
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2013

Robot Motion Planning Under Topological
Constraints
Soonkyum Kim
University of Pennsylvania, soonkyum@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Mechanical Engineering Commons, and the Robotics Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/883
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Kim, Soonkyum, "Robot Motion Planning Under Topological Constraints" (2013). Publicly Accessible Penn Dissertations. 883.
http://repository.upenn.edu/edissertations/883

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=repository.upenn.edu%2Fedissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/883?utm_source=repository.upenn.edu%2Fedissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/883
mailto:libraryrepository@pobox.upenn.edu

Robot Motion Planning Under Topological Constraints

Abstract
My thesis addresses the the problem of manipulation using multiple robots with cables. I study how robots
with cables can tow objects in the plane, on the ground and on water, and how they can carry suspended
payloads in the air. Specifically, I focus on planning optimal trajectories for robots.

Path planning or trajectory generation for robotic systems is an active area of research in robotics. Many
algorithms have been developed to generate path or trajectory for different robotic systems. One can classify
planning algorithms into two broad categories. The first one is graph-search based motion planning over
discretized configuration spaces. These algorithms are complete and quite efficient for finding optimal paths in
cluttered 2-D and 3-D environments and are widely used [48]. The other class of algorithms are optimal
control based methods. In most cases, the optimal control problem to generate optimal trajectories can be
framed as a nonlinear and non convex optimization problem which is hard to solve. Recent work has
attempted to overcome these shortcomings [68]. Advances in computational power and more sophisticated
optimization algorithms have allowed us to solve more complex problems faster. However, our main interest is
incorporating topological constraints. Topological constraints naturally arise when cables are used to wrap
around objects. They are also important when robots have to move one way around the obstacles rather than
the other way around. Thus I consider the optimal trajectory generation problem under topological
constraints, and pursue problems that can be solved in finite-time, guaranteeing global optimal solutions.

In my thesis, I first consider the problem of planning optimal trajectories around obstacles using optimal
control methodologies. I then present the mathematical framework and algorithms for multi-robot
topological exploration of unknown environments in which the main goal is to identify the different
topological classes of paths. Finally, I address the manipulation and transportation of multiple objects with
cables. Here I consider teams of two or three ground robots towing objects on the ground, two or three aerial
robots carrying a suspended payload, and two boats towing a boom with applications to oil skimming and
clean up. In all these problems, it is important to consider the topological constraints on the cable
configurations as well as those on the paths of robot. I present solutions to the trajectory generation problem
for all of these problems.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Mechanical Engineering & Applied Mechanics

First Advisor
Vijay Kumar

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/883

http://repository.upenn.edu/edissertations/883?utm_source=repository.upenn.edu%2Fedissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages

Keywords
Motion Planning, Robot, Topology

Subject Categories
Mechanical Engineering | Robotics

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/883

http://repository.upenn.edu/edissertations/883?utm_source=repository.upenn.edu%2Fedissertations%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages

ROBOT MOTION PLANNING UNDER TOPOLOGICAL CONSTRAINTS

Soonkyum Kim

A DISSERTATION

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2013

Supervisor of Dissertation

Vijay Kumar, Professor
Department of Mechanical Engineering and Applied Mechanics

Graduate Group Chairperson

Prashant K. Purohit, Associate Professor
Department of Mechanical Engineering and Applied Mechanics

Dissertation Committee
Mark Yim, Professor, Department of Mechanical Engineering and Applied Mechanics
Vijay Kumar, Professor, Department of Mechanical Engineering and Applied Mechanics
Robert Ghrist, Professor, Department of Mathematics
Maxim Likhachev, Assistant Research Professor, Robotics Institute, Carnegie Mellon University

ROBOT MOTION PLANNING UNDER TOPOLOGICAL CONSTRAINTS

COPYRIGHT

2013

Soonkyum Kim

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments

First, I would like to express my sincere gratitude toward my advisor, Prof. Vijay Kumar for his ceaseless,
dedicated and invaluable advise and guidance during the course of my graduate studies at GRASP Laboritory
in the University of Pennsylvania. I would also like to heartily thank Prof. Mark Yim and Prof. Maxim
Likhachev for their valuable time and effort in serving as my dissertation committee members. I also like
to thank Prof. Robert Ghrist, not only for being on my dissertation committee, but also for collaborating
on the topological exploration problem. I would also like to thank Dr. Subhrajit Bhattacharya for valuable
discussions and for collaborating on many of the problems presented in this thesis. I would like to express
my gratitude toward Prof. Frank C. Park who introduced me to the field of robotics.

My sincere appreciation goes to Dr. Koushil Sreenath for his collaboration on the problem of optimal
trajectory generation under topological constraints. I would also like to thank Dr. Nathan Michael for collab-
orating on the aerial manipulation problem, and Dr. Peng Cheng for collaborating on the cooperative towing
problem. My sincere thanks goes to Dr. Jornathan Fink for his collaboration on both the aforesaid problems.
I would like to thank Prof. Gaurav Sukhatme and Hordur Heidarsson of USC for their collaboration on the
field experiments in the problem related to manipulation of a set of objects.

Finally, I would like to thank my family. I would like to thank my brother Sanggyum, with whom I have
enjoyed endless discussions about various control problems. I thank my sister-in-law, Christina Kang-Yi,
and her husband, John Chanu Yi for their warm support and concern. I sincerely appreciate my parents’
devotion and sacrifice. I would like to express my gratitude toward my parents-in-law for their devotion and
for their adorable daughter. And, I would like to epxress my love to my little angels, David and Rachael, and
my wife, Minki.

iii

ABSTRACT

ROBOT MOTION PLANNING UNDER TOPOLOGICAL CONSTRAINTS

Soonkyum Kim

Vijay Kumar

My thesis addresses the the problem of manipulation using multiple robots with cables. I study how

robots with cables can tow objects in the plane, on the ground and on water, and how they can carry sus-

pended payloads in the air. Specifically, I focus on planning optimal trajectories for robots.

Path planning or trajectory generation for robotic systems is an active area of research in robotics. Many

algorithms have been developed to generate path or trajectory for different robotic systems. One can classify

planning algorithms into two broad categories. The first one is graph-search based motion planning over

discretized configuration spaces. These algorithms are complete and quite efficient for finding optimal paths

in cluttered 2-D and 3-D environments and are widely used [48]. The other class of algorithms are optimal

control based methods. In most cases, the optimal control problem to generate optimal trajectories can

be framed as a nonlinear and non convex optimization problem which is hard to solve. Recent work has

attempted to overcome these shortcomings [68]. Advances in computational power and more sophisticated

optimization algorithms have allowed us to solve more complex problems faster. However, our main interest

is incorporating topological constraints. Topological constraints naturally arise when cables are used to

wrap around objects. They are also important when robots have to move one way around the obstacles rather

than the other way around. Thus I consider the optimal trajectory generation problem under topological

constraints, and pursue problems that can be solved in finite-time, guaranteeing global optimal solutions.

In my thesis, I first consider the problem of planning optimal trajectories around obstacles using optimal

control methodologies. I then present the mathematical framework and algorithms for multi-robot topolog-

ical exploration of unknown environments in which the main goal is to identify the different topological
iv

classes of paths. Finally, I address the manipulation and transportation of multiple objects with cables. Here

I consider teams of two or three ground robots towing objects on the ground, two or three aerial robots car-

rying a suspended payload, and two boats towing a boom with applications to oil skimming and clean up.

In all these problems, it is important to consider the topological constraints on the cable configurations as

well as those on the paths of robot. I present solutions to the trajectory generation problem for all of these

problems.

v

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Literature review . 2
1.3 Contribution . 4

2 Preliminaries 5
2.1 Curves in (W −O) . 5
2.2 Homology and Homotopy Invariants . 5

2.2.1 Homology of curves and Homology Invariants . 5
2.2.2 Homotopy of curves and Homotopy Invariants . 7
2.2.3 The Hurewicz map . 9
2.2.4 Augmented Graph . 10

3 Trajectory Generation under Topological Constraints 12
3.1 Optimal Trajectory Generation . 12
3.2 Optimal Trajectory with Homology Class Constraints . 15

3.2.1 Algorithm Description . 15
3.2.2 Simulation Results . 21

3.3 Optimal Trajectory with Homotopy Class Constraints . 24
3.3.1 Algorithm Description . 24
3.3.2 Simulation Results . 26

3.4 Conclusion . 27

4 Topological Exploration 29
4.1 Motivation . 29
4.2 The Quotient Space and H-signature . 30
4.3 The Algorithm . 32

4.3.1 Representation . 32
4.3.2 Multi-robot Exploration Algorithm . 32
4.3.3 Distributed Implementation . 37

4.4 Results . 37
4.4.1 Partially Known Environment . 37
4.4.2 Simulations of Multi-Robot Topological Exploration 38

vi

4.4.3 Experiment with a Single Robot . 39
4.5 Conclusion . 39

5 Manipulation with Cables 42
5.1 Cooperative Towing With Multiple Ground Robots . 42

5.1.1 The Quasi-Static Model for Cooperative Towing 42
5.1.2 Equilibrium Analysis . 45

5.2 Kinematics and Statics of Cooperative Multi-Robot Aerial Manipulation with Cables 48
5.2.1 Kinematics of Planar Manipulation Systems . 48
5.2.2 Direct Problem . 50
5.2.3 Direct problem: n = 2 . 50
5.2.4 Direct problem: n = 3 . 52
5.2.5 Stability . 54

5.3 Conclusion . 55

6 Manipulation of A Set Of Objects 57
6.1 Introduction . 57
6.2 Problem Description . 59
6.3 Separating Configurations . 61
6.4 Implementation . 64

6.4.1 Planning in Joint State-space . 64
6.4.2 Decoupled Planning: A Distributed Approach . 65
6.4.3 Sequential Planning . 67

6.5 Result . 69
6.5.1 Simulation Results . 69
6.5.2 Dynamic Simulation and Fast Re-planning . 71
6.5.3 Experiment Results . 78

6.6 Sequential Manipulation of Large Number of Objects . 79
6.6.1 Algorithm . 80
6.6.2 Simulation Result . 82

6.7 Conclusion . 83

7 Conclusion 84
7.1 Summary . 84
7.2 Main Contributions . 84
7.3 Future Work . 85

A Heuristic distance function considering the homotopy class constraints 88
A.1 Algorithm . 88
A.2 Examples . 91

vii

List of Figures

2.1 Illustration of homology class and homotopy class or curves. 6
2.2 Examples of possible H-signature functions. 7
2.3 Examples of homotopy class invariant function on 2-dimensional plane. 8
2.4 Examples where curves (τ1 and τ2) are homologous, but not homotopic. 9
2.5 Example of augmented graph. The goal vertices of two different paths, τ1 and τ2, have the

same coordinates but considerd to be different vertex in the augmented graph. 11

3.1 The normal vector, ni,f , of the f th face of obstacle oi is pointing inward. p is an arbitrary
point on the f thface. (a) An example of q ∈ Q when bi,f = 0. (b) An example of q ∈ Q
when bi,f = 1. 13

3.2 (a) Overlapping subsets divided by values of binary variables representing each face of tri-
angular obstacle. (b) Disjointed cells divided by values of binary variables representing each
face but considering additional constraint. 13

3.3 An example of parallelogram obstacle. f is the index of each face. Red and magenta curves
are infeasible trajectories between two feasible configurations, q1 and q2. Adjacent interme-
diate points(q3, q4 and q5) are satisfying additional constraint. 16

3.4 An example of calculating the h-signature with respect to a triangular obstacle. 18
3.5 Starting from a piece-wise linear curve (cyan), we can progressively add points, to make the

trajectory smoother by increasing the order of differentiability by one at each step. 20
3.6 Simulation result of trajectory generation in four different homology classes with the same

initial configuration (left bottom point) and final configurations(right upper point). The
first obstacle is parallelogram and the second obstacle is triangle. The actual compu-
tation time(sec) and optimal costs are specified on the upper left corners of plots. (a)
Hd = [−1,−1]T . (b) Hd = [−1, 0]T . (c) Hd = [0,−1]T . (d) Hd = [0, 0]T 22

3.7 Simulation result with anytime solutions. The computation time(sec) and optimal costs are
specified on the upper left corners of each plot. 22

3.8 (a)-(d) Final trajectories in four different homology classes with two, three, four and five
obstacles, respectively. (e)-(h) Cost of the trajectories along with computation time with
two, three, four and five obstacles, respectively. The plots shows the change in cost with
time plotted in log scale. 23

3.9 An example of a trajectory corresponding to the word TPUVWQLJHG. 24

viii

3.10 (a) Optimal trajectory without homotopy constraints (b)-(e) Trajectories with four different
homotopy class constraints. The thick black curve is the optimal trajectory in each homotopy
class and thin gray curves are the suboptimal trajectories for each word. The cost (J) for each
case is specified on the upper left corners of plots. 26

3.11 (a)-(e) Effect of varying the time distribution in each cell through iterations of the opti-
mization (3.3.2). The number of iterations (itr) and cost are also specified on the upper left
corner of each plot. Note that the cost converges to the local optimal cost of the case of
Figure 3.10(b) in 6 iterations. 27

4.1 Partially explored environments. The group of robots (red dots) need to be split and deployed
for exploration of the unknown regions (pale yellow region marked as L). The figures illus-
trate the distinction between frontier-based and topology-based deployments. 31

4.2 A simple illustration of a quotient map. The set L is collapsed to a point, q(L). Here we
consider the Euclidean plane, R2, with its subset L being the entire region outside a small
disk on the plane. Collapsing L to a single point gives us the topological 2-sphere. All non-
trivial 1-cycles (or closed loops) that completely lie in L become trivial in the quotient space
under the quotient map, q. 31

4.3 Illustration of algorithm ToplogicalExplore. 33
4.4 Comparison between the frontier-based exploration algorithm (top row) of [100] and our

TopologicalExplore algorithm (bottom row) in a partially-known environment using 4

robots. The purple curves show parts of the planned paths, while black represents traversed
paths. White is known/explored, while light yellow is the unknown region. 38

4.5 The SCARAB mobile robot platform [65] . 39
4.6 (a)-(h): Simulation result with 8 robots exploring an indoor office-like environment. (i):

Comparison of performance with frontier-based algorithm of [100] (in the same environ-
ment, with same number of robots and same initial configurations). 40

4.7 Experiment result with a single robot exploring an indoor office-like environment. 40

5.1 Quasi-static manipulation: The object is supported by three support points, Si, with normal
forces (out of the plane), λn,i and tangential frictional forces, λt,i. It is pulled by m cables,
each exerting a force λc,j . Note the robot Rj pulls by moving the object with a prescribed
(given) velocity, VRj

. 43
5.2 (Left) Arbitrary initial configuration. (Right) Stable equilibrium configuration. (This figure

is taken from [24].) . 45
5.3 The equilibrium of two-robot towing. (This figure is taken from [24] and reproduced.) . . . 47
5.4 The planar system modeled as a four-bar-linkage. The suspended payload is the coupler with

an assumed center of mass at the middle point of the coupler. 49
5.5 A graphical depiction of the conditions presented in Proposition 5.2.2. (This figure is taken

from [40].) . 52
5.6 A coupler curve with twelve equilibrium configurations. The stable and unstable configu-

rations are denoted by filled or open red diamonds. The stable configurations are shown in
Figure 5.7. Note that tension constraints are ignored. 56

ix

5.7 The six equilibrium configurations of Figure 5.6. Clearly Figures. 5.7(a)-5.7(c) are infeasible
when considering tension constraints. 56

6.1 The problem of separating the two types of objects. 58
6.2 An example of separating configuration and a set of paths to the separating configuration. . . 58
6.3 The solutions of object separating problem is not unique. 59
6.4 An example of separating configurations achieve by intuition when considering point objects. 61
6.5 An example of separating configurations which requires smart controller for transporting. . . 61
6.6 Examples of separating configurations which do not satisfy Proposition 6.3.1. 63
6.7 Illustration for Proof of Proposition 6.3.2. 63
6.8 The environment and its discretization. 64
6.9 Decoupled and distributed planning: Optimal paths with different h-signatures found for the

two robots in parallel threads, and costs of compatible pairs are compared to find the optimal
compatible pair. 66

6.10 An example of heuristic cost(the sum of the length of green lines) of the path start from
the green circle to the boundary while the desired homotopy class is hd = “r+2 r

+
3 ”. In this

example, we ignore the feasibility of the path with respect to objects. 68
6.11 A simple 30 × 30 environment with r = b = 3. The green & yellow are the paths of the

robots. The rays emanating from ζj are also shown. The dark gray segment indicates the
initial cable configuration. 70

6.12 Decoupled, distributed plans. Initial cable is shown in gray/black. Paths are in green and
yellow. 70

6.13 Sequential plan. Initial cable is shown in gray/black. Paths are in green and yellow. 71
6.14 The dynamic model showing a discrete model of the cable consisting of n rigid segments

and two rigid circular objects. 72
6.15 The three types of contacts considered in the model. 74
6.16 When the center of an object lies in the yellow region, we need to check for contact between

the ith segment of the cable and the object. The boundary of yellow region (i.e. the green
lines) are perpendicular to (wi − wi−1). In this example, we need to check for contact
between ith segment and o1, but not o2. 75

6.17 Dynamic simulation for separation of objects. The gray curve is the cable, with black dots
marking robots at its ends. Green curves are the planned paths. Magenta curves are the robot
footprints. Red & blue disks are the rigid freely-floating objects. See http://youtu.be/GyCn-
8yDzO0 for video. 78

6.18 Experiments with Autonomous Boats conducted by H. K. Heidarsson, University of South-
ern California [56]. Red and blue circles are Buoys (objects). Thin gray curve is the
planned paths of two ASVs. The Black curve is the current cable configuration. See
http://youtu.be/vGgca2w2UdA for video. 78

6.19 A large problem. Red and blue dots are object. Green curves are cable-robot teams. Light
blue and red boxes are the baskets to bring objects. The dashed line is a smallest box to
enclose all objects to be manipulated. Gray box is the workspace of the problem. The
yellow boxes are the workspace of each cable-robot team. 79

x

6.20 An example of coarse grid. the given workspace is split into set of cells whose boundaries
are the reference rays, the cyan lines, and the grey lines. the topology class of path does not
change when crossing the grey lines. 81

6.21 Dynamic simulation for separation of a large number of objects with multiple cable-robot
teams via sequential manipulation. The red and blue dots are the objects. The green
curves are the cables. The red and blue t’s are the baskets. Yellow boxes are the
workspace of each cable-robot team. Magenta curves are the paths of the robots. See
http://youtu.be/ZHrEIo8dGDA for video. 83

A.1 The cost of chpr(qi, r
s
k) is sum of the length of green lines. This Figure illustrate the case

when there is no reference line between the initial configuration and goal reference line. The
length of dashed green line can be replaced by proper admissible heuristic function based on
graph structure. 90

A.2 Examples of calculation of heuristic cost function. 91

xi

Chapter 1

Introduction

1.1 Introduction

Path planning or trajectory generation for robotic systems is an active area of research in robotics. Many
algorithms have been developed to generate path or trajectory for different robotic systems. One can classify
planning algorithms into two broad categories. The first one is graph-search based motion planning over
discretized configuration spaces. These algorithms are complete and quite efficient for finding optimal paths
in cluttered 2-D and 3-D environments and are widely used [48]. The other class of algorithms are optimal
control based methods. In most cases, the optimal control problem to generate optimal trajectories can
be framed as a nonlinear and non convex optimization problem which is hard to solve. Recent work has
attempted to overcome these shortcomings [68]. Advances in computational power and more sophisticated
optimization algorithms have allowed us to solve more complex problems faster. However, our main interest
is incorporating topological constraints. Topological constraints naturally arise when cables are used to
wrap around objects. They are also important when robots have to move one way around the obstacles rather
than the other way around. Thus I consider the optimal trajectory generation problem under topological
constraints, and pursue problems that can be solved in finite-time, guaranteeing global optimal solutions.

Early works on path planning or trajectory generation problem discussed the algorithms for mobile robots
on the plane. Time optimal trajectories of differential drive mobile robots, which can rotate in position, can
be computed by following sequence of primitive motions of rotating in position and straight moves [5]. If
the vehicle has minimum turning radius, then the shortest path will consist of a sequence of arcs and straight
lines [79]. Also, in [37] the authors find smooth shortest path with restriction on average curvature. Elastic
bands introduced the algorithm to deform the path mobile robots in dynamic environments [78], which has
been extended to mobile manipulation problem [22, 103]. Of course, finding smooth optimal trajectory is still
one of active research topic. Recently, such problem has been extended to 3D path planning of UAVs [64].

However, the development of communication and sensing allows us to control multiple robots to accom-
plish complicated tasks which are too hard or take too long for a single robot [8]. Search-and-rescue or ex-
ploration problem is one of suitable examples to show the necessity of utilizing multiple robots [11, 17, 87].
The most popular technique to efficiently deploy the groups of robots is frontier-based planning [102]. In
frontier-based algorithm, two paths or trajectories are different if they reach different frontiers. However,
the frontier is sensitive with sensor noise or resolution of the map. We are interested in robust algorithm to

1

distinguish the class of paths or trajectories. Also, we want to find optimal paths or trajectories in different

classes.
Cables are widely used in mechanical systems to transfer actuator powers. However, humans utilize

cables or ropes to carry or manipulate various objects and there has been active research on utilizing cables
in robot planning and control. We can transport a payload by towing with cables. Usually, this method
requires one or multiple robot to carry a single payload. We can manipulate a larger number of small objects
by skimming via cable. For efficiently manipulate objects, it is necessary to consider the configuration of
the cable in planning and control.

The topology can give us the answer of these problem. The paths or trajectories are different if they
are in different topology classes. Also, the objects separation problem can be formulated to path planning
problem with topological constraints of the cable configuration and robot paths.

In my thesis, I first consider the problem of planning optimal trajectories around obstacles using optimal
control methodologies. I then present the mathematical framework and algorithms for multi-robot topolog-
ical exploration of unknown environments in which the main goal is to identify the different topological
classes of paths. Finally, I address the manipulation and transportation of multiple objects with cables. Here
I consider teams of two or three ground robots towing objects on the ground, two or three aerial robots car-
rying a suspended payload, and two boats towing a boom with applications to oil skimming and clean up. I
present solutions to the trajectory generation problem for all of these problems.

1.2 Literature review

Trajectory generation problem for robotic systems is one of the most active areas in robotics research. Some
literatures focus on finding optimal trajectories in convex or unbounded spaces [6, 19]. However, the de-
velopment of computational capacities allows algorithms for generating trajectories in cluttered, non-convex
environments with kinematic and dynamic constraints in the form of constraints on communication, cov-
erage, environment, time, etc (see kinodynamic planners [35], RRT trees [61], LQR trees [94], Elastic
Roadmaps [103] and references within). Most of the algorithms are developed to find optimal trajectories
satisfying feasibility constraints. However, there have also been considerable amount of research interest in
algorithms for generating trajectories for multi-agent problems [47, 28, 105]. In such problems it is often
required that each robot follows different trajectories to cover or sense the whole work space as in search-
and-rescue or surveillance problems. This brings forth the necessity of finding trajectories in topologically
different classes. This requires that we impose constraints on the homotopy classes of the trajectories accord-
ingly. However, in many practical robotic problems, homology class constraints act a suitable and convenient
substitute for homotopy class constraints [14].

Early attempts at classifying homotopy classes in two dimensions include geometric methods [50, 46],
homotopy preserving probabilistic road-map constructions [83], and triangulation-based path planning [27].
Two trajectories are said to be homotopic if one can be continuously deformed to another without intersecting
any obstacle. Each set of trajectories that are homotopic forms an equivalence class, called a homotopy class.
Considering laser beams as reference lines, topology of the path can be used to localize agents, compare
homotopy class of paths and find winding number of path [98], which can be extended to localization of
multiple robots [96]. However, in many practical robotic problems, homology class constraints act as suitable
and convenient substitutes for homotopy class constraints [15].

2

Exploration and mapping have been treated quite extensively in the robotics literature. The general
problem can be formulated as finding the next best view or pose [77] to acquire information required to build
a map of the environment [88]. In most settings, the spatial representation of the map is based on metric
information. Indeed approaches like metric-based multi-robot coordinated exploration have been studied
widely in the past [11, 17, 87]. In decision-theoretic approaches to exploration, mutual information and
entropy are often used [87, 89, 85, 95] to guide robots to perform efficient exploration. Simpler approaches
involving the identification of frontiers and segmentation representing the boundaries between unexplored
and explored regions have also been widely used for deployment of robots in exploration and mapping of
unknown or partially known environments [102, 41, 100].

The advantages of using ropes with robots for manipulation were demonstrated by Donald et al [34].
An interesting problem that arises in these settings is the modeling of the shape of the cable and the motion
planning for the robots to control the position and shape of the cable. Motion planning for manipulation of
rope-like flexible objects is discussed in [82]. The problem of entangling and disentangling knots and the
motion planning for this problem has been addressed in [60].

From the standpoint of robotics, towing is an important manipulation process [63]. The kinematics and
dynamics of cable-actuated, parallel manipulators, which have been studied extensively [75, 20, 92, 99].
However, this body of literature primarily addresses the control of the cable extensions or forces in order to
manipulate the payload. In contrast, towing involves cables of fixed length where manipulation is accom-
plished by controlling the motions of the ”pivot points” in the parallel manipulators. While manipulation
using cables has been studied in the context of distributed manipulation [33, 31, 32], these papers do not
address the mechanics or control of the cooperative manipulation task.

The use of robots to tow objects using cables is discussed in [53, 23]. In [23], Cheng et al establish the
quasi-static towing problem with n cables has a unique solution under certain conditions. In other words, if
the robot motions are known, there is instantaneously a unique object motion. An extension of these ideas
leads to using a cable with its ends tied to robots to cage and tow objects. Indeed this method is widely
used in skimming operations on water surfaces [81, 54]. A description of the dynamics of such systems and
an analysis of the problem of cooperative skimming are provided in [12, 4]. However, this work does not
explicitly address the manipulation of objects.

In [66], manipulation and transportation with three aerial robots permits full six-dimensional pose con-
trol of a cable-actuated payload in three-dimensions despite the fact that the system is underactuated and
limited by unilateral tension constraints for specific robots-cables-platform configurations. Aerial towing,
the manipulation of a payload suspended by a cable from a moving aerial robot, has been studied in [70]. It
is quite clear that the control of all six degrees of freedom requires more than one aerial robot and multiple
cables. The underlying mechanics in such systems is closely related to the mechanics of cable-actuated par-
allel manipulators in three dimensions. In both cases, the position and orientation of the suspended payload
can only be obtained by solving the kinematic equations and the equations of static equilibrium. The equi-
librium solutions are configurations in which the gravity wrench is equilibrated by the wrenches exerted by
the n cables. This means that the lines of action of the n cables can only belong to certain subspaces which
are linear complexes (for n = 5), linear congruences (for n = 4) or reguli (for n = 3) [51, 76]. For n < 3,
it is not possible to achieve an arbitrary position and orientation.

The cooperative aerial manipulation problem is more related to cable-actuated parallel manipulators in
three dimensions, where in the former the platform pose is affected by robot positions and in the latter pose

3

control is accomplished by varying the lengths of multiple cable attachments. These systems offer similar
workspace [92, 99], control [73, 74], and analysis [20].

The problem of finding a hypersurface separating two types of objects is studied as part of statistical
classification problems [18, 93]. However such methods are susceptible to finding curves that can have
disjoint components, do not have guarantees on optimality, and are statistical in nature.

1.3 Contribution

The first contribution of this thesis is generating an optimal trajectory that minimizes an integral cost func-
tional (which depends on the trajectory), while also respecting kinematic constraints of the system, avoiding
obstacles, and constraining the trajectory to a particular topology class. Although several of these subprob-
lems have been solved separately (see [35, 61, 94, 97, 13, 14]), there is no literature, to our knowledge,
that addresses the combined problem described above. We suggest the trajectory generation problem under
topology class constraints which can be formulated as a MIQP or QP. This method can be used for trajectory
generation for differentially-flat systems [72] with a two-dimensional flat output space, such as a kinematic
car [71], or a tricycle robot [7], which not only produces a trajectory respecting the homology constraint, but
also provides the nominal feedforward forces (due to the differential-flatness property,) for use in feedback
control for trajectory tracking.

The second contribution of this thesis is to present the mathematical framework and algorithms for multi-
robot topological exploration of unknown environments in which the main goal is to identify the different
topological classes of paths. We consider two-dimensional configuration spaces. At any point in time,
the robot’s map consists of known, partially-mapped obstacles. The unknown, yet-to-be-explored area is
mapped to a single point, thus giving us a quotient space. The topological classes on the quotient space
allows us to define topological classes of paths connecting a robot pose to the unknown region in the original
configuration space. Robots explore this configuration space choosing different homology classes when
confronted by obstacles or walls.

The last contribution of this thesis is to manipulate multiple objects with only two robots connected with
a cable. We will demonstrate how to control two robots efficiently to manipulate selected objects in the
presence of other objects. The first key contribution is a topological description of the problem of separating
two sets of objects and the algebraic formulation of the separation problem. The second contribution is a
complete motion planning algorithm that relies on graph search [25] to drive the robots in order to achieve
separation and then transport the objects to specified destinations. We also derive a decoupled algorithm
that has the advantage of only requiring to plan in the individual robot’s configuration space instead of the
joint state-space. To find proper configuration of the cable, we will restrict the topology class of the cable
connecting two robots. Also we expand this problem to manipulate a large number of objects with multiple
pairs of cable-robot teams.

4

Chapter 2

Preliminaries

In this chapter, we will briefly review topology of paths/trajectories of robots and cables, which can be
considered as a curve in the workspace.

2.1 Curves in (W −O)

Let W ⊂ R2 be a 2-dimensional simply connected and bounded region. Suppose it contains a set of objects,
O = O1∪O2∪· · ·∪On ⊆ W , whereO1, O2, · · · , On are n counts of objects. Each object, Oj is assumed
to be connected.

Both robot paths/trajectories and cable configurations are 1-dimensional curves in (W − O). They can
thus be defined as continuous maps from the line segment [0, 1] to (W − O). We say a curve, γ : [0, 1] →
(W −O), is embedded [69] if γ(t) 6= γ(t′),∀t 6= t′ (i.e. the curve does not intersect itself).

For a given curve, γ, we define −γ : t 7→ γ(1 − t). That is, −γ is the same curve as γ, but with
opposite orientation. The line integral of a differential 1-form, ω = f dx + g dy, over γ is defined as∫
γ
ω :=

∫ 1

0
(fγ̇x + gγ̇y) dt.

2.2 Homology and Homotopy Invariants

2.2.1 Homology of curves and Homology Invariants

Definition 2.2.1 (Homology classes of curves). Two curves γ1, γ2 : [0, 1] → (W − O) connecting the
same start and end points, are homologous (or belong to the same homology class) iff γ1 together with γ2
(the latter with opposite orientation) forms the complete boundary of a 2-dimensional manifold embedded
in (W −O) (not containing/intersecting any of the objects/obstacles) as shown in Figure 2.1(a) [15, 49].

A homology invariant is a function, H , from the space of all curves in (W −O) (with fixed end points)
to another much smaller space (in this case, a vector space), such that H(γ1) = H(γ2) iff γ1 is homologous
to γ2. In [15] a homology class invariant (called the H-signature) was proposed, which is based on simple

5

xs

xg
O1

O2

τ1

τ2
τ3

-τ2
O3

A

-τ3

(a) τ1 is homologous to τ2 since τ1 t −τ2 forms A, the
complete boundary of a 2-dimensional manifold embedded
in (W −O). τ3 belongs to a different homology class since
τ1 t −τ3 or τ2 t −τ3 encloses O2.

xs

xg
O1

O2

τ1

τ2
τ3

O3

(b) τ1 is homotopic to τ2 since there is a continuous se-
quence of trajectories representing deformation of one into
the other. τ3 belongs to a different homotopy class since it
cannot be continuously deformed into any of the other two.

Figure 2.1: Illustration of homology class and homotopy class or curves.

results from complex analysis. In particular,

H(γ) =
1

2πi

∫
γ

1

z−ζ1 ,
1

z−ζ2 ,
...
1

z−ζn

 dz (2.2.1)

where, z = x+ iy is the complex representation of (x, y) ∈W −O, and ζj = ζj,x + iζj,y are the complex
representations of representative points inside the objects with respect to which we compute theH-signature
ans shown in Figure 2.2(a). Thus, the function, H , is computed as the integration of the vector of differential
1-forms,

ωj =
1

2πi

dz
z − ζj

, (2.2.2)

over the curve γ.
However, the possible choice of such invariants has been broadened in [16], where the choice of the

vector of differential 1-forms, which needs to be integrated over γ to obtain the invariant, has been proven to
be any complete set of generators of the de Rham cohomology group, H1

dR(W −O). In particular, the bump

1-forms [21],

ωj = υ(y − ζj,y)δ(x− ζj,x) dx, (2.2.3)

(where δ is the Dirac delta function, and its integral, υ, is the heaviside step function – that is, informally
speaking, ωj are analogous to a Dirac delta distribution over rays emanating from ζj along positive Y axis)
is a choice that has the simple interpretation of counting the number of times the curve, γ, crosses rays

6

xs

xg

O1

ζ1

γ

ζ5
ζ4

ζ2

ζ3

O4

O5O2

O3

(a) H-signature based on simple results from complex anal-
ysis.

xs

xg

O1

ζ1

γ

ζ5
ζ4

ζ2

ζ3

O4

O5O2

O3

X

Y

(b) H-signature based on bump 1-forms.

Figure 2.2: Examples of possible H-signature functions.

emanating from ζj (Figure 2.2(b)). In particular, define, #jγ :=
∫
γ
ωj = (Number of times γ crosses the

ray emanating from ζj from left to right)− (Number of times γ crosses the ray emanating from ζj from right
to left). Then,

H(γ) =

#1γ,

#2γ,
...,

#nγ

 . (2.2.4)

For example, curve γ in Figure 2.2(b) has the H-signature of H(γ) = [0, 1, 0,−1, 0]T . For closed loops
the value of H-signature won’t depend on the choice of the differential 1-forms, as long as they form a
generating set of the first de Rham cohomology group, H1

dR(W − O) [21], and will compute the winding

numbers about ζj .
And we can find more generalized form of the H-signature of the given curve, γ : [0, 1] → (W − O),

with arbitrary reference lines.

#jγ =

∫ 1

0

υ(dj · (γ(t)− ζj))δ(d̃j · (γ(t)− ζj)) dt (2.2.5)

where dj = [dj,x, dj,y]
T is the direction of the reference line and d̃j = [dj,y,−dj,x]

T is the normal vector to
the reference line. So, it is obvious that (2.2.3) is a special case of dj = [dj,x, dj,y]

T
= [0, 1]T . As a result,

we can choose arbitrary reference lines to calculate H-signature of the given curves and environments.

2.2.2 Homotopy of curves and Homotopy Invariants

Definition 2.2.2 (Homotopy classes of curves). Two curves γ1, γ2 : [0, 1]→ (W −O) connecting the same
start and end points, are homotopic (or belong to the same homotopy class) iff one can be continuously

7

xs

xg

O1

ζ1

γ

ζ5

ζ4

ζ2

ζ3

O4

O5

O2

O3
ζ6

O6

r1 r6r5r4r3r2

(a) h-signature based on reference rays. h(γ) =
“r+1 r

+
2 r

+
3 r
−
2 r
−
5 ”.

xs

xg

O1

ζ1

γ

ζ5

ζ4

ζ2

ζ3

O4

O5

O2

O3
ζ6

O6

r1 r6r5r4r3r2

η

(b) h-signature of a closed loop. h(γ t −η) =
“r+2 r

+
3 r
−
2 r

+
6 ”.

Figure 2.3: Examples of homotopy class invariant function on 2-dimensional plane.

deformed into the other without intersecting any obstacle as sown in Figure 2.3(a).
Formally, if γ1 : [0, 1] → (W − O) and γ2 : [0, 1] → (W − O) represent the two trajectories (with

γ1(0) = γ2(0) = xs and γ1(1) = γ2(1) = xg), then γ1 is homotopic to γ2 iff there exists a continuous map
η : [0, 1] × [0, 1] → (W − O) such that η(α, 0) = γ1(α) ∀α ∈ [0, 1], η(β, 1) = γ2(β) ∀β ∈ [0, 1], and
η(0, γ) = xs, η(1, µ) = xs ∀µ ∈ [0, 1] [15, 49].

Homotopy invariants, in general, are much more difficult to design and compute. Homotopy groups,
unlike homology groups, do not have the natural structure of a vector space [49]. However, for curves in
2-dimensional plane with punctures (i.e. obstacles/objects), there is a relatively simple representation of the
homotopy group and a way of computing the homotopy class of a given curve [46, 50, 98, 49, 9]: We con-
sider representative points, ζi as before, and parallel non-intersecting rays, r1, r2, · · · , rn, emanating from
the objects respectively (Figure 2.3(a)). We form a word by tracing γ, and consecutively placing the letters
of the rays that it crosses, with a superscript of ‘+1’ (assumed implicitly) if the crossing is from left to right,
and ‘−1’ if the crossing is from right to left. Thus, for example, the word for γ in Figure 2.3(a) will be
“r+1 r

+
2 r

+
3 r
−
2 r

+
6 r
−
6 r
−
5 ”. We can reduce this word by canceling the same letters that appear consecutively but

with opposite superscript signs. Thus, the word for γ in Figure 2.3(a) can be reduced to “r+1 r
+
2 r

+
3 r
−
2 r
−
5 ”.

This reduced word representation is a homotopy invariant for open curves (with fixed end points), γ, and we
will write this as h(γ) and call it the “h-signature of γ”. However, it is important to note that we cannot ex-
change position for arbitrary pairs of letters in the word (i.e. the juxtaposition of letters is non-commutative).
Unlike the homology invariant, this is not a vector, but an element of the non-abelian group freely generated

[86, 49] by {r1, r2, · · · , rn}. Thus, although words can’t be added in the sense of vectors, they can be con-
catenated under the non-commutative group operation, ‘�’. Also, the inverse of a word, w, written as w−1,
is the h-signature of the same curve but with opposite orientation (i.e. h(−γ) = (h(γ))

−1), and is a word
where the order of the letters are reversed, and the exponent of each letter is flipped (so that w �w−1 =“ ”,
the identity element). Thus, (w1 �w2)

−1
= w2

−1 �w1
−1. As an example, (“r+1 r

+
3 r
−
2 ”)−1 =“r+2 r

−
3 r
−
1 ”.

However, if the curve is a closed loop (e.g. (γ t −η) in Figure 2.3(b)), there is no preferred starting

8

xs

xg

O1
O2

τ1

τ2

O3

Figure 2.4: Examples where curves (τ1 and τ2) are homologous, but not homotopic.

point from where we should start tracing the curve and write the word. Thus, for such curves we need to
consider the cyclic permutations of the letters in the reduced words to be equivalent. That is, a word, “abcde”
will be considered to be the same as “cdeab”. Thus, when reducing a word, we need to consider the cyclic
permutations, and thus cancel a letter at the beginning of the word that appears at the end as well, but with
opposite superscript signs. For example, in Figure 2.3(b), if we trace the curve, γ t −η, starting at the point
e, we get,

h(γ t −η) =h(γ) � h(−η) = h(γ) � h(η)−1 (2.2.6)

=“r+1 r
+
2 r

+
3 r
−
2 r
−
5 ” �

(
“r+1 r

−
6 r
−
5 ”
)−1

= “r+1 r
+
2 r

+
3 r
−
2 r
−
5 ” � “r+5 r

+
6 r
−
1 ”

=“r+1 r
+
2 r

+
3 r
−
2 r
−
5 r

+
5 r

+
6 r
−
1 ” = “r+1 r

+
2 r

+
3 r
−
2 r

+
6 r
−
1 ”

=“r+2 r
+
3 r
−
2 r

+
6 ”(after canceling the letters at the start & the end)

which is the completely reduced word.
The homotopy invariant of a curve, γ, is the reduced word constructed in the described way, with cyclic

permutations of a word being considered equivalent when γ is closed. It is easy to note that for closed curves,
the value of the homology invariant described earlier as integral over the bump 1-forms, does not depend
on the choice of the direction of the rays emanating from ζi. But the homotopy invariant word is highly
dependent on the choice of the direction of the rays.

2.2.3 The Hurewicz map

While one may be tempted to think that the concepts of homology and homotopy are one and the same, that
is in fact not true. While trajectories that are homotopic are also homologous, the converse is not necessarily
true [15, 49]. For example, the two curves τ1 and τ2 are homologous, but not homotopic in Figure 2.2.3. This
is due to existence of a homomorphisms, called the Hurewicz maps [49] from the homotopy groups to the
homology groups, which are not necessarily isomorphisms. The Hurewicz map between the first homotopy
group, π1(X) [49], and the first homology groups for any topological space, X , can be written explicitly as

9

the abelianization map (a group quotient map), h∗ : π1(X) → π1(X)/[π1(X), π1(X)], where [·, ·] is the
commutator subgroup [45] of π1(X).

The Hurewicz map can be used to compute the H-signature (the homology invariant) from a given a h-
signature (homotopy invariant) of a closed curve when the reference rays of H-signature and h-signature are
the same for each object. To do this, we simply allow the letters in the given word to commute, thus reducing
the word until each letter appear at most once with an exponent (which will be±1 for embedded curves). We
then place the exponent of each letter in the corresponding position of the H-signature vector. Equivalently,
we start with a zero-vector for the H-signature, and then for each letter we add 1 to the corresponding
component of the vector if the letter appears with a ‘+1’ exponent, and subtract 1 if it appears with a ‘−1’
exponent. We will also write h∗ to denote this map from the space of h-signatures (words) to the space of
H-signatures (a vector space).

Thus, from the earlier example of Figure 2.3(a), we had h(γ) = “r+1 r
+
2 r

+
3 r
−
2 r
−
5 ”. Since the 6 com-

ponents of the H-signature vector corresponds to the objects O1, O2, . . . , O6 respectively, starting with
[0, 0, 0, 0, 0, 0]T , for ‘r+1 ’ we add 1 to the 1st component, for ‘r+2 ’ we add 1 to the 2nd component, for r+3
we add 1 to the 3rd component, for ‘r−2 ’ we subtract 1 from the 2nd component, and for ‘r−5 ’ we subtract 1

from the 5th component. Thus, we end up having H(γ) = h∗(“r+1 r
+
2 r

+
3 r
−
2 r
−
5 ”) = [1, 0, 1, 0,−1, 0]T .

2.2.4 Augmented Graph

Through this thesis, we will use an augmented graph in our graph-search planner. We will define an aug-
mented graph in which a vertex includes additional information or component about topology of the path
until this vertex. For example, if we build a graph of a mobile robot the vertex in the graph should be
v = (x, y) and two vertices, v1 = (x1, y1) and v2 = (x2, y2), are the same if x1 = x2 and y1 = y2. How-
ever, the vertices in the augmented graph include topology class information to reach each vertex. then the
vertex in the augmented graph will be v = (x, y, g) where g can be theH-signature for homology class or h-
signature for homotopy class. In the augmented graph, two vertices, v1 = (x1, y1, g1) and v2 = (x2, y2, g2),
are the same if x1 = x2, y1 = y2 and g1 = g2. By adapting this augmented graph, we can find optimal paths
to the same point for vertex in the original graph in different topology classes.

The Figure 2.2.4 shows an example with a single obstacle in a four-way-connected graph. Two paths, τ1
and τ2, have the same initial vertex, vs. In the original graph, the goal vertex, vg of the two paths are the
same because they have the same coordinates. However, in the h-signature augmented graph, the goal vertex
of τ1 would be v1g = (xg, yg, “r+1 ”). While, the goal vertex of τ2 would be v2g = (xg, yg, “ ”). So we have
v1g 6= v2g . In the same manner, the goal vertices of H-signature (using the bump form in (2.2.3)) graph will
be v1g = [xg, yg, [1]) and v2g = [xg, yg, [0]) to result in v1g 6= v2g .

10

vs

vg

τ1

τ2
O1

ζ1

Figure 2.5: Example of augmented graph. The goal vertices of two different paths, τ1 and τ2, have the same
coordinates but considerd to be different vertex in the augmented graph.

11

Chapter 3

Trajectory Generation under
Topological Constraints

In this chapter, we present a method to generate an optimal trajectory restricted to a particular topology class.
The optimality of the generated trajectory is achieved by formulating the trajectory generation problem as
a Mixed-Integer Quadratic Program (MIQP) [84, 80]. As the H-signature is the homology class invariant
function, we can find shortest paths with graph-search based planner [10]. But we cannot add H-signature
constraints to optimal control because the gradient of H-signature is zero almost everywhere. So, we intro-
duce binary variables that not only encode information about the satisfaction of geometric constraints, but
also incorporate information about the topology class. We will cleverly consider topology class constraints
so that the suggested trajectory generation problem under topology class constraints can still be formulated as
a MIQP. We illustrate the method with examples of minimum acceleration trajectory generation under differ-
ent topology class constraints with potential application to differentially-flat systems with a two-dimensional
flat output space. The work in this chapter was performed in close collaboration with Dr. Koushil Sreenath
and Dr. Subhrajit Bhattacharya. Much of the work in Section 3.2 and Section 3.3 were reported in [58] and
[59], respectively.

3.1 Optimal Trajectory Generation

We consider trajectory planning in a compact subset Q ⊂ R2 of a plane. Let O = {o1, o2, · · · , ono
} be a

set of convex, pair-wise disjoint obstacles in Q (The requirement of convexity of obstacles can be relaxed
by considering a set of arbitrarily-shaped obstacles such that their convex hulls are pair-wise disjoint). Each
obstacle oi ∈ O can be represented by a ni-sided convex polygon, whose faces define hyperplanes that
partition Q into two half-spaces. A binary variable is used to indicate whether a point is on the feasible side
of the hyperplane, as described in [80]. So a point q ∈ Q will be feasible and will avoid collision with an
obstacle oi if there is at least one face f ∈ [1, ..., ni] satisfying ni,f · q ≤ si,f . Where ni,f is a normal vector
to the f th face of obstacle oi pointing inward, and si,f = ni,f ·p, for an arbitrarily chosen point p on the f th

face as shown in Figure 3.1. Similar to obstacle avoidance using binary variables bi,f , as described in [80],

12

p

q

Inside

Outside

n
i,f

o
i

fth face→

(a)

p

q

Inside

Outside

n
i,f

o
i

fth face→

(b)

Figure 3.1: The normal vector, ni,f , of the f th face of obstacle oi is pointing inward. p is an arbitrary point
on the f thface. (a) An example of q ∈ Q when bi,f = 0. (b) An example of q ∈ Q when bi,f = 1.

b=[0,1,1]

b=[1,0,1]

b=[0,0,1]

q
k−1

q
k

q
k+1

(a)

b=[0,1,1] b=[0,0,1]

b=[1,0,1]
b=[1,0,0]

(b)

Figure 3.2: (a) Overlapping subsets divided by values of binary variables representing each face of triangular
obstacle. (b) Disjointed cells divided by values of binary variables representing each face but considering
additional constraint.

13

a given point is feasible with respect to obstacle oi if

ni,f · q ≤ si,f − δr +Mbi,f for f = 1, ..., ni (3.1.1)
ni∑
f=1

bi,f ≤ ni − 1,

where bi,f ∈ {0, 1} are binary variables (with bi,f = 0 indicating that the point lies on the feasible side of
the f th face of the ith obstacle as shown in Figure 3.1(a)), and M > 0 is a large positive number. δr ≥ 0

is the radius of the disk encircling the finite-sized robot, along with some safety-padding around it. The
second inequality in (3.1.1) implies that the point q will be feasible with respect to at least one face, i.e.,

for a given i, there exists at least one f such that bi,f = 0. Although (3.1.1) is a sufficient condition for
feasibility, this formulation breaks up Q into overlapping subsets as shown in Figure 3.2(a). The first three
plots in Figure 3.2(a) illustrate that the subset corresponding to b = [0, 0, 1] is the intersection of the two
subsets corresponding to b = [0, 1, 1] and b = [1, 0, 1]. Considering the segment of trajectory in the last plot
of Figure 3.2(a), the binary variable vector bk, corresponding to the point qk, is not unique, but could be any
of b = [0, 1, 1], b = [0, 0, 1] and b = [1, 0, 1]. As a result, we can have the same trajectory (represented
by the points on it) described by different sets of binary variables. Such duplication increases the size of
the feasible region in the space of binary variables, resulting in redundant searches, and larger computation
times. To eliminate such cases, we introduce some additional inequality constraints to build disjointed cells
like in Figure 3.2(b),

−ni,f · q ≤ −si,f + δr +M(1− bi,f) for f = 1, ..., ni. (3.1.2)

The first inequality of (3.1.1) only guarantees that the point q is on the feasible side or outside of f th face
when bi,f = 0. But the constraint (3.1.2) enforces that the point q be on the other side when bi,f = 1. Thus,
the feasible region, Q, is partitioned into disjoint cells, each of which is bounded by hyperplanes defined by
the faces of the obstacles. (see Figure 3.2(b)). Moreover, each cell can be identified by a unique vector of
binary variables, b = [bT1 , . . . , b

T
no

]T where bi = [bi,1, . . . , bi,ni
]T ∈ {0, 1}ni .

We parametrize the trajectory by splicing Ns segments of trajectories, each parametrized by linear com-
bination of Np + 1 basis functions,

q(t) =

Np∑
k=0

cj,k ek(t− tj) for tj ≤ t < tj+1, (3.1.3)

for j ∈ [0, ..., Ns − 1], 0 = t0 ≤ t1 ≤ ... ≤ tNs
= tf . Where ek(t) is any basis function and cj,k are

coefficients. So the whole trajectory is union of Ns subtrajectories The trajectory is restricted to be kr-
times differentiable at the junction of each of the segments of trajectories, q(tj), for j ∈ [1, ..., Ns − 1].
Further, obstacle avoidance is achieved by enforcing (3.1.1) at some equally distributed intermediate points
on each segment of trajectories. we choose the cost function to be the integration of the square of the norm
of rth-derivative of the trajectory:

J(c) =

∫ tf

t0

∥∥∥∥drq(t)dtr

∥∥∥∥2 dt = cTHc. (3.1.4)

14

where c = [cT0 , ...c
T
Ns−1]T , and H depends only on the choice of the basis functions (note that we could

choose a cost function that is a weighted sum of different order derivatives, and still keep it quadratic in
c). The optimal trajectory generation problem can then be simplified as the following MIQP (Mixed-Integer
Quadratic Program),

min
c, b̃

cTHc (3.1.5)

s.t. Afc+Df b̃ ≤ gf
Abb̃ ≤ gb
Aeqc = 0

where b̃ is the vector formed by stacking all the binary vectors, bk, corresponding to the intermediate points,
qk, of the trajectory and hence is a coarse representation of the continuous trajectory q(t). The first inequality
captures the feasibility constraints of (3.1.1) for the intermediate points, the second inequality captures the
constraint on sum of binary variables in (3.1.1), and Aeqc = 0 imposes rth order differentiability at the
junction of the segments of trajectories and the boundary conditions of initial configuration, q(0) = q0 and
final configuration q(tf) = qf .

Now in the following sections, we will discuss how to add homology or homotopy class constraints on
this trajectory generation problem while maintaining the MIQP formulation.

3.2 Optimal Trajectory with Homology Class Constraints

To find an optimal trajectory in a specific homology class, we can then add some topological constraints. If
we add a constraint on the H-signature, which we described in the Chapter 2, such that the H-signature of
the trajectory, H(q), should be some desired Hd. However, all the form of H-signature (2.2.1), (2.2.3) and
(2.2.5) are the nonlinear equations of the trajectory. So, the quadratic program (3.1.5) becomes a non-convex
problem with this homology class constraints. Furthermore, the gradient of the new constraint, H = Hd,
will be zero almost everywhere, because the value of the H-signature does not change within a particular
homology class, (i.e. the range of the H-signature is a set of discrete variables). So, the resulting problem
is a non-convex problem, which is numerically hard to solve based on gradients of cost and constraints. So,
we need a different way to enforce topological constraints.

3.2.1 Algorithm Description

In this Section, we will describe our algorithm to generate the optimal trajectory with homology constraints
while ensuring that the problem remains a MIQP.

Additional feasibility condition

We start by noting that the feasibility (with respect to obstacles) of each intermediate point on the trajectory
does not guarantee the feasibility of the whole trajectory. Consider an example with only one parallelogram
obstacle as shown in Figure 3.2.1. In Figure 3.2.1, two adjacent intermediate points, q1 and q2, are both
feasible with respect to the given obstacle, o1. The red curve in Figure 3.2.1 shows an infeasible curve

15

f=1

f=2
f=3

f=4 o
1q

1

q
2

q
3

q
4

q
5

Figure 3.3: An example of parallelogram obstacle. f is the index of each face. Red and magenta curves are
infeasible trajectories between two feasible configurations, q1 and q2. Adjacent intermediate points(q3, q4
and q5) are satisfying additional constraint.

connecting two points. Of course, the optimal trajectory could be feasible like the green curve. However, the
line segment connecting the two points (the magenta curve) is infeasible. To avoid such undesirable cases,
we need additional constraint between adjacent intermediate points. The curves in Figure 3.2.1 illustrates
this additional constraint: Considering the corresponding binary variables of each point, q3 is only feasible
with respect to face f = 1 and the next intermediate point, q4 is also feasible with respect to the same face.
So, the line segment, connecting these two points is also feasible with respect to face f = 1. Moreover, both
q5 and its previous point, q4, are feasible with respect to face f = 2. So the line segment joining them is also
feasible. In contrast, consider the case of q1 and q2 in Figure 3.2.1. These two adjacent intermediate points
do not share feasibility with respect to a common face – q1 is feasible with respect to only face f = 4 and
q2 is feasible with respect to only face f = 1. So we cannot guarantee the feasibility of the line segment
connecting these two points.

The above discussion suggests an additional constraint that two consecutive intermediate points should
share a common hyperplane with respect to which they are feasible, and this should hold true for each
obstacle. In other words, the binary variables corresponding to the adjacent intermediate points should
either be the same or differ by only one component, and this condition should be satisfied with respect to
all obstacles. This constraint then guarantees the feasibility of a straight line segment connecting the two
intermediate points. We write b(o,k) to describe the vector of binary variables for the kth intermediate point
formed by stacking together the binary variables for the different faces of the oth obstacle (thus, it is a ni-
sized sub-vector of b̃). Thus the constraint involving the kth and k + 1th intermediate points with respect to
oth obstacle can be describe as

∥∥b(o,k) − b(o,k+1)

∥∥2
2

=
∑

b(o,k) · b(o,k) + b(o,k+1) · b(o,k+1) − 2b(o,k) · b(o,k+1) (3.2.1)

=
∑

b(o,k) +
∑

b(o,k+1) − 2b(o,k) · b(o,k+1)

≤ 1

16

where,
∑
b denotes the sum of the elements of a binary vector, and the last equality holds since b · b =

∑
b

for a vector of binary variables, b ∈ {0, 1}n. This additional constraint on the gradual change of the binary
variables along the trajectory plays an important role in formulation of a new h-signature based on binary
variables, as described in the next section. However, this constraint is quadratic in the binary variables, and
we will discuss how we can reduce this constraint to a linear one in Section 3.2.1.

Define H-signature

To find an optimal trajectory contained in a specific homology class, theH-signature defined in Chapter 2 can
be used. However, these function are homology class invariant whose gradients are zero almost everywhere.
So, the homology class constraints based onH-signature are not proper for gradient-based numerical solvers.

However, we choose H-signature of (2.2.5) for this work. We can choose arbitrary reference ray of each
obstacle but for convenience of calculation and notation, we choose the reference ray as the extension of face
f = 1 in the direction of the last face f = nf as shown in Figure 3.2.1. Also, for the consistency of sign of
winding number, the faces are numbered in counterclockwise direction like Figure 3.2.1. So, for a given it

obstacle, the H-signature will be

Hi (q(t)) =

∫ tf

t0

υ(di · (γ(t)− ζi))δ(ni,1 · (γ(t)− ζi)) dt (3.2.2)

where ni,1 is the normal vector the of the 1st face of the ith obstacle and di = R
(
π
2

)
ni,1 is the direction of

reference ray, which is rotating the normal vector by π
2 and ζi is an arbitrary point on the 1st face. However,

the gradient of this integration will be zero almost everywhere and is not proper constraint. Here, we need
to focus on the fact that geometric meaning of this integration is counting the number of times the trajectory
crosses the given reference ray. Moreover, this reference ray is one the the boundary or hyper plane that
splits the feasible space into cells. So the change of binary variable corresponding to the first face bi,1 will
give us alternative way to integrate (3.2.2).

From this fact, it is obvious that we need to accumulate the value of bi,1,k+1−bi,1,k for ∀k (where by bi,j,k
we mean the binary variable for the kth intermediate point corresponding to the jth face of the ith obstacle).
However, to avoid counting the number of intersection with the the other ray obtained by extending the face
f = 1 in the other direction (the green line in Figure 3.2.1), we need to count the case when the two adjacent
intermediate points are infeasible with respect to the second face f = 2, i.e. bi,2,k+1 = bi,2,k = 1. So, the
H-signature with respect to an obstacle, oi, will be

Hi(̃b) =
∑
k

bi,2,k+1 + bi,2,k
2

(bi,1,k+1 − bi,1,k) . (3.2.3)

=
∑
k

bi,2,k (bi,1,k+1 − bi,1,k)

The second equality of above equation holds because bi,2,k+1 = bi,2,k when bi,1,k+1 6= bi,1,k due to the
constraint we defined in (3.2.1). The H-signature with respect to all obstacles will be H = [h1, ..., hno

]T ,
where no is the number of obstacles. However, this new H-signature is also quadratic in binary variables.
We will discuss how we can reduce this quadratic equation to a linear one in the next section.

17

f = 1

f = 2f = 3

o
1

(+1)

(−1)

(+0)

(−0)

Figure 3.4: An example of calculating the h-signature with respect to a triangular obstacle.

Substitution binary variables

As the new constraint in (3.2.1) and the H-signature in (3.2.3) are quadratic with respect to the binary
variables, we introduce some substitution binary variables that represent the product of two binary variables.
For example, consider the product of two binary variables, bi · bj , for bi, bj ∈ {0, 1}. Then, we substitute
bi · bj with a new binary variable dij ∈ {0, 1}, on which we impose the following three inequalities,

dij ≤ bi , dij ≤ bj , −2 + δ + bi + bj ≤ dij (3.2.4)

where 0 < δ < 1 is a design parameter. The first two inequalities in (3.2.4) enforce dij = 0 when bi = 0 or
bj = 0, respectively. And the last inequality enforces dij = 1 when bi = bj = 1, because 0 < δ ≤ dij . So
the above three constraints let us perform the substitution dij = bi · bj . Let d be the vector of substitution
variables with which we need to replace all the quadratic terms in (3.2.1) and (3.2.3). Then we can rewrite
the feasibility conditions of substitution binary variables, (3.2.4), as

Af,db̃+Bf,dd ≤ bf . (3.2.5)

Then we can rewrite the quadratic constraint of (3.2.1) for the whole trajectory as

Ao,k b̃+Bo,kd ≤ bo,k (3.2.6)

for all o and k. And the h-signature calculation of (3.2.3) becomes the following linear equation

Hi = Ai,hd. (3.2.7)

So, we can reduce all equations containing quadratic terms in the binary variables to linear ones using
the substitution binary variables.

18

Finding Optimal Trajectory in a given Homology Class

Since our goal is to design optimal trajectory with homology constraint, we can impose the new constraints
of (3.2.5), (3.2.6), and (3.2.7) to the optimal trajectory generation problem (3.1.5) to formulate a new MIQP
as follows

min
c, b̃, d

cTHc (3.2.8)

s.t. Afc+Df b̃ ≤ gf
Abb̃ ≤ gb
Adb̃+Bdd ≤ bf
Aob̃+Bod ≤ bo
Aeqc = 0

Ahd = Hd

where b̃ and d are vectors of binary variables as described earlier. The third inequality is the condition
of substitution variables (3.2.5), the forth inequality is for additional feasibility constraint for continuous
change of binary variables (3.2.6), and the last equality is for the homology constraint with respect to all
obstacles (3.2.7). As the resulting problem is MIQP, we can get an anytime solution to this problem through
numerical solvers like CPLEX [52]. However, we need enough number of segments of trajectories (Ns) and
basis function (Np) to be able to obtain a feasible trajectory in the given homology class.

Proposition 3.2.1 (Completeness Guarantee). Suppose there exists an arbitrary trajectory τ (dark blue

curve in Figure 3.5(a)), not touching any of the obstacles, in the homology class represented by the H-

signature of Hd, that crosses the cell boundaries (i.e. the hyperplanes) m or less number of times (for

avoiding ambiguity we assume τ is generic and that it does not pass through the intersection of 2 or more

hyperplanes). With the choice of basis functions ek(t) = tk in (3.1.3), and with Np > r, it is then sufficient

to choose Ns = 2r(m− 1) + 1 in order to guarantee existence of a solution for the problem in (3.2.8) (i.e.
all the conditions being satisfied, and with finite cost).

Sketch of Proof.

Consider the m− 1 consecutive cells that τ passes through. We choose m− 1 points, q01 , q
0
2 , · · · , q0m−1,

respectively in the interior of each of these cells. Now, two such consecutive cells together form a convex
region (bounded by the hyperplanes the cells are individually bounded by, except for the one hyperplane
that separates them). Thus, the piece-wise linear curve formed by joining these consecutive points (call
this q0) give a trajectory consisting of m segments (cyan curve in Figure 3.5(a)), connecting the initial
and final points, not intersecting any of the obstacles, and is continuous (i.e. 0th order differentiable).
The affine segments are permitted by the choice of the basis functions (the parametrization may be chosen
arbitrarily), thus giving values of coefficients, cj,k, in (3.1.3) that describe this trajectory. Those, along with
the binary vectors corresponding to each of these points, satisfy all the conditions in (3.2.8), except for the
differentiability condition Aeqc = 0.

The main idea behind the proof of this proposition is that we can now replace each of the points q0j by
two points lying arbitrarily close to it, and thus “smoothen” the curve (Figure 3.5(b)). This smoothening is

19

Figure 3.5: Starting from a piece-wise linear curve (cyan), we can progressively add points, to make the
trajectory smoother by increasing the order of differentiability by one at each step.

possible to achieve with just an unit increase in the degree of the basis functions (which is evident by looking
at the individual components q0x(t) and q0y(t), as illustrated in Figure 3.5(c)) – in this case, going from linear
to quadratic (it is always possible to find a parabola that has two given lines with bounded slope as tangents,
and then scale it down such that the contact points with the tangents lie within a small ball around the point
of intersection of the lines).

Thus, now we have a new trajectory (call this q1), that is smooth everywhere, but not twice differentiable
(red trajectory in Figure 3.5(b)). However, we can continue the same process of smoothening the derivatives
of q(t) by adding points in a small neighborhood of the original tj’s, doubling the number of intermediate
points at every step. The choice of this neighborhood can be arbitrarily small to ensure that the added points
remain in the interior of the same cell. Continuing this until we have rth order differentiability requires
2r(m − 1) intermediate points. In this way, we can construct a trajectory that satisfies all the conditions of
(3.2.8).

Computational Complexity

The resulting optimal trajectory generation problem is a MIQP, which can be solved by an anytime solver like
CPLEX. Thus, if there exists a feasible solution, it will be found by CPLEX. Moreover, with additional time
available for computation, a lower cost solution can be found. However, the computation time will increase
with the complexity of the given MIQP. So, in this section, we will discuss the computational complexity of
the trajectory generation problem (3.2.8). The number of continuous variable in the problem is

nc = 2(Np + 1)Ns (3.2.9)

where there areNs segments of trajectories ofNp+1 basis function for each x and y. However, some equality
constraints to satisfy initial and final configuration and the continuity between segments of trajectories will
reduce the actual number of continuous variables by searching the null space of Aeq of (3.2.8). Again, the
number of binary variables to describe feasibility with respect to each face of obstacle is

nb = Nc ·Nf (3.2.10)

20

where Nc is the number of intermediate points on the whole trajectory and Nf =
∑no

i=1 ni is the total
number of faces of all obstacles. Then the number of substitution binary variables is

nd = (Nc − 1)Nf + 2(Nc − 1) (3.2.11)

where each term is related to the quadratic terms in (3.2.1) and (3.2.3), respectively. So the total number of
binary variables will be nb + nd.

The number of constraint is also an important factor in computational complexity. The number of equal-
ity constraint will be

neq = 2(kr + 1)(Ns − 1) + 2× 4 + no (3.2.12)

where the first term represent the continuity between segments of trajectories. The second term represents
the equality constraint of initial and final configuration; position and velocity of x and y. The last term is
related to the H-signature constraint, which is the same as the number of obstacles. However, this equality
constraint will disappear because we search in the null space of this equality constraint while reducing the
number of continuous variables in the same manner. Most of the constraints are inequality constraints and
we have

nineq =2Nc ·Nf +Nc · no +Nc · no + 3nd (3.2.13)

=5Nc ·Nf + 2Nc · no + 6Nc − 3Nf − 6

where the first term represents on which side of each face the intermediate point is located – the first equation
of (3.1.1) and equation of (3.1.2). The second term represents the second equation of (3.1.1) and the third
term represents (3.2.1). The last term presents the condition of substitution binary variables (3.2.4). So the
number of inequality constraint is bilinear with respect to the number of intermediate points and faces of
obstacles.

3.2.2 Simulation Results

To illustrate how the suggested algorithm works, we performed some simulations to generate optimal trajec-
tories of a point robot, δr = 0, in various homology classes of a given environment. For all simulations, we
use polynomial basis functions, ek(t) = tk and minimize the integration of the norm of acceleration of trajec-
tories, i.e. we choose r = 2 in (3.1.4). In the first simulation, we find optimal trajectories with two obstacles
under homology constraint. As mentioned before, the planned trajectory could be for a differentially-flat
dynamical robot system such as a kinematic car [71], or a tricycle robot [7].

Figure 3.6 shows optimal trajectories with the same initial and final configurations but with different
desired h-signatures, and consequently different homology classes. For each homology class, the CPLEX
solver finds the optimal trajectory. Comparing the computation time and cost of trajectories of each homol-
ogy class, it can be observed that the optimal trajectory in the homology class corresponding to lower cost
takes less time to compute. This is an expected phenomenon since in a branch-and-bound algorithm the tree
of fixed binary variables tends to expand to minimize the cost.

In searching for the optimal trajectory in a particular homology class (e.g. the one in Figure 3.6(c)),

21

t = 23.1032
cost = 0.81085

(a)

t = 12.4738
cost = 0.65345

(b)

t = 187.0652
cost = 2.9868

(c)

t = 3.3112
cost = 0.21916

(d)

Figure 3.6: Simulation result of trajectory generation in four different homology classes with the same
initial configuration (left bottom point) and final configurations(right upper point). The first obstacle is
parallelogram and the second obstacle is triangle. The actual computation time(sec) and optimal costs are
specified on the upper left corners of plots. (a) Hd = [−1,−1]T . (b) Hd = [−1, 0]T . (c) Hd = [0,−1]T .
(d) Hd = [0, 0]T .

t = 2.3226
cost = 53.2028

(a)

t = 2.8408
cost = 7.492

(b)

t = 4.3114
cost = 6.4878

(c)

t = 29.904
cost = 2.9983

(d)

Figure 3.7: Simulation result with anytime solutions. The computation time(sec) and optimal costs are
specified on the upper left corners of each plot.

the algorithm expands the nodes in the tree in such a way that feasible solutions corresponding to other
homology classes, but with lower costs (e.g. the class in Figure 3.6(d)), are also obtained in the process.

If we want to find trajectory in a certain homology class like one in Figure 3.6(c), the tree is expanded
to minimize the cost and finds the trajectories with less cost but in other homology classes like one in
Figure 3.6(d). Even though, it finds this optimal solution, it moves on to check other nodes that could have
less cost, a process that ends up finding trajectories in other homology classes.

To show the anytime performance of the suggested algorithm, we performed some simulations with
the same environment as earlier, and with the homology constraint of Figure 3.6(c). The CPLEX solver was
terminated at different times to compare the resulting trajectories. As shown in Figure 3.7, the cost decreases
as we allow more computation time. And as illustrated in the previous example in Figure 3.6, we will get
the global optimal trajectory with enough computation time.

Next we present a series of four examples with increasing number of obstacles, and subsequently increas-
ing complexity (see Figure 3.8). For all examples, we choose six segments of trajectories with nine basis
functions, such that the number of continuous variables for optimization, as given by (3.2.9), is nc = 108.
The optimizer is given a maximum time of one hour to search for a feasible trajectory. The resulting found
trajectory will respect the homology constraint and may be either suboptimal or optimal. Figure 3.8(a)

22

1

2

(a)

1

2

3

(b)

1

2

3

4

(c)

1

2

3

4

5

(d)

0 500 1000 1500 2000 2500 3000 3500

10
3

10
4

Time(sec)

C
os

t

(e)

0 500 1000 1500 2000 2500 3000 3500

10
3

10
4

10
5

Time(sec)

C
os

t

(f)

0 500 1000 1500 2000 2500 3000 3500

10
3

10
4

10
5

Time(sec)

C
os

t

(g)

0 500 1000 1500 2000 2500 3000 3500

10
3

10
4

Time(sec)

C
os

t

(h)

Figure 3.8: (a)-(d) Final trajectories in four different homology classes with two, three, four and five obsta-
cles, respectively. (e)-(h) Cost of the trajectories along with computation time with two, three, four and five
obstacles, respectively. The plots shows the change in cost with time plotted in log scale.

illustrates results for the two obstacle case, showing trajectories in all four different homology classes. Fig-
ure 3.8(e) shows how the cost of each generated trajectory changes as we keep searching – the corresponding
trajectories have the same color as in Figure 3.8(a). It is obvious that the trajectory corresponding to the red
curves in Figures 3.8(a), 3.8(e) is the global optimal one without topological constraints. So it terminates
searching solution before the time limit. Note that we could not find global optimal trajectories for all the
homology classes within the time limit. Figure 3.8(e) however shows that a feasible solution was found rel-
atively quickly. With additional computation time, we expect the optimizer to either find the global optimal
trajectories in each homology class or guarantee that the current solution is the global optimum.

Figure 3.8(b) shows the result of simulation with three obstacles. We find suboptimal trajectories in all
the eight homology classes. As shown in Figure 3.8(f), an initial feasible trajectory was found relatively
quickly for all but one homology class. For the homology class corresponding to the black curve, the
optimizer took over 1000 sec to find a feasible trajectory.

For the four obstacle case shown in Figure 3.8(c), we found trajectories in nine homology classes, and
could not find trajectories in other seven homology classes within the time limit. The missing seven trajec-
tories should pass obstacle 4 on left like one of the green plots in Figure 3.8(c).

Similarly, for the five obstacle case shown in Figure 3.8(d), we found trajectories in only five homology
classes among 25 = 32 possible homology classes. As we found all eight trajectories passing between
obstacle 4 and 5, like the trajectories in Figure 3.8(b), there are feasible trajectories in these homology
classes which can be represented with our parametrization and can be found.

As illustrated by these simulations, although the optimizer quickly found initial feasible suboptimal tra-
jectories in various homology classes, it could either not find corresponding optimal solutions for all classes
or not find the trajectories in all the possible homology classes within the provided time. A few reasons
for this are (a) insufficient computation time for the optimizer, (b) insufficient continuous-time variables for

23

A

B

C

D

E

F

G
H

I

J

K

L

M
N

O P

QR

S

T U

V
W

X

Figure 3.9: An example of a trajectory corresponding to the word TPUVWQLJHG.

parametrization of longer and winding trajectories in certain homology classes, and (c) fundamental limita-
tion of using a general purpose solver such as CPLEX for this particular scenario. To address the issue of
computation time, the algorithm can easily be run longer, but more importantly, the computation time can be
improved significantly by providing an initial guess for the optimization. Further, increasing the number of
continuous-time variables will also help since Proposition 1 guarantees that there exists a feasible trajectory
with a sufficiently large number of segments of trajectories.

3.3 Optimal Trajectory with Homotopy Class Constraints

In this section, we present a method to generate an optimal trajectory restricted to a particular homotopy
class, which is specified by a given representative trajectory. We partition the configuration space into
nonoverlapping cells and model each cell in the partition with integer variables and inequality constraints.
We associate with any sequence of integer variables a word, so that each trajectory can be mapped to a word.
We then construct a set of all words that are homotopically equivalent to a given word. For each word, we fix
the integer variables of the MIQP to find the optimal time distribution in each cell, by solving a QP for each
iteration, to obtain the locally optimal trajectory in the specified homotopy class. We illustrate an example
of minimum acceleration trajectory generation on a plane with different homotopy class constraints.

3.3.1 Algorithm Description

We have broken the problem of optimal trajectory generation into two parts. First we find a word that is a
coarse representation of the trajectory and use this to restrict the homotopy class of the trajectory, and next
find an optimal trajectory with this restriction. The following sections present the algorithm in more detail.

24

Cell and word

With feasibility constraints (3.1.1) and additional constraints (3.1.2), we can divide the work space with
hyperplanes of obstacles by value of binary variables.

As a result, a set of connected cells is built, whose union is the feasible space, Q, and the intersection is
only the extended lines of faces of the obstacles (see Figure 3.3.1). Each cell can be identified by a unique
letter, representing the vector of binary variables with one binary variable for each face of each obstacle.
Every point in a particular cell will have the same letter representation. It must be noted that not all binary
vectors define valid cells, and hence letters. The collection of all possible valid letters is defined as an
alphabet.

Determining homotopy class of a trajectory is non-trivial. However, we use location information of
intermediate key point, each represented by a letter in the alphabet. Assembling the sequence of letters
corresponding to each key point of the trajectory and removing trivial repetitions will results in a word,
which is a coarse representation of the trajectory. For example, the path shown in Figure 3.3.1 can be
represented by the word TPUVWQLJHG. This can then be used to restrict trajectories to a homotopy
class as will be seen in the following Section.

Finding Words in the same Homotopy Class

To find an optimal trajectory satisfying a given homotopy class constraint, we first construct Wh, the set of
words of the same homotopy class with the required one. We construct Wh by starting with the word for
the given initial trajectory; Wh = {w0}. Then we choose a word wc ∈ Wh and expand the chosen word
as follows. For example let wc = TPUVWQLJHG as in Figure 3.3.1. We choose two letters, say T and
U . If there is an alternative path, like TXU (the gray plot in Figure3.3.1), for the path TPU , we construct
the closed loop by reversing the new path, and obtain TPUXT after removing duplicating letters. If the
length of the closed loop is less than six, no obstacle lies in the closed loop (since we need to visit at least
six cells to encircle a triangle). So we replace the path between the two chosen letters with the new path, and
an expanded word representing the same homotopy class is achieved, w1 = TXUVWQLJHG. The new
word is added into Wh. We repeat this expansion until there are no more new words.

Finding the Optimal Trajectory

For a given word, wc ∈Wh, we parameterize the trajectory withNs subtrajectories, whereNs is same as the
length of wc. Each subtrajectory is restricted to be in a particular cell specified by the corresponding letter
in the word. Thus, all the binary variables, bc, of the trajectory generation problem of (3.1.5) are fixed by the
given word wc, to reduce the optimization problem to

min
c

cTHc (3.3.1)

s.t. Afc ≤ g̃f , Aeqc = 0,

which is obtained by substituting bc in (3.1.5) and g̃f = gf − Dfbc. As the resulting problem (3.3.1) is
a quadratic program, we can find the global optimal trajectory for all words in Wh, which are in the given
homotopy class.

25

J = 0.60234

(a)

J = 0.69267

(b)

J = 1.0091

(c)

J = 3.4522

(d)

J = 1.0612

(e)

Figure 3.10: (a) Optimal trajectory without homotopy constraints (b)-(e) Trajectories with four different
homotopy class constraints. The thick black curve is the optimal trajectory in each homotopy class and thin
gray curves are the suboptimal trajectories for each word. The cost (J) for each case is specified on the upper
left corners of plots.

However, it is not trivial to find the spending time in each cell to minimize the cost of the whole trajectory.
To refine the trajectory further, we can adjust the time spent in each cell. With the final time, tf , fixed, we
can find an optimal time distribution by solving

min
tj

min
c

cTHc (3.3.2)

s.t. Afc ≤ g̃f
Aeqc = 0

s.t. tj ≤ tj+1 for j = [0, ..., Ns − 1],

t0 = 0

tNs = tf .

As this problem is a nonlinear program, we cannot guarantee the global minimum. However, the trajec-
tory is iteratively refined by starting with ∆tj = tj+1 − tj =

tf
nw

for j ∈ [0, ..., Ns − 1] and solving (3.3.2)
by an interior-point method. Although we can find an initial solution without iteration, a better trajectory
can be obtained by iterating the time distribution. Moreover, since the optimization cost reduces with more
iterations, this method can be considered as an anytime algorithm that produces better solutions with more
time.

3.3.2 Simulation Results

To illustrate how the suggested algorithm works, we performed some simulations to generate optimal tra-
jectories with various homotopy classes. In this simulation, we fix the final time tf = 10 and find optimal
trajectories for four homotopy classes. To reduce the computation time, we limit the maximum length of
word to twelve.

The plot of Figure 3.10(a) shows the result of solving (3.1.5) without homotopy class constraints, result-
ing in an optimal cost of 0.60234. The plots of Figure 3.10(b)-3.10(e) show the result of solving (3.3.2) with
four different homotopy class constraints, resulting in optimal costs that are greater than the global optimal
one. When we search for trajectories with the same homotopy as the optimal trajectory achieved without ho-
motopy class constraints (Figure 3.10(a)), the obtained optimal trajectory (Figure 3.10(e)) is a local optimal

26

itr = 0
J = 2.3135

(a)

itr = 1
J = 1.2395

(b)

itr = 3
J = 0.82416

(c)

itr = 4
J = 0.75962

(d)

itr = 6
J = 0.69267

(e)

Figure 3.11: (a)-(e) Effect of varying the time distribution in each cell through iterations of the optimization
(3.3.2). The number of iterations (itr) and cost are also specified on the upper left corner of each plot. Note
that the cost converges to the local optimal cost of the case of Figure 3.10(b) in 6 iterations.

one with a larger cost. This disparity occurs due to restricting the trajectory to pass through certain cells and
the fact that it is hard to find global optimal time distribution in each cell. The most optimal trajectory with
homotopy class constraints lies in a different homotopy class from the global optimal one (Figure 3.10(b)).
However, this is due to the symmetric arrangement of initial/final location of the trajectory and arrangement
of obstacles.

With a fixed time distribution for each cell, the optimization reduces to a quadratic program for each
word, which can be solved efficiently. To see the effect of optimizing the time distribution, we begin with
a trajectory in the particular homotopy class of Figure 3.10(b) with equal time distribution over all the cells
and iteratively optimize time distribution. The plots of Figure 3.11(a)-3.11(e) illustrate the changes in the
trajectory and the corresponding cost with each iteration. Although this nested optimization is computation-
ally expensive, with each iteration we get closer to the local optimal solution, resulting in an algorithm with
anytime properties.

3.4 Conclusion

In this chapter, we have presented a method to find a smooth optimal trajectory subject to geometric and kine-
matic constraints, and restricted to a specific topology class. We used a MIQP to achieve global optimality.
The homology constraint is considered by calculating the H-signature of the trajectory from its binary vari-
ables, which are a coarse representation of trajectory. The calculation of H-signature is quadratic in the
binary variables but is reduced to a linear equation by introducing substitution binary variables. Then the re-
sulting problem becomes a MIQP, which can be solved using an anytime numerical solver like CPLEX [52].
To find an optimal trajectory restricted to a specific homotopy class, we suitably modified a MIQP to partition
the configuration space and by constructing a coarser representation of the trajectory in the form of a word
to represent the homotopy class. The set of all words representing the same homotopy class is constructed,
and a nested optimization is carried out to find a locally optimal trajectory restricted to a homotopy class.

Clearly reducing the computation time is the most important issue for this problem for practical appli-
cations. One direction is to reduce the computational complexity of the method by reducing the number of
binary variables or choosing proper number of intermediate points or number of subtrajectories. The other
direction is to develop proper solver to solve this problem efficiently. General MIQP solver like CPLEX does
not consider the structure of the problem and relax the binary variables to real number on [0, 1]. However,
we can divide the MIQP into two parts. First, we find the possible set of binary variables and solve QP

27

for the continuous variables. Or we can use numerical solvers with proper initial guess which is found by
graph-search-based planner.

28

Chapter 4

Topological Exploration

In this chapter, we will present the mathematical framework and algorithms for multi-robot topological ex-
ploration of unknown environments in which the main goal is to identify the different topological classes of
paths and thus efficiently distribute the task of exploration among different groups of robots. We consider
two-dimensional configuration spaces. At any point in time, the robots’ map consists of known, partially-
mapped obstacles. The unknown, yet-to-be-explored area is mapped to a single point, thus giving us a
quotient space. The topological classes on the quotient space allows us to define topological classes of paths
connecting a robot pose to the unknown region in the original configuration space. Robots explore this con-
figuration space choosing different homology classes when confronted by obstacles or walls. We illustrate
the basic idea with simulations of small teams of robots. Experiments with a single robot illustrate the appli-
cability of the method to robots that have small sensor footprints and limited computational resources. We
also provide comparisons with a standard frontier-based algorithm. The work in this chapter was performed
in close collaboration with Prof. Robert Ghrist and Dr. Subhrajit Bhattacharya. Much of this work was
reported in [55].

4.1 Motivation

To motivate the approach in this chapter, consider the simple scenario in Figure 4.1(a) in which there is
a group of robots at locations close to p equipped with sensors with a limited field of view mapping an
unknown environment. In the figure, the current map consists of the three obstacles (marked in black) and
the free space colored in pale blue. The region, L, in pale yellow is not visible to any of the sensors and
hence is unknown. An information gain maximization based approach as in [85] or [89] will essentially
give an unique gradient descent direction at the location of the robots (if all the robots are roughly the same
location, the control inputs will also be very similar) and make the robots move together. However, clearly
there are three distinct topological classes in this environment that can lead the robots to the unknown region
(indicated by the blue dashed arrows in the figure). We are interested in methods that will maximize the
collection of information by naturally assigning robots to different topological classes of paths.

A frontier-based exploration as in [41] would find three distinct paths or assignments in two steps [100]:

i. Identify the boundary between the known and the unknown regions and segment it to obtain its con-
nected components (using an edge detection algorithm for example).

29

ii. Find optimal paths to each of the connected components (using Dijkstra’s search).

While this method would perform satisfactorily in the example of Figure 4.1(a), remarkable out-
performance of a topology-based method as ours is observed in scenarios like that in Figures 4.1(b) or 4.1(c)
– when the known region is not simply-connected. Moreover, in a frontier-based algorithm like in [100],
the additional step of identification of the connected components of the frontier may be expensive. When
there are multiple robots, the standard frontier-based approach makes robot-frontier assignment by taking
into consideration the size of the frontier [100]. In an indoor environment with lots of corridors and passages,
possibly leading up to large open areas, the size of the frontier may not be the best indicator of information
gain. Furthermore, when there are multiple groups of robots in different locations, performing distributed
cooperative exploration, it is unclear how the groups can have a consistent way of referring to a particu-
lar frontier when communicating (without communicating the complete description of the frontier). Our
topological approach, on the other hand, is completely free from the task of frontier identification or repre-
sentation, and instead uses single pass of search/planning to discover paths in different topological classes,
each of which is represented by a topological invariant (H-signature) that is consistent over the different
groups (Figure 4.3(b)).

Consider the scenario illustrated in Figure 4.1(b), where a group of robots are provided with a partial map
of the environment. There is a single frontier, f . A frontier-based approach would find a single shortest path
to the frontier (either τ1 or τ2). However, there are two topological classes of paths in the plane punctured by
the obstacle, O, that connect p to all points in L. As shown, τ1 and τ2 are two paths in different topological
classes. Thus clearly, the number of frontiers do not correspond to the number of distinct non-looping
topological classes when the explored/known free region is not simply connected. A similar example is
shown in Figure 4.1(c), whereO is the set of all obstacles that have been discovered. In particular, the group
of robots have explored the perimeter of obstacle O1, thus resulting in a map that is not simply connected.
In this case although there are two connected components of the frontier, there are three topological classes
of paths and therefore three directions for exploration. Clearly, deployment of groups of robots in each of
the distinct topological classes will result in more efficient exploration.

Because our interest is in topological mapping, we will not concern ourselves with questions of localiza-
tion, detection or mapping of obstacles or control. We will assume each robot is able to localize either using
lasers and cameras or by using GPS, detect obstacles with a laser scanner, communicate with other robots,
and avoid collisions with the environment. We implement our algorithm with nonholonomic robots in ROS,
and demonstrate the multi robot exploration in simulation, along with comparisons with a frontier-based
exploration algorithm. We also present experimental results with a single robot with a small field-of-view
laser and odometry to illustrate the basic ideas in a real world setting.

4.2 The Quotient Space and H-signature

As mentioned in Chapter 2, the H-signature of paths can be used for finding different homology classes of
paths connecting two points. However, for exploration we are interested in the topological classes of paths
that emanate from a start coordinate, with the goal being not a single point but rather a set L. To adapt to
this situation, we collapse the set L to a single point via the construction of a quotient space [69].

To adapt the definition of the H-signature in this context, we will collapse the entire unknown region to

30

L

p

(a) A group of robots, using their laser
range sensors, finds 3 topological classes
of paths leading to the unknown region,
L. There are also 3 frontiers in this sce-
nario.

L
τ1

τ2

f p
O1O1 ∞O2

(b) In this partially known environment there
is a single frontier (green dashed curve), but 2
topological classes connecting the location of
the robots and frontier, f . Such scenarios are
natural when the known free region, R2−O−
L, is not simply-connected.

L

τ1
τ2

τ3
f1

f2
O3

O2

p

∞

O1

(c) In this scenario the known region
is not simply-connected and there are 2
frontiers. But on R2 − O as well as
on (R2 −O)/L there are 3 non-looping
topological classes.

Figure 4.1: Partially explored environments. The group of robots (red dots) need to be split and deployed for
exploration of the unknown regions (pale yellow region marked as L). The figures illustrate the distinction
between frontier-based and topology-based deployments.

R2

 quotient map,

q

q(L)

q(R2 - O - L)

O
q(O)

R2 / L

R2 - O - L

L

τ1 τ2 q(τ1) q(τ2)

Figure 4.2: A simple illustration of a quotient map. The set L is collapsed to a point, q(L). Here we
consider the Euclidean plane, R2, with its subset L being the entire region outside a small disk on the plane.
Collapsing L to a single point gives us the topological 2-sphere. All non-trivial 1-cycles (or closed loops)
that completely lie in L become trivial in the quotient space under the quotient map, q.

a single abstract point via a quotient map, q, so that the space under consideration becomes (R2 − O)/L

(where O is the set of obstacles in the known region). The image of L under the quotient map, q, thus being
a single point lets us use the notion of homology classes of paths connecting to this point from the image of
the start coordinate on the quotient space (Figure 4.2). For a formal definition of quotient map see [69, 49].

The following proposition extends the homology class invariant function of H-signature to the quotient
space (R2 −O)/L.

Proposition 4.2.1 (Homology invariant in quotient space [16]). Let O be the collection of obstacles in R2

with respect to which we compute the H-signature as described in Section 2, and let L ⊂ R2 −O. Let Q be

the set ofH-signatures of all closed loops (1-cycles) in (R2−O) contained entirely inL. Let τ1 and τ2 be two

paths connecting two points, s,g ∈ (R2−O). Now consider the quotient map q : (R2−O)→ (R2−O)/L.

The images of the paths τ1 and τ2 under the action of q are homologous in (R2−O)/L iffH(τ1)−H(τ2) ∈ Q.

Sketch of proof. First, note that the setQ is a countable set. Each element ofQ corresponds to an element
of the homology group H1(L;Z) [49]. The proof follows from the observation that by identifying L to a
point under the quotient map, we essentially trivialize every closed loop (1-cycle) in L. This implies that the

31

loops that were non-trivial in L before applying the quotient map (i.e. whose H-signatures were not zero),
need to be set to zero when we compute and compare the H-signatures in the quotient space. Thus, before
applying the quotient map we would say that τ1 ≈ τ2 (i.e. belong to same homology class) iff H(τ1) −
H(τ2) = 0. However, after applying the quotient map, each element of Q, containing the H-signatures of
non-trivial loops in L, are to be considered equivalent to 0. Thus the new criteria becomes q(τ1) ≈ q(τ2)

(i.e. the images of the paths belong to same homology class in the quotient space) iffH(τ1)−H(τ2) ∈ Q.
For a more formal algebraic proof and an illustration demonstrating the concept behind the proof, see

Section 7 of [16]. �

4.3 The Algorithm

In this section we provide a complete description of the algorithm for topological exploration with multiple
robots while respecting the present constraints on the available space. We assume that the reader is familiar
with the construction of the H-augmented graph [15] and the process of performing search (using Dijkstra’s
or A* algorithm) in it [25].

4.3.1 Representation

We discretize the environment (the subset of R2 that is of interest) into a uniform square grid and create
a graph, G, by placing a vertex in each square cell and connecting a cell with its neighbors using directed
edges. More complex forms of discretization (triangulation, unstructured or adaptive discretization) can also
be used. But to focus on the main contribution of this thesis, we choose the simplest discretization scheme.
We maintain a probability map by associating an occupancy probability with each cell. The initial probability
for each cell in a completely unknown environment is set to 0.5, and the state of each cell is designated as
‘unknown’. As the laser sensor data are received, the probability map is updated. If the probability of a cell
goes above a high threshold, Tobs, we designate the cell as an ‘obstacle’. Otherwise if it goes below Tfree,
we designate it as a ‘free’ cell. This, at any instant of time, gives us an obstacle map (see Line 3 of Algorithm
1: ToplogicalExplore).

A candidate point (an arbitrarily chosen point) is placed inside each connected component of the un-
known region (a point is chosen near the boundary of the region, and shifted, if possible, to create a padding).
Like representative point, the exact location of a candidate point is not of significance as long as it falls inside
the desired region.

4.3.2 Multi-robot Exploration Algorithm

Suppose we start with N robots at a location, say p0, in the environment. At the beginning we have a single
group of robots. The basic idea behind our algorithm is to split the group of robots based on the number of
homology classes of paths discovered and deploy each newly-formed smaller group along those paths, and
repeat this process for each subsequently formed group (Figure 4.3).

Discrete time is represented by t. The re-planning for paths does not happen in every time step, and
instead happens at time steps t0, t1, · · · . The values at the subscript of these time steps are the planning

cycle numbers, and are denoted by the variable, pl = 0, 1, 2, · · · .

32

τ1
g τ2

g
g

p0

(a) At t = t0 = 0 a planning cycle starts. A single group of
N robots starts at p0. Thus Gt0 = {{1, 2, · · · , N}} =:
{g}. The group finds 2 topological classes of paths:{
{τg1, h

g
1}, {τ

g
2, h

g
2}

}
= FindPaths(p0, ∅). Thus the

group splits into two groups, each containing ∼ N/2 robots.
The new groups are g′ = {1, 2, · · · , bN/2c} and g′′ =
{bN/2c+1, · · · , N} (see figure on the right), and they follow

paths τg
′

1 := τg1 and τg
′′

1 := τg2 . At the end of this planning
cycle, we set t1 = t.

g
p0Pt

g'
g' g''

Pt
g''

τ1
g'

τ2
g'

τ3
g'

τ4
g'

τ1
g''

τ2
g''

τ3
g''

τ4
g''

(b) At the beginning of the next planning cycle there are two
groups: Gt1 = {g′, g′′}, when the condition in Line 4 of
Algorithm ToplogicalExplore returns true. Thus, in this cycle
of planning the groups obtain the following paths respectively:
FindPaths(Pg′

t1
, τg
′

1)

=
{
{τg
′

1 , ha}, {τ
g′

2 , hb}, {τ
g′

3 , hc}, {τ
g′

4 , hd}
}

;

FindPaths(Pg′′

t1
, τg
′′

1)

=
{
{τg
′′

1 , hc}, {τg
′′

2 , hd}, {τg
′′

3 , hb}, {τg
′′

4 , ha}
}

.
Note the correspondence between the values of the H-
signatures.

Figure 4.3: Illustration of algorithm ToplogicalExplore.

At any instant, the groups formed by the robots are represented by a partition of the set of robot indices,
{1, 2, 3, · · · , N}. We represent that partition (created after planning cycle, pl) by the ordered set Gpl ={
{r1,1pl , r

1,2
pl , · · · }, {r

2,1
pl , · · · }, · · ·

}
. A group, g, is simply a partition element g ∈ Gpl, and variables giving

attributes to the groups are indexed by g (e.g., τgpl). |Gpl| denotes the number of groups.
The planning cycle, pl, creates a set of paths, τgpl, g ∈ Gpl (with H-signature, hgpl, w.r.t. base-point

p0 – see Section 4.3.2), that the groups need to follow. We will unambiguously (and without going into
implementational details) refer to two obvious components of each such path: traversed part and the un-

traversed part.
Each group of robots, during their coordinated travel together as a group, has a representative location

(a point in configuration space), with respect to which all computations of paths are performed. This point,
representing the position of the group g ∈ Gpl at time t (with tpl ≤ t < tpl+1), is denoted as Pgt . On the
contrary, the positions of individual robots are denoted by prt , r ∈ {1, 2, · · · , N} (and thus at the individual
level of robot r, the control objective will be to reach Pgt , where r ∈ g). We represent the path history of the
gth group at the time instant t by Pg0:t.

At t = 0, pl = 0, we start with a single group, G0 = {{1, 2, · · · , N}}. After obtaining the first few sets
of laser sensor data and building the occupancy map in the neighborhood of the robot group, the algorithm
ToplogicalExplore (Algorithm 1) is used to direct the exploration task. Figure 4.3 illustrates the working of
the algorithm.

We use ‘∗’ in place of a index of a variable to denote the entire set of variables over all the possible
indices (e.g., τ∗pl = {τgpl | g∈Gpl}). An overline over a variable is used to emphasize that it is a temporary
variable.
Algorithm 1: Pseudocode for ToplogicalExplore:
1. |t = 0; pl = 0; tpl = 0; Gpl = {{1, 2, · · · , N}}

33

2. |while TRUE

3. |i. Update probability map based on laser sensor data.

|ii. Threshold probability map to generate obstacle map.

4. |if t == 0 OR map has changed significantly

| OR a group has reached its immediate goal

5. |i. Place representative points on newly discovered obstacles,

|ii. Place candidate points in connected components of

| unexplored regions.

6. |for each g ∈ Gpl // Plan new paths

7. |γg =
{
{τg1, h

g
1}, {τ

g
2, h

g
2}, · · ·

}
=

| FindPaths(Pg
t ,P

g
0:t)

8. |end for each

9. |if γg = ∅, ∀g ∈ Gpl // No path found. All explored!

10. |break while loop

11. |end if

12. |Set Gpl+1 = Gpl // Copy groupings from previous plan cycle.

13. |{Hg | g ∈ Gpl+1} =

| AssignHomologyClassesToGroups(c(τ∗∗), h
∗
∗, h
∗
pl)

14. |{Gpl+1, γ
∗} =

| CheckNearbyGroupsForRedistribution(P∗t , Gpl+1, H
∗
)

15. |for each g ∈ Gpl+1

16. |if |Hg | == 0 // Group not assigned any homology class.

17. |{Gpl+1, H
∗
, γ∗} = RejoinWithClosestGroup(g)

18. |end if

19. |end for each

20. |for each g ∈ Gpl+1

21. |if |Hg | > 0 // Group assigned multiple homology classes.

22. |{Gpl+1, H
∗
, γ∗} = SplitGroup(g)

23. |end if

24. |end for each

| // At this point each Hg
, g ∈ Gpl+1 contains one H-signature.

| // The new group structure is present in Gpl+1.

25. |for each g ∈ Gpl+1

26. |τgpl+1 = τgk, h
g
pl+1 = h

g
k , k is such that h

g
k ∈ H

g

27. |end for each

28. |tpl+1 = t; pl ++

29. |end if

30. |for each g ∈ Gpl

31. |Choose the next point ((t− tpl)th point in τgpl), P
g
t+1 ∈ τ

g
pl.

32. |Pg
0:t+1 = Pg

0:t tPg
t+1

34

33. |for each r ∈ g

34. |Move robot r towards Pg
t+1 via the shortest path in the map.

| // Controller for making robot follow planned path.

35. |end for each

36. |end for each

37. |t++

38. |end while

In Line 4 of the above algorithm, the condition for checking whether the ‘map has changed significantly’
consists of two checks:

i. If any of the most recently planned paths (i.e., τ ipl, i ∈ Gt) has become invalid (blocked by newly
discovered obstacles).

ii. The number of cells in the environment that have changed state (i.e. from ‘unknown’ to ‘free’ or
‘obstacle’) is greater than a threshold.

Below are brief descriptions of each of the remaining subroutines used in the algorithm.

FindPaths(P, τ)

(Refer to Figure 4.3) This subroutine is used to find all paths emanating from P in the different topological
classes. The subroutine also returns theH-signature of the planned path appended with the already traversed
path, τ . This requires searching in theH-augmented graph, GH , as described in [15]. However, in the search
algorithm we initiate the open set with the vertex {P,H(τ)} (i.e., instead of using 0 as the H-signature
of the start vertex, we use H(τ) – the H-signature of the traversed path, τ). Consequently we expand the
vertices in GH as usual. This ensures that we consider p0 as the base point of the space so that the value of
the H-signature remains consistent over the different groups and over time (see Figure 4.3(b)). Vertices that
lie in the explored region are expanded, and a path is stored every time a vertex connected to the unknown
region is reached via a new homology class (identified by the sum of the H-signature of the expanded vertex
and the H-signature of a path connecting that vertex with the candidate point in unknown region).

Note that according to Proposition 4.2.1, the way we determine whether H-signatures h and h′ represent
the same homology class in the quotient space is to check if the elements of the difference, h − h′ (which,
recall from the definition of H-signature, is a vector of complex numbers), are either i. all equal when
the unknown region is not simply connected (i.e., the unknown region that extends to the boundary of the
environment), or, ii. all zero when the unknown region is simply connected (for all other unknown regions).
If none of these is true, they represent different homology classes. Using a method similar to [15], we do not
allow path that loop around obstacles. Moreover we do not place representative points on obstacles smaller
than a threshold radius, thus avoiding multiplicity of topological classes merely due to sensor noise.

AssignHomologyClassesToGroups

The number of paths returned by the ‘FindPaths’ procedure will be the same for each of the groups g ∈ Gpl
(see Figure 4.3(b)). Since we used the same base-point, P0, for the searches for each group, we will obtain
the same set of H-signatures for each group from the search in Line 7, although the paths will of course be
different.

35

The purpose of this subroutine is to make the assignment of each of the homology classes to the different
groups of robots based on the cost of the planned paths, c(τ∗∗), their H-signatures, h

∗
∗, and the H-signature

of the paths assigned in the last plan cycle, h∗pl. The basic strategy for doing this is as follows:

i. If, for a group g, the H-signature of the last planned path, hgpl, that it has been following, is found
in the result returned by FindPaths, that homology class is assigned to the group g (the H-signature
comparison being made with respect to obstacles that are common to the time instants when the last
plan was made and the current time). This ensures that a group (or one of its subgroups) keep following
the homology class that it has been following.

ii. Whichever homology class remain unassigned after this is assigned to group for which the path corre-
sponding to the class is shortest.

The H-signatures of the homology classes assigned to group g ∈ Gpl+1 is fixed in H
g

(i.e., it is a set of
H-signatures, H

g
= {ηg1, η

g
2, · · · }).

CheckNearbyGroupsForRedistribution

If a group has been assigned homology classes more than the number of robots available in that group (i.e.,
|Hg| > |g|), then it is checked if there is another nearby group, g′, such that c|Hg′ | < |g′|, ‖Pg

′

t −Pgt ‖ < R

(c > 1, R > 0 are parameters). If so, a re-shuffling of the groups is performed (with dome robots from g′

being transferred to g) and the new group arrangement is returned to Gpl+1. Since the content of each group
gets changed, the indices of γ∗ are updated accordingly.

RejoinWithClosestGroup

This subroutine gets triggered when a group is not assigned any homology class. The reason for this is
typically two-fold:

i. Sometimes a spurious homology class may be observed because of incorrect laser readings, which
would soon turn out to be blocked as new sensor data arrives, thus resulting in some of the recently
created group to be assigned no paths.

ii. A group can reach a dead-end in the environment (e.g., end of a corridor).

This requires that we rejoin those groups with other groups so that they don’t remain idle. We first look
for closest “cousin” groups (groups having common distant parent – group at an earlier plan cycle from
which the current groups originated – see SplitGroup next) that are not more than D generations apart.
This requires a traversal of D levels of the family tree (the sets Gpl, Gpl−1, Gpl−2, · · · , Gpl−D contain all
the information required for this) and identification of the closest cousin. If such a cousin cannot be found,
the group is joined with the distance-wise closest group in the environment. The subroutine returns the new
grouping (i.e. partition of the set {1, 2, · · · , N}) and the corresponding re-ordering that is required in H

∗
.

Since γ∗ and H
∗

are indexed by the groups, an update of their indices is also required (and removal of the
elements corresponding to the joined, hence no-more existing, group).

36

SplitGroup

If H
g

contains more than one element (i.e. multiple homology classes assigned to a single group of robots),
the group will be split into sub-groups of almost-equal sizes and at most one homology class will be assigned
to each of the sub-groups. Thus, if there aren’t enough robots in the group (i.e. |Hg| > |g|), clearly a choice
has to be made and some of the homology classes has to be left unattended for future exploration. Under
such situations the unattended homology classes are removed from H

g
. As before, the indices of γ∗ and H

∗

are updated.

4.3.3 Distributed Implementation

It is to be noted that the algorithm ToplogicalExplore can be implemented in a distributed manner where
the ith group performs its own computation for the robots in the group. In a distributed implementation the
‘for each’ loops starting at Lines 6, 15, 20, 25 and 30 would be replaced by computation for the respective
group only in their respective threads. Each group would maintain its own probability map and update it
based on the laser sensor readings. Each group also broadcasts the changes in its own map so that the
other groups in the environment can update their maps (a communication protocol similar to that in [17]).
Moreover, when one group decides that a re-planning of path is required (condition in Line 4 becomes
true), all the groups are communicated the decision and they come to a consensus to re-plan. Since the
procedure AssignHomologyClassesToGroups requires a consensus, the groups communicate the cost of
their respective planned paths as well.

4.4 Results

We implemented the ToplogicalExplore algorithm on ROS (Robot Operating System), that lets us accu-
rately simulate robot dynamics, actuator noise and sensor noise. Although our current implementation is
mostly centralized and runs on a single processor, the overall structure of the algorithm is perfectly suited
for distributed implementation on multiple parallel processors as described in Section 4.3.3. Such an imple-
mentation is within the scope of future work.

We also provide extensive comparison with the frontier-based algorithm described in [100] (the imple-
mentation of which was also made in ROS, with identical models of robot dynamics, sensor and actuator).
Section 4.4.1 illustrates, using a simple environment, why our algorithm logically outperforms a frontier-
based algorithm. Section 4.4.2 demonstrates similar performance comparison for a more complex indoor
environment.

All simulations were run on a dual core machine with processor clock speed of 2.6GHz and 4GB mem-
ory. Note that the run times reported involve the complete dynamic simulation of the non-holonomic robots.

4.4.1 Partially Known Environment

We consider a simple partially known environment that is 30m × 30m in size, discretized by 0.1m × 0.1m
cells, with 4 robots exploring it. The environment has 3 rectangular obstacles, of which two fall inside
the initially known elliptical region as shown in Figures 4.4(a) and 4.4(c). The initial known region, as
clearly seen, is not simply-connected. Consequently, the number of topological classes do not correspond

37

to the number of frontiers. Thus, using a frontier-based algorithm (as described in [100]) the entire group
of 4 robots are driven towards the single frontier as shown in Figure 4.4(a). However, using our topological
exploration, the initial group of robots discover two topological classes of paths and hence split up into
two sub-groups as seen in Figure 4.4(c). This, without surprise, results in more efficient exploration of
the environment. Our TopologicalExplore algorithm explores the entire environment in 1045 iterations
(and actual run time of ∼ 35mins), while the frontier-based algorithm took 2359 iterations (and run time of
∼ 78mins).

(a) t = 3: A frontier-based
exploration algorithm initially
finds a single frontier and plans
a path to drive all the robots to-
wards it.

(b) Using the frontier-based
algorithm the robots explore
the entire environment in t =
2359 iterations.

(c) t = 3: Our
TopologicalExplore
algorithm finds 2 topological
classes of paths and hence
splits the group of robots into
two.

(d) Using
TopologicalExplore
algorithm the robots explore
the entire environment in
t = 1045 iterations.

Figure 4.4: Comparison between the frontier-based exploration algorithm (top row) of [100] and our
TopologicalExplore algorithm (bottom row) in a partially-known environment using 4 robots. The pur-
ple curves show parts of the planned paths, while black represents traversed paths. White is known/explored,
while light yellow is the unknown region.

This example illustrates how a topological approach to exploration, as ours, visibly and structurally out-
performs standard frontier-based approaches in cases when the known environment is not simply-connected.

4.4.2 Simulations of Multi-Robot Topological Exploration

Figure 4.6 shows an example with eight robots. The environment used is a part of the 4th floor of the
Levine hall at the University of Pennsylvania (a 21.3m × 34.2m environment, discretized by 0.1m × 0.1m
cells). In Figure 4.6(a) the single group of robots discovers two topological classes, and hence splits into two
groups, each consisting of four robots (Figure 4.6(b)). In Figure 4.6(c) each of those groups get assigned two
topological classes to discover, thus each splitting further into groups of two robots (Figure 4.6(d)). Further
splitting of three of those groups happen in Figure 4.6(e). Following which, as some of the groups end
up exploring the homology classes assigned to them, they rejoin the other groups to help explore whatever
remains.

Figure 4.6(i) shows comparison with the final result obtained using the frontier-based approach of [100].
Even in this case not only the number of iterations required using the frontier-based approach is higher, the
actual time required for computation was also higher in case of the frontier-based exploration. The frontier-
based approach took ∼ 100mins, while our algorithm took ∼ 69mins to completely explore this particular
environment.

38

4.4.3 Experiment with a Single Robot

Laser
Sensor

Differential
Drive Wheels

Bumper

Radio

Figure 4.5: The SCARAB mobile robot platform [65]

To demonstrate practical applicability, we implemented our algorithm on a mobile robot platform devel-
oped in the GRASP laboratory and known as the SCARAB [65]. Figure 4.5 illustrates the various compo-
nents of the experimental platform and a snapshot of the robot in action. To localize the robot we currently
use an adaptive Monte Carlo localization [44] module that relies on laser sensor data. Having multiple robots
in the environment would not only require an additional local collision check layer, but also an additional
complexity for localization.

The overall ToplogicalExplore algorithm, even when there is a single robot, remains the same. The key
feature during the execution, however, is that we always have a single group of robots consisting of a single
robot (i.e., Gpl = {{1}}), and whenever the SplitGroup subroutine is called, the group/robot has to choose
one of the paths.

We performed the single-robot experiment in the same indoor environment (the blue-print of which we
used to perform the multi-robot simulations). However, we sealed the two entrances at lower left and lower
right leading to the larger room at the bottom. Figure 4.7 shows the result. In Figure 4.7(a), the robot starts
from the bottom left corner and explores the environment to initially find three topological classes. The
robot follows one of these paths that lead to the frontier 2 in Figure 4.7(a) (In the figures we number the
frontiers for convenience of referencing. It should however be noted that at no point in our algorithm do
we need to compute or identify the frontiers or its connected components). When the robot finds further
branches, it keeps on following the path with the current H-signature (thus, for example, reaching frontier
2 in Figure 4.7(b)). When there are no more feasible paths with the current H-signature (e.g., the frontier
2 disappears in Figure 4.7(c)), the robot starts following the shortest path with a new H-signature to a new
frontier (e.g., frontier 5 in Figure 4.7(c)). This process continues until there are no frontiers left, hence
completing the process of building the map (Figure 4.7(e)).

4.5 Conclusion

In this chapter, we have presented an algorithm to explore an unknown or partially known environment
by gradually building a topological description of the environment. Using the notion of quotient spaces,

39

(a) t = 4. (b) t = 136. (c) t = 186. (d) t = 275. (e) t = 580.

(f) t = 891. (g) t = 1180. (h) t = 1790 (explo-
ration complete).

(i) Comparison: Final result (t = 2638 iterations)
using frontier-based approach of [100].

Figure 4.6: (a)-(h): Simulation result with 8 robots exploring an indoor office-like environment. (i): Com-
parison of performance with frontier-based algorithm of [100] (in the same environment, with same number
of robots and same initial configurations).

(a) t = 1. (b) t = 310. (c) t = 540. (d) t = 900. (e) t = 1226.

Figure 4.7: Experiment result with a single robot exploring an indoor office-like environment.

40

optimal paths in different topological classes leading up to the unknown region were found by searching
in the H-augmented graph. Groups of robots are split into subgroups with each subgroup being assigned
to a different homology class to enable efficient exploration of the environment. In contrast to previous
work, the exploration is guided by topological and not metric information about the world and is ideally
suited to obtaining a coarse topological map without detailed metric information. We demonstrated the
performance of our algorithm in simulation using multiple robots, and in experiment using a single robot.
We also provided a comparison of performance between our algorithm and a frontier-based approach.

41

Chapter 5

Manipulation with Cables

Cables are widely used to transport power or towing payload. Before we present the application how we
can manipulate a number of obejcts with a single cable, we briefly discuss another problem to manipulate
or transport a heavy object or payload with multiple small robots and cables in this chapter. The work in
Section 5.1.1 was performed in close collaboration with Dr. Peng Cheng and Dr. Jonathan Fink. Much
of this work was reported in [24]. The work in Section 5.2 was performed in close collaboration with Dr.
Jonathan Fink and Dr. Nathan Michael. Much of this work was reported in [67, 40].

5.1 Cooperative Towing With Multiple Ground Robots

In this section, we address the cooperative towing of a payload by a mobile robot that moves in the plane.
Robot pulls via cable attached to an object or a pallet carrying a payload and coordinates its motion to
manipulate the payload through a planar, warehouse-like environment. We formulate a quasi-static model
for manipulation and derive equations of motion that yield the motion of the payload for a prescribed motion
of the robot in the presence of dry friction and tension constraints. We derive conditions of stable equilibrium
for a robot towing the payload.

5.1.1 The Quasi-Static Model for Cooperative Towing

Our task is to control a robot so it can tow or carry an object subject to gravity and frictional forces from
any initial part configuration to a desired goal part configuration. We want to achieve a specified degree of
precision in positioning and orienting the object at a desired final position and orientation.

The different variables characterizing a robot towing a payload are shown in Figure 5.1. The position
and orientation of the payload is given by (X,Y, θ) in the world frame. The velocity of the payload is a twist
(in the plane) in the body-fixed frame, xb − yb, attached to the payload: ξ = [ẋ, ẏ, θ̇]T . We will use this
body-fixed frame representation for the twist throughout the chapter.

Let Rj denote the position of a reference point on robot j. There are m robots, each of which is attached
via an inextensible cable that connects the point Rj on robot j and the point Pj on the payload. If

∣∣∣−−−→PjRj

∣∣∣
equals the free length of the cable, then the dot product of the unit vector uj with the relative velocity of the

42

ow

ρj

αj

β1

θ
Rj
VRj

Pj Ob

S2

S1

S3

yw

xw

s1
xb

yb

(X,Y)
uj

(a)

λn,3

λt,3 λt,2

λn,2

λc,j

λn,1

λt,1

mg

Rj
VRjPjOb

S2

S1

S3

(b)

Figure 5.1: Quasi-static manipulation: The object is supported by three support points, Si, with normal
forces (out of the plane), λn,i and tangential frictional forces, λt,i. It is pulled by m cables, each exerting a
force λc,j . Note the robot Rj pulls by moving the object with a prescribed (given) velocity, VRj

.
(This figure is taken from [24].)

point Pj to the point Rj is non negative, which can be written as unilateral kinematic constraints1:

Aξ ≥ b (5.1.1)

where

A =

A1

. . .

Am

 , b =

 b1. . .
bm

 (5.1.2)

where Aj is a function of the unit vector uj , showing the direction of the cable j, and the position vector
ρj =

−−→
ObP j :

ATj =

 uj · i
uj · j

(ρj × uj) · k

 , (5.1.3)

where i, j and k are respectively unit vectors along xb, yb, and zb axis, and bj is a function of uj and the
velocity vR,j of the towing robot j:

bj = uTj vR,j . (5.1.4)

Note that bj ∈ [−vmax
R , vmax

R] because the robot velocity vR,j is bounded by vmax
R .

The set of twists of freedom [62] is defined with respect to the tuple (A, b) as follows:

Σ(A,b) = { ξ |Aξ ≥ b }. (5.1.5)

Note that this set is determined by the towing configuration of the robots and the payload, specified by

1The vector inequality denotes that each element of the vector satisfies the inequality.

43

the matrix A, and the velocities of the robots, given by the vector b.
The kinematics-statics duality is evident in this problem. λc, the m-vector of cable tensions, is non

negative and is non zero only when the equality in (5.1.1) is satisfied. Thus we write complementarity
constraints:

0 ≤ λc ⊥ Aξ − b ≥ 0, (5.1.6)

where “⊥” implies λc,j(Aξ − b)j = 0. Since λc and Aξ − b are non negative, λTc (Aξ − b) = 0.
In order to model the dry friction between the object and the support surface, we assume that the object is

supported by a finite number of frictional point contacts. For three non collinear support points, the support
forces λn,i ≥ 0, i = 1, 2, 3 can be uniquely obtained from the following equation 1 1 1

ys,1 ys,2 ys,3

xs,1 xs,2 xs,3

λn,1λn,2

λn,3

 =

mg0
0

 , (5.1.7)

where (xs,i, ys,i) for i = 1, 2, 3 are the coordinates of the support points in the body-fixed frame.
If the object undergoes quasi-static motion, the tensions associated with m cables and the frictional

forces (λt,i,x, λt,i,y) at each of the three support points (i = 1, 2, 3) must add to zero. Thus, we have the
equilibrium equations:

BTλt +ATλc = 0, λc ≥ 0 (5.1.8)

where B is a full rank 6× 3 matrix:

BT =
[
BT1 BT2 BT3

]
=

 1 0 1 0 1 0

0 1 0 1 0 1

−ys,1 xs,1 −ys,2 xs,2 −ys,3 xs,3

 (5.1.9)

with

Bi =

[
1 0 −ys,i
0 1 xs,i

]

and λt is an unknown 6-vector with components in the body-fixed frame:

λt =

λ
T
t,1

λTt,2

λTt,3

 (5.1.10)

with

λt,i =

[
λt,i,x

λt,i,y

]
. (5.1.11)

44

θ

Ob

xb

yb

ϕ
Ob

xb

yb

Figure 5.2: (Left) Arbitrary initial configuration. (Right) Stable equilibrium configuration. (This figure is
taken from [24].)

We use FCi to denote the friction cone at the ith support point defined by Coulomb friction:

0 ≤ ‖λt,i‖2 =
√
λ2t,i,x + λ2t,i,y ≤ µλn,i. (5.1.12)

Note that FCi is the friction cone with a known λn,i.
For a given object twist, the velocity vector of the support point can be written in the body-fixed frame:

vt,i = Bi ξ =

[
1 0 −ys,i
0 1 xs,i

]
ξ. (5.1.13)

From Coulomb’s law, the friction forces are equal to µλn,i and are opposite to the direction of slip,
except if the slip is zero when the magnitude is indeterminate. This can be written explicitly as:

λ t,i(ξ) ∈ argmin
λ i∈FCi

vt,i(ξ)
Tλ i,

or in aggregate form,

λ t(ξ) ∈ argmin
λ i∈FCi

ξTBTλ. (5.1.14)

It is not too hard to verify that this is equivalent to the Coulomb friction law [2].
The existence and uniqueness of solutions to (5.1.6), (5.1.8), and (5.1.14) have been prove in [23].

5.1.2 Equilibrium Analysis

In this section, we will study the equilibrium of the towing system, i.e., the system has an invariant state,
when one or two robots move along straight lines.

One-robot towing case

The single robot towing system will converge to an equilibrium in which the system exhibits pure translation
and the cable, the robot, and the center of mass of the part will be aligned as shown in Figure 5.2. The result
is stated in the following theorem.

45

Theorem 5.1.1. If a single robot tows the part with positive cable tension and moves in the invariant direction
along a straight line, the angle φ will converge to zero.

Proof. Because the cable will have positive tension, the kinematic constraint will be an equality constraint
and the part twist will be the result of the following optimization problem:

ξ∗(φ) =

 ẋ(φ)

ẏ(φ)

θ̇(φ)

 =
argminξ −ϕ(ξ)

s. t. A(φ) = b
. (5.1.15)

We will prove this by showing that

1) θ̇φ < 0.

2) θ̇ = 0 if φ = 0.

We will first prove that ξ∗(φ) (and therefore θ̇(φ)) is a continuous function of φ in Step 1. Second, we
show that θ̇ = 0 if and only if φ = 0, −π, or π in Step 2. Finally, we can infer that θ̇ is negative when
φ ∈ (0, π) and positive when φ ∈ (−π, 0) as a property of the continuous function.

Step 1: We will first prove that ξ∗(φ) is well-defined, and then is continuous.
Because there is only one robot, the matrix A(φ) is full rank. It is easy to check that

∃λc > 0, ATλc = 0 (5.1.16)

is not true because the unique solution to its equality is λc = 0 which does not satisfy the inequality. By
Stiemke’s lemma, (5.1.16) is false implies that

∃ ξ : A ξ > 0 (5.1.17)

is true. Therefore there must exist twists that satisfy the constraint (5.1.17). For any given b, if elements
bj ≤ 0, (5.1.17) implies the constraint Ajξ ≥ bj is satisfied. If there are elements bj > 0, then we can
always scale ξ with a positive scalar so that a feasible ξ that satisfies Ajξ ≥ bj can be found. Thus, Σ(A,b) is
not empty. There always exists a unique part twist ξ̂ for (5.1.6), (5.1.8), and (5.1.14)[23]. Therefore, ξ∗(φ)

is a well-defined function and continuous.
Step 2: When θ̇ = 0, the part has pure translation and does not rotate around any of the three support

points. Therefore, the objective function is differentiable at θ̇ = 0 and we can compute the following
necessary KKT conditions.

3∑
i=1

αi(ẋ− ys,iθ̇)− λ cosφ =0 (5.1.18)

3∑
i=1

αi(ẏ + xs,iθ̇)− λ sinφ =0 (5.1.19)

3∑
i=1

αi(−ys,i(ẋ− ys,iθ̇) + xs,i(ẏ + xs,iθ̇))− λρ sinφ =0 (5.1.20)

46

Ob xb

yb (px,py)

v
b
=(vb,x,vb,y)

ϕ1

ϕ2

Figure 5.3: The equilibrium of two-robot towing. (This figure is taken from [24] and reproduced.)

in which

αi =
µλn,i√

(ẋ− ys,iθ̇)2 + (ẏ + xs,iθ̇)2
. (5.1.21)

Solving these equations, we can see that θ̇ = 0 if and only if φ = 0, π, or −π
Step 3: It can also be checked that when φ > 0 (for example, π2) the resulting θ̇ is negative. Similarly,

when φ < 0 (for example, −π2), the resulting θ̇ is positive. This complete the proof. 2

Two-robot towing case

An equilibrium of two-robot towing is stated in the following theorem.

Theorem 5.1.2. When two robots tow the part by moving in the same direction and velocity (therefore
maintaining fixed relative positions), the part can have zero angular velocity if the line passing through the
center of mass and the intersection point of two cables is parallel to the robot moving direction as shown in
Fig. 5.3.

Proof. The position vector ρi = [ρi cos(αi), ρi sin(αi)]
T in the body fixed frame, in which ρi is the length

of the vector ρi. Let φj to be the angle between the anchor point position vector and the cable direction.
Then the direction of cable will be uj = [cos(αj + φj), sin(αj + φj)]

T in the body fixed frame.
Assuming both robots and the part have a pure translation with the velocity of vb = [vb,x, vb,y]T in the

body fixed frame, the wrench balance equation is cos(α1 + φ1) cos(α2 + φ2)

sin(α1 + φ1) sin(α2 + φ2)

ρ1 sin(φ1) ρ2 sin(φ2)

[λc,1

λc,2

]
=

 µmg
vb,x
‖vb‖

µmg
vb,y
‖vb‖

0

 , (5.1.22)

which is true only when

ρ2 sin(φ2) sin(α1 + φ1)− ρ1 sin(φ1) sin(α2 + φ2)

ρ2 sin(φ2) cos(α1 + φ1)− ρ1 sin(φ1) cos(α2 + φ2)
=
vb,y
vb,x

. (5.1.23)

It can be easily checked that (5.1.23) is true when the line of action of the first cable, the line of action of

47

the second cable, and the line passing through the center of mass and parallel to the robot moving direction
intersect at a single point. 2

Exhaustive simulation and experimental results show that the two robot system converges to the equilib-
rium state shown in Figure 5.3, given by (5.1.22). However, we have not been able to prove this analytically.
Thus the result of a stable equilibrium under two-robot towing remains a conjecture.

5.2 Kinematics and Statics of Cooperative Multi-Robot Aerial Ma-
nipulation with Cables

This section addresses the forward and inverse kinematics of payloads carried by aerial robots. We address
the cases with one or two aerial robots and derive the kinematics and conditions for stable static equilibrium
with non-negative cable tensions. We can establish the maximum number of equilibrium positions. We
also present the conditions of aerial robot configurations to achieve unique stable configuration of payload.
However, we can extend this result to the case of three aerial robots to find sufficient conditions.

5.2.1 Kinematics of Planar Manipulation Systems

Let n be the number of cables or aerial robots. For the planar case, we study the n = 1 and n = 2 cases.
The n ≥ 3 cases in the plane are special configurations where n cables with positive tensions completely
constrain (or over constrain) the manipulated object.

Model: n = 1

The planar case with a single cable or robot (n = 1) can be considered as a pendulum. An object is suspended
by a massless cable with length l whose one end is fixed at the origin of the fixed frame and the other end is
attach on the object. The configuration of the part is constrained by the length of cable, which is modeled as

(x− r sin θ)2 + (y + r cos θ)2 = l2 (5.2.1)

where (x, y, θ) is the position and orientation of the body frame in fixed frame and r is the distance from
the center of mass to the attachment point.

Model: n = 2

The planar case with two cables or robots (n = 2) is modeled as a four-bar-linkage (as shown in Figure 5.4),
with the payload as the coupler. We assume the lengths of both cables are equal (l) and the center of mass
is at the midpoint of the coupler (payload) whose length is R. The well-known constraint equations for a
four-bar linkage are:

f(θ, φ) =(l cos θ − l cosφ− a)2 + (l sin θ − l sinφ− b)2 −R2

=2l2 + a2 + b2 −R2 − 2l2 cos θ cosφ− 2l2 sin θ sinφ− 2al cos θ + 2al cosφ− 2bl sin θ + 2bl sinφ

=2l2 + a2 + b2 −R2 − 2l2 cos(θ − φ)− 2al cos θ + 2al cosφ− 2bl sin θ + 2bl sinφ

=0 (5.2.2)

48

(xC,yC)

λ g
R

l

l

ϕ

θ
(a,b)

Figure 5.4: The planar system modeled as a four-bar-linkage. The suspended payload is the coupler with an
assumed center of mass at the middle point of the coupler.

where a, b, θ, and φ are as shown in Figure 5.4.
Using the tangent half-angle formulation (u = tan θ

2 , v = tan φ
2), the constraint equation may be

reduced to a 4th order polynomial of u and v,

f(u, v) =
(
(b2 + a2 −R2)u2 − 4blu+ a2 + b2 − 4al + 4l2 −R2

)
v2 +

(
4blu2 − 8l2u+ 4bl

)
v

+ (4l2 + 4al −R2 + a2 + b2)u2 − 4blu+ b2 + a2 −R2

=0. (5.2.3)

The center of mass, (xC , yC), must trace a couple curve and is defined by the equation:

4x6 + 4y6 + 12x4y2 + 12x2y4 − 12ax5 − 12by5 − 12bx4y − 12axy4 − 24ax3y2 − 24bx2y3 (5.2.4)

+ (13a2 + 5b2 + 8r2 − 8l2)x4 + (8r2 + 5a2 + 13b2 − 8l2)y4 + 16abx3y

+ (18b2 + 16r2 + 18a2 − 16l2)x2y2 + 16abxy3 + (−16r2a− 6a3 + 16l2a− 6ab2)x3

− (6a2b+ 6b3 + 16br2 − 16bl2)y3 − (6a2b− 16bl2 + 6b3 + 16br2)x2y

+ (−16r2a− 6a3 + 16l2a− 6ab2)xy2

+ (2b2r2 + a4 + b4 + 4l4 + 2a2b2 + 10a2r2 − 10a2l2 − 6b2l2 + 4r4 − 8r2l2)x2

+ (+b4 − 10b2l2 + 4r4 + 2a2b2 − 8r2l2 + a4 + 4l4 − 6a2l2 + 2a2r2 + 10b2r2)y2

+ (−2b2r2a+ 2b2l2a− 2a3r2 + 8r2l2a− 4r4a− 4l4a+ 2a3l2)x

+ (16abr2 − 8abl2)xy + (−2a2br2 − 4r4b+ 2a2bl2 + 8r2bl2 + 2b3l2 − 2b3r2 − 4l4b)y

+ b2r4 − 2b2r2l2 + r4a2 + l4a2 − 2r2a2l2 + b2l4 = 0.

where a and b are shown in Figure 5.4 and we set r = R
2 , x = xC , and y = yC for simplification. It is well-

49

known that this curve is a tri-circular sextic with triple points at infinity, x = ±iy, w = 0 with coordinates
(x, y, w) in projective space [51].

5.2.2 Direct Problem

In this section, we address the direct problem to find the configuration of payload from given configurations
of the aerial robots. Considering the aerial robots as a fixed anchor points and the payload is hanging by
cables connecting these point and anchor points on the payload. Then the sum of all the wrenches on the
payload should be zero. And this condition is the First Order Necessary Condition of minimum gravity
potential energy problem. In this section, let qi be the position of the aerial robot and pi be the position of
the anchor point on the payload. And the center of mass of the payload is assumed to be the geometric center
of pis.

5.2.3 Direct problem: n = 2

The configuration of the payload is determined by the positions of anchor points, p1 and p2, which minimize
the gravity potential energy. To numerical solve the direct problem of a planar case ,n = 2, we formulate the
optimization problem:

min
pi

p1,y + p2,y (5.2.5)

st ||p1 − q1||22 − l2 ≤ 0

||p2 − q2||22 − l2 ≤ 0

||p1 − p2||22 −R2 = 0

where we assume that y is the vertical axis and the length of the two cables are the same as l. And the length
of the payload or the distance between the anchor points on the payload is R. However the last constraints
in (5.2.5) is the quadratic equality constraint, which is non-convex. So, this optimization problem does not
guarantee the unique solution. But we need to plan the trajectories of aerial robots, which guarantees the
unique configuration, to estimate the configuration of payload for its position control. So we will find the
conditions of the position of the aerial robots to achieve unique solution of the direct problem (5.2.5).

Proposition 5.2.1 (Conditions for Unique Solutions to the Direct Problem of n = 2). The solution to the

(5.2.5) is unique provided that if the distance between two robots are longer than the distance between

anchor point on the payload:

||q1 − q2||2 ≥ R. (5.2.6)

50

Proof. By relaxing the equality constraints in (5.2.5), we see that the program becomes convex.

min
pi

p1,y + p2,y (5.2.7)

st ||p1 − q1||22 − l2 ≤ 0

||p2 − q2||22 − l2 ≤ 0

||p1 − p2||22 −R2 ≤ 0.

We begin by considering the SOCP in (5.2.7). The First Order Necessary Conditions (FONC) are:

(µ1 + µ3)p1,x − µ3p2,x − µ1q1,x = 0 (5.2.8)
1

2
+ (µ1 + µ3)p1,y − µ3p2,y − µ1q1,y = 0

−µ3p1,x + (µ2 + µ3)p2,x − µ2q2,x = 0

1

2
− µ3p1,y + (µ2 + µ3)p2,y − µ2q2,y = 0

with

||p1 − q1||22 − l2 ≤0 µ1 ≥0 µ1(||p1 − q1||22 − l2) =0

||p2 − q2||22 − l2 ≤0 µ2 ≥0 µ2(||p2 − q2||22 − l2) =0

||p1 − p2||22 −R2 ≤0 µ3 ≥0 µ1(||p1 − p2||22 −R2) =0.

Here, assume that µ3 = 0, which leads to ||p1 − p2||22 −R2 < 0. Then the FONC (5.2.8) will be

µ1(p1,x − q1,x) = 0 (5.2.9)
1

2
+ µ1(p1,y − q1,y) = 0

µ2(p2,x − q2,x) = 0

1

2
+ µ2(p2,y − q2,y) = 0.

So the 2nd and 4th equations lead to mu1 6= 0 and µ2 6= 0, respectively. Then, 1st and 3rd equations
lead to p1,x = q1,x and p2,x − q2,x, respectively. Then the optimal configuration will be

p∗i = qi +

(
0

−l

)
for i = {1, 2} (5.2.10)

whose optimal value is q1,y+q2,y
2 − l. However, as µ3 = 0 this solution should satisfy the inequality of

||p1 − p2||22 −R2 < 0:

||p∗1 − p∗2||22 −R2 = ||q1 − q2||22 −R2 < 0 (5.2.11)

which is contradiction with the assumption of (5.2.6). So the suggested condition (5.2.6) leads to the optimal
solution with µ3 6= 0, which means the optimal solution of (5.2.7), which is a convex problem, should

51

q2

p2-p1

p2-p3

Figure 5.5: A graphical depiction of the conditions presented in Proposition 5.2.2. (This figure is taken
from [40].)

satisfies f1(pi) = ||p1 − p2||22 −R2 = 0. Then the Direct Problem is equivalent to this relaxed problem and
will have a unique solution.

So, under the condition of (5.2.6), we can achieve the unique solution of the direct problem in case of
n = 2.

5.2.4 Direct problem: n = 3

In the case of n = 3, we assume that the anchor points on the payload forms an equilateral triangle of edge
length, R, and the center of mass is the geometric center of this equilateral triangle. Then the direct problem
will be formulated as an optimization problem of

min
pi

p1,z + p2,z + p3,z (5.2.12)

st ||p1 − q1||22 − l2 ≤ 0

||p2 − q2||22 − l2 ≤ 0

||p3 − q3||22 − l2 ≤ 0

||p1 − p2||22 −R2 = 0

||p2 − p3||22 −R2 = 0

||p3 − p1||22 −R2 = 0

where we assume that z is the vertical axis and the length of the three cables are the same as l. However, it
is not trivial to extend the condition of (5.2.6) to three dimensional case of (5.2.12). So, we will propose a
sufficient condition to achieve the unique solution of (5.2.12).

52

Proposition 5.2.2 (Conditions for Unique Solutions to the Direct Problem of n = 3). The solution to

the (5.2.12) is unique when the ith aerial robot, qi, lies strictly inside the convex cone originated at the

corresponding anchor point on the payload, pi and formed by three vectors of {(pi − pj), (pi − pk), e3} for

j 6= i, k 6= i, k 6= j and e = [0, 0, 1]T as shown in Figure 5.5, which is called cone constraints. And we

assume that the configuration of the payload satisfies that these three vectors are linearly independent.

Proof. By relaxing the equality constraints in (5.2.12), we see that the program becomes convex.

min
pi

p1,z + p2,z + p3,z (5.2.13)

st ||p1 − q1||22 − l2 ≤ 0

||p2 − q2||22 − l2 ≤ 0

||p3 − q3||22 − l2 ≤ 0

||p1 − p2||22 −R2 ≤ 0

||p2 − p3||22 −R2 ≤ 0

||p3 − p1||22 −R2 ≤ 0.

Then the FONC of (5.2.13) is

µ1(p1 − q1) + µ4(p1 − p2) + µ6(p1 − p3) +
1

2
e3 = 0 (5.2.14)

µ2(p2 − q2) + µ4(p2 − p1) + µ5(p2 − p3) +
1

2
e3 = 0

µ3(p3 − q3) + µ5(p3 − p2) + µ6(p3 − p1) +
1

2
e3 = 0

||p1 − q1||22 − l2 ≤ 0 ⊥ µ1 ≥ 0

||p2 − q2||22 − l2 ≤ 0 ⊥ µ2 ≥ 0

||p3 − q3||22 − l2 ≤ 0 ⊥ µ3 ≥ 0

||p1 − p2||22 −R2 ≤ 0 ⊥ µ4 ≥ 0

||p2 − p3||22 −R2 ≤ 0 ⊥ µ5 ≥ 0

||p3 − p1||22 −R2 ≤ 0 ⊥ µ6 ≥ 0.

Assume that if µ1 = 0, then the first condition in (5.2.14) will be

µ4(p1 − p2) + µ6(p1 − p3) +
1

2
e3 = 0 (5.2.15)

which violates the assumption that the three vectors forming the convex cone for i = 1 are linearly indepen-
dent. And the same arguments can be applied for µ2 and µ3. So, we have µi > 0 for all i = {1, 2, 3}. Then

53

the first three equations of (5.2.14) can be presented as

q1 − p1 =
µ4

µ1
(p1 − p2) +

µ6

µ1
(p1 − p3) +

1

2µ1
e3 = 0 (5.2.16)

q2 − p2 =
µ4

µ2
(p2 − p1) +

µ5

µ2
(p2 − p3) +

1

2µ2
e3 = 0

q3 − p3 =
µ5

µ3
(p3 − p2) +

µ6

µ2
(p3 − p1) +

1

2µ3
e3 = 0.

From our assumption that the position vector qi − pi should lie strictly inside the convex cone of {(pi −
pj), (pi − pk), e3}, the coefficients of the above equations in (5.2.16) should be all strictly positive, µj

µi
> 0

for all i = {1, 2, 3} and j = {4, 5, 6}. Then it is obvious that µj > 0 for all j = {4, 5, 6}, which leads to

||p1 − p2||22 −R2 =0

||p2 − p3||22 −R2 =0

||p3 − p1||22 −R2 =0,

which means the optimal solution of (5.2.13), which is a convex problem, should satisfies ||pj−pk||22−R2 =

0 for all j = {1, 2, 3}, k = {1, 2, 3} and j 6= k. Then the Direct Problem is equivalent to this relaxed problem
and will have a unique solution.

However, the suggested condition works only when we know the desired configuration of the payload,
pis. But it is enough for path planning for aerial robots [40]. To find a condition only depending on qis are
remained as one of the future works.

5.2.5 Stability

In Sections 5.2.1, we developed the kinematic formulation of the n = {1, 2} cases. We now consider the
stability of these systems. We begin by presenting the trivial case of n = 1 in order to provide an intuition
to the approach we use in the analysis of the n = 2 system.

To study the stability of the system, we are interested in considering the potential energy of the payload
assuming the fixed position(s) of the robot(s). We also assume in this analysis that all cables are in tension.

Analysis: n = 1

From Section 5.2.1, we see that the wrench balance equation is

λ

l

x− r sin θ

y + r cos θ

0

 = mg

0

1

x

 . (5.2.17)

Therefore, the condition for static equilibrium is met when x = 0 and sin θ = 0, or (x, y) =

54

(0, −l − r), (0,−l + r), (0, l − r), (0, l + r). Computing the Hessian of the potential energy, V = mgy,

H(x, θ) =mg

[
∂2y
∂x2

∂2y
∂x∂θ

∂2y
∂x∂θ

∂2y
∂θ2

]
=

mg

l + 2r

[
1 r

r r(l + r)

]
. (5.2.18)

A positive-definite H indicates the stability of a configuration, leading us to conclude that (x, y) =

(0, −l − r) is the only stable configuration.
While the n = 1 analysis is trivial, we present it to elucidate the approach to studying the stability of the

next system.

Analysis: n = 2

We begin by considering the equilibrium configurations, which correspond to the geometric point of inter-
section between the line of gravity and two cable forces. This condition is expressed as

det

1 tan θ 0

1 tanφ b− a tanφ

0 1 −xc

 = 0. (5.2.19)

The potential energy of the system is

V (θ) = mgyc =
mg

2
(l sin θ + l sinφ+ b) , (5.2.20)

where φ is related to θ through (5.2.2). Clearly, the equilibrium points correspond to configurations in which
V is stationary. Considering the first and second derivatives,

dV

dθ
=
mgl

2

(
cos θ + cosφ

dφ

dθ

)
(5.2.21)

d2V

dθ2
=
mgl

2

(
− sin θ − sinφ

(
dφ

dθ

)2

+ cosφ
d2φ

dθ2

)
, (5.2.22)

we conclude that we must find points along the coupler curve which correspond to dV
dθ = 0 and d2V

dθ2 > 0.
The lines of tangency to the coupler curve may be thought of as a tangent line from infinity whose class

determines the number of tangency points [36]. The class of the coupler curve (5.2.4) is twelve. A review of
various coupler curves for a four-bar-linkage is provided in [51]. Figure 5.6 depicts an example of a linkage
for which we can easily visualize the twelve horizontal tangents to the coupler curve and the corresponding
equilibrium points. As the coupler curve is a closed curve (with one or two branches), the number of local
maxima and minima are the same, and therefore six unstable and six stable equilibrium points (ignoring
tension constraints, λi > 0). Figure 5.7 depicts these stable configurations.

5.3 Conclusion

In this chapter, we discussed the classical method of suing cables to tow payload with multiple ground or
aerial robots. First, we studied the mechanics of planar, multi-robot towing a planar payload subject to fric-

55

-1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 5.6: A coupler curve with twelve equilibrium configurations. The stable and unstable configurations
are denoted by filled or open red diamonds. The stable configurations are shown in Figure 5.7. Note that
tension constraints are ignored.

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

(a)
-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

(b)
-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

(c)
-1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

(d)
-1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

(e)
-1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

(f)

Figure 5.7: The six equilibrium configurations of Figure 5.6. Clearly Figures. 5.7(a)-5.7(c) are infeasible
when considering tension constraints.

tion. The problem formulation incorporates complementarity constraints which are necessary to allow for
cables becoming slack during a towing maneuver. We showed that a payload towed by one robot driving
along a straight line, or two robots driving along parallel straight lines, converges to an equilibrium configu-
ration independent of the uncertainty in the support force distribution. This result suggest a robust primitive
motion of planar towing problem. However, finding another robust primitive motion, rotating about a point
with finite radius, is a remaining problem.

We also address the kinematics of payloads carried by aerial robots. We address the cases with one and
two aerial robots and derive the kinematics and conditions for stable static equilibrium with non-negative
cable tensions. We can establish the maximum number of equilibrium positions. We derived the conditions
of aerial robot configurations to achieve a unique solution of direct problem with two or three aerial robots.

56

Chapter 6

Manipulation of A Set Of Objects

In this chapter, we study the problem of manipulating and transporting multiple objects on the plane using
a cable attached at each end to a mobile robot. This problem is motivated by the use of boats with booms
in skimming operations for cleaning oil spills or removing debris on the surface of the water. Because the
cable is flexible, the shape of the cable must be explicitly modeled in the problem. Further, the robots must
cooperatively plan motions to achieve the required cable shape and gross position/orientation to separate the
objects of interest and then transport them as specified. We first derive the necessary topological conditions
for achieving the desired separation of objects. We then propose a distributed search-based planning tech-
nique for finding optimal robot paths for separation and transportation. We demonstrate the applicability of
this method using a dynamic simulation platform with explicit models of the cable dynamics, the contact
between the cable and one or more objects, and the surface drag on the cable and on the objects. The work
in Section 6.1-6.5 was performed in close collaboration with Dr. Subhrajit Bhattacharya, Hordur Heidarsson
and Prof. Gaurav Sukhatme, much of which was reported in [56, 57].

6.1 Introduction

Object manipulation is an important problem in robotics. Certainly conventional approaches to manipulation
using robot arms with grippers has received considerable attention and is well understood [104, 30]. In
contrast, we are interested in the use of mobile robots to contact and manipulate objects without special
purpose effectors. This allows more versatility but leads to many challenges. One approach relies on caging
an object using multiple mobile robots. This problem has been studied for planar objects [39]. However, the
ratio between the number of objects manipulated at a time, and the number of robots required for doing that
is small, thus making such an approach highly inefficient for manipulating a large number of objects and for
separating objects in a field with obstacles. In contrast, we propose a framework for manipulating a large
number of objects with only a pair of robots.

The advantages of using ropes with robots for manipulation were demonstrated by Donald et al [34].
An interesting problem that arises in these settings is the modeling of the shape of the cable and the motion
planning for the robots to control the position and shape of the cable. Motion planning for manipulation of
rope-like flexible objects is discussed in [82]. The problem of entangling and disentangling knots and the
motion planning for this problem has been addressed in [60]. Our goal, however, is the motion planning that

57

∂W

W

s
e

(a) The initial configuration of the cable and the two robots in
the workspace W with boundary ∂W . Red and blue circles
are objects to be separated. Two green boxes are the robots.
Grey curve is the cable.

e
s

b4 b6b5 r2 r1 r3

+

+

∂W2

∂W1

C

----- -

ζ4

ζ1
ζ5

ζ2

ζ3

ζ6

––

+

+ +

(b) ζi are representative points inside the objects,
R1, R2, R3, B4, B5, B6 (in that order), and ri, i = 1, 2, 3
and bj , j = 4, 5, 6 are rays emanating from the respective
points. Using the bump forms, (2.2.3), corresponding to the
rays in defining the H-signature, H(C) = [1, 1, 1, 0, 0, 0].
And, h(C) = “r+1 b

+
5 r

+
2 r

+
3 b
−
5 ”.

Figure 6.1: The problem of separating the two types of objects.

∂W1

∂W2

C

s
e

(a) A separating configuration of the cable, C, that separates
the two types of objects.

∂W

B3

B1

B2R1

R2

R3
s

e
e

s

τ1

τ2
Cf

Ci

(b) A possible set of paths that take the cable from the initial
configuration, Ci, to a configuration homotopic to the sepa-
rating configuration, Cf .

Figure 6.2: An example of separating configuration and a set of paths to the separating configuration.

is required to manipulate objects on the plane and we are less interested in the specific configuration of the
cable. The use of robots to tow objects using cables is discussed in [53, 23] and in the previous Chapter 5.
An extension of these ideas leads to using a cable with its ends tied to robots to cage and tow objects. Indeed
this method is widely used in skimming operations on water surfaces [81, 54]. A description of the dynamics
of such systems and an analysis of the problem of cooperative skimming are provided in [12, 4]. However,
this work does not explicitly address the manipulation of objects.

In this chapter, we discuss the planning and control of the motions of two robots, each of which is tied
to one end of a flexible cable, with the goals of (a) separating a specified set of objects from other objects;
and (b) to transport the specified objects to a destination. The first step, as one might expect, is to navigate
the robots around the objects so that the cable separates the objects of interest from the ones that are not
of interest. The problem of finding a hypersurface separating two types of objects is studied as part of

58

∂W

B3

B1

B2R1

R2

R3
e

s

C1C3

C2

(a) Three possible cable configurations separating the two
types of objects. C1 andC2 are homotopic. ButC3 belongs to
a different homotopy class. See the curve C′ in Figure 6.1(b)
for yet another cable configuration that separates the two types
of objects.

B3

B1

B2R1

R2

R3
s

e
e

s

τ1

τ2

τ'1

τ'2

(b) The robot paths (up to homotopy) that can take the cable
to a desired separating configuration (up to homotopy) are not
unique. In this figure, τ1 and τ ′1 are not homotopic, neither are
τ2 and τ ′2. But either of the sets of paths, {τ1, τ2} or {τ ′1, τ ′2},
take the cable to the homotopy class shown in Figure 6.2(a).

Figure 6.3: The solutions of object separating problem is not unique.

statistical classification problems [18, 93]. However such methods are susceptible to finding curves that can
have disjoint components, do not have guarantees on optimality, and are statistical in nature. Moreover, the
problem of finding a separating cable configuration (the curve) that separates the objects does not give us a
necessary means of finding the paths of the robots that achieve that configuration. The first key contribution
of this chapter is a topological description of the problem of separating two sets of objects and the algebraic
formulation of the separation problem. The second contribution is a complete motion planning algorithm
that relies on graph search [25] to drive the robots in order to achieve separation and then transport the objects
to specified destinations. We also derive a decoupled algorithm that has the advantage of only requiring to
plan in the individual robot’s configuration space instead of the joint state-space.

6.2 Problem Description

We consider the scenario where there are two classes of objects present in a flat enclosed region, W . For
convenience we will refer to the two classes as ‘blue’ and ‘red’. Without loss of generality, one of these
classes of objects will be considered to be of interest (i.e., those need to be manipulated and transported),
while the other consists of obstacles or objects that are not of interest. LetO = R1∪R2∪· · ·∪Rr ∪Br+1∪
Br+2 ∪ · · · ∪ Br+b ⊆ W , where R1, R2, · · · , Rr are r counts of red objects, and Br+1, Br+2, · · · , Br+b
are b counts of blue objects. Each object, Ri or Bj , is assumed to be connected and arbitrarily shaped.

A flexible cable is attached, at its two ends, to two robots that are capable of navigating on the flat
surface. Given an initial configuration of the cable and the robots (Figure 6.1(a)), we need to first make
the robots follow paths to the boundary of the enclosed region, ∂W , such that the final cable configuration
‘separates’ the blue objects from the red, which we call the separating configuration (Figure 6.2(b)). Once
that is achieved, the robots can move along ∂W to enclose one type of objects and “pull” them out, thus
separating and transporting those objects.

Suppose e and s are the points on the boundary reached by the robots so that they split ∂W into ∂W1

59

and ∂W2 as in Figure 6.2(a). It is clear that the robot paths and cable configurations that describe the
problem and achieve the desired objective are sufficiently described up to homotopy. That is, if C1 and C2

are two cable configurations that are in the same homotopy class [15], then, “C1 separates the two types of

objects”⇐⇒ “C2 separates the two types of objects” (Figure 6.3(a)). Likewise, if a particular set of robot
paths, {τ1, τ2}, carry the cable from the initial configuration to the desired separating configuration (up to
homotopy), another set of paths, {τ ′1, τ ′2}, that are homotopic to the first set (i.e. τ ′1 ∼ τ1 and τ ′2 ∼ τ2) will
achieve the same objective.

In addition to this, it should also be noted that the homotopy class of the cable configuration that achieves
the separation of the two types of objects is not unique either. For example, in Figure 6.3(a), the configuration
C3 is in a different homotopy class from C1 or C2, but still separates the two types of objects. C ′ in
Figure 6.1(b) is another example. Furthermore, for a given desired separating configuration of the cable (up
to homotopy), the homotopy classes of the robot paths that can carry the cable from its initial configuration
to the separating configuration, are not unique either (Figure 6.3(b)).

Thus, it is useful to develop a notion of optimality to more precisely define the problem objectives. It is
natural to use length of the robot paths to the optimization criteria.

For the theoretical foundation and for setting up the optimization problem, we will make the following
assumptions:

i. The objects are assumed to be stationary rigid bodies – that is, the cable cannot ‘pass through’ any of the
objects, and that on contact of the cable with the objects the objects do not move. In the implementation
(Section 6.5.2) we will however relax the conditions that the objects need to be stationary.

ii. The cable is flexible, and there is no restriction on the length of the cable (i.e. the cable will not fall short
and tug on the robots). We assume that the cable can either be spooled out as required from a cable reel
residing on the robots, or may stretch as in an elastic band.

One simple and intuitive strategy to solve this problem is to drive all the robot on one (left) boundary of
the workspace and fix one robot. Then the other robot travels from this (left) boundary of the workspace to
the opposite (right) boundary while passing one (red) object above it and the other (blue) object under it as
shown in Figure 6.4(a). It is a simple and intuitive algorithm to find and drive to a separating configuration.
However, this algorithm requires that all the obejcts should have different value of X coordinates. And this
algorithm does not guarantee the shortest traveling distance. In the same environment, the cable configura-
tion or the path of a robot shown in Figure 6.4(b) is shorter than the one in Figure 6.4(a). The path can be
shorter if we allow the robot to go backward to minimize the overall traveling distance. Also, we should
allow the robot to go backward if the objects are not size less points like this case. For example, we cannot
find a path with this strategy in the environment of Figure 6.1(b). Also, this algorithm does not guarantee
the shortest path of robot from the initial configuration and we need another procedure to drive the robot to
a specific part of the boundary of workspace.

In this work, we divide and solve this manipulation and transportation problem into two steps. The first
step is to find a separating configurations, which works as initial configuration of the simple controller for
transportation, which will be discussed in Section 6.3. And the second problem is to navigate the robots to a
separating configurations.

60

es
C

(a) A separating configuration achieved by intuitive planning.

e
s

C'

(b) A separating configuration with less travel distance.

Figure 6.4: An example of separating configurations achieve by intuition when considering point objects.

Figure 6.5: An example of separating configurations which requires smart controller for transporting.

6.3 Separating Configurations

As the separating configuration is the initial configuration of the planner or controller of transporting, we
assume a simple planner/controller for transporting and there should be a feasible path or control input from
this separating configuration to the final goal. Consider the example in Figure 6.5, which shows a separating
configuration that satisfies the following Proposition 6.3.1. Considering that this configuration is infinitely
long, the system could be stuck by pulling the cable side to side. And such configuration to cause balance
between internal forces is also possible for noncircular objects, too. However, it depends on the boundary
condition of this contexture configuration. If the objects at the end of the structure is free, we can decompose
this contexture configuration from its ends, by driving robots or the ends of the cable up and down. If we pin
nails on the proper points on the boundary of the objects on the boundary to replace the constraints forces by
imaginary objects next to it, we can make this contexture configuration as a right body. (One obvious case is
to pin two nails on the tangent points for the next two imaginary objects to it.) Or we can achieve such force
balances by a wall tangent to the boundary object and pulling the cable with proper direction. However, we
assume free workspace except the objects to manipulate, and we will not discuss about this interesting case
further in this work.

As the feasible separating configuration should be a separating configuration that the given or designed
controller for transporting can drive the cable-robot system to the goal. So, in this section, we propose a
condition of separating configuration that does not represent all possible separating configurations but a set
of separating configurations which can be a proper initial configuration for simple transporting controllers.

Proposition 6.3.1. Suppose C is an embedded cable configuration such that C(0), C(1) ∈ ∂W (i.e. the

61

cable ends lie on the boundary of the environment). Say the end points of C splits ∂W into two parts: ∂W1

and ∂W2 (which themselves are curves in (W − O)). We assign orientation to ∂W1 and ∂W2 such that

C t ∂W1 and C t ∂W2 are closed loops (Figure 6.2(a)). Then, C separates the two types of objects (i.e., it

is a separating configuration) iff one of the following holds for the vector H(C t ∂W1):

i. The first r components are all 1 or all −1, and the last b components are all 0.

ii. The last b components are all 1 or all −1, and the first r components are all 0.

Note that from the definition ofH-signature,H(Ct∂W1) = H(C)+H(∂W1). Also, in these conditions

the choice of ∂W1 over ∂W2 is made without loss of generality. The conditions could have been stated in

terms of ∂W2 as well.

Sketch of Proof: The proof follows from the very definition of homology (see Figure 6.3(a)). First we
note thatCt∂W1 is a Jordan curve [43] insideW (sinceC is embedded). Hence there is a simply-connected
region in W (not considering the objects) enclosed by C t ∂W1. The objects (and their representative
points) that this region will contain will manifest as a ±1 in the corresponding components of the vector
H(C t ∂W1). Since C t ∂W1 is Jordan, it will wind around each of the enclosed points in the same
direction (all clockwise or all anti-clockwise), thus making the corresponding components of the vectors
either all +1 or all −1. All the other components will be 0. The statement of the lemma simply states that
the enclosed representative points will be ones corresponding to the red objects or the blue objects, while the
ones not enclosed will be ones corresponding to objects of the other color.

At this point it is instructive to illustrate why, in the above Proposition, we used the homology invariant
instead of homotopy invariant. Consider the curve C in Figure 6.1(b), which clearly separates the red ob-
jects from blue. However we previously saw that the reduced word for (C t ∂W1) is, h(C) � h(∂W1) =

“r+1 b
+
5 r

+
2 r

+
3 b
−
5 b−6 r

−
3 r
−
2 b
−
5 r
−
1 b
−
4 ”. Likewise the reduced word h(C) � h(∂W2) = “r+1 b

+
5 r

+
2 r

+
3 b
−
5 ”. Neither

of these words are helpful in identifying the fact that C ′ separates the blue objects from the red. However,
H(C) +H(∂W1) = [0, 0, 0,−1,−1,−1]T , and H(C) +H(∂W2) = [1, 1, 1, 0, 0, 0]T – both satisfying the
condition of Proposition 6.3.1 (note that the first 3 components of the vector correspond to R1, R2 & R3,
while the last 3 correspond to B4, B5 & B6), thus indicating that C indeed separates the blue from the red
objects.

It is obvious that there could be separating configurations that do not satisfying Proposition 6.3.1 like
examples in Figure 6.6. The configuration in Figure 6.6(a) winds one red object twice and we can separate
the red objects by pulling the two robots or the cable downward or −y direction. But we cannot separate
the blue objects by pulling this cable upward or +y direction.Also, the configuration in Figure 6.6(b) winds
the red objects in different directions and we can separate only red objects by pulling cable downward. In
both examples, we cannot separate the blue objects and need careful planning and control to release the red
object after transporting to the destination. So, we do not consider such configurations as our separating

configuration and it is obvious by Proposition 6.3.1.

Proposition 6.3.2. (Refer to Figure 6.2(b)) LetC be a starting cable configuration (which has an orientation

from robot ‘2’ to robot 1’, as shown in Figure 6.1(a)) and C ′ be a final cable configuration (which may

or may not be a separating configuration). Then the paths τ1 and τ2 for the two robots carry the cable

from initial configuration to the separating configuration (up to homotopy) if and only if the closed loop

62

e
s

b4 b6b5 r2 r1 r3

+

+

∂W2

∂W1

C

+---- -

ζ4

ζ1
ζ5

ζ2

ζ3

ζ6

––

+

+
+

+

–

+

(a) A separating configuration which winds the same object
twice. H(C) = [1, 1, 2, 0, 0, 0]T .

e
s

b4 b6b5 r2 r1 r3

+

∂W2

∂W1

C

----- -

ζ4

ζ1
ζ5

ζ2

ζ3

ζ6

––

++

–
–

(b) A separating configuration which winds red objects in dif-
ferent direction. H(C) = [1,−1,−1, 0, 0, 0].

Figure 6.6: Examples of separating configurations which do not satisfy Proposition 6.3.1.

q2(0)

Figure 6.7: Illustration for Proof of Proposition 6.3.2.

(Ctτ2t−C ′t−τ1) is null homotopic [49], i.e. h(Ctτ2t−C ′t−τ1) = h(C)�h(τ2)�h(C ′)
−1�h(τ1)

−1
=

“ ”, is the empty word (identity element).

Sketch of Proof: We note that unlike in Proposition 6.3.2 we don’t have the luxury of assuming that
(C t τ2t−C ′t−τ1) will be Jordan (see, for example, Figure 6.2(b)). First, suppose paths τ1 and τ2 carries
the cable from configuration C to final configuration C ′. We choose two arbitrary points, p1 and p2, on the
paths τ1 and τ2 respectively, as shown in Figure 6.7. Next consider the sequence of cable configurations
from C to C ′ as the robots carry it. We can thus construct a continuous function (a homotopy), C : [0, 1]×
[0, 1] → (W − O), such that C(0, ·) ≡ C(·) and C(1, ·) ≡ C ′(·), and C(t) is a general intermediate cable
configuration. Such a curve, C(t), has its end points q1(t) ∈ τ1 and q2(t) ∈ τ2 (Figure 6.7). We consider
the curve connecting q1(t) to p1 and lying on τ1 (call it q̃1(t)p1), and the one connecting q2(t) to p2 and
lying on τ2 (call it q̃2(t)p2). Thus, the sequence of curves, D(t) :=

(
−(q̃1(t)p1) t C(t) t (q̃2(t)p2)

)
,

defines a homotopy between curves connecting p1 and p2. Thus, D(0) t −D(1) is null-homotopic. That
is,
(
−(˜q1(0)p1) t C(0) t (˜q2(0)p2)

) ⊔
−
(
−(˜q1(1)p1) t C(1) t (˜q2(1)p2)

)
≡ (C t τ2 t−C ′ t−τ1), is

null-homotopic.
Conversely, if (C t τ2t−C ′t−τ1) is null-homotopic, one can construct a homotopy, D, as before, and

hence construct a sequence of curves C, that takes the cable from C to C ′.

63

b4 b6b5 r2 r1 r3

∂W2

ζ4

ζ1
ζ5

ζ2

ζ3

ζ6

e
s

e
s

Cf

Ci

(a) The rectangular environment with the goal of the
robots being the left (cyan line) and right (magenta line)
boundaries. ∂W2 does not intersect any of the rays (all
of which point in the positive Y direction).

h
h'

...
...

~ ~

u'1

u2 u'2

u1

(b) Robots 1 and 2 navigating on copies of graph,
G, formed by uniform discretization of configuration
space. Change in the h-signature of the cable due to
transitions within the graph is also illustrated.

Figure 6.8: The environment and its discretization.

6.4 Implementation

For simplicity, we assume that the environment,W , is a rectangular region (x ∈ [xl, xr], y ∈ [yb, bt]), and all
the rays, rj , j = 1, 2, · · · , r and bj , j = r + 1, r + 2, · · · , r + b, are parallel, pointing along the positive Y
axis. Furthermore, we restrict the final goals of the robots to the left and right boundaries of the environment
(∂Wl at x = xl and ∂Wr at x = xr respectively), but they need to reach the opposite edges. Thus a part of
the boundary, ∂W2, will never intersect any of the rays (Figure 6.8(a)), and hence H(∂W2) = [0, 0, · · · , 0]T

and h(∂W2) =“ ”. This simplifies the computation ofH(Cft∂W2) for Proposition 6.3.1 to the computation
of H(Cf).

We use a discrete representation of the environment, and construct a graph, G, by placing a vertex in
every discrete cell and by establishing an edge between the vertices of adjacent cells. From such a graph we
can construct anH-augmented graph, GH (for keeping track of the homology invariants), or an h-augmented
graph, Gh (for keeping track of the homotopy invariants), as described in [15].

While the graph, G, itself can be quite arbitrary, for simplicity we used a uniform 8-connected discrete
representation (see Figure 6.8(b)) of the environment for all our simulations and experiments.

6.4.1 Planning in Joint State-space

The problem under consideration is to plan optimal paths that would take a given initial cable configuration,
Ci, to a separating cable configuration, and the robot 1 reaches the left (or right) edge of W , while robot 2

reaches the right (or left) edge. In the first approach we plan paths in the joint state-space of the two robots.
A graph, J = G × G, is defined as the graph Cartesian product of two copies of G. Thus, for every pair of
vertices, u1,u2 ∈ V (G), a vertex in V (J) is of the form (u1,u2). We are given an initial vertex in the joint
state-space, (ui1,u

i
2), and an initial configuration of the cable (up to homotopy) in form of the h-signature

64

of the cable, hi (which, as defined earlier, is a reduced word).
We define an augmented graph, Jh, such that a vertex in this graph contains the additional information

of the h-signature of the cable that is being carried by the robots. This, in essence, is similar to the H-
augmented graph construction detailed in [15]. Thus the initial vertex in the graph is vi = (ui1,u

i
2, h

i),
which contain the information about the initial positions of the robots and the h-signature of the initial cable
configuration, hi = h(Ci). A transition of the robots from (u1,u2, h) to (u′1,u

′
2, h
′) will mean (due to

Proposition 6.3.2) that the h-signature of the resultant cable configuration is equal to h′ = h(−τ2)�h�h(τ1)

(recall, ‘�’ is concatenation, followed by reduction), where τ1 and τ2 are paths taken by the robots for the
transition (see Figure 6.8(b)). Thus, for each edge [(u1,u2) ; (u′1,u

′
2)] ∈ E(J), the vertex (u1,u2, h) is

connected to neighbors (u′1,u
′
2, h(
−−−→
u′2u2)�h�h(

−−−→
u1u

′
1)) (where, [a ; b] is used to indicate an edge in edge

set, E(G), from vertex a to b, and
−→
ab is the curve/line segment that constitutes the edge.

−→
ba is the same

curve but with opposite orientation).
We choose the optimization objective to be the sum of the length of the robot paths. Thus, the cost of the

edge [(u1,u2, h);(u′1,u
′
2, h�h(

−−−→
u1u

′
1)�h(

−−−→
u′2u2))] ∈ E(Jh) is chosen to be the sum of the lengths of the

edges [u1;u′1] and [u2 ; u′2] in E(G). For this cost and with the left and right boundaries as goal, an ad-

missible heuristic function is f(u1,u2, h) = min ((u1,x − xl) + (xr − u2,x), (u2,x − xl) + (xr − u1,x)),
which is a lower bound on the cost to reach a goal from (u1,u2, h) (where, uj,x is the X coordinate at a
vertex uj).

Starting at (ui1,u
i
2, h

i) we thus keep expanding the vertices in the graph, Jh, using a search algorithm
(we use Dijkstra’s [29] or A* [48] since they are complete, optimal and deterministic). A vertex (u1,u2, h)

is deemed as goal if u1 ∈ ∂Wl and u2 ∈ ∂Wr (or vice-versa), and if h∗(h) +H(∂W2) (= h∗(h)) satisfies
the condition of Proposition 6.3.1 (i.e., it is a separating cable configuration).

Planning in the joint state-space gives the flexibility of easily incorporating additional constraints like
inter-robot collision avoidance, communication constraints, etc.

6.4.2 Decoupled Planning: A Distributed Approach

While the approach of planning in joint state-space is complete and optimal, it suffers from the obvious
drawback of being slow and inefficient since the graph, J , is very large and is of high degree, being a
discrete representation of a 4-dimensional space. However, it is possible to decouple the searches for the two
robots in two copies of Gh (the h-augmented graph of G, described next), and run those searches in parallel
(parallel threads in our C++ implementation), comparing the solutions obtained from each parallel process
as they progress, and being able to conclude when the optimal solution is found, and thus halting the threads.

The h-augmented graph, Gh, is very similar to the concept of the H-signature augmented graph, GH
described in [15], only with the homology invariants being replaced by the homotopy invariants. Corre-
sponding to a given u ∈ V (G), there exists discrete number of the augmented states, (u, h) ∈ V (Gh), for
each homotopy class of paths (with h-signature h) from an initial vertex, ui, to the vertex u. Edges em-
anating from (u, h) are thus of the form [(u, h) ; (u′, h + h(

−−→
uu′))] ∈ E(Gh), corresponding to every

[u ; u′] ∈ E(G). The cost of such an edge is chosen to be the Euclidean length of
−−→
uu′. An admissible

heuristic function for this choice of cost, and with goal as ∂Wl ∪ ∂Wr, is f(u, h) = min(ux− xl, xr − ux).
Thus, we start with two copies of the augmented graph, Gh,1 and Gh,2, in two parallel threads (that branch

off from a main thread), for robots 1 and 2. In robot j’s copy of the graph, we start expanding the vertices

65

(v1
1, g1

1)

(v1
2, g1

2)

(v1
a, g1

a)

. .
 .

(v2
1, g2

1)

(v2
b, g2

b)

. .
 .

. .
 .

. . .
(v2

●, g2
●)

Ci
1

2
. . .

. . .

(a) Optimal paths in different homotopy classes cor-
responding to goal vertices (v1

j , g
1
j), (v

2
j , g

2
j), · · · ∈

Gh,j are found in parallel threads for robot j = 1 (yel-
low) and robot j = 2 (green).

(b) A compatible combination of paths (with end ver-
tices (va

1 , g
a
1) and (vb

2, g
b
2)) is such that the end points,

va
1 & va

2 , lie on the opposite edges of W , and
h∗((gb2)

−1�h(Ci)�ga1) satisfies the condition of Propo-
sition 6.3.1.

Figure 6.9: Decoupled and distributed planning: Optimal paths with different h-signatures found for the two
robots in parallel threads, and costs of compatible pairs are compared to find the optimal compatible pair.

from (i.e., initiate the open set with) the vertex (uij , “ ”) ∈ Gh,j , j = 1, 2. We keep expanding the vertices
in the respective graphs, and keep storing a path every time ∂Wl or ∂Wr is reached via a new homotopy
class for the robot (i.e. if (v, g) is expanded, with v ∈ ∂Wl ∪ ∂Wr, then the vertex is bookmarked if the
homotopy class g is not same for any of the previously bookmarked vertices for the robot). It is important to
note that for each of the robots such optimal paths with different h-signatures are found in the order of their
costs since we use an optimal search algorithm (Dikjstra’s/A* [48]). Suppose for robot ‘j’ such goal vertices
are {(v1

j , g
1
j), (v

2
j , g

2
j), (v

3
j , g

3
j), · · · } with costs of the respective optimal paths c1j ≤ c2j ≤ c3j ≤ · · · , for

j = 1, 2.
We define a partial order [90], 4, on R2, to compare the cost of pairs of paths of robots 1 and 2. One

obvious choice is to compare the sum of the path costs: (α1, α2) 4 (β1, β2) ⇔ α1 + α2 ≤ β1 + β2.
However, one would desire that the task of carrying the cable is evenly distributed among the two robots,
and not one of the robots end up traveling the most of the distance while the other travels very little. For this,
we choose to minimize the maximum of the costs of the two paths (rather than their sum). Thus, we define
the partial order to be

(α1, α2) 4 (β1, β2) ⇐⇒ max(α1, α2) < max(β1, β2) or (6.4.1)

max(α1, α2) = max(β1, β2) and min(α1, α2) ≤ min(β1, β2)

which we call the sorted lexicographic order.
Thus, as the main thread of the program receives the two sequences of optimal paths to the left/right

66

boundaries with different h-signatures from the two different threads, it keeps checking them in pairs. A pair,
(va1 , g

a
1) and (vb2, g

b
2), is deemed ‘compatible’ (Figure 6.9(b)) if the corresponding final cable configuration

(whose h-signature, by Proposition 6.3.2, is equal to (gb2)
−1� h(Ci) � ga1) is a separating configuration. That

is, due to Proposition 6.3.1, a pair is compatible if h∗((gb2)
−1�h(Ci) � ga1) +H(∂W2) is a vector with first r

components ±1 and rest zeros, or last b components ±1 and rest zeros. We keep record of the most optimal
compatible pair (i.e., one with lowest (ca1 , c

b
2), where comparisons are made using ‘4’).

Say at an instant the most optimal pair has cost (c∗1, c
∗
2). Since the optimal paths with different h-

signatures are found in order of there costs, if robot j finds a path such that its cost is greater than current
value of max(c∗1, c

∗
2) (or, if we were using the sum of the pairs in defining the partial order, then c∗1 + c∗2),

we can say for sure that none of the paths to be discovered for robot j after that point can be part of a more
optimal pair. Hence we stop the search for robot j. When the searches for both the robots end, the current
optimal pair is the global optimal one.

6.4.3 Sequential Planning

While the approach of decoupled planning in the previous Section is efficient method for large map, it
requires large memory and heavy computation with large number of objects. For example, in Figure 6.9(a),
the planner of robot j = 1 finds the path to (v1

1, g
1
1) first, because it is the minimum cost path to the boundary

of the workspace. Then keep finding paths to the left vertices on the left boundary in the homotopy class of
g11 then it will find the optimal path in different homotopy class of (v2

1, g
2
1). But, we need only one optimal

path in each homotopy class. So, this decoupled planning can be and should be improved.
We divide this problem into two steps. The first step is find proper combination of homotopy class. Here

we do not allow to wind the same object twice. In other word, we do not allow that r+k or r−k (k = 1, 2, . . . , r)
appears in gkj more than once. If we have n = r+b objects the upper bound of possible number of homotopy
class is

N ≤1 + 2n+ 2n(2n− 2) + 2n(2n− 2)(2n− 3) + 2n(2n− 2)(2n− 3)(2n− 4) + · · · (6.4.2)

=1 + 2n+

2n−1∑
k=2

2n

k∏
m=1

(2n− k)) + 2n

2n−1∏
m=1

(2n− k)) (6.4.3)

where the first 1 is for empty word or the word with length 0. For word of length 1 we can choose arbitrary
reference ray in any direction. So the number of possible words is 2n. For the kth letter, it cannot be the k−1

letters which are already appeared and the letter of different sign with k−1th letter. As, the 2nth letter has no
choice, number of possible word of length 2n is the same with 2n−1. However, in this computation, we did
not consider the case that the letter of different sign with the previous, (k − 1)th, letter is already appeared.
So, the Equation (6.4.2) can give us upper bound but not exact number of possible words. However, it is
obvious that the possible homotopy class is finite and we can find the corresponding word to each homotopy
class.

The decoupled planning works with heuristic function which gives the minimum cost to the boundary
while not considering the homotopy class of the path. This function is a proper heuristic function for decou-
pled planning because there is no desired homotopy class in decoupled planning. However, we have desired
homotopy class of the path in sequential planning, we need a heuristic function which consider the goal
homotopy class. The basic concept of this heuristic function is that the robot should visit the reference ray

67

b4 b6b5 r2 r1 r3 ∂W

ζ4

ζ1
ζ5

ζ2

ζ3

ζ6

Figure 6.10: An example of heuristic cost(the sum of the length of green lines) of the path start from the
green circle to the boundary while the desired homotopy class is hd = “r+2 r

+
3 ”. In this example, we ignore

the feasibility of the path with respect to objects.

in order described in the given word or h-signature to find the path in the desired homotopy class. While
traveling between reference rays, other reference ray will work like obstacle to be avoided not to change the
h-signature of the path. In Figure 6.10, the heuristic cost from given point, the green circle, to the boundary
while the desired homotopy class is given by hd = “r+2 r

+
3 ” will be the sum of the length of green lines. As

we ignore the feasibility with respect to the objects, the cost will be the sum of each length of path between
start configuration to the first reference ray, paths between reference rays; and the path between the last
reference ray and the boundary of the workspace while considering other reference rays as obstacles. Also,
we do not consider the cost between segments of paths, it is underestimation and an admissible heuristic
function. We add some detailed example in Appendix A.

The sequential planning we define a vertex as

ca,b = (ga1 , g
b
2, c

a
1 , c

b
2, realcost

a
1 , realcost

b
2) (6.4.4)

where is gaj is the homotopy class of thejth robot, caj is the cost to the corresponding path, realcostaj is
boolean variable if corresponding cost caj is the real cost or heuristic cost. Then the following algorithm
describe the sequential planning
Algorithm 1: Pseudocode for Sequential Planning:
1. |Find all possible homotopy class for each robot.

2. |Build the set of all possible combinations ca,b ∈ C satisfies the condition of Proposition 6.3.1.

3. |for all ca,b ∈ C

4. |Calculate heuristic cost and update ca1 and cb2. Set realcosta1 = false and realcostb2 = false.

5. |end for

6. |while TRUE

7. |Sort C and find the combination of minimum cost, ca,b ∈ C

8. |if realcosta1&realcostb2
9. |break

10. |else

11. |if notrealcosta1
68

12. |Find optimal path of the first robot in homotopy class of ga1

13. |Update ca1 . Set realcosta1 = true.

14. |end if

15. |if notrealcostb2
16. |Find optimal path of the second robot in homotopy class of gb2

17. |Update cb2. Set realcostb2 = true.

18. |end if

19. |end while

20. |return ca,b

Then the result combination is the optimal one. The unexpanded vertices cannot be better because the
estimated cost is underestimation. We need to find optimal paths in each homotopy class to update the cost
with real value. However, we do not need to non-optimal paths in each homotopy class to reduce the memory
requirements and computation power.

6.5 Result

In this section, we demonstrate the performance of the algorithm and implementation in the previous section
by various ways.

6.5.1 Simulation Results

We implemented the search in the joint state-space as well as the decoupled search in C++ programming
language with ROS integration, and used A* search algorithm. All computations were performed on a
system with dual-core processor with clock speed 2.6 MHz and 4 Gb memory. Throughout this thesis we
consider an uniform discretization of the environment for simplicity. However, the techniques developed in
this thesis is not restricted to any specific discretization scheme or even a specific search algorithm. A more
detailed discussion on the generality of the technique can be found in [15].

Joint State-space Plan

The search in this 4-dimensional environment is prohibitively expensive for large environments. Fig-
ure 6.11(a) shows the result in a simple environment, 30 × 30 discretized, and with 3 objects of each type.
The search took about 4250 s and expanded 1484999 vertices in Jh. Figure 6.11(b) shows the result obtained
for same problem, but using the decoupled planning (and using sum of the cost of the paths for defining the
partial order, 4, for being consistent). The result has the same optimal cost as the joint state-space planning,
but took less than 1 s with 19144 and 19593 vertices being expanded in Gh,1 and Gh,2. All objects were
inflated to avoid collision.

Decoupled Planning

In this section we present results obtained using the decoupled, distributed implementation. The sorted
lexicographic order was used for ‘4’. Figure 6.12(a) show the plans obtained for two robots in a 100 ×
100 discretized environment. The planning took about 1.3 s, and expanded 39764 and 40066 vertices in

69

(a) Planning in the joint state-space took 4250s. The sum
of the costs of two paths is 65.598 discretization units.

(b) The distributed decoupled planning gives result with
the same optimal cost, but takes about 2s to run.

Figure 6.11: A simple 30× 30 environment with r = b = 3. The green & yellow are the paths of the robots.
The rays emanating from ζj are also shown. The dark gray segment indicates the initial cable configuration.

(a) The planned paths in a 100 × 100 discretized envi-
ronment.

(b) The planned paths in a 400 × 400 discretized envi-
ronment.

Figure 6.12: Decoupled, distributed plans. Initial cable is shown in gray/black. Paths are in green and yellow.

70

Figure 6.13: Sequential plan. Initial cable is shown in gray/black. Paths are in green and yellow.

the graphs of the two robots. Figure 6.12(b) shows the result in a much larger (400 × 400 discretized)
environment. The planning time for this case was 490 s, with 1086182 and 1079670 vertices being expanded.

Sequential Planning

In this section we present results obtained using the sequential planning implementation. The decoupled
algorithm shows fast computation with several examples. However. the decoupled algorithm failed to find
optimal paths in the case of eleven objects in Figure 6.13 because of lack of memory. The sequential planner
find this optimal path in 350 s.

6.5.2 Dynamic Simulation and Fast Re-planning

So far we have planned the paths with the assumptions that the object remain stationary as the robots follow
the planned paths. However, in a practical implementation, where the objects will be free to move on the
surface, the interaction between the cable and the objects will change the configuration of the environment.
Consequently there comes the need for re-planning.

Dynamic Simulation

For the purpose of testing this scenario we build an accurate real-time dynamic simulation platform for
the cable (modeled as a serial chain) and freely floating disk-shaped objects on a fluid. Using Lagrangian
mechanics we developed the equations of motion with realistic modeling of drag forces [12], and modeled
the contacts using linear complementarity conditions [1]. We use a simple feedback (PD) controller to make
each robot follow the paths generated by the planner.

In this section, we extend the dynamics simulation platform proposed in [12]. We adopt the discrete
dynamic model of the fixed-length cable by modeling the cable as a series of n rigid cylindrical segments
connected by revolute joints. The ith segment is modeled as an uniform cylinder of length Li, and its

71

w1

wi-1

w1

θi

wi

w2

(xL,yL) (ox,1,oy,1)

(ox,2,oy,2)

wn

wn-1

Figure 6.14: The dynamic model showing a discrete model of the cable consisting of n rigid segments and
two rigid circular objects.

diameter, di, is assumed to be much smaller than its length. This model of the cable has n + 2 degrees of
freedom.

We also consider the dynamics of no count of objects freely floating on the water. Although it is straight-
forward to extend them to non circular objects, for simplicity, the objects are modeled as uniform disks of
radius Rj , j = 1, 2, · · · , no. Each disk-shaped object is assumed to have only two degrees of freedom – the
x and y coordinates of their centers. The objects’ rotational degree of freedom are ignored due to symmetry
of the disk shapes, and due to the assumption that the coefficient of friction on the surface of the objects are
zero, thus allowing only normal forces to be imparted on the objects.

Thus the system has (2 + n) + 2no degrees of freedom. We choose the generalized coordinates to be
q = [xL, yL, θ1, . . . , θn, o1,x, . . . , ono,x, o1,y, . . . , ono,y]

T , where w0 := [xL, yL]T is the coordinates of the
point at which the cable is attached to the left boat, θi is the angles made by the ith cylindrical segment with
respect to positive X axis of the global inertial frame of reference, and oj = [oj,x, oj,y]T are the coordinates
of the center of the jth object (see Figure 6.14).

Using Lagrangian mechanics, the equations of motion for the system can be written as,

d

dt

(
∂K

∂q̇l

)
− ∂K

∂ql
−Qql = 0 (6.5.1)

∀ql ∈ {xL, yL, θ1, . . . , θn, o1,x, . . . , ono,x, o1,y, . . . , ono,y}

72

where, K, the kinetic energy of the system, is given by,

K =

n∑
i=1

(
1

2
mi (ṗi · ṗi) +

1

2

miL
2
i

12
θ̇2i

)
+

no∑
j=1

1

2
Mj (ȯj · ȯj) (6.5.2)

where pi is the center of mass of the ith segment of the cable, mi is the mass of the ith segment of the cable,
and Mj is the mass of the jth object. Since we assume frictionless contact with the disk-shaped objects, the
kinetic energy due to rotation of the objects will remain unchanged (i.e. derivatives w.r.t. the coordinates
and time will be zero), and hence not considered as part of the expression for kinetic energy in the Lagrange
equations.

The generalized forces are

QxL
=fLx + fRx +

n∑
j=1

Fj,x (6.5.3)

QyL =fLy + fRy +

n∑
j=1

Fj,y (6.5.4)

Qθi =fRxLi sin θi + fRyLi cos θi + τi +

n∑
k=1

Fk ·
∂pk
∂θi

∀i ∈ {1, 2, . . . , n} (6.5.5)

Qoj,x =− cj ȯj,x (6.5.6)

Qoj,y =− cj ȯj,y (6.5.7)

where [fLx, fLy]T and [fRx, fRy]T are the input forces on the left and right ends of the cable respectively;

Fi :=

[
Fi,x

Fi,y

]
= −

∫ Li/2

−Li/2

(
cV v

‖
i (s) + cSv

⊥
i (s)

)
ds (6.5.8)

τi :=−
∫ Li/2

−Li/2

ri(s)×
(
cV v

‖
i (s) + cSv

⊥
i (s)

)
ds (6.5.9)

are the forces and torques due to drags on the cylindrical segments of the cable, where cV and cS are
constants that are functions of fluid properties and Reynolds number [42] and ri is the moment arm with
respect to the left end of cylindrical segment. For these constants we use the same values suggested in [12].
In writing the above equations for the forces and torques, the relative flow velocity along each segment has
been decomposed into two components – one parallel to the axis (v‖i), other perpendicular to the axis (v⊥i),
which, using a parameter, s, along the length of the segments, are given by,

v
‖
i (s) =

([
cos θi

sin θi

]
· ṙi(s)

)[
cos θi

sin θi

]
(6.5.10)

v⊥i (s) =

([
− sin θi

cos θi

]
· ṙi(s)

)[
− sin θi

cos θi

]
(6.5.11)

under the assumption that the fluid is stationary. Also, the generalized forces on the jth object due to the
drag (Equation (6.5.6) and (6.5.7)) are assumed to be proportional to the speed of the flow at low Reynold’s

73

wi-1

wi

θi

oj

(a) The first type of contact.

wi-1

wi

θi

oj

(b) The second type of contact.

oj

oi

(c) The third type of contact.

Figure 6.15: The three types of contacts considered in the model.

number. For a 3-dimensional sphere moving through a fluid, Stokes’ law give a drag equal to FD,sphere =

3πµUd where U and d are speed and diameter of the sphere respectively [101], the direction of which is
opposite to the direction of motion of the sphere. We assume that each object is a sphere of radius Rj , the
bottom half of which is under the water surface. Thus, the drag on each object being half of that on the
sphere,

FD,j =
−3πµUd

2
= −3πµRj ȯj . (6.5.12)

Thus, cj = 3πµRj in Equations (6.5.6) and (6.5.7), where the kinematic viscosity of seawater is µ =

1.07× 10−3kg/(m · s) at 20 ◦C [101].
Using first order approximation of the acceleration in the equations of motion, Equation (6.5.1), we can

write at the kth time instant,

M(qk)
q̇k+1 − q̇k

∆tk
− V(q̇k,qk) − Qk = 0 (6.5.13)

where V(q̇k,qk) ∈ Rn+2no+2 and Qk =
[
Qq1 , . . . , Qqn+2no+2

]T ∈ Rn+2no+2 is the vector of generalized
forces. Thus, using Euler integration, we can find the generalized states and velocities at the (k + 1)th time
step.

We next consider the contact between cable and objects. Since we assume frictionless contacts between
the rigid bodies, we adopt a time-stepping algorithms to solve Linear Complementarity Problem at every
step [1, 3, 91]. In order to account for noninterpenetration between the rigid bodies with smooth distance
function, we assume that all the objects are disk-shaped, and that the thickness of cable segments are neg-
ligible, which is consistent with our earlier assumptions. In our model we consider three different cases of
contacts or noninterpenetration conditions.

The first case (Figure 6.15(a)) is the tangential contact between the segments of the cable and the disk-
shaped object. For this, we need to consider the distance between the ith segment and the jth disk-shaped
object only when the center of the object lies in the strip perpendicular to the segment and containing the
segment (the yellow region in Figure 6.16). If the ith segment and the jth disk-shaped object do not satisfy
the both conditions, we do not need to consider contact between them.

74

wi-1

wio1

θi
o2

cos θi

sin θi

Figure 6.16: When the center of an object lies in the yellow region, we need to check for contact between the
ith segment of the cable and the object. The boundary of yellow region (i.e. the green lines) are perpendicular
to (wi −wi−1). In this example, we need to check for contact between ith segment and o1, but not o2.

The inequalities that need to be satisfied for that to happen are,[
cos θi

sin θi

]
· (oj −wi−1) ≥0 (6.5.14)

−

[
cos θi

sin θi

]
· (oj −wi) ≥0 (6.5.15)

where wi is the coordinate of the right end of the ith segment:

wi = wi−1 + Li

[
cos θi

sin θi

]
(6.5.16)

with w0 = [xL, yL]T being the left end of the cable. Then the distance between the ith segment and jth

object is

DLO,ij =

∣∣∣∣∣
[

cos θi

sin θi

]
× (oj −wi−1)

∣∣∣∣∣−Rj . (6.5.17)

The second case (Figure 6.15(b)) is the non-tangent contact between an end of a segment and an object.
Such a case can arise when at least one of the Equation (6.5.14) and (6.5.15) is not satisfied. Then the
distance function is

DPO,ij = ‖wi − oj‖ −Rj (6.5.18)

for ∀i ∈ {0, 1, . . . , n} and ∀j ∈ {1, . . . , no}.
The last case (Figure 6.15(c)) is the contact between two objects. The distance function in this case is

DOO,ij = ‖oi − oj‖ −Ri −Rj (6.5.19)

75

for ∀i, j ∈ {1, . . . , no}.
At a given state, qk, at time tk, we assume all the distances are nonnegative. We select and stack up

all the distance functions whose values are less than some threshold, δ, (say m of them) into a vector,
f(qk) =

[
f1(qk), . . . , fm(qk)

]T
, i.e. fp(qk) < δ for p = 1, 2, . . . ,m. Then our goal is to find the state in

the next step which satisfies,

fp(q
k+1) ≥ 0 (6.5.20)

which results in a nonlinear problem. We thus linearize the distance functions around qk using a first order
approximation as follows [1, 3, 91],

fp(q
k+1) ' fp(q

k) + ∆tk∇qfp(q
k)q̇k+1 (6.5.21)

which is linear with respect to the generalized velocity of the next time step.
Now we add the impulse due to contact into the generalized force term of Equation (6.5.13), and thus

construct the equations of motion which satisfy the noninterpenetration constraints

Mkq̇k+1 =Mkq̇k + ∆tk
(
Vk + Qk

)
+∇qf(q

k)Tλk (6.5.22)

=Mkq̇ku +∇qf(q
k)Tλk

where Mk = M(qk), Vk = V(q̇k,qk), Qk = Q(qk) and λk =
[
λk1 , . . . , λ

k
m

]T
is a vector of nonnegative

components (since the impulse due contact of two rigid bodies should be in a direction such that the distance
functions increase). To simplify the notation, we define q̇ku to be the generalized velocity of the next time
step when there is no impulse due to noninterpenetration constraints, which satisfies the Equation (6.5.13).
Then we substitute this equation into the noninterpenetration constraints to achieve a linear inequality,

f(qk) + ∆tk∇qf(q
k)
(
Mk
)−1 (

Mkq̇ku +∇qf(q
k)Tλk

)
=f(qk) + ∆tk∇qf(q

k)q̇ku + ∆tk∇qf(q
k)
(
Mk
)−1∇qf(q

k)Tλk

=bk +Akλk ≥ 0 (6.5.23)

where bk = f(qk) + ∆tk∇qf(q
k)q̇ku ∈ Rm and Ak = ∆tk∇qf(q

k)
(
Mk
)−1∇qf(q

k)T ∈ Rm×m are
known, given by the current generalized state and velocity, qk and q̇k. Hence we need to solve a linear
complementarity problem (LCP),

bk +Akλk ≥ 0 (6.5.24)

λk ≥ 0

λk ·
(
bk +Akλk

)
= 0

at each time step. We can solve this LCP efficiently with Lemke’s method [26, 38]. We then substitute the
solution of λk into the following equation (derived from Equation (6.5.22)) to find the generalized state and

76

velocity for the next time step.

q̇k+1 =q̇ku +
(
Mk
)−1∇qf(q

k)Tλk (6.5.25)

qk+1 =qk + ∆tkq̇k+1 (6.5.26)

Re-planning

Throughout the Section 6.4, we presented algorithms to solve this path planning problem more fast in large
envirnoment with objects. However, the simulation results in the previous Section 6.5.1 showed that it is
hard to implement real-time planner in large envirnoment. However, in the dynamics environment, when
the objects are fre to move, we need real-time re-planning for successful manipulation. So in this section,
we will briefly present a real-time replanning algorithm for real-time simulation or experiments in dynamic
environments. Instead of solving the path planning problem to adapt the change of the environment, we find
the optimal paths of the robots which lead to the same homotopy class of the initial path.

Instead of solving the entire problem every time whenever the environment changes, we invoke a re-
planning algorithm whenever we need replanning:

• Any two objects exchange the order of the X coordinates of their representative points (i.e., the rays

emanating from ζj cross each other)

• One of the planned paths becomes invalid (due to an object moving on top of it).

Let gsc = (gb2)
−1� h(Ci) � ga1 be the h-signature of the separating configuration of the iniatial path plan-

ning, which can be generated by any algorithm described in the previous Section 6.4. Assume we keep track-
ing the cable configuration and its homotopy class, gc = h(C). If the trigger was caused due to switching
of the X coordinates of two representative points, we interchange the positions of the corresponding letters
in the words (gsc and gc) wherever they appear side-by-side. Then the goal h-signature of the paths of two
robots should be determined so that gsc = (gb

′

2)
−1
�gc�ga

′

1 . We can simply split the h-signature of the separat-
ing configuration as gsc = gfsc�gbsc and the number of possible configurations of (gfsc, g

b
sc) is length(gsc)+1.

And we can split the h-signature of the current cable configuration as gc = gfc �gbc in the same manner to find
length(gc) + 1 combinations. Then we will achieve (length(gsc) + 1)× (length(gsc) + 1) combiniations
of

ga
′

1 =(gbc)
−1 � gbsc (6.5.27)

gb
′

2 =(gfsc � (gfc)
−1

)
−1

= gfc � (gfsc)
−1

which will drive the cable-robot system to the same separating configuration of the initial path:

(gb
′

2)
−1
� gc � ga

′

1 =(gfc � (gfsc)
−1

)
−1
�
(
gfc � gbc

)
�
(

(gbc)
−1 � gbsc

)
(6.5.28)

=gfsc � (gfc)
−1 � gfc � gbc � (gbc)

−1 � gbsc = gfsc � gbsc = gsc.

As we have finite number of possible combinations of h-signatures of pthas of robots, we find the optimal
paths of the robots from current positions by using the same algorithm used in the sequential planning

77

0 10 20 30 40 50
0

10

20

30

40

50
t = 0.000000

(a) t = 0.00 s
0 10 20 30 40 50

0

10

20

30

40

50
t = 58.060000

(b) t = 58.06 s
0 10 20 30 40 50

0

10

20

30

40

50
t = 178.345000

(c) t = 178.35 s
0 10 20 30 40 50

0

10

20

30

40

50
t = 298.645000

(d) t = 298.65 s
0 10 20 30 40 50

0

10

20

30

40

50
t = 479.095000

(e) t = 479.10 s

Figure 6.17: Dynamic simulation for separation of objects. The gray curve is the cable, with black dots
marking robots at its ends. Green curves are the planned paths. Magenta curves are the robot footprints. Red
& blue disks are the rigid freely-floating objects. See http://youtu.be/GyCn-8yDzO0 for video.

Figure 6.18: Experiments with Autonomous Boats conducted by H. K. Heidarsson, University of Southern
California [56]. Red and blue circles are Buoys (objects). Thin gray curve is the planned paths of two ASVs.
The Black curve is the current cable configuration. See http://youtu.be/vGgca2w2UdA for video.

described in 6.4.3, which finds the optimal combination of h−-signatures and paths of the robots. The only
difference is how we build the set of combinations, C.

Figure 6.17 shows the simulation result. Figure 6.17(a) shows the initial configuration of the system. As
the objects move and the map change, the planned paths of robot are re-computed (shown by green curves
in Figures 6.17(b)-(e)). We are able to successfully separate the red objects from the blue ones.

6.5.3 Experiment Results

To demonstrate the performance of the suggested algorithm, the field experiments were conducted in Pud-
dingstone Lake, San Dimas, CA. The experiment was performed by Hordur Kristinn Heidarsson under the
supervision of Prof. Gaurav Sukhatme of University of Southern California [56].

The two Autonomous Surface Vessels (ASV) are identical, each around 2 m long and 0.8 m wide, capable
of speeds up to 1.6 m/s, using two electric thrusters and a rudder for control. Both are equipped with a GPS,
an IMU with integrated compass and an onboard computer for control.

The two ASVs have a 40 m long floating rope attached between them with periodically spaced markers

78

δ
δ

δ

δδ

W

Δ

x

y

Figure 6.19: A large problem. Red and blue dots are object. Green curves are cable-robot teams. Light blue
and red boxes are the baskets to bring objects. The dashed line is a smallest box to enclose all objects to
be manipulated. Gray box is the workspace of the problem. The yellow boxes are the workspace of each
cable-robot team.

on it for increased visibility and to use as fixed sampling points. Buoys (the objects to be separated) are
placed in the water and anchored in place in an area 50 m × 50 m, and their approximate locations recorded
using GPS.

To record the experiment, particularly the position and shape of the rope, a camera, in an adjustable
tilt mount, was mounted on top of a 30 ft mast which stood on shore close to the experiment area, over-
looking it. Figure 6.18 shows a snapshot of the experimental. The video of experiment is available at
http://youtu.be/vGgca2w2UdA.

The experiment result showed that the planned paths were feasible and the ASVs followed the planned
paths successfully.

6.6 Sequential Manipulation of Large Number of Objects

We presented various implementation to decrease the computation time and solve this planning problem
with more number of objects in larger environments in Section 6.4. However, it is practically impossible to
find a solution with a large number of objects due to heavy computation. Also, as the size of the workspace
and number of objects increases, we need longer cable and more powerful actuator on robots to manipulate
and transport obejcts. So, it is not practical to manipulate and transprt a large number of objects with the

79

same strategy described in the previous sections. In this section, we will consider the problem to manipulate
and transport a large number of objects with multiple cable-robot teams (see Figure 6.19). There are a large
number of red and blue objects. Each cable-robot team will sequentially manipulate and transport the objects
to the corresponding baskets. To simplify the algorithm, we assume that the number of cable-robot team is
equal to the number of pairs of red/blue baskets. And each cable-robot team is assigned to its own pair of
baskets.

6.6.1 Algorithm

In this section, we will describe how we can sequentially manipulate and transport objects to basket effi-
ciently and successfully. As the size of the planning problem become enormous comparing to the problem
of single cable-robot team, it is practically impossible to find paths of all the cable-robot team in a single
planner; the dimension of the search space will be too large for real-time planning. So, we will reduce the
size of the problem by splitting the large planning problem into a planning problem of single cable-robot
team like the previous problem. We need to decentralize the planning so that each cable-robot team finds its
own path.

Workspace of each cable-robot team

As there are other cable-robot teams, each cable-robot team should consider the configurations and paths of
other cable-robot teams to avoid collisions and cable entanglements. As the configurations and paths of other
cable-robot teams keep changing and the manipulation will happen only in a part of whole workspace, it is
not an efficient way to find path of cable-robot team in the whole workspace. So, we assign the workspace,
Wj ⊂ W , as a subset of the whole workspace for the jth cable-robot team. To determine the workspace of
each robot, we will explain with the robot on the bottom of Figure 6.19. For other robot will work with the
same manner by proper transformation(rotation) of the coordinates. In Figure 6.19, the dashed lines are the
boundary of the smallest rectangle including all the red and blue object to be manipulate while its edge are
parallel to x or y axis. Then the workspace W = {(x, y)|xl ≤ x ≤ xr, yb ≤ y ≤ yt} will have δ margins
from this box. Then the workspace of the jth cable robot team whose cable length is Lj is a square box of

Wj = {(x, y)|xj ≤ x ≤ xj + lj,x, yb ≤ y ≤ yb + lj,y} (6.6.1)

where lj is the length of the edge while
√

2lj,x ≤ Lj and
√

2lj,y ≤ Lj , which will guarantee that the maxi-
mum distance between two robots will be less than the cable length while navigating inside the workspace,
Wj . Also, we reduce lj,x and lj,y properly to avoid overlapping with workspace of other cable-robot teams.
And xj is the left boundary of the workspaceWj which is determined by the minimum value of x coordinate
of the objects in W whose y coordinate lies between yb and yb + lj . If we assume there is alway certain dis-
tances between objects so that the robots can travel, we can always find paths that can separate this objects.
And we can manipulate at least one object for each manipulation and can separate all the objects.

Coarse grid and search

To reduce the computation time, we will adapt a coarse grid map for our search algorithm (see Figure 6.20).
The workspace is divided into set of cells by the rays from the reference points inside each objects, ζj in four

80

b4 b6b5 r2 r1 r3 W

ζ4

ζ1
ζ5

ζ2

ζ3

ζ6

sgl gr

Figure 6.20: An example of coarse grid. the given workspace is split into set of cells whose boundaries
are the reference rays, the cyan lines, and the grey lines. the topology class of path does not change when
crossing the grey lines.

81

directions, (+x,−x,+y,−y). And we consider 4-way connected map; the cell is connected to the neighbor
cells who share edges, not a vertex. The topology class of path does not change when move to the neighbor
cell through grey lines. And the topology class of the cell changes only when passing to the neighbor cell
through reference rays, the cyan lines in Figure 6.20. So, we can track the change of topology of the path.

Then we drive the two robots to the cell in the middle of bottom, which is marked as s in Figure 6.20.
This cell is the initial node of search. The goal of each robot will be the cells on the left and right bottom
corners, gl and gr in Figure 6.20.

Efficient sequential manipulation

We will sequentially manipulate and transport the objects. We will find paths of two robot for each cable-
robot team inside its own workspace, Wj . However, we cannot guarantee that there is always a solution that
satisfies the Proposition 6.3.1. Eventhough such a path exists, it could no be optimal in some other point
of view. For example, if only one object is on the upper left corner and all others are on the right bottom,
it will be efficient to remain the one on the left corner for other cable-robot team or next manipulation. So,
we will follow the decoupled planning algorithm described in the previous section to find the set of paths
for each robot {τ1j , τ2j , τ3j , . . . } for j ∈ {l, r} where taukj start from the cells and reach the goal cell gj .
Then hkj = h(τkj) is the homotopy class of corresponding path of the robots. Then we will find the optimal
combination of the paths that maximize the efficiency of each manipulation:

max
a,b

sum(H(−τal t τ bl))

max(cal , c
b
r) + 2∆

(6.6.2)

where ∆ is the underestimated cost between the basket and the workspace as shown in Figure 6.19. Also, this
pair of paths should be embed. And the components of H(−τal t τ bl) should be 1 or 0 or one kind of object
(for example red) and should be 0 for the other kind (for example blue). Then sum(H(−τal t τ bl) is the
number of objects (for example red) we can manipulate and transport by pulling the cable in −y direction to
the basket. And these objects have the same color or are the same kind. By maximizing the Equation (6.6.2),
we can maximize the number of objects, numerator, to separate with respect to the cost of the manipulation,
denominator.

6.6.2 Simulation Result

For the simulation for this large problem, we extend the dynamics simulator described in Section 6.5.2 to
consider a large number of objects with multiple cable-robot teams. To reduce the computation time, we do
not consider the cable-cable contacts. As each cable team will work in there own workspace, there is little
possibility that cable-cable contact occurs. So we demonstrate the suggested algorithm with simulation of
100 objects (50 red objects and 50 blue objects).

The Figure 6.21 shows the simulation result with 4 cable-robot teams. Each cable robot team separates
and transports the objects to its own baskets. The size of the workspace for each cable-robot team is properly
reduced to avoid overlapping like Figure 6.21(i).

82

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.21: Dynamic simulation for separation of a large number of objects with multiple cable-robot teams
via sequential manipulation. The red and blue dots are the objects. The green curves are the cables. The red
and blue t’s are the baskets. Yellow boxes are the workspace of each cable-robot team. Magenta curves are
the paths of the robots. See http://youtu.be/ZHrEIo8dGDA for video.

6.7 Conclusion

In this chapter, we present a formal mathematical description of the problem of planning and control for
a flexible cable towed by two robots so as to separate two types of objects in a planar environment. We
develop a graph search-based implementation, and distribute the computation for efficiency. We demonstrate
the working of the algorithms through simulations, and the practical applicability of the method using a
complete dynamic simulation. We also extend this problem to separate a large number of objects with
multiple cable-robot team via sequential manipulation and transportation. We presented various algorithms
to reduce the computation time but still the algorithm is not real-time. We build the graph from fine grid of
the environment. However, we can adapt other graphs like visibility graph or Voronoi tessellation to reduce
the size of search space. We need to choose one which is easy and fast to build while the topology of its
edges can be easily calculated. Also, to manipulate large number of objects more efficiently, we need to find
more systematical method to assign workspace of each cable-robot team. Also, in real debris clean-up or oil
skimming with fixed obstacles like rocks, we need to develop proper planner and controller for transporting
procedure to avoid obstacles while not losing objects or oil.

83

Chapter 7

Conclusion

7.1 Summary

In this thesis, we have presented different trajectory generation or path planning problems considering topol-
ogy classes. In Chapter 3, we presented a method to find a smooth optimal trajectory subject to geometric
and kinematic constraints, and restricted to a specific topology class. In Chapter 4, we proposed an algorithm
to explore an unknown or partially known environment by gradually building a topological description of the
environment. Using the notion of quotient spaces, optimal paths in different topological classes leading up to
the unknown region were found by searching in theH-augmented graph. We also addressed the forward and
inverse kinematics of payloads carried by aerial robots. In Chapter 6, we presented a formal mathematical
description of the problem of planning and control for a flexible cable towed by two robots so as to separate
two types of objects in a planar environment. We also extended this problem to separate a large number of
objects with multiple cable-robot team via sequential manipulation and transportation.

7.2 Main Contributions

There are three key contributions in this thesis.
The first contribution is to present optimal control problem to generate optimal trajectories under topol-

ogy class constraints. As the H-signature is a homology class invariant function, the gradient would be zero
almost everywhere. So, it is not a proper constraints for optimal trajectory generation problem formulated
as optimal control problem. Because it is practically impossible to find analytical solution of the optimal
control problems and we depends on numerical solvers to find solution. Most of the numerical solvers de-
pends on gradients of cost function and constraints function to improve the solution. So, we cannot expect to
find a solution if the gradients are zero in infeasible region of the search space. In this work, we introduced
a H-signature calculated from integer variables corresponding to the intermediate point on the trajectory.
To our knowledge, it is the first work to define homology class invariant function, from coarse information
of the trajectory, whose gradient is not zero. By adapting this new H-signature, we formulate the optimal
trajectory generation under homology class constraints as MIQP to guarantee the global optimal solution.

We also presented optimal control problem to generate optimal trajectories under homotopy class con-
straints. As the integer variables in MIQP provide the coarse representation of the trajectory, we can build

84

a set of integer variables which correspond to the trajectories in the same homotopy class. By finding the
integer variables in the given homotopy class, we can find optimal trajectory under the given homotopy class
constraints by solving QP while adjusting time distribution.

The second contribution of this thesis deals with how the topological constraints can be used to solve
practical problems. We suggest the topological exploration algorithm based onH-signature as the alternative
method of frontier-based planning.

Most of the exploration algorithms with multiple robots depend on frontier-based planning to maximize
the information gain. However, we can deploy the group of robots into different paths by comparing the
H-signature of paths instead of the goal frontiers. As the calculation time of H-signature is negligible and
we do not need preprocessing of finding frontiers, this algorithm can work fast and efficient.

Finally, the last contribution is the manipulation using cable. The cables are widely used in robotic
or mechanical systems to transport powers. However, we can also use cables to tow payload with single or
multiple robots. In this thesis, we presented a stable motion primitive of straight line motion to two a payload
with single or two mobile robot. Also, we discussed the kinematics of payload and aerial robots connected
by cables. The unique configuration of payload can be achieved if the aerial robots satisfy the suggested
conditions.

As the cable is a curve in plane or three dimensional space, it has infinite dimensions and it is practically
impossible to control the cable configuration with finite number of robots. In this work, instead of control
the configuration of the cable, we plan and control the homotopy class of the cable with only two robots,
which are attach both ends of the cable, to manipulate and transport a set of objects.

First, we define the separating configuration as the topological constraints of the cable to manipulate and
transport only one kind of objects. Then we implemented different algorithms to navigate the robots to reach
the separating configuration from the initial configuration while minimizing the travel distance.

We also extend this manipulation problem to consider a large number of objects with multiple cable-
robot team via sequential manipulation and transportation. We defined the efficiency of each manipulation
to increase the performance of whole manipulation problem.

7.3 Future Work

There are many directions for future work. One direction of the future work is to increase the performance
of the suggested algorithm. And the other direction is to extend the algorithm to solve more complicated
problems.

The suggested algorithms to find optimal trajectories under topological constraints can generate anytime
solution or guarantee the global optimal solution. But in practical implementation, the size of the problem
is too large to find solution in real-time. So, it is important to reduce the size of the problem to reduce the
computation load to make this approach practical. This improvement is one of the key direction of the future
works.

In addition, we plan to extend the this optimal trajectory generation problem to three-dimensional space.
We introduced the topological exploration algorithm as an alternative criteria of Frontier-based planning.

However, the current implementation is centralized and necessitates the integration and sharing of all the
sensor information of all the robots. If we implement this exploration algorithm in decentralized manner, it
would be robust to the failure or loss of a groups or robot, or temporary disconnection of communications.

85

For decentralized algorithm, we need properly sharing the map between groups of robots when they are in-
side the communication range. Developing proper communication protocol to share topological information
is remained for future research. Also, we need to verify the decentralized algorithm with by conducting
experiments with more than one robot.

One of the most intriguing direction of future work is to solve the problem of clean up surface oil or
debris in the presence of fixed obstacles. In this work, we assume a simple feedback control for transportation
process. However, in the presence of fixed obstacle, which cannot be removed by the skimming operation,
the fixed obstacles should be avoided in the transportation process and both robots and cable should avoid
these obstacles by considering the topology of the paths of the robots. Also, the robots should maintain
proper distance inside the cable length not to leak any objects to transport. Finally, we need to reduce the
dimension of the search space for fast planning.

The first direction of future work in this section discuss about finding optimal trajectories faster for prac-
tical problem. The heavy computation of the optimal control problem prevents us to apply this algorithm to
more complicated problems. For example, we used graph-search-based planning for the topological explo-
ration and manipulation problems in Chapter 4 and 6 to simplify the problem and reduce the computation
time. So, one of the direction of future work is to implement the algorithm for these applications as opti-
mal control problems. For real-time implementation, we need to reduce the size the optimization problem.
One way to reduce the problem size it to adapt model predictive control. For example, we find the coarse
path, or the integer variables, from graph-search-based planner and find smooth optimal trajectories for finite
horizon.

Another direction of future work is to extend the suggested algorithm to dynamic environments. In the
manipulation of a set objects, we consider all the objects are stationary. However, some objects could move
actively to avoid our robots or randomly by external forces. In this work, we proposed a fast-replanning al-
gorithm but there could be better strategy to consider dynamic environments. One good example of planning
and control dynamic environments is elastic band [78], strips [22] and roadmaps [103]. Merging the sug-
gested topological constraints into these algorithm is one of obvious and trivial ways to extend this problem
with moving objects. However, when the objects are moving, we need to sense the cable configuration or
estimate the homotopy class of the cable. As the objects can pass the previously executed paths of robots,
we cannot just estimate the homotopy class of the cable from current object configurations and the previ-
ously executed paths of robots. Even though, the robots are stationary, the homotopy class of the cable can
be changed by the movements of objects. As we estimate the homotopy class of cable only from paths of
robots, it is an interesting problem to consider moving objects or change of reference rays.

One obvious and intriguing direction of future work is to manipulate and transport a set of objects with
a net, a surface in three dimensional space. To extend the suggested algorithm to this three-dimentional
problem, we need some mathematical framework. First, we need a topological, or any coarse, representation
of a surface like homotopy or homology of cable. Then we need to define the separating configuration based
on this topological, or coarse, representation as we described in this work. And the last part of this problem
is to find the relation between the topology class, or coarse presentation, of surface and paths/trajectories of
robots like Proposition 6.3.2. Also, we need to consider what is the minimum number of robots to control
the topology class, or coarse representation, of the surface.

The last direction of future work is find and solve novel and practical problems by considering topology
of robot systems. It is obvious that topology class is the coarse representation of the path/trajectory or

86

cable. So, we can add some abstract constraints into our path planning problems in the form of topological
constraints. For example, wireless communication allows us to share information between robots without
physical contact but requres the robots to stay inside certain range. However, the wireless communication
will not work in extreme conditions like mission under the nuclear pollution or communication jam by other
agents. In such circumstances, we need wired communication between robot-robot or robot-user for stable
and robust communication. another issue is the power supply of robots. The battery is the most commner
source of power for mobile or aerial robots. And the capacity of the battery keeps increasing and the size or
weight of battery keeps decreasing. However, the limitation of actuation and the size of the robot prevent to
install arbitrary size or number of batteries on the robot. And the wired power supply is the most reliable
source of energy. So, the mission in extreme environments, it is necessary to consider the configuration of
cable connecting robot-robot or robot-user in planning and control. In this case, the reachable region does
not simply depend on the length of the cable but the history of the paths of robots. So, we need to plan the
paths of robots considering the topology of the previously executed paths and build the map of reachable
region.

87

Appendix A

Heuristic distance function considering
the homotopy class constraints

A.1 Algorithm

In this section, we will discuss heuristic distance function to the boundary of the workspace while considering
the desired homotopy class of the path. The workspace is a bounded box ofW = {(x, y)|xl ≤ x ≤ xr, yb ≤
y ≤ yt}. In this section, we assume that all the N objects, Oj , are disk of radius Rj for j = 1, 2, . . . , N .
And the reference rays, rj emits from the center of each objects (ζj,x, ζj,y) in the +y direction.

The initial configuration or position is given as qi = (xi, yi) ∈ W , which does not lie on any reference
rays, and the desired homotopy class of the path is given as hd = “rs1k1r

s2
k2
· · · rsnkn” of length n, where

kj ∈ {1, 2, . . . n} is the index of reference ray to visit and sj ∈ {+,−} is the sign or direction of visit.
Then the heuristic cost to the boundary is the sum of the cost of the segments of path sequentially visit the
reference ray in order:

ch(qi) = chpr(qi, r
s1
k1

) + chrr(r
s1
k1
rs2k2) + chrr(r

s2
k2
rs3k3) + · · ·+ chrr(r

sn−1

kn−1
rsnkn) +min(chrr(r

sn
kn
r−l), chrr(r

sn
kn
r+r)).

(A.1.1)

where chpr(qi, r
s
k) is the admissible heuristic cost from a point q to the kth reference ray with sign s and

chrr(·, ·) is the admissible heuristic cost between two reference rays with proper signs. We consider the
left and right boundary as reference rays emitting from (xl, yb) and (xr, yb) respectively and choose the
minimum value to the boundaries. So, we need to find proper function to calculate these distances.

To calculate chpr(qi, r
s
k), we will consider the case that the initial point lies on the left side of reference

ray, xi ≤ ζk,x. If xi > ζk,x, we can use the symmetry of the problem as chpr(qi, r
s
k) = chpr(qi + 2[ζk,x −

xi, 0]T , r−sk) where −s means to change sign of s. While considering other reference rays as obstacles., we
will consider only one reference line with minimum yj value which lies between qi and goal reference line:

min
o∈{1,2,...,N}

ζo,y (A.1.2)

s.t. xi < ζo,x < ζk,x.

88

If there is no solution for the optimization problem (A.1.2), in other words, there is no reference line
between qi and the kth reference ray, we consider ζo,y = yt.

Then the admissible heuristic distance function from qi to kth reference ray while avoiding the oth

reference ray is illustrated in Algorithm A.1.1 and Figure A.1.

Algorithm 1.1.1 HeuristicDistanceFromPointToReferenceRay(q, ζo, Ro, ζk, Rk, s): Find heuristic
distance from point qi to the kth reference ray with direction of s, while avoiding the oth reference ray.

if s == + then
if yi < ζo,y −Ro then

if ζk,y +Rk < yi then
return (ζk,x − xi) {see Figure A.1(a)}

else
return Dh(qi, ζk + [0, Rk]T) {see Figure A.1(b)}

end if
else

if ζk,y +Rk < ζo,y −Ro then
return Dh(qi, ζo − [0, Ro]

T) + (ζk,x − ζo,x) {see Figure A.1(c)}
else

return Dh(qi, ζo − [0, Ro]
T) +Dh(ζo − [0, Ro]

T , ζk + [0, Rk]T) {see Figure A.1(d)}
end if

end if
else

if yi < ζo,y −Ro then
if ζk,y −Rk < yi then

return Dh(qi, ζk − [0, Rk]T) + πRk {see Figure A.1(e)}
else

return Dh(qi, ζk + [Rk, 0]T) + π
2Rk {see Figure A.1(f)}

end if
else

if ζk,y −Rk < ζo,y −Ro then
return Dh(qi, ζk − [0, Rk]T) + πRk {see Figure A.1(g)}

else
return Dh(qi, ζo − [0, Ro]

T) +Dh(ζo − [0, Ro]
T , ζk + [Rk, 0]T + π

2Rk) {see Figure A.1(h)}
end if

end if
end if

where Dh(·, ·) is the admissible heuristic distance function between two points based on how we build
the connectivity of the grid. In continuous space, it will be Euclidean distance. In 8-connected graph, it will
be Dh(u,v) =

√
2 min(|ux − vx|, |uy − vy|) +

∣∣|ux − vx| − |uy − vy|∣∣. In 4-connected graph, it will be
Dh(u,v) = |ux − vx|+ |uy − vy|.

Now we will describe the admissible heuristic distance function from the jth to kth reference rays while
avoiding the oth reference ray in Algorithm A.1.2.This Algorithm A.1.2 finds proper initial point on the jth

reference ray or on the jth object which has the shortest distance to the kth reference ray. In Algorithm A.1.2,
we will only consider the case that the jth reference ray lies on the left side of the kth reference ray, ζj,x <
ζk,x. If ζj,x > ζk,x, we can use the symmetry of the problem as chrr(r

sj
j , r

sk
k) = chrr(r

−sk
k , r

−sj
j) where −si

means to change sign of si.

Algorithm 1.1.2 HeuristicDistanceBetweenTwoReferenceRay(ζj , Rj , sj , ζo, Ro, ζk, Rk, sk): Find

89

ζk

ζo
qi=(xi,yi)

(a) yi < ζo,y −Ro

ζk,y +Rk < yi
and s = +

ζk
ζo

qi=(xi,yi)

(b) yi < ζo,y −Ro

ζk,y +Rk ≥ yi
and s = +

ζk

ζo

qi=(xi,yi)

(c) yi ≥ ζo,y −Ro

ζk,y +Rk < ζo, y −Ro

and s = +

ζk
ζo

qi=(xi,yi)

(d) yi ≥ ζo,y −Ro

ζk,y +Rk ≥ ζo, y −Ro

and s = +

ζk

ζo
qi=(xi,yi)

(e) yi < ζo,y −Ro

ζk,y −Rk < yi
and s = −

ζk

ζo

qi=(xi,yi)

(f) yi < ζo,y −Ro

ζk,y −Rk ≥ yi
and s = −

ζk

ζo

qi=(xi,yi)

(g) yi ≥ ζo,y −Ro

ζk,y −Rk < ζo,y −Ro

and s = −

ζk

ζo

qi=(xi,yi)

(h) yi ≥ ζo,y −Ro

ζk,y −Rk ≥ ζo,y −Ro

and s = −

Figure A.1: The cost of chpr(qi, r
s
k) is sum of the length of green lines. This Figure illustrate the case when

there is no reference line between the initial configuration and goal reference line. The length of dashed
green line can be replaced by proper admissible heuristic function based on graph structure.

heuristic distance from the jth reference ray with direction of sj to the kth reference ray with direction of
sk, while avoiding the oth reference ray.

if j == k then
if sj == sk then

return 2πRj
else

return 0
end if

end if
if sj == + then

if ζj,y +Rj < ζo,y +Ro then
if sk == + & ζj,y +Rj < ζk,y +Rk then

return min(chpr([ζj,x, ζo,y −Ro]T , r
sk
k), chpr(ζj + [0, Rj]

T , rskk), chpr([ζj,x, ζk,y +Rk]T , rskk))
else

if sk == − & ζj,y +Rj < ζk,y −Rk then
return min(chpr([ζj,x, ζo,y −Ro]T , r

sk
k), chpr(ζj + [0, Rj]

T , rskk), chpr([ζj,x, ζk,y −Rk]T , rskk))
else

return min(chpr([ζj,x, ζo,y −Ro]T , r
sk
k), chpr(ζj + [0, Rj]

T , rskk))
end if

end if
else

return chpr(ζj + [0, Rj]
T , rskk))

end if
else

return πRj + chpr(ζj − [0, Rj]
T , rskk))

end if

We suggested the Algorithm A.1.1 and A.1.2 to calculate the admissible heuristic functions considering

90

ζ3

ζ2

ζ4

ζ1
qi

(a) hd“ = r+1 r
+
3 ”

ζ3

ζ2

ζ4

ζ1
qi

(b) hd“ = r+2 r
−
3 ”

Figure A.2: Examples of calculation of heuristic cost function.

homotopy class of the path. However, the suggested algorithms was designed to consider the graph-search
on 8-connected graph. These algorithms can be improved by considering the structure of the search space.

A.2 Examples

In this section, we will present several examples to help understanding the algorithm of the previous section.
Figure A.2 shows the examples. Each example has the same initial configuration and environments. The
goal is the right boundary of the workspace.

Figure A.2(a) shows the case of hd“ = r+1 r
+
3 ”. Then

ch(qi) = chpr(qi, r
+
1) + chrr(r

+
1 r

+
3) + chrr(r

+
3 r

+
r).

Then let’s find the proper case for each distance function. For chpr(qi, r
+
1), as there is no object between

qi and the reference ray r1, ζo,y = yt and Ro = 0. So, it will be the case in Figure A.1(b). For chrr(r
+
1 r

+
3),

the reference ray 2 will work as obstacle, o = 2. As ζ1,y + R1 ≥ ζ2,y + Ro, the cost will be chpr(ζ1 +

[0, R1]T , r+3), which will be the case in Figure A.1(d). For the cost to the right edge, chrr(r
+
3 r

+
r), the reference

ray r4 works as obstacle ray but ζ4. then this cost will be the case chrr(r
+
3 r

+
r) = min(chpr([ζ3,x, ζ4,y −

R4]T , r+r), chpr(ζ3 + [0, R3]T , r+r)) but both cost function will have the same cost in this case as the solid
green lines in Figure A.2(a). Then the heuristic cost of this example will be the sum of the three dashed
green lines, which will be the proper heuristic cost between end points depending on the graph structure, and
one of the length of the solid green line from r3 to the right boundary.

The second example is the case of hd“ = r+2 r
−
3 ” in Figure A.2(b). We have the cost function of

ch(qi) = chpr(qi, r
+
2) + chrr(r

+
2 r
−
3) + chrr(r

−
3 r

+
r).

For chpr(qi, r
+
2), r1 works as obstacle ray and this cost is the case in Figure A.1(a). For chrr(r

+
2 r
−
3) there

is no obstacle ray. So we have chrr(r
+
2 r
−
3) = chpr(ζ2 + [0, R2]T , r−3), which is the case in Figure A.1(e). For

chrr(r
−
3 r

+
r), as we start from r3 with negative sign, we have chrr(r

−
3 r

+
r) = πR3 + chpr(ζ3 − [0, R3]T , r+r),

which is the case in Figure A.1(a). So the heuristic cost of this example is sum of all the green solid

91

lines(including the green curves on the obstacle 3) and proper heuristic cost of the green dashed line in
Figure A.2(b). Here, note that the right half of the green circle is the heuristic cost for chrr(r

+
2 r
−
3) and the

left half is for chrr(r
−
3 r

+
r).

92

Bibliography

[1] M. Anitescu. A fixed time-step approach for multibody dynamics with contact and friction. In Proc.

of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 3725–3731, Coimbra, Portugal,
October 2003.

[2] M. Anitescu and F. A. Potra. A time-stepping method for stiff multibody dynamics with contact and
friction. International Journal of Numerical Methods Engineering, pages 753–784, July 2002.

[3] Mihai Anitescu and Gary D. Hart. A fixed-point iteration approach for multibody dynamics with
contact and small friction. Mathematical Programming, 101(1):3–32, 2004.

[4] Joaqun Aranda, Pablo Gonzlez de Santos, and Jess Manuel de la Cruz. Robotics and Automation in

the maritime industries. Produccin Grfica Multimedia (PGM), 2006.

[5] Devin Balkcom and Matthew T. Mason. Geometric construction of time optimal trajectories for
differential drive robots. In Proceedings of the Workshop on the Algorithmic Foundations of Robotics

(WAFR ’00), 2000.

[6] Devin J. Balkcom. Geometric construction of time optimal trajectories for differential drive robots.
In Fourth Workshop on Algorithmic Foundations of Robotics, pages 1–13, 2000.

[7] M.A. Benayad, G. Campion, V. Wertz, and M.E. Achhab. Steering a mobile robot: Selection of a
velocity profile satisfying dynamical constraints. Asian Journal of Control, 2(4):219–229, 2000.

[8] Spring Berman. Abstractions, Analysis Techniques, and Synthesis of Scalable Control Strategies for

Robot Swarms. PhD thesis, University of Pennsylvania, 2010.

[9] Subhrajit Bhattacharya. Topological and Geometric Techniques in Graph-Search Based Robot Plan-

ning. PhD thesis, University of Pennsylvania, January 2012.

[10] Subhrajit Bhattacharya. Topological and Geometric Techniques in Graph-Search Based Robot Plan-

ning. PhD thesis, University of Pennsylvania, January 2012.

[11] Subhrajit Bhattacharya, Robert Ghrist, and Vijay Kumar. Multi-robot coverage and exploration in
non-euclidean metric spaces. In Proceedings of The Tenth International Workshop on the Algorithmic

Foundations of Robotics, 13-15 June 2012.

[12] Subhrajit Bhattacharya, Hordur Heidarsson, Gaurav S. Sukhatme, and Vijay Kumar. Cooperative
control of autonomous surface vehicles for oil skimming and cleanup. In Proceedings of IEEE Inter-

national Conference on Robotics and Automation (ICRA), 9-13 May 2011.
93

[13] Subhrajit Bhattacharya, Vijay Kumar, and Maxim Likhachev. Search-based path planning with ho-
motopy class constraints. In AAAI Conf. on Artificial Intelligence, July 2010.

[14] Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Kumar. Identification and representation of
homotopy classes of trajectories for search-based path planning in 3D. In Robotics: Science and

Systems, June 2011.

[15] Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Kumar. Topological constraints in search-based
robot path planning. Autonomous Robots, 33(3):273–290, October 2012. doi: 10.1007/s10514-012-
9304-1.

[16] Subhrajit Bhattacharya, David Lipsky, Robert Ghrist, and Vijay Kumar. Invariants for homology
classes with application to optimal search and planning problem in robotics. Electronic pre-print,
Aug 2012. http://arxiv.org/abs/1208.0573 [math.AT].

[17] Subhrajit Bhattacharya, Nathan Michael, and Vijay Kumar. Distributed coverage and exploration in
unknown non-convex environments. In Proceedings of 10th International Symposium on Distributed

Autonomous Robotics Systems. Springer, 1-3 Nov 2010.

[18] D.A. Binder. Approximations to bayesian clustering rules. Biometrika, 68:275–285, 1981.

[19] J. E. Bobrow, B. Martin, G. Sohl, E. C. Wang, F. C. Park, and Junggon Kim. Optimal robot motions
for physical criteria. J. of Robotic Systems, 18:2001, 2001.

[20] P. Bosscher and I. Ebert-Uphoff. Wrench based analysis of cable-driven robots. In Proceedings of the

IEEE International Conference on Robotics and Automation, pages 4950–4955, April 2004.

[21] R. Bott and L.W. Tu. Differential Forms in Algebraic Topology. Graduate texts in mathematics.
Springer-Verlag, 1982.

[22] Oliver Brock and Oussama Khatib. Elastic strips: A framework for motion generation in human
environments. The International Journal of Robotics Research, 21(12):1031–1052, 2002.

[23] P. Cheng, J. Fink, and V. Kumar. Cooperative towing with multiple robots. ASME Transactions:

Journal of Mechanisms and Robotics, 1, February 2009.

[24] Peng Cheng, Jonathan Fink, Soonkyum Kim, and Vijay Kumar. Cooperative towing with multiple
robots. In Gregory Chirikjian, Howie Choset, Marco Morales, and Todd Murphey, editors, Algorith-

mic Foundation of Robotics VIII, volume 57 of Springer Tracts in Advanced Robotics, pages 101–116.
Springer Berlin / Heidelberg, 2009.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT Press, 2nd
edition, 2001.

[26] R. Cottle, J.S. Pang, and R.E. Stone. The linear complementarity problem. Classics in applied mathe-
matics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadel-
phia, PA 19104), 1992.

94

[27] Douglas Demyen and Michael Buro. Efficient triangulation-based pathfinding. In National Conf. on

Artificial Intelligence, pages 942–947, 2006.

[28] M Bernardine Dias, Robert Michael Zlot, Nidhi Kalra, and Anthony (Tony) Stentz. Market-based
multirobot coordination: A survey and analysis. Technical Report CMU-RI-TR-05-13, Robotics
Institute, Pittsburgh, PA, April 2005.

[29] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[30] Mehmet Dogar, Kaijen Hsiao, Matei Ciocarlie, and Siddhartha Srinivasa. Physics-based grasp plan-
ning through clutter. In Robotics: Science and Systems VIII, July 2012.

[31] B. R. Donald. On information invariants in robotics. Artificial Intelligence Journal, 72:217–304,
1995.

[32] B. R. Donald. Information invariants for distributed manipulation. International Journal of Robotics

Research, 16, 1997.

[33] B. R. Donald, L. Gariepy, and D. Rus. Distributed manipulation of multiple objects using ropes. In
Proceedings IEEE International Conference on Robotics & Automation, 2000.

[34] Bruce Donald, Larry Gariepy, and Daniela Rus. Distributed manipulation of multiple objects using
ropes. In In IEEE International Conference on Robotics and Automation, pages 450–457, 2000.

[35] Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kinodynamic motion planning. J. of ACM,
40(5):1048–1066, November 1993.

[36] P. S. Donelan and C. P. Scott. Real inflections of hinged planar four-bar coupler curves. Mechanism

and Machine Theory, 30(8):1179–1191, November 1995.

[37] L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American Journal of Mathematics, 79(3):pp. 497–516,
1957.

[38] Paul L. Fackler and Mario J. Miranda. Lemke: Solver for standard linear complementarity problems
(lcps), 2002.

[39] Jonathan Fink, M. Ani Hsieh, and Vijay Kumar. Multi-robot manipulation via caging in environments
with obstacles. In IEEE International Conference on Robotics and Automation (ICRA), Pasedena,
CA, May 2008.

[40] Jonathan Fink, Nathan Michael, Soonkyum Kim, and Vijay Kumar. Planning and control for cooper-
ative manipulation and transportation with aerial robots. I. J. Robotic Res., 30(3):324–334, 2011.

[41] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart. Distributed multirobot explo-
ration and mapping. Proceedings of the IEEE, 94(7):1325 –1339, july 2006.

[42] Robert W. Fox, Alan T. McDonald, and Philip J. Pritchard. Introduction to Fluid Mechanics. Wiley,
2005.

95

[43] Theodore W. Gamelin. Complex analysis. Springer Science, 2001.

[44] Brian P. Gerkey. amcl ros package. http://www.ros.org/wiki/amcl.

[45] P.G. Goerss and J.F. Jardine. Simplicial Homotopy Theory. Progress In Mathematics. Birkhäuser,
1999.

[46] D. Grigoriev and A. Slissenko. Polytime algorithm for the shortest path in a homotopy class amidst
semi-algebraic obstacles in the plane. In Int. Symposium on Symbolic and Algebraic Computation,
pages 17–24, 1998.

[47] Yi Guo and Lynne E. Parker. A distributed and optimal motion planning approach for multiple mobile
robots. In In Proceedings of IEEE International Conference on Robotics and Automation, pages
2612–2619, 2002.

[48] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems, Science, and Cybernetics, SSC-4(2):100–107, 1968.

[49] Allen Hatcher. Algebraic Topology. Cambridge Univ. Press, 2001.

[50] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class. Comp.

Geom. Theory and Applications, 4:331–342, 1991.

[51] K.H. Hunt. Kinematic Geometry of Mechanisms. Oxford University Press, 1978.

[52] International Business Machines Corporation. IBM ILOG CPLEX V12.1: User’s Manual for CPLEX,
2009.

[53] Qimi Jiang and Vijay Kumar. The inverse kinematics of 3-d towing. Advances in Robot Kinematics:

Motion in Man and Machine, pages 321–328, 2010.

[54] Richard A. Kerr. A lot of oil on the loose, not so much to be found. Science, 329(734), 2010.

[55] Soonkyum Kim, Subhrajit Bhattacharya, Robert Ghrist, and Vijay Kumar. Topological exploration
of unknown and partially known environments. In Proceedings of IEEE International Conference on

Intelligent Robots and Systems, Tokyo, Japan, Aov 3-8 2013.

[56] Soonkyum Kim, Subhrajit Bhattacharya, Hordur Heidarsson, Gaurav Sukhatme, and Vijay Kumar. A
topological approach to using cables to separate and manipulate sets of objects. In Proceedings of the

Robotics: Science and System (RSS), June 24-28 2013.

[57] Soonkyum Kim, Subhrajit Bhattacharya, and Vijay Kumar. Dynamic simulation of autonomous boats
for cooperative skimming and cleanup. In Proceedings of the ASME International Design Technical

Conferences and Computer and Information in Engineering Conference, Portland, OREGON, Aug
4-7 2013.

[58] Soonkyum Kim, Koushil Sreenath, Subhrajit Bhattacharya, and Vijay Kumar. Optimal trajectory
generation under homology class constraints. In 51st IEEE Conference on Decision and Control,
10-13 Dec 2012.

96

[59] Soonkyum Kim, Koushil Sreenath, Subhrajit Bhattacharya, and Vijay Kumar. Trajectory planning
for systems with homotopy class constraints. In 13th International Symposium on Advances in Robot

Kinematics (ARK), pages 83–90, Innsbruck, Austria, jun 2012. Springer, Netherlands.

[60] F. Lamiraux and L. E. Kavraki. Planning paths for elastic objects under manipulation constraints.
International Journal of Robotics Research, 20(3):188–208, 2001.

[61] Steven M. Lavalle and James J. Kuffner. Rapidly-exploring random trees: Progress and prospects.
In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New

Directions, pages 293–308. A K Peters, 2001.

[62] H. Lipkin and J. Duffy. The elliptic polarity of screws. Trans. ASME, Journal of Mechanisms, Trans-

missions and Automation in Design, 107(3):377–386, September 1985.

[63] Matthew T. Mason. Mechanics of robotic manipulation. MIT Press, 2001.

[64] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for quadrotors. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 2011.

[65] N. Michael, J. Fink, and V. Kumar. Experimental testbed for large multi-robot teams: Verification and
validation. ram, 15(1):53–61, March 2008.

[66] N. Michael, J. Fink, and V. Kumar. Cooperative manipulation and transportation with aerial robots.
In Robotics: Science and Systems, Seattle, WA, June 2009. Submitted.

[67] N. Michael, S. Kim, J. Fink, and V. Kumar. Kinematics and statics of cooperative multi-robot aerial
manipulation with cables. In ASME Int. Design Engineering Technical Conf. Computers and Infor-

mation in Engineering Conf., San Diego, CA, August 2009. To Appear.

[68] Mark B. Milam, Kudah Mushambi, and Richard M. Murray. A new computational approach to real-
time trajectory generation for constrained mechanical systems. In IN IEEE CONFERENCE ON DE-

CISION AND CONTROL, pages 845–851, 2000.

[69] James Munkres. Topology. Prentice Hall, 1999.

[70] R. M. Murray. Trajectory generation for a towed cable system using differential flatness. In IFAC

World Congress, San Francisco, CA, July 1996.

[71] Richard Murray and S. Shankar Sastry. Nonholonomic motion planning: Steering using sinusoids.
IEEE Transactions on Automatic Control, 38:700–716, 1993.

[72] Richard M. Murray, Muruhan Rathinam, and Willem Sluis. Differential flatness of mechanical control
systems: A catalog of prototype systems. In Proceedings of the 1995 ASME International Congress

and Exposition, 1995.

[73] S. R. Oh and S. K. Agrawal. Cable suspended planar robots with redundant cables: controllers with
positive tensions. IEEE Transactions on Robotics, 21(3):457–465, June 2005.

97

[74] S. R. Oh and S. K. Agrawal. A control lyapunov approach for feedback control of cable-suspended
robots. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 4544–4549, Rome, Italy,
April 2007.

[75] S.R. Oh and S.K. Agrawal. Cable-suspended planar parallel robots with redundant cables: Controllers
with positive cable tensions. In Proc. of IEEE International Conference on Robotics and Automation,
pages 3023–3028, 2003.

[76] J. Phillips. Freedom in Machinery: Volume 1. Cambridge University Press, 1990.

[77] Richard Pito. A solution to the next best view problem for automated surface acquisition. IEEE Trans.

Pattern Anal. Mach. Intell., 21(10):1016–1030, October 1999.

[78] S. Quinlan and O. Khatib. Elastic bands: connecting path planning and control. In Robotics and

Automation, 1993. Proceedings., 1993 IEEE International Conference on, pages 802–807 vol.2, 1993.

[79] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards and backwards. Pacific

Journal of Mathematics, 145(2):367–393, 1990.

[80] Arthur Richards and Jonathan P. How. Aircraft trajectory planning with collision avoidance using
mixed integer linear programming. In American Control Conf., volume 3, pages 1936–1941, May
2002.

[81] Campbell Robertson and Clifford Krauss. Gulf spill is the largest of its kind, scientists say. The New

York Times, August 2010.

[82] Mitul Saha, Pekka Isto, and Jean claude Latombe. Motion planning for robotic manipulation of
deformable linear objects. In in Proc. IEEE Int. Conf. Robot. Autom, pages 2478–2484, 2006.

[83] E. Schmitzberger, J. L. Bouchet, M. Dufaut, D. Wolf, and R. Husson. Capture of homotopy classes
with probabilistic road map. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 2317–
2322, October 2002.

[84] T. Schouwenaars, B. De Moor, E. Feron, and J. How. Mixed integer programming for multi-vehicle
path planning. In European Control Conference, pages 2603–2608. Citeseer, 2001.

[85] M. Schwager, P. Dames, D. Rus, and V. Kumar. A multi-robot control policy for information gathering
in the presence of unknown hazards. In International Symposium on Robotics Research, Aug. 2011.

[86] W.R. Scott and W.R. Scott. Group Theory. Dover Books on Mathematics Series. Dover Publ., 1964.

[87] C. Stachniss. Exploration and Mapping with Mobile Robots. PhD thesis, University of Freiburg,
Freiburg, Germany, April 2006.

[88] C. Stachniss. Robotic Mapping and Exploration. Springer Tracts in Advanced Robotics. Springer,
2009.

[89] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration using rao-blackwellized
particle filters. In Robotics: Science and Systems, pages 65–72, Cambridge, MA, June 2005.

98

[90] R.P. Stanley and G.C. Rota. Enumerative Combinatorics:. Cambridge studies in advanced mathemat-
ics. Cambridge University Press, 2000.

[91] David Stewart and J. C. Trinkle. An implicit time-stepping scheme for rigid body dynamics with
coulomb friction. International Journal Of Numerical Methods In Engineering, 39:2673–2691, 1996.

[92] E. Stump and V. Kumar. Workspaces of cable-actuated parallel manipulators. ASME Journal of

Mechanical Design, 128(1):159–167, January 2006.

[93] J. A. K. Suykens and J. P. L. Vandewalle. Least squares support vector machine classifiers. Neural

Processing Letters, 9(3):293–300, Jun 1999.

[94] Russ Tedrake, Ian R. Manchester, Mark M. Tobenkin, and John W. Roberts. LQR-trees: Feedback
motion planning via sums of square verification. The Int. J. of Robotics Research, 29(8):1038–1052,
July 2010.

[95] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous

Agents). The MIT Press, 2005.

[96] B. Tovar, F. Cohen, L. Bobadilla, J. Czarnowski, and S. M. LaValle. Combinatorial filters: Sensor
beams, obstacles, and possible paths. ACM Transactions on Sensor Networks, 2012. Under review.

[97] Benjamin Tovar, Fred Cohen, and Steven LaValle. Sensor beams, obstacles, and possible paths. In
Gregory Chirikjian, Howie Choset, Marco Morales, and Todd Murphey, editors, Algorithmic Founda-

tion of Robotics VIII, volume 57 of Springer Tracts in Advanced Robotics, pages 317–332. Springer
Berlin / Heidelberg, 2009.

[98] Benjamn Tovar, Fred Cohen, and Steven M. LaValle. Sensor beams, obstacles, and possible paths. In
Workshop on the Algorithmic Foundations of Robotics, pages 317–332, 2008.

[99] R. Verhoeven. Analysis of the Workspace of Tendon-based Stewart Platforms. PhD thesis, University
Duisburg-Essen, Essen, Germany, July 2004.

[100] Arnoud Visser and Bayu Slamet. Balancing the information gain against the movement cost for
multi-robot frontier exploration. In Herman Bruyninckx, Libor Preucil, and Miroslav Kulich, editors,
Second European Robotics Symposium 2008, EUROS 2008, Prague, Czech Republic, volume 44 of
Springer Tracts in Advanced Robotics, pages 43–52. Springer, 2008.

[101] Frank M. White. Fluid mechanics. McGraw-Hill, 2008.

[102] B. Yamauchi. A frontier-based approach for autonomous exploration. In Computational Intelligence

in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997 IEEE International Symposium on,
pages 146 –151, jul 1997.

[103] Yuandong Yang and Oliver Brock. Elastic roadmapsmotion generation for autonomous mobile ma-
nipulation. Autonomous Robots, 28(1):113–130, 2010.

[104] Dmitry Zarubin, Vladimir Ivan, Marc Toussaint, Taku Komura, and Sethu Vijayakumar. Heirachi-
cal motion planning in topological representations. In Proc. Robotics: Science and Systems (RSS),
Sydney, Australia, 2012.

99

[105] H. Zhang, V. Kumar, and J. Ostrowski. Motion planning under uncertainty. In IEEE International

Conference on Robotics and Automation, Leuven, Belgium, May 16-21 1998. This paper was nomi-
nated for the best paper award at the 1998 IEEE International Conference on Robotics and Automa-
tion.

100

	University of Pennsylvania
	ScholarlyCommons
	1-1-2013

	Robot Motion Planning Under Topological Constraints
	Soonkyum Kim
	Recommended Citation

	Robot Motion Planning Under Topological Constraints
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Introduction
	Introduction
	Literature review
	Contribution

	Preliminaries
	Curves in (W-O)
	Homology and Homotopy Invariants
	Homology of curves and Homology Invariants
	Homotopy of curves and Homotopy Invariants
	The Hurewicz map
	Augmented Graph

	Trajectory Generation under Topological Constraints
	Optimal Trajectory Generation
	Optimal Trajectory with Homology Class Constraints
	Algorithm Description
	Simulation Results

	Optimal Trajectory with Homotopy Class Constraints
	Algorithm Description
	Simulation Results

	Conclusion

	Topological Exploration
	Motivation
	The Quotient Space and H-signature
	The Algorithm
	Representation
	Multi-robot Exploration Algorithm
	Distributed Implementation

	Results
	Partially Known Environment
	Simulations of Multi-Robot Topological Exploration
	Experiment with a Single Robot

	Conclusion

	Manipulation with Cables
	Cooperative Towing With Multiple Ground Robots
	The Quasi-Static Model for Cooperative Towing
	Equilibrium Analysis

	Kinematics and Statics of Cooperative Multi-Robot Aerial Manipulation with Cables
	Kinematics of Planar Manipulation Systems
	Direct Problem
	Direct problem: n=2
	Direct problem: n=3
	Stability

	Conclusion

	Manipulation of A Set Of Objects
	Introduction
	Problem Description
	Separating Configurations
	Implementation
	Planning in Joint State-space
	Decoupled Planning: A Distributed Approach
	Sequential Planning

	Result
	Simulation Results
	Dynamic Simulation and Fast Re-planning
	Experiment Results

	Sequential Manipulation of Large Number of Objects
	Algorithm
	Simulation Result

	Conclusion

	Conclusion
	Summary
	Main Contributions
	Future Work

	Heuristic distance function considering the homotopy class constraints
	Algorithm
	Examples

