (95.0) 8953 (98.7) 10785 (97.7)

Projective 1297 (88.8) 55872 (76.8) 4379 (84.4) 8484 (63.6) 7353 (81.1) 9963 (90.2)

Sentences 1460 72703 5190 13349 9071 11042

Table 6.2: Coverage of 1-Endpoint-Crossing trees, when for every edge euv the Pt(euv) is restricted

to be within a distance b of u or v, on the CoNLL-X training sets (Buchholz and Marsi, 2006).

6.1.2 Alternative Descriptions of 1-Endpoint-Crossing Trees

Classes of trees can be defined in several ways: (i) by giving a generative procedure that

gives rise to the class, (ii) by defining an automata that recognizes the class, or (iii) by

giving a definition based on the tree’s structure. This thesis defined classes of trees using

the third approach.

For other classes of trees, the connection between these three ways of describing a

class are better understood. Projective dependency grammars are weakly equivalent to

context-free grammars (Gaifman, 1965). The context-free languages can be recognized by

a pushdown automaton (Chomsky, 1962; Evey, 1963) (see Hopcroft, Motwani, and Ullman

(2006, pp. 243-252)), leading to the popularity of transition-based parsing systems that use

a stack for projective parsing (see Nivre (2008) for an overview).

Lexicalized Tree Adjoining Grammars (LTAG) (Joshi and Schabes, 1997) can be rec-

ognized by an embedded pushdown automata (Vijay-Shanker, 1987) that uses a sequence

of stacks. Their derivation trees have also been structurally characterized by Bodirsky et al.

(2005) as being well-nested and having gap degree at most one (see Chapter 3).

We pose the questions:

• Is there a natural generative procedure that gives rise to 1-Endpoint-Crossing trees?

• Is there a natural automata characterization that recognizes 1-Endpoint-Crossing trees?
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Directional variants

Directional variants of 1-Endpoint-Crossing trees might be interesting to investigate. The

definition of 1-Endpoint-Crossing trees is symmetric between a tree over a sentence and the

reverse of the sentence. However, natural language is fundamentally asymmetric (Kayne,

1994). This is intuitive: human listeners hear sentences in the order in which the words

were spoken. Explicitly defining directional versions of the 1-Endpoint-Crossing property

may lead to a related class of trees more amenable to left-to-right parsing.

Consider a pair of crossing edges in a 1-Endpoint-Crossing tree. Each edge in the

pair’s crossing point is either the left or right endpoint of the other edge. The four cases

of the choice of crossing points for legal 1-Endpoint-Crossing trees are shown in Figure

6.1. Figure 6.1d would appear to require two stacks for left-to-right recognition, while its

symmetric variant (Figure 6.1a) appears easier for left-to-right parsing.

Chapter 4 showed that 1-Endpoint-Crossing trees are a sub-class of 2-planar trees (those

that can be parsed using two stacks). We suspect that there exist directional variants related

to the 1-Endpoint-Crossing class that may be recognizable using one stack and a small

constant amount of storage (similar to the stack and constant-sized buffer used in the parser

of Marcus (1980), but not necessarily used in the same way).

(a) (b)

(c) (d)

Figure 6.1: Crossing point possibilities for the solid edges
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6.1.3 Linguistic Connections

Another area for future research is to investigate the linguistic relevance of these proposed

tree classes: which phenomena lead to sentences that have 1-Endpoint-Crossing analyses,

and which phenomena tend to introduce violations of the 1-Endpoint-Crossing property?

Below is a (non-exhaustive) list of a few phenomena that give rise to crossed dependencies.

For each phenomena we provide an example for illustrative purposes that has been dis-

cussed in the linguistics literature, a potential dependency tree analysis of the example, and

whether these example analyses are 1-Endpoint-Crossing trees. Many of these phenomena

yield 1-Endpoint-Crossing trees when the embedding is limited to two clauses but violate

the 1-Endpoint-Crossing property when three or more clauses are involved.

Cross-serial dependencies The classic textbook example of a cross-serial sentence (e.g.,

Jurafsky and Martin (2008), p.538) is a Swiss-German sentence from (1) in Shieber (1985).

While previously discussed in Section 4.6.2, for completeness it is reprised below:

das mer em Hans es huus hälfed aastriiche
that we HansDAT the houseACC helped paint

If a third level of embedding is added (paraphrased as “we let the children help Hans

paint the house”), then the sentence (from (5) in Shieber (1985)) is not a 1-Endpoint-

Crossing tree:

das mer d’chind em Hans es huus lönd hälfe aastriiche
that we the childrenACC HansDAT the houseACC let help paint
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For example, the edge (help,Hans) is crossed by both (that,let) and by (paint,house),

which do not share a vertex.

Verb projection raising Haegeman and Van Riemsdijk (1986) give the below example

from Zurich German ((42b) in that paper) as difficult to account for under some syntactic

analyses:

das er em Karajan wil en arie chön-e vorsinge
that he (to) Karajan wants an aria can sing-for

The sentence is glossed as “that he wants to be able to sing an aria for Karajan”. The

sentence presents difficulties for these analyses because an aria is between wants and can

sing-for. This sentence is a 1-Endpoint-Crossing tree: even though the edge (sing-for,(to)

Karajan) is crossed by multiple edges, they both share an endpoint at the verb wants.

Remnant Extraposition Below is an example of remnant extraposition from Dutch, ar-

gued to be neither verb raising nor extraposition (example (8b) from Broekhuis, Den Besten,

Hoekstra, and Rutten (1995)): The sentence is translated as “that Cecilia claimed to take a

picture of the herons”.

dat Cecilia de reigers beweerde te fotograferen
that Cecilia the herons claimed to photograph

The edge (photograph,herons) is crossed by multiple edges, but all have a shared end-

point at the verb claimed. Note that a third level of embedding would cause a 1-Endpoint-

Crossing violation, just as we saw for three clauses in the cross-serial case.1

1We thank Aravind Joshi for pointing out this case.
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Scrambling Scrambling, when words occur in a non-canonical word order, also can give

rise to discontinuous constituents (and thus crossing dependencies). Below is an example

of scrambling from Turkish (example (6b) from Hoffman (1995)):

Kitab Fatma Esra-nn okuduğumu biliyor
Book-Acc Fatma Esra-Gen read-Ger-3Sg-Acc know-Prog.

The sentence is translated as “As for the book, Fatma knows that Esra read it”. Again

the 1-Endpoint-Crossing property is satisfied.

Wh-movement Below are a few examples of wh-movement from (1) in Kroch (1989).

The first is ungrammatical and the second is not. Both the ungrammatical and grammatical

sentences are 1-Endpoint-Crossings. The sentences are drawn including an artificial root

node to the left. Without including the artificial root edges, we would see no crossings at

all in either sentence.

* ROOT Who does he think that left ?

ROOT When does he think that we left ?

Extraposition Below is an English example of extraposition from Ross (1986) and a

plausible dependency structure.
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ROOT A review came out yesterday of this article

Dafür-split in German Chen-Main and Joshi (2012) motivate the necessity of structures

that are not well-nested with two types of constructions, dafür-split and a combination of

extraposition and a split quantifier in the same sentence. Even though 1-Endpoint-Crossing

trees can produce ill-nested structure (e.g., Figure 4.1a in Chapter 4), none of these exam-

ples are 1-Endpoint-Crossing. Below is the first such sentence from Chen-Main and Joshi

(2012) (example (1b)) and one plausible dependency analysis (from Figure 8 in that paper).

The sentence is translated as “For that purpose, I bought a book that was expensive.”

Da hab ich ein Buch für gekauft das teuer war
(for-)that-purpose have I a book for bought that expensive was

What-for split in German Chen-Main and Joshi (2012) use the what-for split in German

to motivate the ability to produce trees with block degree greater than two (gap degree

greater than one). All examples and analyses in that section are 1-Endpoint-Crossing trees.

We show the most complex example below, that has gap degree 3/block degree 4 (example

(5)/Figure 17 in that paper), translated as “What books by Chomsky that were exciting did

you read yesterday?”
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Was hast du für Bücher gestern von Chomsky gelesen die spannend waren
What do you for books yesterday by Chomsky read that exciting were

The edge (for books, that exciting were) is crossed by many edges, all with a shared

vertex at read. Similarly the edge (read,do) is crossed by multiple edges, but they have a

shared vertex at for books.

Treebank Examples Appendix A gives examples from the dependency treebanks we

have used in this thesis that are not 1-Endpoint-Crossing trees. Many of these examples be-

come 1-Endpoint-Crossing under other conventions and analyses. For example, the below

English sentence:

(1) ROOT The units have worked on 37 investment banking deals this year , he says ,

though not all of them have panned out .

is not even 1-Endpoint-Crossing with PennConverter dependencies (which take says as

the root of the sentence) but is projective with Stanford dependencies (which take worked

to be the root of the sentence).

Discussion From the limited set of examples above, we see that a variety of types of

discontinuities in language have at least some examples that are 1-Endpoint-Crossing trees.

In many of these examples, verbs served as crossing points; a further exploration into this

may be interesting.

Note that more complex sentences exhibiting the same phenomena may violate the

1-Endpoint-Crossing property. 1-Endpoint-Crossing trees are defined through a forbidden

substructure characterization: a subgraph of three edges such that two vertex-disjoint edges

both cross a third (Section 4.8). Any construction that involves only two crossing edges
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will always be a 1-Endpoint-Crossing tree. Because edges incident to the same vertex

cannot cross each other, any violation of the 1-Endpoint-Crossing property requires the

involvement of at least six distinct words. Just as some difficult computational problems

become tractable when some parameter of the problem is fixed to be a small constant

(Downey and Fellows, 1999), it may be that some of the above types of discontinuities

yield 1-Endpoint-Crossing trees when the number of clauses involved in these crossings is

limited.

6.1.4 Applications beyond Parsing

Many other natural language applications build up output structures by concatenating in-

tervals. For example, the semantic parser of Liang, Jordan, and Klein (2013) builds up

structures through a procedure similar to projective parsing. Phrase-based machine transla-

tion systems (Koehn, Och, and Marcu, 2003) build up output translations by concatenating

intervals of translated phrases. Perhaps the approach taken in this thesis of constructing

output structures using intervals with an exterior vertex could also be useful in some of

these applications.

While 1-Endpoint-Crossing trees were motivated by problems arising in natural lan-

guage parsing, the problem statement and parsing algorithm are stated entirely in terms of

vertices, edges, and their crossing pattern relative to the input sequence of vertices. There

may be other structured prediction problems outside of natural language where these algo-

rithms that can produce outputs with crossings might be useful, such as protein folding or

other biological applications.
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Appendix A

Additional Information About the

Coverage of 1-Endpoint-Crossing Trees

To assist future research into 1-Endpoint-Crossing trees, we provide a script that verifies

whether trees are 1-Endpoint-Crossing and if not, outputs the witnessing crossing edges.

The script is available at: http://www.cis.upenn.edu/∼epitler/software/

check1EC.pl.

Table A.1 shows the coverage of projective trees and 1-Endpoint-Crossing trees on

normalized treebanks with various conjunction representations.

Below are five randomly selected trees that are not 1-Endpoint-Crossing from English

(Penn Treebank trees (Marcus et al., 1993) with PennConverter dependencies (Johansson

and Nugues, 2007)), Danish (CoNLL-X, (Buchholz and Marsi, 2006)), and Dutch (CoNLL-

X, (Buchholz and Marsi, 2006)) training sets. We provide the full sentence and the crossing

edges that violate the 1-Endpoint-Crossing property.

For Danish and Dutch we also indicate whether the sentence still contains a 1-Endpoint-

Crossing violation after normalizing the treebanks according to HamleDT (Zeman et al.,

2012) (with the default Prague conjunction style).

124

http://www.cis.upenn.edu/~epitler/software/check1EC.pl
http://www.cis.upenn.edu/~epitler/software/check1EC.pl


Tree Class Dutch Czech Portuguese Danish Swedish

Prague

Projective 64.1 75.5 78.6 84.1 88.0

1-Endpoint-Crossing 95.7 98.6 97.3 99.3 98.4

Mel’čukian

Projective 63.1 73.1 74.6 80.8 83.3

1-Endpoint-Crossing 95.4 97.5 96.5 98.9 97.6

Stanford

Projective 63.5 73.2 75.6 80.3 85.0

1-Endpoint-Crossing 95.0 97.5 96.4 98.4 97.8

Table A.1: Proportion of training set sentences covered in normalized treebanks, using one of three

different styles of representation for conjunctions. Data sources: CoNLL-2006 shared task (Buch-

holz and Marsi, 2006) (Danish, Dutch, Portuguese, Swedish); CoNLL-2007 shared task (Nivre

et al., 2007a) (Czech), normalized using HamleDT (Zeman et al., 2012).

A.1 English

(1) ROOT The units have worked on 37 investment banking deals this year , he says ,

though not all of them have panned out .

The edge (ROOT, says) crosses (have, .) and (worked, though).

(2) ROOT Yet Israel will neither share power with all these Arabs nor , says its present

prime minister , redraw its borders closer to its pre-1967 Jewish heartland .

The edge (ROOT, says) is crossed by both (will, .) and by (nor, redraw).

(3) ROOT Some may have forgotten – and some younger ones may never have experi-

enced – what it ’s like to invest during a recession .

The edge (forgotten, ’s) is crossed by (may, –), (may, –), (may, and), and (like,what).
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(4) ROOT That ’s leaving small investors with cold feet , they said , and prompting

institutions to take a reserved stance on the sidelines as well , at least until the

market in New York settles down somewhat .

The edge (ROOT, said) is crossed by (’s, .) and (leaving, and).

(5) ROOT Chemical Waste Management Inc. , proposed global offering of 8,500,000

shares1 of1 common stock , of2 which seven million of3 the shares2 will1 be offered

in the U.S. and 1,500,000 shares3 will2 be offered overseas , via Merrill Lynch

Capital Markets -LRB- domestic -RRB- and Kidder , Peabody & Co . -LRB-

international -RRB- .

The edge (shares3, of2) crosses (shares1,will1) and (and,will2).

A.2 Danish

(6) ROOT Som den drevne mindretalsregering , den er , har ministeriet Poul Schl uter

IV netop lagt et finanslovforslag frem , som fortsætter den moderate økonomiske

politik fra de senere år - men uden provokerende eller ideologiske spareforslag ,

som på forhånd kan støde de afgørende borgerlige midterpartier over i armene på

Socialdemokratiet .

The edge (et, fortsætter) is crossed by (har, ,) and (lagt, frem).

The tree is still not 1-Endpoint-Crossing after normalization, but the violation has

shifted: in the normalized tree, the edge (finanslovforslag,men) is crossed by both (har, ,)

and (lagt, frem).

(7) ROOT Han omtaler Parzival som en af ” brød-artiklerne ” - og den går der 75

eksemplarer af om året stadig væk .

The edge (af, den) is crossed by (går, stadig), (75, om), and (og, går).

After normalization, the same edge is still a conflict, but it is instead crossed by

(går, stadig), (eksemplarer, om), and (og, går).
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(8) ROOT Fra Ungarn kommer de raske atleter og fra Afrika en palet med kolibrier -

mærkerne fra Solens Rige får det til at svimle .

The edge (ROOT,Afrika) is crossed by (kommer, .), (kommer, får), (og, en), and

(kommer, -).

After normalization this is now a 1-Endpoint-Crossing tree.

(9) ROOT Men da skønnet over , i hvilken grad Folketinget er indblandet såvel er

opfundet som afgøres af Ombudsmanden , er afvisningen blot at tage til efterretning

.

The edge (som, såvel) is crossed by (da, er), (er, ,), (opfundet, af), and (er, skønnet).

After normalization this is now a 1-Endpoint-Crossing tree.

(10) ROOT Administrerende direktør Peter Christoffersen siger , at der hverken er forhan-

dlinger eller sonderinger mellem Baltica og Skandia i øjeblikket .

The edge (eller, hverken) is crossed by (er, i), (at, er), (er, der), and

(forhandlinger,mellem).

After normalization this is now a 1-Endpoint-Crossing tree.

A.3 Dutch

(11) ROOT Ook ” honger ” en het spitse ” Party-conversatie ” behoorden tot deze

bepaalde categorie die een sociale inhoud van en aanmerkelijk beter uit de verf

kwam dan de socialistische gedachten die vaak zeer banaal aandeden .

The edge (die, kwam) is crossed by (ROOT, sociale), (ROOT, een), (ROOT, van),

(ROOT, aanmerkelijk), (ROOT, inhoud), and (beter, dan).

The same violation remains after normalization.

(12) ROOT De lees- en weethonger in binnen- en buitenlandse gezinnen gaan we aan-

en afvoeren
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The edge (aan-, en) crosses (weethonger,De), (ROOT, gaan), and (gaan, afvoeren).

The same violation remains after normalization.

(13) ROOT Joe Valachi zou er een kookboek over kunnen schrijven .

The edge (schrijven, kookboek) crosses both (zou, kunnen) and (over, er).

The same violation remains after normalization.

(14) ROOT ” Ze hebben me geadviseerd , verder nauwkeurig onder behandeling te bli-

jven bij een Amsterdamse nierspecialist en dokter Rolink , die mij door en door

kent en die precies weet wat ik wel en niet kan .

This sentence has several violations: each of the edges (blijven, verder),

(blijven, nauwkeurig), and (blijven, onder) crosses (geadviseerd, te) and both groups also

cross (behandeling, bij).

The same violations remain after normalization.

(15) ROOT Wie is thans de VHO ? Postbus 2135 in Utrecht , waarheen 25 gulden moet

worden gegireerd , blijkt op naam te staan van de VHO , Tafelbergdreef 20 in

Utrecht .

The three edges (blijkt, te), (staan, op) and (naam, van) are in an A B C A B C con-

figuration and so all cross each other.

The same violations remain after normalization.
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Appendix B

GrandSib-Crossing Parser Invariants

Each type of sub-problem is associated with both interior and exterior invariants (involving

specified edges, bad (or not bad) contexts, or crossings). When two or more sub-problems

are combined, their interior and exterior invariants are also combined to produce new inte-

rior and exterior invariants for the larger combined subforest. Table B.1 shows the full set

of interior and exterior invariants for each type of sub-problem. For ease of exposition, left

versions are given for asymmetric cases (i.e., dir = L); the right versions are symmetric.

Interior Exterior

TriG[i,j,g,L] • Rooted at: i • Includes edge ~egi

• ¬BadContext(i, j, L)

Tri[i,j,L] • Rooted at: i • BadContext(i, j, L)

TrapG[i,j,g,L] • Rooted at: i

• Includes edge ~eij

• Includes edge ~egi

• ¬BadContext(i, j, L)
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BoxG[i,j,g] • Rooted at: i,j • Includes edge ~egi; ~egi not

crossed

• Includes edge ~egj; ~egj not

crossed

• i and j are adjacent

children on the same side of

g

Trap[i,j,L] • Rooted at: i

• Includes edge ~eij

• BadContext(i, j, L)

TwoRooted[i,j] • Rooted at: i, j • BadContext(i, j, L)

• BadContext(i, j, R)

OneFarCrossedG[i,j,g,L] • Rooted at: i, j

• Edge from j to leftmost

child in (i, j) is crossed

• Includes edge ~egi

• ¬BadContext(i, j, L)

LeftFarCrossed[i,j,L] • Rooted at: i, j

• Edge from i to rightmost

child in (i, j) is crossed

• BadContext(j, i, R)

Chain[i,j] • Rooted at: i, j

• Edge from i to i’s furthest

child and edge from j to j’s

furthest child part of same

chain of crossing edges

TriFarCrossed[i,j,L] • Rooted at: i

• Edge from i to rightmost

child in (i, j) crossed
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Page1[i,j,x] • Rooted at: j, x

• i, j, x involved in same

chain of crossing edges

• x has at least one child in

(i, j)

• i’s parent is to the right of

x’s child or children

Page2[i,j,x] • Rooted at: i, j

• i, j, x involved in same

chain of crossing edges

• x’s parent in (i, j)

• x has no children in [i, j]

• i has at least one child to

the right of x’s parent

Chain JFromI[i,j,x] • Rooted at: i, x

• i, j, x involved in same

chain of crossing edges

• j is descended from i

• If i is not the parent of j,

then x has exactly one child

in (i, j)

Chain JFromX[i,j,x] • Rooted at: i, x

• i, j, x involved in same

chain of crossing edges

• j is descended from x

• x has exactly one child in

(i, j)
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LR[i,j,x,bx] • Rooted at: i, j, 1[bx=F ]x

• Crossing Conditions

• Exists some split point

such that between x and left

of the split point are only

crossed by edges incident to

i, and to the right only those

incident to j

• Includes edge ~eij or edge

~eji

• No other edge besides

~eij/~eji will cross the

edges between x and

VCross(i, j, F, F, LR)

L[i,j,x,bi,bj ,bx] • Rooted at: 1(bi = F )i,

1(bj = F )j, 1(bx = F )x

• Crossing Conditions

• Edges between x and

VCross(i, j, bi, bj, L) have i

as their crossing point

• Exists some external edge

incident to i that will cross

all edges between x and

VCross(i, j, bi, bj, L)

• If bi = F ,

BadContext(i, j, L)

• If bj = F ,

BadContext(i, j, R)

N[i,j,x,bi,bj ,bx] • Rooted at: 1(bi = F )i,

1(bj = F )j, 1(bx = F )x

• Crossing Conditions

• No edges between x and

VCross(i, j, bi, bj, N) are

crossed

• Exists at least two

external edges that force a

point outside of {i, j} to

be the crossing point for

the edges between x and

VCross(i, j, bi, bj, N)

• If bi = F ,

BadContext(i, j, L)

• If bj = F ,

BadContext(i, j, R)

Table B.1: Internal and External Invariants
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Appendix C

Full Dynamic Program for the

GrandSib-Crossing Parser

The initial sub-problems are:

∀iT ri[i, i, L] = Tri[i, i, R] = TwoRooted[i, i] = TwoRooted[i, i+ 1] = 0,

∀g, h > g TriG[h, h, g, L] = GCO1(g, h,NIL) TriG[h, h, g, R] = GCI1(g, h,NIL),

∀g, h < g TriG[h, h, g, L] = GCI1(g, h,NIL) TriG[h, h, g, R] = GCO(g, h,NIL).1

The final tree is in: TriG[0, n,−1, L] (where 0 is the artificial root and −1 is an artificial

parent of the root). All sub-problems left undefined (for example, Int[i, j, T, T ], in which

all vertices must get their parent from the interval, or L[i, i, x, bi, bj, bx], which would have

VCross(i, i, bi, bj, L) = ∅) have a score of −∞.

Score(GrandSib(g, h,m, s)) is abbreviated as GS(g, h,m, s), Score(Grand(g, h,m))

as G(g, h,m), Score(Sib(h,m, s)) as S(h,m, s), Score(Edge(h,m)) as E(h,m), and

1These correspond to the null boundary cases described in Koo (2010, Appendix B.1.5).

These are used when ~egh is not crossed and there are no GProj edges from h to any interior children (and so

the score GCI(g, h,NIL) is added); similarly when ~egh is not crossed and there are no GProj edges from h

to any exterior children (GCO(g, h,NIL)). In the projective case, since ~egh is never crossed and all edges to

children are GProj , this simplifies to h having no inner (outer) children. In a non-projective tree, this covers

both the case in which there are no children and the case in which the edge to the most outer interior/exterior

child is crossed.
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Score(CrossedEdge(h,m)) as CE(h,m).

The implemented parser distinguishes betweeen inner and outer grandchildren; this can

be determined from the indices of g, h, and m above.

Note that “triangles” have the same semantics as “intervals” where only one boundary

point needs a parent. To emphasize the similarities to both the dynamic programs of Koo

and Collins (2010) and Chapter 4, we use the most familiar vocabulary in each section and

use the following syntactic sugar:

TwoRooted[i, j] := Int[i, j, F, F ], Tri[i, j, L] := Int[i, j, F, T ], and

Tri[i, j, R] := Int[i, j, T, F ].
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TriG[i, j, g, L]← max maxk∈(i,j] TrapG[i, k, g, L] + TriG[k, j, i, L]

TriFarCrossed[i, j, L]

TriG[i, j, g, R]← symmetric to above

Tri[i, j, L]← max maxk∈(i,j] Trap[i, k, L] + TriG[k, j, i, L]

TriFarCrossed[i, j, L]

Tri[i, j, R]← symmetric to above

TrapG[i, j, g, L]← max

GS(g, i, j,−) + TriG[i+ 1, j, i, R]

G(g, i, j) + Chain[i, j]

maxk∈(i,j)
GS(g, i, j, k) + TrapG[i, k, g, L] +BoxG[k, j, i]

G(g, i, j) + TriFarCrossed[i, k, L] + TriG[k + 1, j, i, R]

G(g, i, j) + Chain[i, k] + TriG[k, j, i, R]

TrapG[i, j, g, R]← symmetric to above

Trap[i, j, L]← max

S(i, j,−) + TriG[i+ 1, j, i, R]

E(i, j) + Chain[i, j]

maxk∈(i,j)
S(i, j, k) + Trap[i, k, L] +BoxG[k, j, i]

E(i, j) + TriFarCrossed[i, k, L] + TriG[k + 1, j, i, R]

E(i, j) + Chain[i, k] + TriG[k, j, i, R]

Trap[i, j, R]← symmetric to above
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BoxG[i, j, g]← maxk∈[i,j) TriG[i, k, g, L] + TriG[k + 1, j, g, R]

TriG[i, k, g, L] +OneFarCrossedG[k, j, g, R]

OneFarCrossedG[i, j, g, L]← maxk∈[i,j) TriG[i, k, g, L] + Chain[k, j]

OneFarCrossedG[i, j, g, R]← symmetric to above

LeftFarCrossed[i, j]← maxk∈(i,j]Chain[i, k] + Tri[k, j, R]

TwoRooted[i, j]← max maxk∈[i,j) Tri[i, k, L] + Tri[k + 1, j, R]

maxk∈[i,j) Tri[i, k, L] + LeftFarCrossed[k, j]

Chain[i, j]← maxk∈(i,j)CE(i, k) + max

LR[i, k, j, F ] + TwoRooted[k, j]

maxl∈(i,k)
CE(j, l) + TwoRooted[i, l] + L[l, k, i, F, F, F ] +N [k, j, l, F, F, F ]

CE(j, l) + TwoRooted[i, l] + TwoRooted[l, k] + L[k, j, l, F, F, F ]

CE(j, l) +R[i, l, k, F, F, F ] + TwoRooted[l, k] + L[k, j, l, F, F, F ]

maxl∈(k,j)R[i, k, l, F, F, F ] + TwoRooted[k, l] + Page1[l, j, k]

Page1[i, j, x]← max CE(j, i) + L[i, j, x, F, F, F ]

maxk∈(i,j)CE(x, k) + TwoRooted[i, k] + Page2[k, j, i]

Page2[i, j, x]← maxk∈(i,j)CE(k, x) + TwoRooted[i, k] + Page1[k, j, i]
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TriFarCrossed[i, j, L]← maxk∈(i,j)CE(i, k) + max

maxl∈(k,j],TF (T,{bl,bm,br}) R[i, k, l, F, F, bl] + Int[k, l, F, bm] + L[l, j, k, br, T, F ]

LR[i, k, l, bl] + Int[k, l, F, bm] + Int[l, j, br, T ]

maxl∈(i,k),TF (T,{bl,bm,br})
Int[i, l, F, bl] + L[l, k, i, bm, F, F ] +N [k, j, l, F, T, br]

Int[i, l, F, bl] + Int[l, k, bm, F ] + L[k, j, l, F, T, br]

R[i, l, k, F, bl, F ] + Int[l, k, bm, F ] + L[k, j, l, F, T, br]

TriFarCrossed[i, j, R]← symmetric to above

LR[i, j, x, bx]← max

L[i, j, x, F, F, bx]

R[i, j, x, F, F, bx]

maxk∈(i,j)

Chain JFromI[i, k, x] +R[k, j, x, F, F, bx]

Chain JFromX[i, k, x] +R XFromJ [k, j, x] if bx = T

Chain JFromX[i, k, x] +R[k, j, x, F, F, F ] if bx = F

L[i, k, x, F, F, bx] + Chain IFromJ [k, j, x]

L XFromI[i, k, x] + Chain IFromX[k, j, x] if bx = T

L[i, k, x, F, F, F ] + Chain IFromX[k, j, x] if bx = F

Chain JFromI[i, j, x]← max CE(i, j) + L[i, j, x, F, F, F ]

maxk∈(i,j)CE(x, k) + Int[i, k, F, F ] + Chain JFromX[k, j, i, L]

Chain IFromJ [i, j, x]← symmetric to above

Chain JFromX[i, j, x]← maxk∈(i,j)CE(x, k) + Int[i, k, F, F ] + Chain JFromI[k, j, i]

Chain IFromX[i, j, x]← symmetric to above
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N [i, j, x, bi, bj , F ]← maxk∈VCross(i,j,bi,bj ,N)CE(x, k) + max Int[i, k, bi, F ] + Int[k, j, F, bj ]

N [i, k, x, bi, F, F ] + Int[k, j, F, bj ]

N [i, j, x, bi, bj , T ]← maxk∈VCross(i,j,bi,bj ,N)CE(k, x) + max
maxTF (T,{bl,br}) Int[i, k, bi, bl] + Int[k, j, br, bj ]

N [i, k, x, bi, F, F ] + Int[k, j, T, bj ]

Int[i, k, bi, T ] +N [k, j, x, F, bj , F ]

L[i, j, x, bi, bj , F ]← maxk∈VCross(i,j,bi,bj ,L)max

CE(x, k) + max
Int[i, k, bi, F ] + Int[k, j, F, bj ]

maxTF (bi,{bl,br}) Int[i, k, bl, F ] + L[k, j, i, F, bj , br]

L[i, k, x, bi, F, F ] + Int[k, j, F, bj ]

CE(i, k) + L[i, k, x, F, F, F ] + Int[k, j, F, bj ] if bi = F

CE(i, k) + L IFromX[i, k, x] + Int[k, j, F, bj ] if bi = T

CE(k, i) + L JFromX[i, k, x] + Int[k, j, F, bj ] if bi = T

CE(k, i) + L[i, k, x, F, F, F ] + Int[k, j, T, bj ] if bi = T

L[i, j, x, F, bj , T ]← maxk∈VCross(i,j,F,bj ,L)max

CE(k, x) + max

maxTF (T,{bl,br}) Int[i, k, F, bl] + Int[k, j, br, bj ]

Int[i, k, F, bl] + L[k, j, i, br, bj , F ]

L JFromI[i, k, x] + Int[k, j, F, bj ]

L[i, k, x, F, F, F ] + Int[k, j, T, bj ]

CE(x, k) + L XFromI[i, k, x] + Int[k, j, F, bj ]

CE(i, k) + L[i, k, x, F, F, T ] + Int[k, j, F, bj ]
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L XFromI[i, j, x]← max

maxk∈(i,j)CE(k, x)+

Int[i, k, F, T ] + Int[k, j, F, F ]

Int[i, k, F, T ] + L[k, j, i, F, F, F ]

Int[i, k, F, F ] + L IFromX[k, j, i]

L JFromI[i, k, x] + Int[k, j, F, F ]

maxk∈(i,j)CE(x, k) + L XFromI[i, k, x] + Int[k, j, F, F ]

maxk∈(i,j)CE(i, k) + L[i, k, x, F, F, T ] + Int[k, j, F, F ]

L IFromX[i, j, x]← maxk∈(i,j)max

CE(x, k) + max

Int[i, k, T, F ] + Int[k, j, F, F ]

Int[i, k, T, F ] + L[k, j, i, F, F, F ]

Int[i, k, F, F ] + L XFromI[k, j, i]

L[i, k, x, T, F, F ] + Int[k, j, F, F ]

CE(k, i) + L JFromX[i, k, x] + Int[k, j, F, F ]

CE(i, k) + L IFromX[i, k, x] + Int[k, j, F, F ]

L JFromX[i, j, x]← maxk∈(i,j]CE(x, k) + max
Int[i, k, F, F ] + Int[k, j, F, T ]

Int[i, k, F, F ] + L JFromI[k, j, i]

L[i, k, x, F, F, F ] + Int[k, j, F, T ]

L JFromI[i, j, x]← max maxk∈(i,j)CE(x, k) + Int[i, k, F, F ] + L JFromX[k, j, i]

maxk∈(i,j]CE(i, k) + L[i, k, x, F, F, F ] + Int[k, j, F, T ]

R[i, j, x, bi, bj , F ]← symmetric to L[i, j, x, bi, bj , F ]

R[i, j, x, bi, F, T ]← symmetric to L[i, j, x, F, bj , T ]
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R[i, j, x, bi, T, T ]← not reachable

R XFromJ [i, j, x]← symmetric to L XFromI[i, j, x]

R JFromX[i, j, x]← symmetric to L IFromX[i, j, x]

R IFromX[i, j, x]← symmetric to L JFromX[i, j, x]

R IFromJ [i, j, x]← symmetric to L JFromI[i, j, x]
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