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Bayesian Aspects of Classification Procedures

Abstract
We consider several statistical approaches to binary classification and multiple hypothesis testing problems.
Situations in which a binary choice must be made are common in science. Usually, there is uncertainty
involved in making the choice and a great number of statistical techniques have been put forth to help
researchers deal with this uncertainty in separating signal from noise in reasonable ways. For example, in
genetic studies, one may want to identify genes that affect a certain biological process from among a larger set
of genes. In such examples, costs are attached to making incorrect choices and many choices must be made at
the same time. Reasonable ways of modeling the cost structure and choosing the appropriate criteria for
evaluating the performance of statistical techniques are needed. The following three chapters have proposals
of some Bayesian methods for these issues.

In the first chapter, we focus on an empirical Bayes approach to a popular binary classification problem
formulation. In this framework, observations are treated as independent draws from a hierarchical model with
a mixture prior distribution. The mixture prior combines prior distributions for the ``noise'' and for the
``signal'' observations. In the literature, parametric assumptions are usually made about the prior distribution
from which the ``signal'' observations come. We suggest a Bayes classification rule which minimizes the
expectation of a flexible and easily interpretable mixture loss function which brings together constant
penalties for false positive misclassifications and $L_2$ penalties for false negative misclassifications. Due in
part to the form of the loss function, empirical Bayes techniques can then be used to construct the Bayes
classification rule without specifying the ``signal'' part of the mixture prior distribution. The proposed
classification technique builds directly on the nonparametric mixture prior approach proposed by Raykar and
Zhao (2010, 2011).

Many different criteria can be used to judge the success of a classification procedure. A very useful criterion
called the False Discovery Rate (FDR) was introduced by Benjamini and Hochberg in a 1995 paper. For many
applications, the FDR, which is defined as the expected proportion of false positive results among the
observations declared to be ``signal'', is a reasonable criterion to target. Bayesian versions of the false
discovery rate, the so-called positive false discovery rate (pFDR) and local false discovery rate, were proposed
by Storey (2002, 2003) and Efron and coauthors (2001), respectively. There is an interesting connection
between the local false discovery rate and the nonparametric mixture prior approach for binary classification
problems. The second part of the dissertation is focused on this link and provides a comparison of various
approaches for estimating Bayesian false discovery rates.

The third chapter is an account of a connection between the celebrated Neyman-Pearson lemma and the area
(AUC) under the receiver operating characteristic (ROC) curve when the observations that need to be
classified come from a pair of normal distributions. Using this connection, it is possible to derive a
classification rule which maximizes the AUC for binormal data.
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ABSTRACT

BAYESIAN ASPECTS OF CLASSIFICATION

PROCEDURES

Igar Fuki

Linda Zhao

We consider several statistical approaches to binary classification and multiple

hypothesis testing problems. Situations in which a binary choice must be made

are common in science. Usually, there is uncertainty involved in making the choice

and a great number of statistical techniques have been put forth to help researchers

deal with this uncertainty in separating signal from noise in reasonable ways. For

example, in genetic studies, one may want to identify genes that affect a certain

biological process from among a larger set of genes. In such examples, costs are

attached to making incorrect choices and many choices must be made at the same

time. Reasonable ways of modeling the cost structure and choosing the appropriate

criteria for evaluating the performance of statistical techniques are needed. The

following three chapters have proposals of some Bayesian methods for these issues.

In the first chapter, we focus on an empirical Bayes approach to a popular binary

classification problem formulation. In this framework, observations are treated as

independent draws from a hierarchical model with a mixture prior distribution.
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The mixture prior combines prior distributions for the “noise” and for the “signal”

observations. In the literature, parametric assumptions are usually made about

the prior distribution from which the “signal” observations come. We suggest a

Bayes classification rule which minimizes the expectation of a flexible and easily

interpretable mixture loss function which brings together constant penalties for false

positive misclassifications and L2 penalties for false negative misclassifications. Due

in part to the form of the loss function, empirical Bayes techniques can then be used

to construct the Bayes classification rule without specifying the “signal” part of the

mixture prior distribution. The proposed classification technique builds directly on

the nonparametric mixture prior approach proposed by Raykar and Zhao (2010,

2011).

Many different criteria can be used to judge the success of a classification proce-

dure. A very useful criterion called the False Discovery Rate (FDR) was introduced

by Benjamini and Hochberg in a 1995 paper. For many applications, the FDR, which

is defined as the expected proportion of false positive results among the observa-

tions declared to be “signal”, is a reasonable criterion to target. Bayesian versions of

the false discovery rate, the so-called positive false discovery rate (pFDR) and local

false discovery rate, were proposed by Storey (2002, 2003) and Efron and coauthors

(2001), respectively. There is an interesting connection between the local false dis-

covery rate and the nonparametric mixture prior approach for binary classification

problems. The second part of the dissertation is focused on this link and provides a

comparison of various approaches for estimating Bayesian false discovery rates.

The third chapter is an account of a connection between the celebrated Neyman-

vi



Pearson lemma and the area (AUC) under the receiver operating characteristic

(ROC) curve when the observations that need to be classified come from a pair

of normal distributions. Using this connection, it is possible to derive a classifica-

tion rule which maximizes the AUC for binormal data.
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Chapter 1

A Nonparametric Bayesian

Classifier under a Mixture Loss

Function

1.1 Introduction

The problem of separating “signal” from “noise” is fundamental to many scien-

tific applications. In formulating a concise model for a natural phenomenon, one

attempts to identify relevant features (“signal”) and separate them from the less

relevant ones (“noise”). In biology, for example, one is often interested in finding

genes that are responsible for certain traits in an organism. In such an application,

the researcher may begin by examining hundreds or thousands of candidate genes

in an effort to identify a much smaller subset of genes that are the most relevant to
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a particular biological mechanism. One might need to make hundreds or thousands

of classification decisions simultaneously and a classification rule that deals with the

large amount of data in a reasonable way can therefore be quite useful.

In this chapter, an empirical Bayes approach to classification problems is consid-

ered. In general, the empirical Bayes approach can be described using a hierarchical

framework. In this framework, a sample of unseen values θ1, ..., θn is drawn from an

unknown prior distribution γ(θ). A sample of observations Z1, ..., Zn is then drawn,

with each observation Zj coming from the distribution fθj(z), which belongs to the

known probability family fθ(z). As noted by Efron (2013), the empirical Bayes lit-

erature can loosely be divided into two parts. One part of the research has focused

on results which rely on estimating the distribution fθ(z), and the other part on

estimating the prior distribution γ(θ). For example, work based on the classical

James-Stein estimator is directly connected to empirical Bayes approaches (for a

discussion of the connections, see, for example, Efron and Morris, 1975) and can be

classified in the first category. Other work, such as Zhang (1997), has focused on

problems that require better estimation of the prior distribution γ(θ). A very acces-

sible review of the literature and of various empirical Bayes techniques is provided

by Efron (2013).

Empirical Bayes techniques can be used in an intuitive way to attack classifica-

tion problems. In this chapter, a nonparametric Bayes classification rule aimed at

minimizing a highly interpretable risk function is proposed. Its performance is com-

pared to that of a parametric classifier in simulations for various signal distributions,

sparsity regimes, and signal strengths. When the prior distribution is misspecified

2



for the parametric classifier, the nonparametric classification rule performs better in

terms of emprical risk. Reassuringly, even when the prior distribution assumptions

are correct, the nonparametric classifier is seen to have comparable performance to

its parametric counterpart.

In the next section, a commonly used model for the classification context is de-

scribed. An intuitive loss function is then introduced and the problem is cast in a

Bayesian framework.

1.2 The Model

In this section, a commonly used classification model is described. This is a model

with n observations of the form

zi = θi + εi, (1.2.1)

where i = 1, ..., n indexes the observations and the εi’s are independent and normally

distributed with mean 0 and constant variance σ2 (using the notation N(εi|0, σ2)

to denote this). Without loss of generality, σ2 = 1 is set for the remainder of the

chapter.

In this setup, z = (z1, z2, ..., zn)T constitutes a vector of observations,

θ = (θ1, θ2, ..., θn)T

is an unobserved vector of corresponding means, and ε = (ε1, ε2, ..., εn)T is an unob-

3



served additive random error vector. With the applications described in the Intro-

duction in mind, it is assumed that a large proportion of the θi’s may be equal to zero.

For the classification problem, the goal is to decide which θi = 0 (corresponding to

“noise”) and which θi 6= 0 (corresponding to “signal”). More formally, given the data

z, one would like to provide an n-dimensional decision vector a = (a1, a2, ..., an)T ,

where

ai =


0, for deciding that θi = 0

1, for deciding that θi 6= 0.

In other words, declaring ai = 0 corresponds to a decision that θi = 0 and declaring

ai = 1 corresponds to a decision that θi 6= 0. As is usual for such models, it is

assumed that with each incorrect classification decision, the researcher incurs some

cost. Given a particular form for the cost structure, the goal is to select a decision

vector a that makes the overall cost small. This is formalized using the standard

decision-theoretic loss function framework. A highly interpretable loss function for

the classifier is described in the next section.

As discussed in the next section, the selected loss function has two main appealing

features. First, one can argue that it is well-motivated from the standpoint of typical

applications, such as the biological microarray framework. In such applications, it

seems reasonable to assume that false positives and false negatives do not carry

equal weight, and should therefore be penalized differently. This loss function also

allows the researcher to get an estimate of a Bayes rule without having to specify

an explicit prior distribution γ(θ).

4



1.3 A Highly Interpretable Loss Function

For a particular value of θi, let L(ai, θi) be the loss incurred from making the decision

ai. In what follows, we will assume that the total loss incurred is additive; that is, we

assume that the total loss TL(a, θ) from selecting a decision vector a for classifying

the observations z is

TL(a, θ) =
n∑
i=1

L(ai, θi). (1.3.1)

We use the following penalty structure for each classification decision:

L(1, θi) =

 0 if θi 6= 0

1 if θi = 0

and

L(0, θi) =

 0 if θi = 0

cθ2i if θi 6= 0
(1.3.2)

That is, the cost of saying that θi 6= 0 when it is in fact equal to 0 is constant

(and normalized to be 1). On the other hand, the cost of saying that θi = 0

when it is non-zero is proportional to the square of its magnitude. In the genetic

array framework, this idealized cost structure can be interpreted as putting a fixed

cost for each subsequent experiment performed to sequence genes that were called

“differentially expressed” (θi 6= 0) in the initial screening step and costs proportional

to the magnitude of the differential expression for failing to make a discovery. The

5



total loss under this structure is given by

TL(a, θ) =
n∑
i=1

(
ai 1θi=0 + (1− ai) c θ2i

)
, (1.3.3)

where ai corresponds to the classification decision for the ith observation and 1θi is

an indicator variable which equals one when θi = 0 and equals zero when θi 6= 0. In

Section 3, we use the total loss function (1.3.3) to evaluate the performance of two

classifiers.

1.3.1 Bayes Rules

A vast literature covers various aspects of the model in expression (1.2.1) in the con-

text of microarray analysis, signal processing, statistical model selection, machine

learning, and other fields. In Bayesian approaches to this problem, one places prior

distributions on parameters of interest in the model and computes various posterior

distribution quantities based on the observed data. For a particular prior distri-

bution structure, a classification rule which minimizes the expected loss is called

a Bayes rule. In the next section, we focus on a Bayesian approach that relies

on mixture prior distributions and formulate a Bayes rule for the loss structure in

(1.3.2).

6



1.4 A Bayesian Apporach Based on Mixture Pri-

ors

1.4.1 The Mixture Prior Formulation

A sensible Bayesian approach for treating the model (1.2.1) is to place a mixture

prior distribution of the form

p(θi|ω, γ) = ωδ(θi) + (1− ω)γ(θi) (1.4.1)

on the θi’s and to compute posterior probabilities for θi = 0 and θi 6= 0. In this

parametrization of the mixture, ω is the weight placed on an atom of probability at

0 and γ is a density function from which the non-zero θi’s are thought to come. The

prior distribution on θi is thus a weighted mixture of a delta function, which places

an atom of mass at 0, and some density γ.

Because of independence, the likelihood function of the observations z = (z1, z2, ..., zn)

given the parameters θ = (θ1, θ2, ..., θn) can be factored as

p(z|θ) =
n∏
i=1

p(zi|θi) =
n∏
i=1

N(zi|θi, 1). (1.4.2)

The posterior distribution of θ given ω and γ is given by

p(θ|z, ω, γ) =

∏n
i=1 p(zi|θi)p(θi|ω, γ)

m(z|ω, γ)
, (1.4.3)

7



where

m(z|ω, γ) =
n∏
i=1

∫
p(zi|θi)p(θi|ω, γ)dθi (1.4.4)

is the marginal distribution of the data given the hyperparameters. For the like-

lihood in (1.4.2) and the mixture prior in (1.4.1), the integral in (1.4.4) can be

rewritten as ∫
p(zi|θi, 1)p(θi|ω, γ)dθi

= ωN(zi|0, 1) + (1− ω)g(zi), (1.4.5)

where

g(zi) =

∫
N(θi|zi, 1)γ(θi)dθi. (1.4.6)

Here, g is the marginal density of zi given that θi is non-zero. The posterior in

(1.4.3) can then be factored as p(θ|z, ω, γ) =
∏n

i=1 p(θi|zi, ω, γ), with

p(θi|zi, ω, γ)

=
ωδ(θi)N(zi|0, 1) + (1− ω)γ(θi)N(zi|θi, 1)

ωN(zi|0, 1) + (1− ω)g(zi)

= piδ(θi) + (1− pi)G(θi), (1.4.7)

where

pi = p(θi = 0|zi, ω, γ) =
ωN(zi|0, 1)

ωN(zi|0, 1) + (1− ω)g(zi)
(1.4.8)

is the posterior probability that θi = 0 and

G(θi) =
N(θi|zi, 1)γ(θi)∫
N(θi|zi, 1)γ(θi)dθi

(1.4.9)

8



is the posterior density of θi when θi 6= 0.

1.4.2 A Bayes Rule

Under the mixture prior distribution in (1.4.1) and the loss structure in (1.3.2),

it is easy to find a decision procedure that minimizes the expectation of the total

loss (1.3.3) for classifying data from the model (1.2.1). The ith component of the

n-dimensional Bayes classification rule for this setup can be written in terms of the

posterior probability pi that θi = 0 and the second moment of θi under the posterior

distribution G(θi):

Proposition 1: Denoting the ith component of the Bayes rule by aBayesi and the

second moment of θi under G(θi) by EG[θ2i ], the rule is

aBayesi =


1, if pi <

cEG[θ2i ]

1+cEG[θ2i ]

0, otherwise,

(1.4.10)

where, again, c is the cost constant from expression (1.3.2).

In other words, the Bayes rule is to decide that θi 6= 0 if and only if the posterior

probability pi that θi = 0 is below a certain threshold.

To see why (1.4.10) minimizes the expected loss, note that the expectation of the

total loss (1.3.3) can be minimized component-wise. The ith component of the Bayes

rule is to decide that θi 6= 0 precisely when

E(L(1, θi)) < E(L(0, θi)), (1.4.11)

9



where E(L(ai, θi)) stands for the expectation of the loss from the decision ai when

the parameter is θi. These component-wise expected losses are given by

E(L(1, θi)) =

∫
L(1, θi)π(θi| data)dθi = pi

and

E(L(0, θi)) =

∫
L(0, θi)π(θi| data)dθi

= c(1− pi)
∫
θ2iG(θi)dθi = c(1− pi)EG[θ2i ].

Based on these expressions, we arrive at the Bayes rule in (1.4.10).

Under mild conditions (see (Brown, 1971)), the classification rule in (1.4.10) can

be rewritten in a form that is particularly useful for estimation. The rule can be

written in terms of the observations as

aBayesi =


1, if pi <

c

(
g′′(zi)
g(zi)

+z2i +2zi
g′(zi)
g(zi)

+1

)
1+c

(
g′′(zi)
g(zi)

+z2i +2zi
g′(zi)
g(zi)

+1
)

0, otherwise,

(1.4.12)

where c is the cost constant from expression (1.3.2), zi is the ith observation, g is

the marginal density function of zi given that θi 6= 0, and g′ and g′′ are its first two

derivatives.

In expression (1.4.8), the posterior probability pi is defined in terms of the marginal

density g. The form of the function g is determined by the prior distribution γ. In

the remainder of this section, we discuss the choice of γ.
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1.4.3 Parametric Prior γ

Typically, in this context, γ is taken to be a parametric distribution. One common

choice for the prior distribution γ(θi) on the non-zero θi’s is the normal distribu-

tion N(θi|θ, τ 2). The marginal density g is then determined analytically and the

threshold in (1.4.12) can be estimated using empirical Bayes techniques.

As shown in (1.4.12), the Bayes classification rule for the loss function in (1.3.2)

may be written in terms of the marginal density g of zi given that θi is non-zero. For

the case of the normal prior γ(θi) = N(θi|θ, τ 2), equation (1.4.6) for the marginal

density g and equation (1.4.8) for the posterior probability pi become, respectively,

g(zi) =

∫
N(zi|θi, 1)N(θ, τ 2)dθi = N(zi|θ, 1 + τ 2) (1.4.13)

and

pi =
ωN(zi|0, 1)

ωN(zi|0, 1) + (1− ω)N(zi|θ, 1 + τ 2)
. (1.4.14)

A fully Bayesian treatment in which prior distributions are also placed on the

posterior probability that θi is non-zero and on the proportion ω of non-zero θi’s is

preferable if the prior distribution γ is specified accurately (see (Scott and Berger,

2006)). In practice, the true shape of the distribution of θi is typically unknown

and, often, the hyperparameters θ and τ 2 are instead estimated using empirical

Bayes techniques. For our normal prior-based classifier, we iteratively maximize the

marginal likelihood of the data in terms of each parameter while holding the other

parameters fixed and repeat until the algorithm converges. The Bayes classifica-

11



tion rule from (1.4.12) is approximated using plug-in estimates and empirical risk

calculations are provided in Section 5.

1.4.4 Nonparametric Prior γ

In contrast to the rigid assumptions of the parametric prior distribution approach, no

explicit functional form is assumed for γ in our nonparametric classification method.

Instead, we estimate the components of the Bayes rule threshold in equation (1.4.12)

nonparametrically through an iterative Expectation-Maximization (EM)-style pro-

cedure suggested by Raykar and Zhao, 2010. Our estimates for the marginal density

g, as well as for its derivatives g′ and g′′, rely on a kernel density estimator func-

tion K with bandwidth h. For our simulations, we use K equal to the normal

density function with mean zero and unit variance (K(x) = N(x|0, 1)). The band-

width for the kernel is set using the normal reference rule (Wand and Jones, 1995)

to h = O(n−1/5). The algorithm for constructing our nonparametric classification

begins by iterating the following two steps until convergence:

1. Compute an estimate of the posterior probability p̂i using the current estimate

ω̂ of the proportion of non-zero θi’s and the current estimate ĝ(zi) of the marginal

density corresponding to non-zero θi’s:

p̂i =
ω̂N(zi|0, 1)

ω̂N(zi|0, 1) + (1− ω̂)ĝ(zi)
(1.4.15)

2. Re-estimate ω̂ and ĝ(zi), as well as ĝ′(zi) and ĝ′′(zi), using the current estimates

12



p̂i:

ω̂ =
1

n

n∑
i=1

p̂i, (1.4.16)

ĝ(zi) =
1

p̃h

n∑
j=1

(1− p̂j)K
(
zi − zj
h

)
, (1.4.17)

ĝ′(zi) =
1

p̃h2

m∑
j=1

(1− p̂j)
(
−zi − zj

h

)
K

(
zi − zj
h

)
, (1.4.18)

ĝ′′(zi) =
1

p̃h3

m∑
j=1

(1− p̂j)

((
zi − zj
h

)2

− 1

)
K

(
zi − zj
h

)
, (1.4.19)

where p̃ =
∑n

j=1(1 − p̂j), K is the kernel density function, and h is its bandwidth.

Note that estimates for ĝ′ and ĝ′′ do not play a role in re-estimating p̂i in step 1 and

may be computed once at the end.

Once the algorithm converges, our nonparametric classifier for a particular value of

the cost constant c from the loss function in (1.3.2) is constructed by plugging these

estimates of pi, ω, g(zi), g
′(zi), and g′′(zi) into the Bayes rule formulation of equation

(1.4.12). In the next section, we compare the performance of the nonparametric

and the normal prior-based classifiers in terms of average loss on simulated data for

various values of c.

1.5 Simulations

For each simulation run, we generate 100 samples of 500 observations each from a

model of the form in equation (1.2.1) and come up with decision vectors a using

different classification rules. We then compare the performance of several classifi-
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cation methods in terms of the average of the loss in expression (1.3.3). To test

the classification rules under various conditions, each simulated set of 100 samples

comes from a model with varying sparsity, proportion, and generating distribution

for the non-zero θi’s.

Figure 1.1 shows some representative plots which compare the average total loss

of the normal prior competitors under different sparsity and signal distribution con-

ditions when the signal is relatively strong. For this figure, the non-zero θi’s are

generated from the N(5, 1) distribution, from a mixture of N(5, 1) and N(−5, 1)

distributions, or from a unit mass at the value 5. The proportion 1− ω of non-zero

θi’s is set to 0.05, 0.10, and 0.30. The classifiers are compared at various values of

the cost constant c, which corresponds to the relative cost placed on false negative

results when signal is mistaken for noise. Our nonparametric classifier typically out-

performs the parametric competitors (i.e., has lower average loss) for broad ranges

of c values when the prior distribution is not specified correctly. In the graph, all

three classifiers were compared to a classification rule for which the correct prior

distribution was used. Similar simulation setups with weaker signal and higher sig-

nal sparsities were also tried. For weaker signal, the performance of the parametric

and nonparametric classifiers were typically closer.
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(a) w = 0.70, θ = 5
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(b) w = 0.70, θ = 5 or −5
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(d) w = 0.90, θ = 5
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(e) w = 0.90, θ = 5 or −5
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(f) w = 0.90, θ from
N(5, 1) or N(−5, 1)
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(g) w = 0.95, θ = 5
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(h) w = 0.95, θ = 5 or −5

1
1

1
1

111
111

1

1

1

1

1

0 1 2 3 4 5

0
20

40
60

80

2
2

2
2

2
2

222
2

2

2

2

2

2

0 1 2 3 4 5

0
20

40
60

80

3
3

333
33

33
3

3

3

3

3
3

0 1 2 3 4 5

0
20

40
60

80

4
4

4
4444444

4

4

4
4

4

0 1 2 3 4 5

0
20

40
60

80

c

E
m

pi
ric

al
 L

os
s 

(A
ve

ra
ge

 o
ve

r 
10

0 
R

un
s)

(i) w = 0.95, θ from
N(5, 1) or N(−5, 1)

Figure 1.1: Comparison of average empirical loss over 100 simulation runs with
varying signal sparsity and distribution for the parameter θ.
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1.6 Classification of Microarray Experiment Out-

put

Cellular organisms have internal biochemical mechanisms that help them to adjust to

changes in the surrounding environment by activating or repressing the expression of

certain parts of their genome in response to external changes. To better understand

which areas of an organism’s genome are involved in its response to outside factors,

researchers can use microarrrays to compare gene expression levels under various

conditions. In this section, we apply two of the classification rules described before,

the nonparametric and parametric with estimated mean and variance, to a publicly

available gene expression dataset.

Many observed differences in gene expression may indeed be due to the change

in conditions under investigation. Given the large number of genes involved and

the complexity of the genome, other changes in expression levels, however, may be

due to other factors. In identifying the part of the genome actually involved in

the organism’s response, classification algorithms which balance the costs of false

positives and false negatives can therefore be useful. As discussed above, the loss

function in (1.3.2) is readily interpretable in this context.

1.6.1 Gene Expression Data

When yeast cells experience harsh changes in their surroundings, they activate in-

ternal mechanisms to mitigate the stress. In the dataset, expression levels of several

thousand genes for yeast cells were compared before and after temperature and
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chemical shocks to their environment. The data is collected using two-channel mi-

croarray techniques for multiple timepoints. The researchers measure changes in

expression levels at several times after the environmental shock and use statistical

techniques to cluster sets of genes with similar expression patterns to help identify

the parts of the yeast genome which are involved in various stress-response mecha-

nisms.

To illustrate the use of our classifiers, we focus on the data collected from just one

timepoint after a yeast colony has been subjected to an increase in hydrogen peroxide

concentration. We then work with the data as though all of the observations are

independent, as specified in model (1.2.1). In future work, we hope to extend our

nonparametric Bayes rule to deal with the richer time and dependence structure of

multiple timepoint microarray data.

1.6.2 Classification Results

The classification rules were tried on relative gene expression levels for one timepoint

in one of the microarray experiments (microarray y9-40, 10 minutes of exposure to

hydrogen peroxide) from the publicly available data. The gene expression data is

reported as “zero transformed” observations which summarize the gene expression

at each post-environmental change timepoint relative to expression levels before the

change. Positive (negative) values correspond to genes for which relative expression

levels were seen to go up (down) after the change to the environment. The classifiers

were then used to identify genes which are “sufficiently” over- or underexpressed

given different values of the cost constant c.
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Observations are characterized as signal by a classifier if and only if they are in

a region where the p̂i curve for the classifier is below the corresponding Bayes rule

threshold curve. Thus the decision rule for each classifier is characterized by the

relative gene expression levels at which its p̂i curve crosses its Bayes rule threshold

curve. It was found that, for example, for c = 4, the nonparametric prior Bayes

procedure classifies all observations with relative expression levels outside the region

[−3.10, 2.38] as signal. For c = 4, the corresponding region for the parametric prior

rule is very slightly more conservative for the underexpressed genes and very slightly

less conservative for the overexpressed genes; it classifies the observations outside

of [−3.20, 2.35] as signal. For c = 4, the classification results are extremely close,

with the nonparametric prior rule classifying 80 genes as differentially expressed as

compared to 79 for the parametric prior rule.

Results for other values of c were also obtained. For c = 10, for example, the

difference between the two classifiers becomes much more noticeable, with 153 signal

genes for the nonparametric prior classifier and 214 for the parametric prior rule.

It can be seen that, for reasonable values of c, the classification decisions provided

by the two rules in a particular dataset can vary greatly or overlap almost exactly

depending on the cost constant. At the same time, it should not be surprising that

there is less overlap in the decision rules for higher values of c if, as is the case for this

dataset, most of the values are concentrated closer to 0, so that even small changes

in the threshold boundaries can produce large changes in the decision vector a.
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1.7 Conclusion

In this chapter, we propose a Bayesian classifier in the context of a highly inter-

pretable loss function. While parametric Bayes classifiers may be conceptually sim-

pler, the nonparametric rule outperforms them in terms of the risk function when

the prior is not specified correctly. In particular, when the prior distribution is

misspecified for the parametric classifier, the nonparametric technique dominates

over the range of c values. This is reassuring because the particular choice of c is a

measure of the relative cost of false negatives to a researcher and, in practice, may

be difficult to specify precisely for some classification problems.

We illustrate the performance of two procedures using a publicly available gene

expression data set. It is seen that, while the decisions produced by the rules can be

similar, they can also vary greatly for reasonable values of the cost constant c. For

the gene expression application in this chapter, we focus on a single time point from

a multi-timepoint microarray experiment and treat the observations as if they were

independent. In future work, we hope to extend the nonparametric classification

procedure to capture time and observation dependence structure.
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Chapter 2

Classification Procedures based on

False Discovery Rates

2.1 Introduction

The simultaneous testing of multiple statistical hypotheses has been an active area

of research for many decades. The need to make many decisions at the same time

arises in the most diverse applications. One of the principal concerns of the multiple

testing literature is the search for useful criteria for evaluating statistical decision-

making techniques; given a criterion, techniques which satistfy it are necessary. In

this chapter, we focus on one such criterion, the False Discovery Rate, and propose

new ideas aimed at bounding it using nonparametric Bayesian techniques.

The False Discovery Rate (FDR) was introduced by Benjamini and Hochberg in

1995. Since then, a large literature has grown around it. Here, we briefly touch on
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the papers that set up the main ideas that will be necessary for the sequel.

The FDR of a hypothesis testing procedure is defined as the expected proportion

of falsely rejected hyptoheses under the procedure given that at least one hypothesis

is rejected by it multiplied by the probability of rejecting at least one hypothesis.

Benjamini and Hochberg (1995) provided a so-called “linear step-up” procedure for

controlling the FDR at a desired level based on p-values for the case where the test

statistics from the hypotheses are independent. In subsequent work, Yekutieli and

Benjamini (2001) showed that the same p-value step-up procedure controls the FDR

for a broad class of dependence structures for the test statistics. Storey (2002; 2003)

focused on another criterion which had been highlighted by Benjamini and Hochberg

(1995) : the expected proportion of falsely rejected hypotheses given that at least

one hypothesis is rejected. Benjamini and Hochberg (1995) had ultimately rejected

this criterion, called positive FDR or pFDR by Storey (2002), in favor of the FDR

because the pFDR cannot be controlled in cases when all of the null hypotheses

are true. Yet, as Storey (2002) showed, if the test statistics are independent and if

it is assumed that whether each test statistic truly comes from the null hypothesis

or from the alternative can be thought of as binomial trials with some constant

probability of success, then the pFDR corresponding to the hypothesis rejection

region equals the probability that a hypothesis is null given that its test statistic

falls in the rejection region. This powerful connection makes the pFDR a natural

quantity to study in the Bayesian framework, and Storey (2002, 2003) proposes a

procedure that estimates this quantity for preselected rejection regions.

In related work, Efron et al. (2001) connected the FDR criterion to the empirical
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Bayes approach. The quantity of interest in their work was the probability that a

null hypothesis is true given the value of the associated test statistic. This poste-

rior probability was termed the local FDR since it was shown to be equivalent to

the FDR if the rejection region were restricted to a small (“local”) region around

this realized value of the test statistic. Efron et al. (2001) proposed one method

for estimating this posterior probability without parametric assumptions about the

alternative hypothesis distribution; other methods are, of course, also available, and

much of our later discussion focuses on studying the connection to FDR of the

nonparametric Bayes approach suggested by Raykar and Zhao (2010) .

The layout for this Chapter is as follows: in Section 2 of this Chapter, we begin

by discussing the FDR criterion as it was introduced by Benjamini and Hochberg

(1995). We then examine later work which built on the original formulation. We

look at the nonparametric prior procedure from the previous chapter and fit it within

this framework.

2.2 Multiple Hypothesis Testing and the False Dis-

covery Rate Criterion

In this section, we lay out a framework for studying binary classification and intro-

duce the notation used in this chapter (most of our notation follows the standard

notation in Benjamini and Hochberg (1995)). To discuss this problem, it will be

convenient to refer to a so-called “confusion matrix,” shown in Table 2.1, which

summarizes the counts of correctly and incorrectly classified observations. In this
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Table 2.1: A “confusion matrix” for multiple hypothesis testing

Declared non-significant Declared significant Total
H0 is true U V m0

H1 is true T S m−m0

m−R R m

table, m represents the total number of hypotheses being tested and m0 stands for

the number of truly null hypotheses among them. Given the data and a classification

procedure, the null hypothesis is rejected in R of the m hypothesis tests. Of the R

rejections, V are incorrect because they come from the m0 hypothesis tests in which

the null hypothesis is in fact true. Similarly, there are T incorrect declarations of

non-significance for which the alternative hypothesis is actually true. Obviously, it

is desirable to have classificiation procedures for which both V and T are small, but,

usually, trade-offs are necessary. Traditionally, in formulating multiple hypothesis

testing procedures, the focus has been on controlling the quantity Prob(V > 0),

which is called the family-wise error rate (FWER). For example, one well-known

approach which controls the FWER is the Bonferroni procedure (for extensive ref-

erences, see for example, Lehmann’s Testing Statistical Hypotheses (2005)). Quite

often, however, approaches which control the FWER are much more conservative

than needed for specific applications. For such cases, other criteria for evaluating

the performance of procedures for multiple hypothesis testing are available. One

especially popular criterion is the control of the so-called false discovery rate, or

FDR, as suggested by Benjamini and Hochberg (1995). We presently discuss the

details of the FDR criterion and a procedure to control it in the next section.
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2.2.1 The False Discovery Rate

The false discovery rate (FDR) was introduced by Benjamini and Hochberg (1995)

as a quantity to control for multiple hypothesis testing. The FDR is defined as

the expected proportion of incorrectly rejected hypotheses among all the rejected

hypotheses given that at least one ejection is made times the probability that at

least one rejection is made. That is

Definition:

FDR = E(
V

R
|R > 0)Prob(R > 0) (2.2.1)

For many situations, this much less stringent error rate is more reasonable than the

FWER.

A procedure to control the FDR at a preset level α was also introduced in Ben-

jamini and Hochberg (1995). The procedure consists of ranking the p-values from

the m hypothesis tests and then comparing each of them, in order from smallest

to largest, to a constant that depends on the rank of the p-value, on m, and on

α. The first time a p-value exceeds the corresponding constant, the procedure is

stopped, with that p-value and all of the smaller p-values declared to belong to tests

in which the null hypothesis should be rejected. In other words, the procedure goes

as follows:

The Benjamini-Hochberg (1995) step-up procedure:

1. Rank from smallest to largest the p-values from the m tests. Denote the

resulting ordered list as p(1), p(2), ..., p(m) and denote the corresponding hypothesis

tests by H(1), H(2), ..., H(m).
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2. Let k̂ = max{i : p(i) ≤ i
m
α}.

3. Reject the hypotheses H(1), ..., H(k) and accept the others.

Benjamini and Hochberg show that this procedure results in FDR ≤ m0

m
α ≤ α. It

is important to emphasize that this procedure only provides “control” of an expected

quantity and not of the proportion of falsely rejected null hypotheses in a particular

sample, since the FDR is an expected value. Also, note that FDR is actually

controlled at a level which is typically more conservative than the stated level α. If

m0 were known, then the procedure could be made less conservative. Of course, m0

is unknown, but estimates of m0 or of the fraction m0/m can be made, and later

work by Storey (2002) and by Benjamini, Krieger, and Yekutieli (2006) shows that

less conservative procedures can be obtained by using estimates of these quanitites.

2.2.2 The pFDR criterion

A Bayesian framework for FDR was studied by Storey (2002, 2003). He reexamined

a quantity that had originally been considered and rejected in favor of FDR in the

work of Benjamini and Hochberg (1995) and showed that, under broadly applicable

assumptions, it is equivalent to the posterior probability that the null hypothesis

is true given that the associated test statistic falls in the rejection region. This

quantity is defined as the expected value of the fraction of false discoveries among

all the discoveries, given that at least one discovery has occurred; when no discoveries

have occurred, this quantity is set to zero. Using the notation from above, this can
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be written as

pFDR = E

(
V

R
|R > 0

)
. (2.2.2)

Storey (2002, 2003) shows that when the sample consists of indpendent observations,

then the pFDR corresponds to the probability that a null hypothesis is true given

that it was declared false. Using Storey’s notation, this can be written as

pFDR(Γ) = Prob(H = 0|X ∈ Γ), (2.2.3)

where H is a binary indicator for whether the null hypothesis is true, X is some

test statistic, and Γ stands for the rejection region. The formula can also be written

in terms of rejection regions for p-values, with hypotheses with test statistics that

have p-values in some interval [0, γ] being rejected. We can then rewrite the formula

above as

pFDR(γ) =
π0Prob(p− value ≤ γ|H = 0)

Prob(p− value ≤ γ)
. (2.2.4)

Storey (2002) proposes a technique for estimating the proportion π0 of true null

hypotheses, the probability Pr(R > 0) that at least one hypothesis is rejected, and

the pFDR associated with a particular rejection region [0, γ]:

π̂0,Storey(λ) =
W (λ)

(1− λ)m
, (2.2.5)

P̂ r(R > 0) =
R(γ)

m
(2.2.6)
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and

pFDRλ(γ) =
π̂0,Storey(λ)γ

P̂ r(R > 0)(1− (1− γ)m)
(2.2.7)

where W (λ) is the number of p-values which exceed a tuning parameter λ, R(γ) is

the number of p-values that fall in the rejection interval [0, γ], and m is the total

number of hypotheses being tested.

Note that the last formula provides an estimator of pFDR for a rejection region

[0, γ] of p-values selected by the researcher. Storey (2002) shows that this estimator

has an upward bias for estimating the true pFDR of a rejection region. The esti-

mation approach can be contrasted against the more traditional aim of providing

procedures which control the error rate at a desired level α, such as the linear step-

up procedure of Benjamini and Hochberg (1995). In the next section, we discuss a

connection between FDR, pFDR, and empirical Bayes procedures. We then look at

ways of bounding pFDR using a nonparametric Bayesian approach.

2.3 Nonparametric Bayesian Classification and FDR

The FDR-controlling procedures described above rely on the explicit use of observed

p-values. We now change focus to a different approach which uses the posterior prob-

abilty that a null hypothesis is true given the value of the associated test statistic.

This quantity can be estimated using empirical Bayes techniques and the average

such posterior probability in a rejection region turns out to equal the pFDR of the

region, as discussed by Efron et al. (2001) and Efron (2005). The goal of this sec-

tion is to provide a procedure for multiple hypothesis testing using the connection
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between FDR and nonparametric Bayes techniques. A useful model for this setting

can be expressed as the mixture f of a null density f0 and an alternative density g

f(z) = π0f0(z) + (1− π0)g(z), (2.3.1)

Here, the symbol z stands for one-dimensional scores which are used for making the

binary classification decisions. For example, they may be transformed gene expres-

sion values from a large microarray experiment in which the goal is to determine

which genes change their expression levels (that is, they become overexpressed or

underexpressed) in response to a biologically interesting treatment, such as ioninzing

radiation. As discussed by Efron et al. (2001) , it is often the case that an appro-

priate data reduction technique must first be found to form the one-dimensional

statistics Z, since data on multiple characteristics for each unit of observation is

often available. Ways of reducing the data to single-dimenisonal summary statis-

tics are discussed in the paper, but these are not integral to our discussion in this

section. Here, we focus instead on the alternative methods for estimating posterior

probabilities.

Using Bayes’ Rule, the posterior probability of interest for the i′th observation zi

can be written as

1− pi(zi) = 1− π0f0/f(zi) (2.3.2)

and

pi(zi) = π0f0(zi)/f(zi), (2.3.3)
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where pi(zi) is the a posteori probability that the null hypothesis is true for an

obseration with summary score zi. In Efron et al. (2001) , this is called the local

FDR because, asymptotically, it is equivalent to the proportion of falsely rejected

hypotheses if the rejection region consists of test statistics close to zi. Note that

the expression on the right side of equation 2.3 has the same general form as the

quantity computed in 1.4.8 of Chapter 1. We look at this connection next.

Note that the mixture density f can be estimated from the data, but this estimate

is not directly useful by itself if the density f0 is unknown. To remedy this, one can

make distributional assumptions or use permutations of the density f0, as is done,

for example, in Efron (2001), Efron (2005), Raykar and Zhao (2010), and other work

where some prior distribution is assumed for the null density f0.

2.4 Simulation Results

Our work compares the empirical false discovery proportion V/R for various classifi-

cation rules. We report the results of several simulations here. For each simulation,

500 observations were generated from two distributions, the null hypothesis distribu-

tion N(0,1) and some alternative hypothesis distribution. The false discovery rates

associated with several different classification rules were then computed. For each

combination of null and alternative hypothesis distributions, these computations

were repeated for 100 samples of 500 observations. We performed computations for

each of the significance levels (α) reported in the first column of the table. In the

second column, we report the average of the ratios V/R realized in the 100 runs
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when using the nonparametric Bayes rule at each significance level α with true val-

ues of g and π0 plugged in. In the third column, we use the same rule, but with

estimates of g and π0 plugged in. The averages in this third column are computed

in the following way:

Algorithm 3.1

The non-parametric prior empirical Bayes rule for significance level α.

1. For each observation zi, compute the estimate p̂iNB(zi) for the posterior proba-

bility Prob(βi = 0|zi, z) using the formula

p̂iNB(zi) =
π̂0φ(zi)

π̂0φ(zi) + (1− π̂0)ĝ(zi)
, (2.4.1)

where π̂0 stands for the estimate of π0 = Prob(βi = 0), ĝ(zi) is an estimate of the

marginal density of zi given that βi 6= 0, and φ(zi) is the value of the N(0, 1) density

at zi.

2. Order the values p̂NB(zi) computed in Step 1 from smallest to largest and

denote the ordered list as {p̂(1), ..., p̂(m)} and let x(j) stand for the observation from

Step 1 that is associated with the j’th largest p̂ (and NOT for the j’th largest zi).

Let

K = max{k s.t.
k∑
j=1

p̂(k)/k ≤ α}. (2.4.2)

Classify the observations x(j) as having come from the alternative distribution for

j ≤ K and from the null distribution for all other j.

In the fourth column of each table, we report the average proportion of false
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rejections when using the original linear step-up Benjamini and Hochberg (1995)

procedure. The fifth column of each table shows the results for the two-stage version

of the step-up procedure introduced in Benjamini, Krieger, and Yekutieli (2006), in

which the ratio m0/m of true null hypotheses is estimated. The sixth column has

results for an ad hoc version of the two-stage step up procedure of the fifth column in

which π̂0,NB is used to estimate the ratio m0/m. Finally, the seventh column presents

results based on the estimates of pFDR from Storey (2002). As noted above, the

procedure in Storey (2002) is unlike the other approaches in the sense that it provides

estimates of an error rate for predetermined rejection intervals instead of providing

rejection intervals for desired error levels of an error rate. To make the procedures

comparable, we compute the Storey (2002) estimate of pFDR for each observation

and reject the null hypothesis for all observations for this estimate falls below the

desired level α.

2.5 Discussion of Simulation Results

The aim for methods that focus on the FDR and pFDR is usually a slight conser-

vative bias in expectation. In other words, the goal is typically to come up with

procedures for which the expected value of the error rate in question falls below the

nominal significance level α. For example, the linear step-up procedure proposed by

Benjamini and Hochberg (1995) controls the FDR, which is defined as the expected

value in (3.3.6), below the desired nominal rate α. In fact, the control for this proce-

dure is at the more conservative rate m0

m
α and the later work by Benjamini, Krieger,
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Table 2.2: Average empirical V/R, testing βi = 0 against βi = 2, π0=0.9

α true NB NB BH YKB YKB using π̂NB0 Storey
0.01 0 0 0.003 0.003 0.003 0

( 0 ) ( 0 ) ( 0.033 ) ( 0.033 ) ( 0.033 ) ( 0 )
0.05 0.026 0.038 0.037 0.037 0.039 0

( 0.067 ) ( 0.078 ) ( 0.091 ) ( 0.09 ) ( 0.092 ) ( 0 )
0.1 0.086 0.081 0.066 0.066 0.085 0.007

( 0.078 ) ( 0.082 ) ( 0.097 ) ( 0.097 ) ( 0.099 ) ( 0.052 )
0.15 0.133 0.117 0.118 0.12 0.139 0.104

( 0.072 ) ( 0.085 ) ( 0.108 ) ( 0.11 ) ( 0.122 ) ( 0.192 )
0.2 0.186 0.146 0.174 0.178 0.205 0.192

( 0.074 ) ( 0.083 ) ( 0.123 ) ( 0.125 ) ( 0.125 ) ( 0.206 )
0.25 0.238 0.184 0.222 0.224 0.248 0.281

( 0.072 ) ( 0.087 ) ( 0.115 ) ( 0.116 ) ( 0.113 ) ( 0.174 )
0.3 0.29 0.23 0.269 0.276 0.307 0.324

( 0.072 ) ( 0.088 ) ( 0.117 ) ( 0.122 ) ( 0.115 ) ( 0.137 )

Table 2.3: Average empirical V/R, testing βi = 0 against βi = 2 or −2, π0=0.9

α true NB NB BH YKB YKB using π̂NB0 Storey
0.01 0 0 0 0 0 0

( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )
0.05 0.031 0.047 0.028 0.028 0.037 0

( 0.13 ) ( 0.112 ) ( 0.083 ) ( 0.083 ) ( 0.092 ) ( 0 )
0.1 0.064 0.07 0.065 0.066 0.077 0.003

( 0.111 ) ( 0.118 ) ( 0.101 ) ( 0.103 ) ( 0.105 ) ( 0.033 )
0.15 0.126 0.107 0.115 0.117 0.132 0.092

( 0.112 ) ( 0.108 ) ( 0.115 ) ( 0.115 ) ( 0.119 ) ( 0.171 )
0.2 0.193 0.165 0.166 0.159 0.197 0.191

( 0.102 ) ( 0.148 ) ( 0.124 ) ( 0.119 ) ( 0.127 ) ( 0.187 )
0.25 0.248 0.193 0.23 0.235 0.256 0.294

( 0.093 ) ( 0.115 ) ( 0.12 ) ( 0.122 ) ( 0.114 ) ( 0.201 )
0.3 0.292 0.236 0.286 0.287 0.302 0.329

( 0.084 ) ( 0.137 ) ( 0.105 ) ( 0.105 ) ( 0.11 ) ( 0.131 )
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Table 2.4: Average empirical V/R, testing βi = 0 against βi from 0.5N(2, 1) +
0.5N(−2, 1), π0=0.9

α true NB NB BH YKB YKB using π̂NB0 Storey
0.01 0.002 0.006 0.006 0.006 0.008 0

( 0.017 ) ( 0.034 ) ( 0.034 ) ( 0.034 ) ( 0.036 ) ( 0 )
0.05 0.042 0.041 0.038 0.04 0.04 0

( 0.078 ) ( 0.078 ) ( 0.072 ) ( 0.073 ) ( 0.072 ) ( 0 )
0.1 0.088 0.08 0.085 0.087 0.093 0.052

( 0.076 ) ( 0.087 ) ( 0.084 ) ( 0.086 ) ( 0.085 ) ( 0.126 )
0.15 0.144 0.126 0.137 0.142 0.153 0.167

( 0.079 ) ( 0.085 ) ( 0.085 ) ( 0.086 ) ( 0.087 ) ( 0.136 )
0.2 0.194 0.169 0.183 0.188 0.2 0.224

( 0.07 ) ( 0.084 ) ( 0.086 ) ( 0.088 ) ( 0.087 ) ( 0.107 )
0.25 0.249 0.208 0.232 0.238 0.247 0.277

( 0.076 ) ( 0.09 ) ( 0.095 ) ( 0.096 ) ( 0.1 ) ( 0.108 )
0.3 0.307 0.258 0.271 0.29 0.312 0.33

( 0.067 ) ( 0.085 ) ( 0.1 ) ( 0.099 ) ( 0.095 ) ( 0.108 )

Table 2.5: Average empirical V/R, testing βi = 0 against βi = 5, π0=0.9

α true NB NB BH YKB YKB using π̂NB0 Storey
0.01 0.006 0.012 0.008 0.008 0.008 0

( 0.011 ) ( 0.014 ) ( 0.013 ) ( 0.013 ) ( 0.014 ) ( 0 )
0.05 0.039 0.073 0.044 0.05 0.052 0.069

( 0.017 ) ( 0.023 ) ( 0.027 ) ( 0.029 ) ( 0.031 ) ( 0.041 )
0.1 0.09 0.14 0.088 0.101 0.104 0.117

( 0.018 ) ( 0.025 ) ( 0.04 ) ( 0.044 ) ( 0.046 ) ( 0.05 )
0.15 0.141 0.199 0.137 0.155 0.158 0.169

( 0.018 ) ( 0.028 ) ( 0.048 ) ( 0.054 ) ( 0.054 ) ( 0.057 )
0.2 0.193 0.256 0.179 0.205 0.207 0.214

( 0.017 ) ( 0.028 ) ( 0.057 ) ( 0.061 ) ( 0.061 ) ( 0.067 )
0.25 0.244 0.309 0.225 0.258 0.26 0.264

( 0.016 ) ( 0.028 ) ( 0.063 ) ( 0.065 ) ( 0.067 ) ( 0.071 )
0.3 0.294 0.362 0.272 0.308 0.31 0.31

( 0.015 ) ( 0.028 ) ( 0.065 ) ( 0.068 ) ( 0.068 ) ( 0.071 )

33



Table 2.6: Average empirical V/R, testing βi = 0 against βi = 5 or −5, π0=0.9

α true NB NB BH YKB YKB using π̂NB0 Storey
0.01 0.006 0.01 0.008 0.008 0.009 0

( 0.011 ) ( 0.014 ) ( 0.013 ) ( 0.014 ) ( 0.015 ) ( 0 )
0.05 0.042 0.073 0.044 0.05 0.052 0.069

( 0.02 ) ( 0.025 ) ( 0.028 ) ( 0.03 ) ( 0.03 ) ( 0.041 )
0.1 0.091 0.141 0.088 0.101 0.104 0.118

( 0.022 ) ( 0.027 ) ( 0.04 ) ( 0.045 ) ( 0.046 ) ( 0.051 )
0.15 0.142 0.203 0.137 0.155 0.16 0.169

( 0.022 ) ( 0.029 ) ( 0.048 ) ( 0.053 ) ( 0.055 ) ( 0.057 )
0.2 0.193 0.26 0.179 0.205 0.208 0.214

( 0.022 ) ( 0.03 ) ( 0.057 ) ( 0.061 ) ( 0.062 ) ( 0.067 )
0.25 0.244 0.314 0.226 0.257 0.261 0.264

( 0.02 ) ( 0.029 ) ( 0.063 ) ( 0.065 ) ( 0.066 ) ( 0.07 )
0.3 0.294 0.368 0.272 0.308 0.31 0.31

( 0.019 ) ( 0.029 ) ( 0.065 ) ( 0.067 ) ( 0.067 ) ( 0.071 )

and Yekutieli (2006) refines the original approach to make the control in expectation

less conservative by estimating m0/m. Similarly, Storey (2002, 2003) shows that, in

expectation, his estimator overshoots the true pFDR of a fixed rejection region.

On the other hand, as far as we know, there are no procedures that control the

Bayes posterior probabilities pi or their averages in expectation. The current absence

of such procedures may be seen as a weakness of using posterior probabilitites es-

timated by nonparametric Bayes approaches for working with false discovery rates.

And yet, if the estimates of pi are good, this approach seems reasonable and of-

fers greater flexibility for interpretation, as argued by Efron et al. (2001), because

estimates of posterior probabilities are provided for each tested hypothesis.

In our simulations, we focused on the realized proportion V/R of hypotheses which
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were falsely rejected among all the declared rejections. In tables 2.2-2.6, we report

the empirical average and empirical standard deviation of this proportion for sev-

eral different classification procedures. The second column in these tables (labeled

as “true NB”) reports results for the nonparametric Bayes procedure with true

marginal density g and true population proportion π0. Not surprisingly, this col-

umn gives excellent results in the sense that the averages fall just below the stated

significance levels α and the empirical standard deviations are the lowest in the ta-

bles. Of course, the true g and π0 are unknown and must be estimated. This is done

in the next column, labeled NB, using the estimates of g and π0 provided by Raykar

and Zhao (2010a). Reassuringly, this column gives results which are quite close to

the results for the classification procedure which uses the true g and π0 for much of

the time. Interestingly, the simulation results for this procedure are better for the

harder classification problems described in tables 2.2-2.4 than in the relatively easier

ones in tables 2.5 and 2.6; for the latter set-ups, the nonparametric Bayes procedure

rejects too many hypotheses. A similar pattern is seen for the classification proce-

dures described in the fifth and sixth columns, which correspond to two different

versions of the linear step-up procedure for which the population proportion π0 of

null hypotheses is estimated. The results in the fourth column of each table are

for the original Benjamini and Hochberg (1995) procedure. The empirical average

results in this column always fall below the stated level α, but the nonparametric

Bayes results are often better for small values of α.

The results in the last column were produced using the estimator of pFDR that

is described in Storey (2002, 2003) (with λ = 1/2, as in the first section of Storey
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(2002), but using two-sided p-values). Because the procedure described in Storey’s

work is an estimator of pFDR for fixed rejection regions and the other procedures

used in the simultations are instead ways of limiting pFDR given the desired signif-

icance level, Storey’s approach is not directly comparable to the others. To make it

comparable, we first use it to compute estimates of pFDR for every hypothesis and

then reject the hypotheses for which these estimates fall below the deisred level α.

The results using this procedure seem to be too conservative for smaller values of α

and (slightly) too liberal for larger signifcance levels.
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Chapter 3

A Recalibration Procedure which

maximizes the AUC: A Use-Case

for Binormal Assumtions

3.1 Introduction and Related Work

Most binary classifiers make their final decision as to whether an instance is positive

or negative based on a scalar score, which is computed as a function of the features

corresponding to that instance. The popular and widely used procedure chooses

a single threshold value on the score scale and assigns the positive label (1) to

observations with scores that fall above this value and the negative label (0) to

observations with scores that fall below it. The general form of the classification
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threshold can then be written as

δ(x) =

 1 if f(x) ≥ θ

0 otherwise
, (3.1.1)

where f(x) is the raw score computed as a function f for an instance x ∈ Rd (the

d-dimensional feature vector) and θ is an appropriately chosen threshold parameter.

This thresholding rule is essentially built on the assumption that a larger score f(x)

provides a larger chance of y = 1.

One popular way of evaluating the performance of such binary classification rules

is to use the Receiver Operating Characteristic (ROC) curve. There are connections

between binary regression generalized linear models and ROC curves (Pepe, 2000).

The ROC curve essentially is a plot of the sensitivity on the y-axis and 1-specificity

on the x-axis. Each threshold θ corresponds to a point on the ROC plot and the

ROC curve is obtained as θ is swept from −∞ to∞. Classifiers that simultaneously

have higher sensitivity and higher specificity are more desirable and dominate their

competitors. In practice, however, one usually finds several classifiers with inter-

secting ROC curves. One popular procedure selects the classifier with the highest

area under its ROC curve (AUC).

In this chapter we focus on a raw score recalibration procedure that can maximize

the AUC for thresholding rules under certain assumptions. We do not dwell on

the particular classifier used, as the recalibration we propose can be used with

any general black-box classifier which uses scores to make a final decision. Area

under the receiver operating characteristic curve is a popular measure for evaluating
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the quality of binary classification rules. Commonly used score-based classifiers

label an outcome as a positive if the score is greater than a certain threshold. We

show that this may not be optimal in terms of maximizing the AUC. Under certain

assumptions the optimal thresholding rule is derived using the Neyman-Pearson

lemma. Specifically, we show that a thresholding rule that is quadratic in the score

dominates the commonly used linear thresholding rule. We discuss the following

facts:

1. We show that the commonly used linear thresholding rule (3.1.1) is not optimal

in terms of maximizing the AUC.

2. We show that a simple quadratic transformation of the scores is optimal in

terms of maximizing the AUC. Specifically, using the Neyman-Pearson Lemma

(Section 3.3.3) we show that the following quadratic thresholding rule

δ(x) =

 1 if a(f(x))2 + bf(x) + c ≥ θ

0 otherwise
, (3.1.2)

maximizes the AUC under certain assumptions, where a, b, and c are constants

chosen based on the training set (see Section 3.3.3).

3. Our results are based on the assumption that the scores for the positive and

negative populations are normally distributed with different parameters. As

discussed below, this is a reasonable assumption for scores produced by many

classifiers. We further show that the commonly used linear classification rule
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(3.1.1) and the proposed quadratic rule (3.1.2) agree when the standard devi-

ations of the two normal distributions are equal.

Essentially, a thresholding rule that is quadratic in the score dominates the com-

monly used linear rule when the variance of the score for the positive population is

different from the variance of the score for the negative population in the bi-normal

case. Hence a very simple method to improve the score from any general classifier

is to recalibrate the scores using the quadratic transformation s′ ← as2 + bs + c,

where s and s′ denote, respectively, a raw score and its quadratic transformation.

The Neyman-Pearson lemma guarantees that the AUC for a procedure which

thresholds the transformed scores s′ will be greater than or equal to the AUC of

thresholding the raw scores s. In fact, the Neyman-Pearson guarantee is stronger:

under the bi-normality assumption, thresholding the quadratically-transformed scores

dominates any other thresholding rule in the sense that it is guaranteed to produce

an ROC curve that is uniformly above those of the other procedures. In Section 4,

we illustrate our procedure with data where a 25 % increase in AUC is observed.

Our experimental results with other datasets show more modest, but positive gains

in the AUC obtained by simply applying the proposed quadratic transformation

without resorting to any sophisticated AUC-maximizing classifiers proposed in the

literature, as, for example, in the work of Herschtal and Raskutti (2004).

The proposed quadratic recalibration procedure is, of course, not appropriate for

all datasets. Indeed, it is well documented (see, for example, (Bennett, 2003)) that

mode-symmetry assumptions about the distributions of scores for the positive and

negative populations in binary classification are difficult to justify in many setups.
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In (Platt, 1999), there are examples of score-based classification in the context of

clearly non-Gaussian class distributions. On the other hand, the bi-normal frame-

work is reasonable for a range of frequently-used applications; a typical use-case to

motivate the Gaussian assumptions with non-equal class-conditional variances may

come about in datasets for which linear and logistic regression techniques are often

used to construct scores in practice. For example, scores which are linear combi-

nations of a multitude of covariates (or their transformations) are often, at least

approximately, normal by Central Limit Theorem considerations; for illustration

purposes, we provide an application of our recalibration procedure to a restaurant

patron tipping dataset from in which we use tipping percentages to classify patrons

as smokers or non-smokers.

The remainder of the chapter is organized as follows. The problem of binary

classification based on scores and the commonly used raw score-based threshold-

ing is presented in Section 3.2; we also review the ROC curve (Section 3.2.3) and

area under the ROC Curve (Section 3.2.4) framework for classifier evaluation. The

proposed AUC-maximizing raw score recalibration is presented in Section 3.3 by

invoking the Neyman-Pearson lemma (Section 3.3.1) and the bi-normality assump-

tion for the classifier scores (Section 3.3.2). The proposed quadratic score based

thresholding rule is presented in Section 3.3.3. The improvement obtained is clearly

illustrated in Section 3.4 on the restaurant tipping dataset, a real dataset in which

the class-conditional variances vary by a factor of 2.7.
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3.2 Binary classification based on scores

In a typical binary classification scenario we are given a training setD = {(xj, yj)}nj=1

containing n instances, where xj ∈ Rd is an instance (the d-dimensional feature vec-

tor) and yj ∈ Y = {0, 1} is the corresponding known label. The task is to learn a

classification function δ : Rd → Y , which minimizes the error on the training set

and generalizes well on unseen data.

3.2.1 Discriminant function and classifier score

Instead of learning δ directly, very often it is convenient to learn a real valued

discriminant function f : Rd → R. The discriminant function can take different

forms depending on the specific classifier. For example, for linear classifiers like

logistic regression, linear discriminant analysis (LDA), linear support vector machine

(SVM), etc., the discriminant function f is a linear function of the feature vector,

that is, f(x) = w>x + b where w ∈ Rd is the weight vector and the scalar b is the

bias term. For non-linear kernel machines like SVM the discriminant function is of

the form f(x) =
∑n

j=1 αjk ((x− xj)/h) where k is the kernel function and h is the

bandwidth of the kernel. For a neural network f is essentially the final output of

the neural net obtained via forward propagation. We will refer to this value of the

discriminant function as the score for an instance, that is, s = f(x). We can now

rewrite equation (3.1.1) inserting s for f(x).

42



3.2.2 Score-based thresholding

Irrespective of the classifier the final classification function is usually written as

δ(x) =

 1 if s = f(x) ≥ θ

0 otherwise
, (3.2.1)

where θ is an appropriately chosen threshold parameter. This thresholding rule is

monotonic in s and uses a single threshold value θ to decide between y = 1 and

y = 0. It is built on the assumption that a larger score s = f(x) provides a larger

chance of y = 1.

3.2.3 Receiver Operating Characteristic curve

One popular way of evaluating the performance of such binary classification rules is

to use the Receiver Operating Characteristic curves (ROC curves). These curves give

a convenient graphical representation of two-by-two contingency tables or confusion

matricesthat can be used to formally evaluate classifiers. The ROC curve is a plot

of the sensitivity on the y-axis and 1-specificity on the x-axis. The true positive

rate (TPR) (or sensitivity) is defined as the probability of correctly classifying an

instance whose true label is 1; that is,

TPR(δ) := Pr[δ(x) = 1 | y = 1].
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The false positive rate (FPR) (or 1-specificity) is defined as the probability of incor-

rectly classifying an instance as 1 when the true label is 0, that is,

FPR(δ) := Pr[δ(x) = 1 | y = 0].

For the threshold based classification rule (3.2.1) the parameter θ determines the

operating point of the classifier and corresponds to a point on the ROC plot with a

specific TPR(θ) and FPR(θ). The ROC curve is obtained as θ is swept from −∞

to ∞.

3.2.4 Area under the ROC curve

Naturally, classifiers that simultaneously have higher sensitivity and higher speci-

ficity are more desirable and dominate their competitors. In practice, however, one

usually finds several classifiers with intersecting ROC curves. As a result, an addi-

tional criterion is often needed to decide among competing classifiers. One popular

procedure selects the classifier with the highest area under its ROC curve (“area

under the curve,” or AUC). An excellent introduction to the topic is provided by

Pepe (2003). The AUC is obtained by integrating the ROC curve; that is,

AUC =

∫ 1

0

TPR(FPR−1(t))dt.

Good classifiers have an AUC close to 1 while a random classifier has an AUC close

to 0.5.
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3.3 An AUC-maximizing recalibration

Many different classification procedures can be constructed based on the training

data. The commonly used procedure in (3.2.1) is one such example which thresholds

the raw scores; it has a corresponding AUC. It is intuitive and easy to use, but it may

not be optimal in terms of maximizing AUC. Using the Neyman-Pearson Lemma, in

this section we will show a recalibration procedure which maximizes the AUC under

bi-normal population assumptions (this recalibration contains (3.2.1) as a special

case).

3.3.1 Neyman-Pearson lemma and AUC

Let p0 and p1 be the class-conditional densities of the score s = f(x) in class 0 and

1 respectively, that is,

p0(s) = Pr[s|y = 0] and

p1(s) = Pr[s|y = 1].

The binary classification problem can be viewed in the framework of statistical

hypothesis testing. Assigning a label {0, 1} based on a score s = f(x) is equivalent

to deciding whether the score in question arose from the distribution p0 (the null

hypothesis) or the distribution p1 (the alternative hypothesis). Clearly, it is desirable

to have a decision procedure that combines a low rate of incorrectly rejecting the

null hypothesis when it is in fact true (a low false positive rate) with a high rate of
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accepting the alternative hypothesis when the null hypothesis is false (a high true

positive rate).

The Neyman-Pearson lemma provides a way to properly balance these two com-

peting goals. An especially thorough treatment of the Neyman-Pearson lemma and

its many extensions appears in several chapters of Lehmann and Romano (2005).

In the context of the classification problem above, the lemma states that for a fixed

false positive rate α, a decision procedure maximizes the true positive rate if and

only if it rejects the null hypothesis in favor of the alternative hypothesis for observed

scores in the region (defined using the likelihood ratio)

C =

{
s :

p1(s)

p0(s)
≥ Kα

}
, (3.3.1)

and does not reject the null hypothesis otherwise. Here Kα is the (1-α) quantile of

the p0 distribution.

The Neyman-Pearson lemma provides a way to construct procedures that maxi-

mize the true positive rate for each false positive rate. As a result, ROC curves of

classifiers constructed using the Neyman-Pearson lemma must be above the ROC

curves constructed using other methods; classifiers constructed in this way therefore

also have the highest AUC values. In the next section, we use the Neyman-Pearson

lemma to find a classification rule under the commonly used bi-normality assump-

tion.
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3.3.2 Bi-normality assumption for the scores

We will assume that the scores for the positive and negative populations are normally

distributed. As discussed in the next section, this is a reasonable assumption for

scores constructed as the linear combination of many covariates (features); the non-

equal variance assumption is illustrated in the restaurant tips data of the next section

as well. The score s has a separate normal distribution corresponding to y = 1 and

y = 0, that is,

p0(s) = Pr[s|y = 0] = N (s | µ0, σ
2
0) and

p1(s) = Pr[s|y = 1] = N (s | µ1, σ
2
1),

where N (s | µ, σ2) is the normal distribution with mean µ and variance σ2. Without

loss of generality we further assume that µ1 > µ0.

3.3.3 Quadratic score based thresholding

Under the bi-normality assumption the rejection region as specified in (3.3.1) by the

Neyman-Pearson lemma can be written as

C =

{
s :
N (s | µ0, σ

2
0)

N (s | µ1, σ2
1)
≥ Kα

}
. (3.3.2)
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Since logarithm is a monotonic transformation, this expression can be rewritten in

terms of the log-likelihood ratio.

C =

{
s : log

N (s | µ0, σ
2
0)

N (s | µ1, σ2
1)
≥ logKα

}
. (3.3.3)

Simplifying (3.3.3) yields the following decision rule

δ(x) =

 1 if as2 + bs+ c ≥ θ

0 otherwise
, (3.3.4)

where a, b, and c are defined as,

a =
1

2

(
1

σ2
0

− 1

σ2
1

)
,

b =
µ1

σ2
1

− µ0

σ2
0

, and

c = log

(
σ0
σ1

)
+

1

2

(
µ0

σ2
0

− µ1

σ2
1

)
, (3.3.5)

θ is a threshold determined by the desired false positive rate, and s = f(x) is the

classifier score. As described in Section 3.1, under the bi-normality assumptions, the

Neyman-Pearson lemma guarantees that the ROC for thresholding the recalibrated

scores is above all other ROC curves, since the true positive rate is maximized

for each false positive rate. In other words, under the bi-normal assumptions, the

quadratic classification rule (3.3.4) attains the maximum AUC.
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3.3.4 Discussion

1. The case of equal variances When σ0 = σ1 = σ the constants evaluate to

a = 0,

b =
µ1 − µ0

σ2
, and

c =
1

2

(
µ0 − µ1

σ2

)
.

The decision rule simplifies to

δ(x) =

 1 if bs+ c ≥ θ

0 otherwise
,

which is equivalent to the linear classification rule (3.2.1). Hence the commonly

used linear classification rule (3.2.1) and the proposed quadratic rule (3.3.4)

agree when the standard deviation of the two normal distributions are equal,

that is, σ0 = σ1 = σ.

2. Rule after raw score recalibration uses second moments

The linear thresholding rule (3.2.1) is monotonic in s and implicitly means

that a larger score s = f(x) provides a larger chance of y = 1. In contrast,

the quadratic thresholding rule decides that an instance is positive if the score

is quite high (greater than a certain threshold) or quite low (less than a cer-

tain threshold). This may appear counterintuitive, yet the Neyman-Pearson

lemma guarantees that this is indeed the best choice under the bi-normality
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assumption.

The linear classification rule uses only the first moments of the scores; that is,

it uses the fact that the means are different. The quadratic rule also captures

the second moments by assuming that both the means and the variances are

different. For example, if we know that the positive class has a much larger

variance than the negative class, then a very small score, though intuitively

negative, is very unlikely to have come from the negative distribution since its

variance is much less than that of the positive population distribution (we show

a real-world use-case of this phenomenon in the next section). In the same

spirit, classification rules using higher order moments could be designed. The

quadratic recalibration is optimal under the bi-normality assumption, while

the linear rule is optimal when the variances of both the distributions are

equal.

3. Quadratic transformation to improve AUC We have shown that a

classification rule that is quadratic in s dominates the commonly used classifier

in (3.2.1) when the variance of s for the positive population is different from

the variance of s for the negative population. Hence a very simple method to

improve the score from any general classifier is to transform the scores using

the quadratic transformation s′ ← as2 + bs+ c. The Neyman-Pearson lemma

guarantees that the AUC for scores s′ will be greater than or equal to the AUC

of s and, in fact, that the ROC for the quadratic rule dominates the ROC of

the linear thresholding rule.
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4. Estimating a, b, and c from training data In practice the constants a,

b, and c can be estimated from the training data by plugging in into (3.3.5)

the empirical estimates for the population means µ̂1 and µ̂0 and the standard

deviation σ̂1 and σ̂0 using the positive and negative class examples respectively.

5. Parametric ROC and AUC For the bi-normal assumption it is possible

to derive an analytical expression for the ROC and the AUC of the quadratic

scoring rule. For any threshold θ the TPR and the FPR can be written as

TPR(θ) = Pr[s ≥ θ | y = 1] = Φ

(
µ1 − θ
σ1

)
,

FPR(θ) = Pr[s ≥ θ | y = 0] = Φ

(
µ0 − θ
σ0

)
.

where Φ(x) = (1/
√

2π)
∫ x
−∞ exp(−t2/2)dt is the cdf of the standard normal

distribution. Hence for a particular FPR(θ) = t, we can write θ = µ0 −

σ0Φ
−1(t) and hence

ROC(t) = TPR(t) = Φ(A+BΦ−1(t)),

where we define A = (µ1 − µ0)/σ1 and B = σ0/σ1. The term A is called the

intercept and B the slope of the binormal ROC curve. By integrating this

expression the AUC for the binormal ROC curve is given by

AUC = Φ

(
µ1 − µ0√
σ2
1 + σ2

0

)
.
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6. Equivalence to the optimal Bayes rule The optimal classifier is the Bayes

rule given by

δ(x) =

 1 if log Pr[y=1|s]
Pr[y=0|s] ≥ 0

0 otherwise
,

Let π0 and π1 be the prior probability of class 0 and 1 respectively, that is,

π0 = Pr[y = 0] and π1 = Pr[y = 1]. From Bayes theorem we have the following

posterior for the positive class

Pr[y = 1|s] =
p1(s)π1

p0(s)π0 + p1(s)π1
.

Using this under the earlier bi-normal assumptions, the Bayes rule simplifies

to the rule with quadratic recalibration obtained earlier; that is,

δ(x) =

 1 if as2 + bs+ c ≥ 0

0 otherwise
,

where the constants a and b remain the same as defined earlier (3.3.5) but the

parameter c gets modified to include the prior class probabilities.

c = log

(
σ0π1
σ1π0

)
+

1

2

(
µ0

σ2
0

− µ1

σ2
1

)
,

While the Bayes rule implicitly defines the optimal threshold, in principle, we

can vary the threshold to get the ROC curve.
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3.4 Illustrations and Empirical Evaluation

As discussed in the introduction, the literature is full of examples in which bi-normal

assumptions are not appropriate at all. The idea that cases with the most negative

scores may be classified as positive to increase the AUC seems rather counterintu-

itive; the result comes from the fact that the variances of the classes are unequal, so

that, for example, the most negative scores are actually more likely to come from

the positive class distribution. Simulated, bi-normal data with different class vari-

ances shows how the recalibration method can be applied, but a natural question

is whether the underlying assumptions (bi-normality and unequal variances) which

make the recalibration work are ever appropriate in practice. Here, we present

a real-world classification example using data in which the proposed recalibration

increases the AUC by a full 25%.

Among other variables, this data set contains the total bill amounts and tip

amounts paid at an American restaurant by 244 patrons (or groups of patrons)

and on whether there were smokers among the patrons. Interestingly, it turns out

that the variability in the tip percentage (defined as tip amount divided by total bill

amount without the tip) is much higher for the 93 patron groups with smokers than

for the 151 patron groups without smokers. The average tip percentage is close to

15 % for both groups (not surprisingly, as the customary tipping rate at American

restaurants is around 15%), with more patrons tipping below 15 % than above for

both smokers and non-smokers. Our goal is to try to classify the patrons as smokers

or non-smokers based on their tip percentage.

53



To construct the raw scores, we take the logarithm of the tip percentages. This

initial (and monotonic) transformation helps to alleviate the skew due to the “un-

dertipping” behavior of most of the patrons and makes the normality assumptions

more appropriate. The mode symmetry assumptions are not unreasonable; the vari-

ance of the scores for smokers is 0.203, while the variance for the non-smokers is only

0.073, or roughly 1/3 that of the smokers’ scores. The score distributions overlap,

making classification difficult. In using the threshold classifiers, however, it is seen

that classification using the recalibrated (quadratic) raw scores gives an AUC that

is 25% (= 0.65−0.52
0.52

) higher than classification with the raw scores In other words,

the using the recalibrated gives a much better classifier in terms of AUC than using

the raw scores, where the AUC of 0.52 is almost as bad as random guessing.

3.5 Conclusions and Proposed Extensions

We used the Neyman-Pearson lemma to show that a popular classification procedure

based on scoring can be made better in terms of the AUC criterion when the under-

lying populations have different variances. We proposed a quadratic recalibration

which maximizes the AUC and contains the usual procedure based on raw scores as

a special case when the population variances are equal. Our results are based on the

bi-normal population assumption for the scores, which can be appropriate in many

real-world settings. The increase in AUC grows as the difference in the variances of

the two populations increases, with an increase of 25 % recorded for the Restaurant

Patron Tipping data in our illustration and modest improvements in AUC for other
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common reference datasets. We hope to extend our work by investigating the pro-

cedure for data sets in which the scores are sample averages from samples of various

sizes, as this is a natural setting for normal scores with unequal variances.
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Chapter 4

Conclusion

In this dissertation, we have explored three specific areas of Bayesian classification

procedures. The first chapter focused on a new classification procedure using a non-

parametric mixture prior distribution and empirical Bayes techniques to minimize

a loss function that applies to many scientific settings. The second chapter turns

to a popular criterion for evaluating classifiers, the false discovery rate, and gives a

way of estimating Bayesian versions, the pFDR and local false discovery rate, using

a nonparametric mixture prior. In the last chapter, we look at the AUC criterion in

classification problems with normal observations, which can arise frequently when

many covariates are combined into summary classification scores through averaging

or regression techniques.

There are many interesting questions in the field of our work that can be explored

further. For example, better ways of controlling local false discovery rates, and not

just the FDR, can be useful. The sense in which an error rate is controlled is also
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open for additional work because current techniques focus on providing bounds on

expected error rate values, while in applications, more attention to sample-specific

statements may also be needed. Work by Jin and Cai (2007) suggests that it may

be possible to make the techniques proposed in Chapter 2 of this dissertation more

general by providing estimates of the noise distribution because misspecification

error can lead to inaccurate estimates of local false discovery rates. It would also be

interesting to extend local FDR techniques to interaction effects in model selection

in ways similar to the hierarchical FDR model proposed by Yekutieli (2008).
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