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The Phonological Influence on Phonetic Change

Abstract
This dissertation addresses the broad question about how phonology and phonetics are interrelated,
specifically how phonetic language changes, which gradually alter the phonetics of speech sounds, affect the
phonological system of the language, and vice versa. Some questions I address are:

(i) What aspects of speakers' knowledge of their language are changing during a phonetic change?

(ii) What is the relative timing of a phonetic change and phonological reanalysis?

(iii) Can a modular feed-forward model of phonology and phonetics account of the observed patterns of
phonetic change?

(iv) What are the consequences of my results for theories of phonology, phonetics, and language acquisition?

(v) What unique insight into the answers to these questions can the study of language change in progress give
us over other methodologies?

To address these questions, I drew data from the Philadelphia Neighborhood Corpus [PNC] (Labov and
Rosenfelder, 2011), a collection of sociolinguistic interviews carried out between 1973 and 2013. Using the
PNC data, I utilized a number of different statistical modeling techniques to evaluate models of phonetic
change and phonologization, including standard mixed effects regression modeling in R (Bates, 2006), and
hierarchical Bayesian modeling via Hamiltonian Monte Carlo in Stan (Stan Development Team, 2012).

My results are challenging to the conventional wisdom that phonologization is a late-stage reanalysis of
phonetic coarticulatory and perceptual effects (e.g. Ohala, 1981). Rather, it appears that phonologization
occurs simultaneously with the onset of phonetic changes. I arrive at this conclusion by examining the rate of
change of contextual vowel variants, and by investigating mismatches between which variants are expected to
change on phonetic grounds versus phono- logical grounds. In my analysis, not only can a modular feed-
forward model of phonology and phonetics account for observed patterns of phonetic change, but must be
appealed to in some cases.

These results revise some the facts to be explained by diachronic phonology, and I suggest the question to be
pursued ought to be how phonological innovations happen when there are relatively small phonetic
precursors.
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ABSTRACT

THE PHONOLOGICAL INFLUENCE ON PHONETIC CHANGE

Josef Fruehwald

William Labov

This dissertation addresses the broad question about how phonology and phonetics are interre-

lated, speciVcally how phonetic language changes, which gradually alter the phonetics of speech

sounds, aUect the phonological system of the language, and vice versa. Some questions I address

are:

(i) What aspects of speakers’ knowledge of their language are changing during a phonetic

change?

(ii) What is the relative timing of a phonetic change and phonological reanalysis?

(iii) Can a modular feed-forward model of phonology and phonetics account of the observed

patterns of phonetic change?

(iv) What are the consequences of my results for theories of phonology, phonetics, and language

acquisition?

(v) What unique insight into the answers to these questions can the study of language change

in progress give us over other methodologies?

To address these questions, I drew data from the Philadelphia Neighborhood Corpus [PNC]

(Labov and Rosenfelder, 2011), a collection of sociolinguistic interviews carried out between 1973

and 2013. Using the PNC data, I utilized a number of diUerent statistical modeling techniques

to evaluate models of phonetic change and phonologization, including standard mixed eUects re-

gression modeling in R (Bates, 2006), and hierarchical Bayesian modeling via Hamiltonian Monte

Carlo in Stan (Stan Development Team, 2012).

My results are challenging to the conventional wisdom that phonologization is a late-stage

reanalysis of phonetic coarticulatory and perceptual eUects (e.g. Ohala, 1981). Rather, it appears
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that phonologization occurs simultaneously with the onset of phonetic changes. I arrive at this

conclusion by examining the rate of change of contextual vowel variants, and by investigating

mismatches between which variants are expected to change on phonetic grounds versus phono-

logical grounds. In my analysis, not only can a modular feed-forward model of phonology and

phonetics account for observed patterns of phonetic change, but must be appealed to in some

cases.

These results revise some the facts to be explained by diachronic phonology, and I suggest

the question to be pursued ought to be how phonological innovations happen when there are

relatively small phonetic precursors.
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Chapter 1

Introduction

In this dissertation, I investigate the interrelationship between phonology and phonetics, speciV-

cally with regards to phonetic change. Aided by an unparalleled body of data in the Philadelphia

Neighborhood Corpus, I have been able to explore the relative timing of phonological and pho-

netic inWuences on phonetic change, and arrived at some novel and interesting results. Specif-

ically, I found that the process of phonologization appears to happen faster, and earlier in the

lifespan of phonetic change than previously assumed.

This research is unique in a number of ways. It is the Vrst dissertation to make extensive use

of vowel measurements from the Philadelphia Neighborhood Corpus [PNC]. Labov et al. (2013)

is the Vrst major publication reporting on results from the PNC, in which we discuss a broad

overview of the Northernization of the Philadelphia dialect. We found that those sound changes

which Philadelphia shared with the Southeastern super region have been reversing, while those

which it shares with Northern dialects have been moving uninterrupted across the 20th century.

In this dissertation, I take a more detailed approach to the internal conditioning of many of these

changes, with the goal of understanding which conditioning factors can be considered phonetic

and which can be considered phonological, and whether a diUerence between the two can be

determined.

Secondly, few other pieces of work investigating phonologization utilize data from language

change in progress, while most research utilizing data from language change in progress don’t
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address themselves to the problem of phonologization. As I make clear throughout the disserta-

tion, language change in progress provides unique insights, and surprising results, that are not

readily replicable looking only at the beginning and endpoints of sound change, or only at syn-

chronic experimental results. Those lines of research, exempliVed by Ohala (1981), do provide

valuable information, but still leave gaps in the model which can only be Vlled with data from

language change in progress. For example, the results from Ohala (1981) argue convincingly that

many sound changes result from natural perception errors on the part of listeners. However, it

still leaves open the question of how perceptual errors lead to sound change. Do the errors ac-

cumulate over time within a speaker, or across a speech community? Is the change phonetically

abrupt and probabilistic, or phonetically gradual? Do conditioning environments become gradu-

ally phonologized, or is phonologization sudden? And at what point in the lifespan of the change

does phonologization occur? Data on language change in progress Vlls in some of these gaps.

In trying to grapple with these issues in sound change, my results are relevant to a broader

range of questions about the contested relationship between phonology and phonetics in general.

On the one hand, Docherty and Foulkes (2000) and Foulkes et al. (2010) argue that sociopho-

netic data is best explained using exemplar models of phonetics and phonology (Pierrehumbert,

2002) whereby the primary units of representation are episodic memory traces of the phonetic

production of words. In exemplar models, phonological categories emerge out of the statistical

regularities of phonetics. On the other hand, the research program of phonetically based phonol-

ogy (Hayes and Steriade, 2004) pursues the hypothesis that there is not a qualitative diUerence

between phonological and phonetic competence. For example, Flemming (2001, 2004) proposes

weighted Optimality Theory constraints which operate over formant transitions, and n-ary vowel

features.

My results are challenging to both the views that phonological categories are merely codi-

Vcations of statistical properties of the phonetics, and that there is not a qualitative diUerence

between phonological and phonetic representation and computation. Rather than uncovering an

inherent fuzziness to phonological categories, by increasing the volume of data we collect from

speakers, the evidence for categorical phonological units has gotten sharper. It appears that cat-
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egorical phonological processes which diUerentiate allophones enter the grammar at the onset of

conditioned sound changes, rather than as late stage reanalyses. The consequence of this result

is that phonological representations cannot simply be the the codiVcations of robust phonetic ef-

fects, because at the onset of the change there is no robust eUect to be codiVed. Additionally,

the qualitative diUerence I found between the categorical conditioning of the change, and the Vne

grained phonetic eUects overlaid on the change suggests that there ought to also be a qualitative

diUerence between phonology and phonetics.

The dissertation is laid out as follows. In Chapter 2, I establish my minimal theoretical com-

mitments that I must presuppose in order to make any progress in my data analysis. I Vrst lay out

the similarities between typological variation and kinds of sound changes. My point in doing so is

to highlight the fact that sound change is necessarily a change in speakers’ competence over time,

much in the same way that typological variation is diUerences in speakers’ competence across

populations. Therefore, the ways that languages can change are strictly constrained by the ways

in which speakers’ competences can diUer. With that in mind, the study of language change is

quite clearly the study of linguistic competence. Towards the end of the chapter, I devote a con-

siderable amount of time to describing how phonetic changes occur, in order to assure that I am

operating under proper assumptions throughout the rest of the dissertation.

In Chapter 3, I brieWy outline the data I use in this dissertation, which is entirely drawn from

the Philadelphia Neighborhood Corpus. This chapter is brief so as to avoid considerable overlap

with already published descriptions of the PNC (Labov et al., 2013) and of Forced Alignment and

Vowel Extraction (Yuan and Liberman, 2008; Evanini, 2009; Labov et al., 2013). I did enhance the

data from the output of the FAVE-suite, however, and those enhancements are described there.

Chapter 4 is the Vrst heavy data analysis chapter where I attempt to diUerentiate between

phonological and phonetic conditioning of sound change. The core idea presented in this chap-

ter is that if two variants of a vowel are created in the phonetics, their trajectories over time are

yoked together, and are not independent, but if they are created in the phonology, then in princi-

ple they can have independent trajectories. The way I evaluate the dependence or independence

of vowel variants’ diachronic trajectories is to compare their rate of change. This is an extension

3



of Constant Rate EUect reasoning (Kroch, 1989) frequently utilized in historical syntax. Because

the particular changes I examine in Chapter 4 overall have complex diachronic patterns (they

moved in one direction, then reversed, as described in Labov et al. (2013)), and because I wanted

to investigate the relative timing of phonologization in these changes, I could not rely on standard

statistical tools like mixed-eUects linear regression. Instead, I construct a custom Bayesian hier-

archical model, which is estimated via Hamiltonian Monte Carlo simulation (Stan Development

Team, 2012). Of course, a number of complications arise when looking at naturalistic data, but af-

ter taking into account possible confounding factors, it appears as if conditioning factors on these

vowel shifts fall into two broad categories: those which move in parallel throughout the entire

change, and those which were divergent from the outset. At least for these cases, it appears as if

categorical phonological conditioning is in place from the outset of the change, and that phonetic

conditioning factors were not eventually reanalyzed as being phonological.

In Chapter 5, I examine a number of cases where phonological factors appear to have the

greatest explanatory power for both cases where vowel variants have divergent trajectories, and

for where multiple vowel categories have parallel trajectories. First, I look at /ay/ and /ey/ raising.

These vowels were, for various reasons, imperfect candidates for the rate of change analysis in

Chapter 4. However, a close examination of their internal conditioning reveals surprising results.

In the case of /ay/, I found that despite the diUerences in the phonetic contexts of preceding [t]

and [d], and Waps corresponding to underlying /t/ and /d/, the raising of pre-voiceless /ay/ took

place before underlyingly voiceless contexts, despite their surface realizations. That is, the opaque

relationship between raising /ay/ before voiceless consonants and the Wapping of /t/ was in place

from the very beginning of the change. In the case of /ey/ raising, I Vnd that even though the

context of a following /l/ appears to phonetically favor the direction of the change, it does not

itself participate. Even other phonetically similar following segments, like /r/ and /w/, condition

/ey/ raising, but a following /l/ does not. An explanation for why /l/ would phonetically favor,

but not actually condition the change is not forthcoming on strictly phonetic grounds. After

looking at /ay/ and /ey/ raising, which exhibit phonologically conditioned divergence, I look at

a few cases of parallel shifts. There are two cases of parallel shifts I observe in the PNC. First is
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the parallel fronting of /aw/, /ow/ and /uw/, followed by their parallel retraction. Second is the

parallel lowering of /æ:/ (tense /æ/) and /O:/. I do my best to address the concern voiced by Watt

(2000) that these parallel shifts share a social, rather than phonological source, and still Vnd that

their parallelism holds.

In Chapter 6, I take the results from the preceding chapters to argue against a model of gradual

phonologization. I argue that in each case I examined, evidence of categorical phonologization

was observed at the outset of the change, not as a reanalysis later in the change. This result carries

with it a number of complications. First, it must be the case that phonetic diUerences which are

small at the beginning of a change correspond to a categorical phonological diUerence, casting

doubt on the hypothesis that phonological categories emerge from reliable statistical properties

of the phonetics. Second, it must be the case that new phonological processes are spontaneously

hypothesized by language learners. Both of these conclusions may be controversial, so I devote

most of Chapter 6 arguing for their plausibility.

In chapter Chapter 7, I provide conclusions, which will largely be a recapitulation of this

introduction chapter.
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Chapter 2

What is Phonetic Change?

In this chapter, I will lay out the most basic description of the phenomena I will be addressing

in this dissertation, provide some necessary terminological clariVcation, outline my minimal the-

oretical commitments in carrying out this project, and most importantly, highlight where my

results and analysis diverge from previous work on the topic, and why they are of interest to

phoneticians, phonologists, and sociolinguists.

2.1 Sound Change and Grammar

I will be using the term sound change to cover a broad range of phenomena, including phonemic

mergers, lexical diUusion, Neogrammarian sound change, rule loss, rule generalization, etc., and

I will use the term sound system to broadly refer to the domain of language where sound change

takes place. I will be reserving the terms phonological change and phonetic change to refer only

to changes which occur within the domain of phonology and phonetics, respectively. To the

degree that any particular sound change is ambiguous between whether it takes place within the

phonological or phonetic domain of language, it will be ambiguous as to whether these changes

should be called phonological or phonetic.

Clearly, the the potential for phonology-phonetics ambiguity is vast, and contentious. Pierre-

humbert (1990) described many researchers involved in debate over whether phenomena should

be described as phonological or phonetic as “intellectual imperialists,” and Scobbie (2005) labeled
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these debates similarly as “border disputes.” However, for the study of sound change, resolv-

ing these disputes is not merely a terminological issue. Starting with Labov (1969), it has been

established that the structure and formal properties of the grammar one posits makes clear predic-

tions about how the linguistic variation we observe should be structured. In this landmark study,

Labov addressed the topic of copula absence in African American English. First, by establish-

ing that copula absence was prohibited under certain structural conditions, Labov concluded that

AAE made productive use of the copula (unlike, for example, Russian), thus copula absence must

be the product of a deletion process. Then, through a quantitative analysis of the proportions of

copula deletion, Labov was able to conclude that copula contraction and deletion were separate

processes, and that contraction was ordered before deletion. This early case study highlights the

importance of having an adequate grammatical model in order to structure the quantitative anal-

ysis of variation. The results of the quantitative analysis can then further narrow the grammatical

possibilities.

While Labov (1969) was a purely synchronic case study, the pattern of mutual reenforcement

between grammatical theory and language change has also been well established. For example

observation of the Constant Rate EUect in syntactic change led Kroch (1989, 1994) to conclude that

the locus of syntactic change is within the features of syntactic functional heads. Kroch (1989) was

speciVcally arguing against the “Wave Model” of language change put forward by Bailey (1973),

in which it is suggested that those contexts which are most advanced in the direction of language

change are i.) where the change began and ii.) moving the fastest. Kroch (1989, 1994) found that

for several examples of syntactic change, this pattern did not hold, indicating that the objects of

syntactic change in these cases were functional heads, rather than larger collocations, or con-

structions. Fruehwald et al. (forthcoming) relied on the same analytic technique to argue that the

locus of phonological changes are generalized rules which operate over all segments which meet

the appropriate structural description. Of course, not all analyses of language change have sup-

ported generative-like theories of grammar. Notably Phillips (1984, 1999, 2006) and others have

focused on the eUect of lexical frequency on the propagation of sound change in support of a

usage based model of phonological knowledge. Despite the potentially radically diUerent theo-
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retical commitments of the researchers involved, they all share the same analytic commitments:

grammatical theory constrains the set of predicted language changes, thus observed patterns of

language change serve as crucial evidence for or against one’s grammatical theory.

Just as the structure of grammatical theories can be conVrmed or falsiVed through the study

of sound change, so can their scope. It is a well established theoretical position that language

change and variation necessarily occurs within the non-arbitrary and explicitly acquired domain

of linguistic knowledge. For example, Kiparsky (1965) notes that the generative view of language

change is that it takes place in the Saussurian langue, or generativist competence, rather than

in the parole or performance. The variationist paradigm has also placed patterns of variation

squarely within the linguistic competence of speakers, as Weinreich et al. (1968, p. 125) stated:

deviations from a homogeneous system are not all errorlike vagaries of performance,
but are to a high degree coded and part of a realistic description of the competence of
a member of a speech community.

Hale (2004) makes this position very explicit in his chapter on Neogrammarian sound change,

where he describes all changes as abrupt disjunctions between the grammar of a language acquirer

and the grammar of the speaker who served as their primary linguistic model. From these explicit

formulations of sound change as grammatical change follows the conclusion that the structure

of one’s grammatical theory places a hard boundary on the extent of possible sound changes.

Only those aspects of language which are learnable and representable in speakers’ knowledge

may be subject to change. Now, Kiparsky (1965) explicitly excluded phonetics from grammatical

competence, treating all sound changes as phonological. The exclusion of phonetics from linguis-

tic competence has since been relaxed by almost all researchers since some seminal work in the

1980’s (Liberman and Pierrehumbert, 1984; Keating, 1985, 1988, 1990) with some notable excep-

tions (e.g. Hale et al. (2007); Hale and Reiss (2008)), and as I will illustrate in §2.3, the existence of

truly phonetic (i.e. continuous) sound change demands the inclusion of phonetics within linguistic

competence.

The structure of one’s grammatical theory also places a hard boundary on the range of pos-

sible typological variation between languages and dialects. A biconditional relationship between
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typological variation and sound change therefore follows. For any given dimension of typological

variability, there may be a sound change along that dimension, and for any given sound change

along a given dimension, there may be typological variation. For example, two languages could

conceivably diUer in whether or not voicing is contrastive at all points of articulation in their stop

series, such that Language A contrasts /k, g/ while Language B has only /k/. The existence of

such a typological contrast implies the possibility of a sound change which alters the knowledge

of this contrast, merging /k, g/ > /k/ in Language A. Conversely, if we were to observe a pho-

netic change within one language whereby the duration of the vowel /i/ decreased by 50ms (not

contingent on any other sound changes, per the concerns of Hale et al. (2007)), that would imply

the possibility of cross-linguistic diUerences in the duration of vowels, minimally of 50ms, thus

the ability of speakers’ linguistic competence to represent and control such a diUerence (Labov

and Baranowski, 2006). In the following subsections I review some examples of this biconditional

relationship between typological variation and possible sound changes. This is, to be sure, an

incomplete list, but is intended to cover perhaps the most common kinds of sound changes and

typological diUerences, with the goal of localizing them to a speciVc domain of speakers’ knowl-

edge.

2.1.1 Phonemic Incidence

One obvious point of cross-dialectal variation is what I’ll broadly call phonemic incidence, relating

to the phonological content of lexical items. For the purpose of this discussion, this knowledge

includes the phonological content and identity of segments within a given lexical item, and their

linear order. The Atlas of North American English reports on such an example of cross-dialectal

variation in phonemic incidence for the lexical item on (p. 189, Map 14.20). Looking exclusively

at speakers who maintain a distinction in their low-back vowels between a short, lax, low-back

vowel (as in the name Don) and a long, tense, low-back vowel (as in the name Dawn), Northern

speakers place the lexical item on in the same phonemic class as Don, while Midland and Southern

speakers place it in the same class as Dawn. Coye (2010) Vnds the same North-South split within

the state of New Jersey, as well as a split according to the Vrst vowel in chocolate, which Northern
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Speakers classify with the long, tense vowel and Southern speakers classify with the short-lax

vowel. These reported facts from the ANAE and Coye (2010) are summarized in (2.1–2.2).

(2.1) North

A Don, on

O: Dawn, chocolate

(2.2) South

A Don, chocolate

O: Dawn, on

These diUerences in phonemic incidence between the two dialects cannot be explained in

terms of phonological constraints of any sort. Both the Northern and Southern regions allow

both /An/ and /O:n/ sequences as evidenced by the diUerence between Don and Dawn, and there

is similarly neither dialect has a constraint against /Ak/ or /O:k/ sequences (.e.g. tick-tok [N] and

talk [O:]). Instead, these cross-dialectal diUerences are due to the arbitrary knowledge about the

lexical entries for on and chocolate.

And just as phonemic incidence can vary cross-dialectally, it can also be subject to language

change. SpeciVcally, many cases of lexical diUusion can be described in terms of shifting phonemic

incidence, as can phonemic mergers by transfer (Herold, 1990). An example of change easily

relatable to the distribution of /A/ and /O:/ would be the development of diatonic pairs in English,

as discussed by Phillips (2006, Chapter 2, p. 35). Phillips speciVcally investigates diatonic pairs

(minimal pairs of nouns and verbs which diUer only in the placement of stress, e.g. récord.n ∼

recórd.v), where the stress for both parts of speech was originally Vnal. For example, both the

verbal and the nominal forms of address originally had Vnal stress, but the nominal form has

now has initial stress. Phillips (2006) found that of all of the potentially diatonic word pairs, the

ones which actually underwent a stress shift from Vnal to penultimate were lower in frequency

than those where the stress remained Vnal. Given minimal pairs like áddress and addréss, the

stress placement in these words must be part of their lexical entry. The sporadic, lexically diUuse,

and frequency sensitive nature of the change from Vnal to penultimate stress for these words

suggests that the locus of this change is in the lexical entries, meaning that the development of
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every diatone pair is a separate change of the form addréss>áddress. Explaining the fact that there

appears to be a systematic and unidirectional development of Vnal to penultimate stress for these

lexical items is beyond the scope of this discussion.

I would also classify the presence or absence of phonological material in a lexical entry un-

der the umbrella of “phonemic incidence.” For example, Bybee (2007, [1976]) reports on lexically

sporadic schwa deletion in English, which she argues is primarily driven by lexical frequency, pro-

ducing pairs like memory and mammary, the Vrst being more frequent in use, and more frequent

in schwa deletion. How the diUerence between memory and mammary ought to be captured de-

pends in part on your theoretical commitments regarding the content of lexical entries. Bybee’s

own analysis is that [@] is represented as phonetically gradient in the underlying representation,

an analysis which I myself do not adhere to. For the the sake of exposition, I’ll suggest that

memory, for many speakers much of the time, has the underlying representation /mEmri/, while

mammary, for most speakers most of the time, has the underlying representation /mæm@ri/. Guy

(2007) also appeals to variable lexical entries in order to account for the exceptionally high rate

of TD Deletion for the word and. And undergoes TD Deletion at a much higher rate than would

be expected given other predictors, so Guy (2007) suggests that some proportion of the missing

/d/’s is due to their absence in the lexical entry for and, meaning there are two competing lexical

entries: [ænd] and [æn].

I also include the linear order of phonological content as falling under this domain of knowl-

edge. A very salient example of cross-dialectal variation in the linear order of phonological ma-

terial in North America is the diUerence in ask between most White dialects (/æsk/) and African

American English (/æks/). This is clearly a diUerence in lexical knowledge rather than, say, the

reWex of diUerent phonotactics, because the diUerence in /sk/∼/ks/ order is restricted to only this

lexical item. Similarly, there are examples of lexically sporadic metathesis changes. The Metathesis

Website (Hume, 2000) provides the example of chipotle (an increasingly common word in North

America due to the restaurant chain named after the smoke-dried japepeño), which is sporadi-

cally metathesized /ÙIpotle > ÙIpolte/. There are, of course, many more examples of metathesis

in sound change, such as those given by Blevins and Garrett (2004). However, Blevins and Garrett
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(2004) describe most of their examples of metathesis as fully regular in their outcomes, making it

ambiguous as to whether these sound changes progressed as a series of lexically sporadic metathe-

ses, ultimately concluding by spreading across the entire lexicon, or as a the result of a new

phonological process or phonotactic being introduced into the grammar elsewhere. This latter

option conceptually possible due to productive metathesis processes in synchronic phonological

grammars, as Buckley (2011) discusses extensively. Mohanan (1992) and Anttila et al. (2008), for

example, describe the following productive alternation for some speakers of Singaporean English.

(2.3)

Word Final Intervocalic

lisp [lips] lisping [lispiN]
crips [krips] crispy [krispi]
grasp [grA:ps] grasping [gra:spiN]

The locus of this variation is almost certainly not in the lexical entries for these words, but

rather in the phonological processes of Singaporean English, a domain of knowledge which I will

address in §2.1.3.

2.1.2 Systems of Phonological Contrast

It has been suggested that speakers’ knowledge of their phonology includes a structured repre-

sentation of phonological contrast (Hall, 2007; Dresher, 2009). According to this hypothesis, two

languages could diUer crucially in the representation of their bilabial stop series in the following

way (from Dresher (2009)).

(2.4) [nasal]
−

qqq
qqq

q +
MMM

MMM
M

[voiced]
−

qqq
qqq

q +
MMM

MMM
M /m/

/p/ /b/

(2.5) [voiced]
−

qqq
qqq

q +
MMM

MMM
M

/p/ [nasal]
−

qqq
qqq

q +
MMM

MMM
M

/b/ /m/
Under the Contrastivist Hypothesis, in the language with the contrastive hierarchy in (2.4),

/m/ would not participate in, say, voicing assimilation processes, because it is not contrastively

speciVed [+voice]. In a language with the same exact phonemic inventory, but the contrastive

hierarchy in (2.5), /m/ would participate in voicing assimilation processes.

Recent works supporting the hypothesis that speakers represent contrastive hierarchies such
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as those in (2.4, 2.5) have actually turned to patterns in historical language change for evidence.

Dresher et al. (2012) and Oxford (2012) cite examples of phonological changes in Algonquian

languages, Manchu, and Ob-Ugric languages which appear to involve the demotion of contrastive

features down the hierarchy, resulting ultimately in phonemic mergers.

Merger, of course, is one of the most well studied kinds of sound change. Hoenigswald (1960,

chapter 8) called merger “the central process in sound change.” However, recent studies of merger

in-progress (e.g. Herold (1990); Johnson (2007)) have focused most closely on the mechanisms

of merger of just two segments, without necessarily discussing the larger eUect of these merg-

ers on the larger systems of contrasts in the language. Very recent work in Columbus (Durian,

2012), New York City (Becker, 2010; Becker and Wong, 2010), and Philadelphia (Labov et al., 2013),

however, hint that there may be some more systemic consequences of merger, speciVcally the low-

back merger. All of three of these large urban centers exhibited a so-called “split-short-a” system,

whereby there was an opposition between a short, lax /æ/ and a long, tense, ingliding version,

varying in its phonetics between [æ:] and [i@]. I will refer to the long, tense variant as /æ:/. In

all three locations, the distribution of /æ/ and /æ:/ was semi-regular, but in all cases complex,

and exhibiting some lexical irregularity. Durian (2012), Becker and Wong (2010) and Labov et al.

(2013) all report this complex opposition of /æ/ and /æ:/ breaking down in favor of a simple nasal-

short-a system, whereby the distribution of /æ/ and /æ:/ is totally predictable based on whether

or not the following segment is nasal. Another concurrent change in all three of these cities is the

lowering of the long, tense, ingliding back vowel, /O:/, towards the short, lax vowel, /A/ (Durian,

2012; Becker, 2010; Labov et al., 2013). This lowering of /O:/ has been followed by the low-back

merger in Columbus, and no study of merger in Philadelphia or New York City has been carried

out. If (and this is debatable) we were to treat the opposition of /æ/ and /æ:/ as being contrastive,

we could conceive of the following contrastive hierarchy.

13



(2.6) [low]
−

qqq
qqq

q +
MMM

MMM
M

. . . [back]
−

hhhhh
hhhhh

hhh +

VVVVV
VVVVV

VVV

[tense]
−

qqq
qqq

q +
MMM

MMM
M [tense]

−
qqq

qqq
q +

MMM
MMM

M

/æ/ /æ:/ /A/ /O:/

The transition from a split-short-a system to a nasal-short-a system would amount to losing the

contrastive [±tense] speciVcation for /æ/∼/æh/ in favor of a purely allophonic distribution. The

same would go for the low-back merger. This is, of course, merely a suggestion, intended as

an illustration of how attempting to properly localize a particular sound change to a particular

domain of linguistic knowledge can serve to both unify seemingly disparate events, and open the

door to new and interesting lines of research.

2.1.3 Presence or Absence of Phonological Processes

Perhaps the most discussed cross-linguistic/dialectal diUerence is the presence or absence of a

given phonological process. In serial rule based approaches to phonological theory, this could be

captured by the presence or absence of a phonological rule, and in constraint based grammars, by

the high or low rankedness of the constraint(s) motivating the process. A good example would be

word Vnal devoicing of obstruents, which is a broadly attested process cross-linguistically.

Phonological systems of languages change, logically necessitating the addition or loss of

phonological processes to be a possible language change. While most accounts of change of this

sort focus on the phonologization of phonetic processes as the addition, and the morphologiza-

tion of a phonological process as the loss, Fruehwald et al. (forthcoming) and Gress-Wright (2010)

examined a case of the loss of a phonological process which appeared to be directly lost without

becoming morphologized. In Early New High German (ENHG), there was a productive process of

word Vnal devoicing. The relevant alternation is illustrated in (2.7-2.8).

(2.7) “day”: [k]∼[g]

(a) tac (acc.sg)
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(b) tage (acc.pl)

(2.8) “strong”: [k]∼[k]

(a) stark (uninWected)

(b) starkes (neut.nom.sg.)

ENHG underwent a process of apocope, which applied variably (at least as determined by the

orthographic trends), and produced opaquely voiced word Vnal obstruents.

(2.9) “day”: [k]∼[g]

(a) tac (acc.sg)

(b) tage∼tag (acc.pl)

Many dialects of ENHG subsequently lost the process of word Vnal devoicing. Gress-Wright

(2010) argues that this was triggered by the opacity created by apocope. It was clearly not a

case of general sound change, because it only aUected word Vnal voiceless obstruents which were

underlyingly voiced.

(2.10) (a) tac; tage > tag; tag

(b) stark; starkes > stark; starkes

The process was also lost as a whole, rather than segment by segment, as Fruehwald et al. (forth-

coming) found that the Constant Rate EUect (Kroch, 1989) applied in this case. We compared the

rate of the loss of word Vnal devoicing across the voiced stop series (/b, d, g/) and found that the

rate of change was the same across all three stops in multiple dialects. We took the presence of

Constant Rate EUect in this case as evidence for there being just one phonological process in the

grammar which applied all relevant segments. This one phonological process was then gradually

lost, aUecting all relevant segments at the same rate. Even though the loss of word Vnal devoicing

was more advanced for some segments than others, the fact that they all lost the process at a

constant rate suggests that the diUerences in their rates of devoicing were due to properties of

language use, rather than diUerential treatment by the grammar.
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2.1.4 Targets of Phonetic Implementation

I won’t spend an undue amount of space here discussing how the targets of phonetic implemen-

tation can vary cross-linguistically, and change over time, since this is the broad focus of this

dissertation. Needless to say, languages and dialects can vary greatly in terms of the phonetic

realization of segments which can be considered phonologically identical. An early approach to

looking at this was Disner (1978), who compared the vowel systems of various Germanic lan-

guages and found that there were not universal targets for vowels which were putatively the

same between them. An extreme case is Danish, which has six of its seven vowels in the high to

high-mid range, and its seventh as low-central.

A more certain example of phonologically equivalent vowels which diUer only in their pho-

netic realization can be found in /ow/ in North America. Figure 2.1 displays a map from the Atlas

of North American English (Labov et al., 2006) which denotes the Southeastern Super Region as

deVned by the fronting of /ow/. Speakers represented on the map with light red points have /ow/

fronted past the threshold by which the ANAE diagnosed /ow/ fronting. There is no compelling

dialectal data to suggest that /ow/ should have a diUerent phonological status in the Southeastern

Super Region as distinct from the rest of North America. The largest phonological diUerentiator

in North America is the low-back merger of cot and caught, and as can be seen in Figure 2.1, the

regions with the merger only partially overlap with regions with fully back /ow/.

/ow/ fronting has also been a change in progress in Philadelphia as reported in 1970s (Labov,

2001), but has begun backing (Labov et al., 2013). Figure 2.2 displays the diachronic trajectory

of /ow/ along F2, subdivided by men and women and level of education. From the turn of the

century until just after 1950, /ow/ fronted dramatically for women who did not go on to higher

education. Men, and both men and women with some higher education, participated minimally

in this change.

The speciVc targets of phonetic implementation for the same phonological objects can thus

vary cross-dialectally and across social groups, meaning that speakers must be able to represent

diUerences in phonetic targets at least as small as the increment of change for women. §2.3.1

will be devoted to arguing that this incrementation is eUectively inVnitely small since the change
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139

Although the regional dialect of the South is consolidated by the mechanism of 
the Southern Shift, a broader range of Southern characteristics are indicated in 
this map, defining a larger southeastern super-region. It includes the fronting of 
/ow/ in go, road, boat, etc. where the nucleus is fronted to central position or even 
front of center. This trait involves the South proper, extends southward to south-

Map 11.11. The Southeastern super-region 

ern Texas and Florida, and includes cities on the eastern margin like Charleston. 
The Southeastern region extends northward to include all of the Midland and the 
Mid-Atlantic states. The fronting of /ow/ separates the Southeast from the North, 
Canada, and the West.
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is truly continuous, meaning that the phonetic representation must be of a diUerent type than

categorical phonological representation.

2.1.5 Gestural Phasing and Interpolation

In addition to the language speciVc targets of phonetic implementation, there are also appears

to be language speciVc processes of phonetic interpolation and gestural phasing. However, it

is necessary to be careful about making such claims, because apparent diUerences in phonetic

interpolation may actually be related to higher level facts, like contrastivity. For example, Cohn

(1993) Vnds that English allows for gradient nasalization of pre-nasal vowels, while French does

not. This may at Vrst appear to be a language speciVc diUerence in, say, the gestural phasing of

velum lowering, but it seems more likely to be related to the fact that French has contrastive nasal

vowels, and English doesn’t. Oral French vowels have an explicit oral target, while English vowels

are allowed to be non-contrastively nasalized.

However, dialectal diUerences in stop epenthesis in English as reported in Fourakis and Port

(1986) seems to be a clearer case of diUerences in gestural phasing. Fourakis and Port (1986) Vrst

argue that stop epenthesis in American English, rendering words like dense and dents roughly

homophonous, is not a phonological process because they found reliable phonetic diUerences

between epenthesized [t] and underlying [t]. Instead, they argued that it results from gestural

overlap of the closure from the [n] and the voicelessness of the [s]. However, South African

English does not exhibit stop epenthesis in [ns] sequences. If anything, their representative spec-

trograms of South African speakers seem to show a very brief vocalic period of just 2 or 3 glottal

pulses between the oUset of the [n] and the onset of the [s]. This appears to be a good case of

cross-dialectal variation in phonetic alignment.

A very striking example of language change involving shifting phasing relations comes from

Andalusian Spanish. As with many dialects of Spanish, /s/ aspirates in many positions, including

before stops, and in Andalusian Spanish, this is also frequently associated with post-aspiration

(Torriera, 2007; Parrell, 2012; Ruch, 2012).

(2.11) pasta
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pasta > pahta ∼ pahtha ∼ patha

Ruch (2012) found that the duration of pre-aspiration is decreasing in apparent time, and the

duration of post-aspiration is increasing in apparent time. Torreira (2006); Torriera (2007) and

Parrell (2012) analyze this change in terms of a change in alignment of the stop closure gesture

and the spread glottis gesture. If this analysis is correct, then it is a striking example of of a

language change aUecting phonetic alignment/phasing.

I should note that a model of coarticulation based on phonetic interpolation through unspec-

iVed domains (Keating, 1988; Cohn, 1993) versus one based on articulatory gestures and their

phasing (Browman and Goldstein, 1986; Zsiga, 2000) propose vastly diUerent mechanics of coar-

ticulation, but for the purposes of this dissertation, their mechanical diUerences are not of as much

consequence as the resulting phenomenon, which is roughly equivalent.

2.1.6 Sound Change and Grammar Summary

The over-arching goal of this section has been to highlight the crucial but non-trivial connection

between observed sound changes and the proposed grammars in which they are occurring. I say

“non-trivial” because it does not appear to be the case that the domain of knowledge of a given

sound change can be determined simply from the outcomes of the sound change. For example,

both “merger” and “metathesis” were the outcome of three diUerent kinds of changes in speakers’

knowledge.

(2.12) sources of merger

(a) lexically gradual change in phonemic incidence

(b) change in the system of contrast

(c) phonetically gradual change

(2.13) sources metathesis

(a) lexically gradual change in phonemic incidence

(b) introduction of a productive phonological process, which outputs metathesis
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(c) gradual change in the alignment of articulatory gestures

I should add that this is not meant to be an exhaustive list of all the ways in which merger and

metathesis come about, since these are not the focus of this dissertation. Rather, I hope to have

made clear that for any given start and end points of a language change, there is not necessarily a

unity of process that produced the change. There are many paths between two diachronic stages

of a language, both in principle, and attested in the study of sound change.

I also hope to have made clear exactly the role I see the study of sound change playing in the

general linguistic enterprise of delimiting the possible knowledge of speakers, rather than simply

being a case of “butterWy collecting.” The same goes for the high-volume-data and statistical

analysis which form the empirical base of this dissertation.

2.2 The Phonology-Phonetics Interface

Having discussed the importance of localizing particular sound changes to speciVc domains of

knowledge, I’ll now outline the architecture of the Phonology-Phonetics interface that I’ll be as-

suming in this dissertation.

2.2.1 Modular and Feedforward

In this dissertation, I will be operating within the paradigm of phonology and phonetics which

is modular and feedforward, to use the terminology from Pierrehumbert (2006). My motivation

for explicitly committing to a particular framework is not, primarily, to argue for the correctness

of that framework. Rather, it is in acknowledgement that in linguistics, as with all other Velds

of scientiVc inquiry, it is only possible to make progress if we commit to a particular paradigm

while performing our investigations. It is the theoretical framework which delineates the set of

facts to be explained, and deVnes how new results ought to be understood. To the extent that

a theoretical framework is successful at discovering new facts to be explained, and for pursuing

analyses of these facts, we can call it successful. There is thus a mutually reenforcing relationship

between the results of research, which would be impossible to arrive at without presupposing
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a theoretical framework, and the theoretical framework, which is supported by its results. The

same is true of this dissertation.

2.2.2 The Architecture

The grammatical architecture I’ll be broadly adopting is that proposed by “Generative Phonetics”

(Keating, 1985, 1990; Pierrehumbert, 1990; Cohn, 1993 inter alia). The most important, core aspects

of this model are the modular separation of phonology and phonetics, and the translation of

phonological representations into phonetic representations by a phonology-phonetics interface.

A schematic representation of this grammatical system, as adapted from Keating (1990), is given

in Figure 2.3.

phonological input

surface phonological representation

phonetic representation

gestural score/intention

bodily output

Phonology-Phonetics Interface

Alignment & Interpolation

Articulators

Phonological Grammar

Figure 2.3: Schematic of the phonology & phonetics grammar.

In the following subsections, I’ll relate each level of the grammar to the discussion above re-

garding the strict relationship between cross-linguistic typology and sound change, with the un-

derstanding that my strongest theoretical commitments in this dissertation regard the Phonology-

Phonetics Interface.
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Input

The input to phonological computation is underlying form stored in the speaker’s lexicon. It is at

this level of representation the diUerences in phonemic incidence, as described above, occur. For

the purpose of this dissertation, I have almost no commitments to the nature of this underlying

form, such as whether it should be underspeciVed, and to what extent or based what principles,

or what constraints may or may not exist on possible underlying forms. My only theoretical

commitment is that the underlying form should be categorically represented. There may be some

variation at this level representation, but that would be represented as having multiple possible

underlying forms to choose from for a given lexical entry. For example, speakers of African

American English may variably choose /æsk/ or /æks/ for the lexical entry for Ask. This variation

in the choice speakers make between underlying forms does not mean that the options themselves

are gradient.

Phonological Processing

My assumption about phonological processing is minimally that it maps phonological inputs to

outputs which have the same representational system. Whether this mapping is done in rule-

based serialist framework or a constraints based framework is not of particular importance here.

For the most part, I will be describing phonological processes using a rule based notation, but I

am not taking that to be a substantive point. I will, however, make some allusions to a layered

or stratal model of phonology. This is partially because some of phonological processes I identify

apply at diUerent morphosyntactic domains, a fact which is more easily captured by phonological

theories which include strata. It is also partially due to the explicitness of the relationship between

diachronic change and strata that Bermúdez-Otero (2007) makes.

Targets of Phonetic Implementation

The aspect of the the grammatical architecture in which I have the most at stake is the interface

between phonology and phonetics. My initial assumptions about the interface are

(2.14) that it operates over the surface phonological representation,

22



(2.15) more speciVcally, it operates over phonological features.

The implication of (2.14, operation over surface forms) is that neither the underlying form, nor

the phonological processes which applied to it to produce the surface phonological form can be

relevant to phonetic implementation unless their properties are somehow carried forward to the

surface phonological representation. This means that when we see two phonetic forms that we

have some reason to believe have diUerent surface phonological representations (e.g. low [AI] and

raised [2i] before voiceless consonants), we can’t determine whether this is because a phonolog-

ical process diUerentiates these variants, or whether this is an underlying contrast present in the

input to phonological processing without appeal to independent facts.

The implication of (2.15, operation over features) is that surface representations which share

phonological features must also share some common phonetic target. This point may appear to be

too pedantic to mention, since most feature theories explicitly name phonological features after

their phonetic properties (e.g. [±high], [±ATR]), so it would necessarily follow that we wouldn’t

posit a segment as possessing a feature if it didn’t also possess the phonetic property. If we only

posit the feature [+ATR] for segments which have the property of advanced tongue root, then it

is vacuously true that all segments with [+ATR] will have a phonetic target of advanced tongue

root. However, the speciVc case of phonetic change in combination with some recent rethinking of

phonological representation does require assumption (2.15) to be made explicit. I am positing that

phonetic change involves changes to phonetic implementation, so that at one time point [+back]

has one phonetic target, and at a later time point [+back] has a diUerent target. The question

immediately arises as to which vowels ought to be aUected by this change, and the answer, given

(2.15), is all of those which share the feature [+back].

Furthermore, there is a growing body of research which advocates treating phonological rep-

resentation as being “substance free.” Blaho (2008) provides a relatively comprehensive overview

of theories which take a substance free approach. Broadly speaking, the substance free approach

which is most compatible with the theory of phonetic change which I am advocating is one where

there is no Vxed or typical phonetic implementation for a phonological feature cross-linguistically.

It would be impossible for me to accept the assumption that there is a Vxed phonetic implemen-
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tation of phonological features because I am investigating exactly those cases where the phonetic

implementation changes. The assumption that there is a typical phonetic implementation simply

appears to be unlikely, given that it would imply that there is a typical vowel system, deviations

from which cost some kind of energy. There are some reasonable explanations which don’t re-

sort to phonological explanation for the sorts of phonetic distributions which are more common

than others (Liljencrants and Lindblom, 1972; de Boer, 2001; Boersma and Hamann, 2008), and

explaining the same phenomenon twice is unnecessary.

But moreover, if there were typical phonetic implementations for phonological representa-

tions, sound changes would be more complex to explain. Weinreich et al. (1968) outlined a num-

ber of problems to be solved in the study of sound change which still remain the core focus of

sociolinguistics today. There is, for example, the Actuation Problem, which is a puzzle about how

historical, social, and linguistic events converged such that a sound change was triggered in a

particular dialect at a particular time, and not in all dialects, and not in this dialect at an earlier,

or later time. Another is the Transition, or Incrementation Problem, which is a puzzle about how

a sound change progresses continuously in the same direction over multiple generations. If there

were typical phonetics for phonological representations, this would introduce an additional prob-

lem, which we could call the Maintenance Problem, which would be a puzzle about how once

a sound change has become suXciently advanced, why it doesn’t revert back to the typical, or

lower energy phonetic distribution. Taking the rotation of the short vowels in the Northern Cities

Chain Shift (Labov et al., 2006) as an example, Labov (2010a) argues that its actuation can be ex-

plained in terms of the historical event of the Erie Canal opening, and the linguistic context of

the mixture of New York City /æ/ tensing and New England /æ/ tensing. Based on other studies

(e.g. Tagliamonte and D’Arcy, 2009), it is most likely that the incrementation of the NCCS most

likely occurred during the adolescence of speakers’ lives. The Maintenance Problem would pose

the question of why the NCCS has not gradually reverted back to the typical phonetics we would

expect for the phonological features in the dialect, because there would presumably be a constant

bias towards such a reversion either in acquisition or in speech production or perception, other-

wise the notion of typical phonetics would be totally vacuous. Now, perhaps future research into
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the phonology-phonetics interface will Vnd that there are typical phonetics for a Vxed set of uni-

versal phonological features, meaning Maintenance Problem has been a heretofore unexamined

problem in sound change. For the time being, though, I will conclude that there are not typical

phonetics for phonological features due to the fact that there are unidirectional sound changes.

Following the assumptions that there are no Vxed or typical phonetics for phonological fea-

tures to their logical conclusion would suggest that there is not a Vxed or universal set of phono-

logical features (Odden, 2006; Blaho, 2008; Mielke, 2008). Phonological features devoid of any

phonetic information would be strictly formal and relational, and the nature of their relation-

ship to phonetics would be, as Pierrehumbert (1990) said, semantic. The phonology-phonetics

interface, then, would then relate formal phonological representation to its phonetic denotation.

However, a fully articulated theory of radically substance free phonological features lies just out-

side what can be adequately argued on the basis of the data available to me, and is also not entirely

necessary to achieve interesting results.

I’ll be discussing the output of the phonology-phonetics interface mostly in terms of targets

in F1×F2 space, largely because the data I’m working with are vowel formant measurements,

not because this is a substantive claim about the nature of phonetic representation. The pho-

netic representation may actually be gestural targets and relative timing information, similar to

the proposal of articulatory phonology (Browman and Goldstein, 1986), or perhaps even another

alternative perceptual mapping, but since I don’t have articulatory or perceptual data to bring to

bear on the question, I will implicitly stick to F1×F2. When it comes to formalizing the relation-

ship between a phonological feature and its phonetic realization, however, I’ll refer instead to the

phonetic dimension at issue. For example, back vowel fronting will play a major role in the disser-

tation, so when it is necessary to get more explicit about the implementation rules involved, I’ll

describe them as mapping to a target along the “backness” dimension, for which I’ll be using F2

(and in some cases F2-F1) as a proxy for quantitative investigation. In addition, I’ll be describing

implementation in terms of implementation rules that have a phonological input and phonetic

output, like (2.16) for example.

(2.16) [+low] 0.1 height
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I’m using “ ” in the implementation rule in part to emphasize that this is a qualitatively dif-

ferent sort of process than similarly formulated phonological rules, and in part to represent the

imprecision in this formulation. I am only describing the interface in terms of rules for nota-

tional and expository convenience. In reality, the interface probably involves a complex system

of non-linear dynamics, like those described by Gafos and Benus (2006). Importantly, however, I

will be treating these phonetic implementation rules as being strictly translational, meaning their

output is insensitive to local phonological context. This is largely to avoid making phonetic im-

plementation rules too powerful, and the resulting theoretical framework too weak. For example,

take the common phenomenon of pre-voiceless vowel shortening. If phonetic implementation

could be sensitive to phonological context, there would be fully three diUerent ways to account

for pre-voiceless shortening: (i) a phonological process adds/changes a [long] or [short] feature

on vowels when preceding voiceless consonants, (ii) a phonetic implementation rule sensitive to

the following phonological voicing gives vowels a shorter phonetic target, (iii) phonetic gestu-

ral planning reduces the duration of vowels when preceding phonetically voiceless consonants.

Since a combination of (i) and (iii) are already largely suXcient to account for phenomena like

pre-voiceless vowel shortening, and already contentiously ambiguous, it doesn’t seem necessary

to further expand the power of phonetic implementation to also account for patterns like these.

Fully resolving what the phonetic representation is, and how it is derived from the phono-

logical representation is beyond the scope of this dissertation, and also unnecessary in order to

say at least some things about the relationship between phonetic change and phonological repre-

sentation with certainty. To recap, the assumptions I’m making about the phonology-phonetics

interface are:

(2.17) Phonological and phonetic representations are qualitatively diUerent.

(2.18) The interface operates over the surface phonological representation.

(2.19) The interface operates over phonological features.

These assumptions are relatively simple, but still more explicit than a lot of research on phonetic

change. They also lead to a number of important consequences, such as the fact that segments
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which share phonological features should also share targets of phonetic implementation. Addi-

tionally, it should be the case that those properties of phonological representations which the

interface can utilize for phonetic implementation should also be the observed units of phonetic

change. For example, if the interface can only operate over individual phonological features, then

we should expect phonetic change to always eUect entire phonological natural classes. As a strong

assumption, this would be incredibly useful in determining what the appropriate feature system

of language ought to be. But I believe this strong assumption will be impossible to adhere to for

all cases, meaning that the interface must also operate bundles of features, or perhaps over gestalt

representations of segments as a whole. This will be discussed a bit further in Chapter 5.

Phonetic Alignment and Interpolation

I have separated the assignment of phonetic targets from the alignment and interpolation of those

targets in my model of the grammar because they are conceptually distinct, although they may

be implemented in one large step in reality, as suggested by Gafos and Benus (2006). At this

step in the process, phonetic targets may experience some temporal displacement due to the

phonetic alignment constraints in the language (Zsiga, 2000), and segments which are unspeciVed

for certain targets may have gestures interpolated through them (Cohn, 1993). It is phonetic

coarticulation at this level of representation that produces what I may occasionally call “phonetic

eUects.” For example, in Chapter 4, there is extensive discussion of the eUect of /l/ on the fronting

of /uw/ and /ow/. If the measurable eUect of /l/ on /ow/ is due to articulatory phasing relationships

between the velar articulation of /l/ and the vocalic gesture of /ow/, then I would describe this as

phonetic coarticulation, or a phonetic eUect. On the other hand, if /l/ triggers featural changes

on /ow/ in the phonology, producing diUerent surface phonological representation which thus

has a diUerent phonetic target, then I would describe this eUect as “phonological.” Of course,

distinguishing between these two radically diUerent sources of diUerentiation is non-trivial, and

is, in fact the topic of almost the entirety of Chapter 4.
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Universal Phonetics

What I call “Universal Phonetics” are those properties of the speech signal which are well and

truly non-cognitive, thus outside the domain of controllable variation. This will include both

physiological and acoustic properties outside of speakers’ control. For example, most (but not all,

(Simpson, 2009; Zimman, 2013)) diUerences in average F1 and F2 between speakers, speciVcally

men and women, can be attributed to diUerences in vocal tract length (see Figure 2.4). That

proportion of the diUerence between men and women which is attributable to this physiological

diUerence has everything to do with the physical properties of acoustics, rather than the cognitive

properties of speakers’ minds. Since this is a dissertation about language change, I will be focusing

on the latter, because presumably neither the physics behind acoustics nor human anatomy has

changed over the time course under examination here.
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Figure 2.4: Mean F1 and F2 values by sex and age in unnormalized Hz.

2.2.3 Sociolinguistic Variation

In the architecture laid out above in §2.2.2, the role of sociolinguistic variation is not mentioned.

I am following Preston (2004) in placing the “sociocultural selection device” outside of the core

grammatical architecture. Rather, Preston (2004) and I posit that knowledge of sociolinguistic

variation constitutes a separate and highly articulated domain of knowledge that utilizes option-

ality in the grammatical system. The way that utilization operates will, of course, depend on the
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properties of the level of architecture under question. For example, choosing diUerent phonolog-

ical inputs, or phonological processes, will necessarily involve manipulation of the discrete and

probabilistic properties of those systems, while altering the target of phonetic implementation

will involve manipulation of the continuous properties of that system.

Constraining the range of options available to the sociocultural selection device to strictly

those provided by the grammatical system is an important and principled move to make. For

example, to my knowledge, it has never been reported for any speech community that speakers

produce wh-island violations for sociostylistic purposes, and given the result from theoretical

syntax that wh-island violations are a grammatical impossibility, we can go ahead and claim that

they are also a sociolinguistic impossibility.

The scope of sociocultural selection device may also be broader than would be expected if it

were an additional module of the grammatical system. By the modular feed-forward hypothesis,

each module of the grammatical system can only make use of information passed to it by the

preceding module. For example, when transforming phonological representations into targets for

phonetic implementation, it should be the case that the interface can only be able to utilize surface

phonological representations, and not, say, morphological information. However, MacKenzie and

Tamminga (2012) have shown that patterns of variation are aUected by factors which cannot

trigger categorical grammatical processes. For example, the probability that an auxiliary will

contract onto an NP subject is inWuenced by the length of the NP, but NP word length is not

known to be a triggering factor in any categorical grammatical process. Tamminga (2012) has

also demonstrated with a number of variable processes that choosing one grammatical option

will boost the probability of choosing that same option again, with a decaying strength as the

time lag between instances increases. Again, no categorical grammatical process appears to be

triggered based on a combination of what happened at the last instance it could have applied, and

how long ago that instance was. In the context of the grammatical architecture I’ve laid out here, it

may be possible that the sociocultural selection device can look ahead and choose a phonological

input on the basis of how it will be phonetically implemented, something that the grammatical

system itself cannot do.
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2.3 Phonetic Change

The focus of this dissertation will be on sound changes like those discussed in §2.1.4, which I

will argue should be described as shifts in the phonetic implementation of surface phonological

representations, as discussed in §2.2.2. In this section, I will discuss these kinds of changes in

greater detail.

2.3.1 Phonetic Change is Continuous

For the purpose of this dissertation, I will use the term “phonetic change” to refer speciVcally to

changes which progress continuously, in any fashion, through the phonetic space. There are some

changes which may be called “phonetic” based on other principles, but they will not fall under

this deVnition here. A good example is the shift in Montreal French from an anterior (apical) to a

posterior (dorsal) version of /r/. SankoU and Blondeau (2007) describe this change as progressing

discretely, both in terms of the phonetics (tokens of /r/ were realized either as [r] or as [ö]) and in

its progression through the speech community (most speakers used only one or the other variant).

They also describe this as a phonetic change in /r/, because “the change in the phonetics of /r/

does not appear to interact with other aspects of Montreal French phonology” and “does not have

systemic phonological consequences.” This is a reasonable way to deVne “phonetic.” This change

in /r/ did not:

(2.20) alter the system of phonological contrasts, either by merging with an existing phoneme,

or splitting to form a new one.

(2.21) alter the phonological grammar, either by ceasing or starting to be a target or trigger for

any processes.

By these deVnitions, it was not a phonological change. However, it does not meet the deVnition

of “phonetic change” that I will be using here, because of the categorical nature of the change.

Presumably this change in /r/ did involve a shift in its natural class membership, joining the set of

apical consonants.
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On the other hand, there may be some discontinuities in sound changes that I would call

phonetic. There is not empirical example of this, to my knowledge, but it is predicted to be possible

under Quantal Theory (Stevens, 1989; Stevens and Hanson, 2010), whereby continuous shifts in

articulation are related nonlinearly to acoustic realizations. That is, there are some regions in

articulatory space where large diUerences correspond to relatively small acoustic diUerences, and

other regions where small diUerences correspond to relatively large acoustic diUerences. A good

example is the diUerence between bunched and retroWex articulations of /r/ in English. The two

articulatory strategies for producing /r/ are drastically diUerent, but correspond to only a very

small acoustic diUerence in the distance between F3 and F4 (Espy-Wilson and Boyce, 1994).

Figure 2.5 displays a schematic diagram of the relationship between a hypothetical articulatory

dimension and its corresponding acoustic realization. If there were a phonetic change progressing

at a steady rate along the articulatory dimension, we would expect to observe a very slow rate of

change in the acoustics (the measurable aspect of change for most studies) through the regions

shaded in grey, with a sudden spike, or jump through the region in white.
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Figure 2.5: The proposed quantal relationship between changes in articulation and changes in
acoustic realizations

Sharp discontinuities in the time course of any langauge change may also occur due to soci-

olinguistic reasons. For example, during the rise of do-support in early modern English, there was

a brief period of time where the frequency of use of do-support dove sharply in the context of

negation. Warner (2005) attributes this sharp eUect to the development of a negative evaluation,

and thus avoidance, of the form don’t. This sociolinguistic inWuence generated a large perturba-
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tion in the observed trajectory of the change, but does not force us to reevaluate the underlying

grammatical analysis proposed for how this change progressed.

Simulating Phonetic Change as Categorical

However, it is still worthwhile to Vgure out whether phonetic changes which have appeared to

progress continuously through the phonetic space could be simpliVed as the competition between

two discrete phonetic targets. If this simpliVcation could be done, it would have a number of

desirable consequences. First and foremost, it would reduce the necessary complexity of the

phonology-phonetics interface. The change of pre-voiceless /ay/ in Philadelphia from [AI] to

[2i] could be described in terms of competing phonological representations without invoking

language speciVc phonetic targets for their implementation. In fact, some frameworks of the

phonology-phonetics interface do not allow for language speciVc phonetics, most notably Hale

and Reiss (2008), where categorical phonological representations are “transduced” directly into

articulatory gestures by the interface between the linguistic system and the biophysical system.

“Transduction,” according to Hale and Reiss (2008), involves no learning, and is part of humans’

universal genetic endowment. This is, admittedly, the more parsimonious hypothesis on a number

of conceptual grounds, and if it were also supported by the necessary empirical evidence it should

be adopted. Second, the dynamics of phonetic change could be reduced to essentially the same

ones that govern phonological, morphological, and syntactic change. The properties of competing

discrete forms are fairly well understood within variationist work, and could be immediately

imported for the purpose of understanding phonetic change.

As it stands, there has not been a rigorous attempt on the part of those studying phonetic

change to demonstrate that it doesn’t progress as competition between more-or-less categorical

variants. For the most part, sociophonetic methodology involves the examination and statistical

analysis of means. However, if this change were progressing as the categorical competition be-

tween two variants, merely examining the means would would not reveal this fact, and would

actually make the change appear indistinguishable from continuous movement of a phonetic tar-

get through phonetic space. This fact is more obvious when looking at changes that must progress
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in terms of categorical competition, like syntactic change. Figure 2.6 displays the loss of V-to-T

movement in negative declarative sentences in Early Modern English as collected by Ellegård

(1953). Each individual clause can only either have do-support, or have verb raising, as it would

be impossible to, say, raise the verb 55% of the way to tense. Each point in the plot represents the

proportion of do-support in an Early Modern English document.
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Figure 2.6: The loss of ‘V-to-T’ movement in Early Modern English

When coding tokens of do-support as 1 and tokens of verb raising as 0, the proportion of

do-support for a given document is simply the mean of this sequence of 1’s and 0’s. A misinter-

pretation of Figure 2.6 would be that there was a continuous shift in do-support. Even though

the average proportion of do-support changed gradually over time, any given token of do-support

from any time point will still either be categorically verb raising, or tense lowering. It does not

follow, then, that the diachronic trajectory of means reWects the synchronic pattern of variation.

Looking at Figure 2.7, which depicts the raising of /ay/ in pre-voiceless contexts in Philadelphia,

we cannot assume then that just because there is a continuous change in means along the di-

achronic dimension that the synchronic variation at any time point was also continuous.

However, there are other properties of the distributions of observations within speakers that

can cast some light on whether or not this change progressed as categorical competition between
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Figure 2.7: Pre-voiceless /ay/ raising.

[AI] and [2i], or whether it progressed in a phonetically gradual way between these two targets.

The question essentially comes down to whether or not speakers’ data is bimodal. Assessing

whether or not data is multimodal, especially when we do not have any a priori basis for placing

observations into categories, is statistically non-trivial. Some methods exist which rely mostly

upon comparing the goodness of Vt of a model which treats the data as monomodal, to a model

which treats the data as bimodal. However, if the “truth” is that there are two modes, but their

centers are close, and their variance broad, these tests will most likely fail to detect that fact.

Moreover, these tests usually require more data than we have available per-speaker for suXcient

power. Instead, here I will compare the observed data to the expected patterns from simulation

in broad qualitative terms. The qualitative results are so striking and overwhelming that if there

were a statistical null hypothesis test associated with them, statistical signiVcance would be vir-

tually guaranteed.

The distributional properties of each speaker that I will be examining are their standard de-

viation and the kurtosis. Roughly speaking, the standard deviation of a statistical distribution de-

scribes how broad the distribution is relative to its center. Kurtosis, on the other hand, describes
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how peaked the distribution is. Figure 2.8 illustrates three diUerent distributions which diUer in

their standard distributions and kurtosis. As a distribution becomes more broad, its standard de-

viation increases, and as it becomes more plateau-like, its kurtosis decreases. Darlington (1970)

argued that kurtosis is actually best understood as a measure of bimodality, with low kurtosis

indicating high bimodality, which makes it a perfect measure for the problem at hand.

sd = 1; kurtosis = 3

sd = 1.36; kurtosis = 2.3

sd = 1.75; kurtosis = 1.93
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Figure 2.8: Three distributions diUering in standard deviation and kurtosis.

When mixing two distributions, there will be a systematic relationship between the mean of

the mixture and its standard deviation and kurtosis. Figure 2.9 illustrates what phonetic change

which progresses as competition between two categorical variants would look like. Each facet

represents one hypothetical speaker who varies in choosing category A or B with some proba-

bility. The label for each facet represents the probability that the speaker will choose variant A.

Category A has a mean of 1.5 and a standard deviation of 1, while Category B has a mean of -1.5,

and a standard deviation of 1. The phonetic targets for Categories A and B are the same for all

speakers; all that diUers between speakers is the mixture proportions of A and B.

While the fundamental behavior of these speakers is categorical and probabilistic, given the

relative closeness of the phonetic targets for Categories A and B, a researcher would not be able

to tell on a token by token basis which category a speaker intended to use in a particular instance.
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Figure 2.9: An illustration of the systematic relationship between mean, standard deviation, and
kurtosis of the mixture of two distributions.

Thus, all that is observable to the linguist is the over-all distribution of the mixture of the two

categories, represented by the shaded regions in Figure 2.9. However, as is annotated in each facet

of Figure 2.9, there is a systematic relationship between the mean of the mixture distribution and

its standard deviation and kurtosis. The more homogeneous mixtures (the far left at 0.1 and far

right at 0.9) have the most extreme means, fairly close to just the pure means of just Category A

and Category B. They also have the lowest standard deviations and highest kurtosis. The most

even mixture (the center, at 0.5) has a mean that is almost exactly in the middle between Category

A and B. It also has the broadest distribution, giving it the highest standard deviation, and is the

most plateau-like, giving it the lowest kurtosis.

If phonetic change progressed as competition between categorical variants, then we should

expect to see a systematic relationship between the mean of speakers’ data and the standard

distribution and kurtosis of their data. The raising of pre-voiceless /ay/ in Philadelphia is perhaps

the perfect example of phonetic change to examine for this kind of relationship. First, the change

progressed mostly along just one dimension: F1. Second, it covered a very large range of F1 values

from beginning to end, starting oU with an essentially low nucleus and ending with an essentially

mid one. We can make a principled argument that there is a phonological diUerence between

these two endpoints ([+low] to start, [−low] to end), and the phonetic diUerence between them
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is large enough that we ought to observe as strong a relationship between the mean, standard

deviation and kurtosis as we could expect to for any phonetic change.

Figure 2.10 plots speakers’ mean F1 values against the standard deviation and kurtosis of F1.

As a Vrst pass attempt to look for a systematic relationship between means, standard deviation

and kurtosis, this Vgure does allow much hope of Vnding one. The standard deviation of speakers’

F1 is strikingly consistent across the entire range of F1 means, and the mixture hypothesis would

predict a marked peak in the middle. The kurtosis of speakers’ F1 values is also very Wat, and

on average slightly larger than 3, which is the kurtosis for a normal distribution. The mixture

hypothesis would predict a marked drop in kurtosis in the middle of the F1 range.
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Figure 2.10: Comparing speakers’ means to their standard deviation and kurtosis for /ay0/.

It is possible to generate more precise expectations about what the standard deviation and

kurtosis of mixtures of [AI] and [2i] would be through simulation. Figure 2.11 displays the dis-

tribution of data for the 4 most conservative and 4 most advanced [ay0] speakers in the corpus.

BrieWy assuming that the /ay/ raising progressed as categorical variation between [AI] and [2i],

we can also assume that these extreme speakers have relatively pure mixtures of just one or the

other variant simply because their data lie on the extremes. We can sample tokens from these two

sets of speakers at diUerent mixture rates to simulate new speakers that lie along the continuum
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from conservative to innovative. The distributional properties of these simulated speakers should

roughly approximate the expected distributions of speakers for whom /ay/ raising progresses as

categorical competition.
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Figure 2.11: Distribution of [ay0] data for the 4 most conservative and 4 most advanced speakers.

For these simulations, I capped the maximum number of tokens that a single real speaker

could contribute to the pool of tokens I’d resample from at 30. For every simulated speaker, I

sampled 40 tokens from the original speakers’ data with replacement. The proportion of tokens

sampled from the conservative ([AI]) vs innovative ([2i]) pool varied from 0%:100% all the way

to 100%:0% by increments of 1%. For each mixture proportion, I simulated 100 speakers. Figure

2.12 plots the data from 9 simulated speakers at diUerent mixture rates. The far left facet displays

simulated speakers who drew from the innovative pool of data 10% of the time, the middle facet

displays simulated speakers who drew from the innovative pool 50% of the time, and the far right

facet simulated speakers who drew from the innovative pool 90% of the time.

Figure 2.13 plots the relationship between mixture proportions of these 9 simulated speakers

and their distributional properties, speciVcally F1 mean, standard deviation, and kurtosis. As was

necessarily going to be the case, as the mixture of of innovative variants increases, the mean F1

drops (raising /ay/ in the vowel space). The most even mixtures of conservative and innovative
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Figure 2.12: Simulated speakers at the beginning, middle, and end of the change.

variants have the largest standard deviation, and the smallest kurtosis.
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Figure 2.13: The eUect of mixing distributions on three diUerent diagnostics: mean, standard
deviation, and kurtosis.

The mixture proportion of conservative and innovative variants of real PNC speakers is un-
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known (and as we’ll see, is not actually how this change is progressing). However, since the

relationship between mixture proportion and mean F1 is linear and monotonic (as seen in the

left facet of Figure 2.13), we’ll compare the mean F1 to the other distributional properties of real

speakers and of the simulated speakers.

Figure 2.14 displays the Vrst of these comparisons, plotting the mean of F1 against the kurtosis

of F1. The Vlled blue contours represent the region of highest density for the simulated speakers,

and the blue line is a cubic regression spline Vt to the simulated data. As expected, the simulated

speakers have a dip in the kurtosis, indicating more bimodality, about midway through the course

of the change. The red points represent the data from real PNC speakers, and the red line is a

cubic regression spline Vt to their data. Many real speakers fall within the high density regions of

the simulated speakers, but the over-all relationship between mean F1 and F1 kurtosis is totally

diUerent. While the simulated speakers have a kurtosis well below that of a normal distribution

(represented by the horizontal black line) midway through the change at F1 means slightly less

than 1, the real speakers’ kurtosis is, on average, slightly larger than a normal distribution. This

means that simulated speakers have very plateau-like distributions to their data midway through

the change, while real speakers actually have rather peaked distributions throughout the change,

including the midpoint.

Figure 2.15 plots the second key relationship between mean F1 and F1 standard deviation.

Again, the blue contours represent the region of highest density for simulated speakers, and the

blue line is a cubic regression spline Vt to the simulated speakers. Again, the red points represent

the data of real speakers from the PNC, and the red line a cubic regression spline Vt to their data.

The mismatch between simulated expectations and real data is even more striking in this case.

Almost no real speakers have the standard deviation of F1 we would expect at almost every stage

of the change. In fact, the standard deviation of F1 across speakers remains remarkably stable

throughout the change.

The conclusion we can draw is that the model of phonetic change whereby /ay/ raised from

[AI] to [2i] through categorical variation between these two forms is a poorly Vtting one. Rather

the fact that both the standard deviation of F1 and its kurtosis remains essentially constant
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overlaid on the two dimensional density distribution from the mixture simulation. Note the y-axis
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Figure 2.15: The relationship between normalized F1 mean and standard deviation as observed in
speakers, overlaid on the two dimensional density distribution from the mixture simulation. Note
the y-axis is logarithmic.
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throughout the change, with only the mean changing, lends support to the model where /ay/

raised to a mid position through gradual phonetic change of a single phonetic target. This model

of phonetic change, which has actually been the default assumption of sociolinguists for good

reason, necessitates language speciVc phonetic implementation, for the reasons laid out in the

beginning of this chapter. Language change is necessarily a change in speakers’ knowledge of

their language. This change progressed as continuous movement of a single allophone through

the phonetic space, meaning speakers must have some kind of non-trivial phonetic knowledge

which they acquired with the rest of their linguistic knowledge, and represented in some way.

Based on the phonetics/phonology architecture laid out in §2.2.2, the most plausible locus of this

knowledge is in the rules of phonetic implementation of phonological representations.

2.4 Conclusion

In this chapter, I have attempted to outline what is at stake, in terms of the architectural theory of

phonetics and phonology, when diachronic analysis is brought to bear on the problem. The basic

goal of modern linguistics is to understand what constraints there are on possible languages.

Given that during language change from state A to state B, every intermediate state is also a

language, then it follows that the path of language change is also constrained at all points by

the same constraints as synchronic languages. So careful analysis of how language changes can

inform our theories of synchronic grammar, and vice versa.

I have also tried to carefully deVne the particular object of study in this dissertation. “Phonetic

change” is a phenomenon, but as I believe was made clear in §2.1.6, the outcomes of language

change, like “merger” or “metathesis,” are not unitary phenomena, but can arise through multiple

diUerent kinds of change to speakers’ competence. The remainder of this dissertation will be

devoted to supporting the primary claim of §2.3 that most of the observed phenomena related to

“phonetic change” can be attributed to changing knowledge of the phonetic implementation of

phonological representations, but also to determining which properties should be attributed to

other domains of knowledge.

The results from §2.3.1 may be seen as suggestive that a categorical phonological represen-
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tation is not necessary to capture the observed properties of phonetic change. However, this is

not my conclusion, and the following chapters will also be devoted to demonstrating that both

phonological and phonetic representations are necessary to capture the facts of sound change.
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Chapter 3

The Philadelphia Neighborhood

Corpus Data

In this chapter, I’ll brieWy describe the data used in this dissertation from the Philadelphia Neigh-

borhood Corpus. I’ll try not to be overly redundant with descriptions which are already in press

(Labov et al., 2013; Evanini, 2009), but I have enriched the data to some extent, which requires

some explanation.

3.1 The Philadelphia Neighborhood Corpus

The Philadelphia Neighborhood Corpus [PNC] contains sociolinguistic interviews carried out in

Philadelphia between 1972 and 2012 (at the time of this writing). These interviews were carried

out as part of coursework for Ling560 ‘The Study of the Speech Communuty.’ Each year the course

was taught (annually from 1972 to 1994, every other year from then on), students formed into

research groups, and selected a city block on which to base their study. For more information on

Ling560 and the neighborhoods which have been studied, see Labov et al. (2013). The total Ling560

archive contains interviews with 1,107 Philadelphians. Not taking into account the interviews

collected in the 2012-2013 academic year, interviews with 379 speakers have been transcribed by

undergraduate research assistants, and included in the PNC.
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3.1.1 Forced Alignment and Vowel Extraction (FAVE)

The audio recordings and transcriptions of the interviews were then processed by the Forced

Alignment and Vowel Extraction (FAVE) suite (Rosenfelder et al., 2011). As the name would sug-

gest, there are two steps to the FAVE analysis. First is forced alignment, which aligns words and

phones to the audio. The acoustic models for FAVE come from the Penn Phonetics Lab Forced

Aligner [p2fa] (Yuan and Liberman, 2008), with some extra procedures added to account for over-

lapping speech. With the forced alignment, we can identify where in the audio a particular vowel

begins and ends.

The second step is automated vowel formant analysis, an approach Vrst attempted by Evanini

(2009). The errors involved in LPC formant analysis are frequently catastrophic, and it was for

this reason that the authors of the Atlas of North American English concluded that automated

formant analysis was not feasible at the time (Labov et al., 2006). For example, for a vowel like

/iy/, in which there is a large distance between F1 and F2, an LPC analysis using 12 poles might

erroneously detect a formant between F1 and F2, providing formant estimates with an F2 which

is too low. On the other hand, for a vowel like /O/, where F1 and F2 are very close, an LPC analysis

using 6 poles might not diUerentiate F1 and F2, and would return what is actually F3 as F2. In

practice, errors like these have been handled by a researcher visually comparing LPC estimates to

the spectrogram, and to their personal prior expectations for what the formants of this particular

vowel ought to be, adjusting the LPC parameter settings accordingly.

What the FAVE suite does is replace a researcher’s prior expectations with quantitative priors

from the Atlas of North American English. The vowel class we are trying to measure is given

by the forced alignment, meaning that the acoustic data is labeled. Drawing from the ANAE, we

can establish certain expectations for the formant measurements we can expect for the speciVc

label. For 4 diUerent LPC parameter settings (6, 8, 10, and 12 poles) we extract the estimates for

F1 and F2 frequencies and bandwidths, and compare these to our priors from the Atlas of North

American English using the Mahalanobis distance. The LPC parameter setting with the smallest

Mahalanobis distance is taken to be the winner. This process is repeated for every vowel in the

speaker’s interview.
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We found that even after we chose LPC parameter settings based on comparison to the At-

las of North American English, there were still a small number of gross errors in the data. We

guessed that this may be due to the fact that priors based on the entire ANAE may not be the most

appropriate priors for each individual speaker. The most appropriate prior expectation for how a

speaker ought to pronounce a vowel is actually how that speaker usually pronounces that vowel.

Having eliminated most gross errors from the speaker’s vowel measurements through compari-

son to the ANAE data, we could now generate reasonable speaker speciVc expectations for each

vowel.1 As a second step, then, FAVE iterates through all of the vowel measurements again, this

time comparing the diUerent LPC settings to the speaker speciVc vowel distributions. This second

step, in addition to vowel speciVc heuristics for selecting a measurement time point,2 eliminates

almost all gross errors.

For the time being, the FAVE system can only be assured to give high quality results for North

American English (because of the reliance on ANAE priors), and only for an aligned corpus using

the CMU dictionary transcriptions (which is what p2fa and FAVE-align use). However, extending

the method to any given dialect or language is conceptually trivial. First, a certain number of

high quality hand measurements for each vowel in the dialect needs to be collected. The ANAE

is a large database, but the sample size necessary to establish the Vrst pass priors need not be

as large. Even relatively small numbers of measurements, say 10 to 20 per vowel, ought to be

suXcient, since the goal of the priors is not to provide an overly precise estimate for each vowel,

but rather just to weed out the grossest errors. With these priors collected, the implementation

of FAVE would need to be changed to not make speciVc reference to the CMU labels. Of course,

FAVE-extract is dependent on having an alignment, which for now is based on the models from

p2fa. However, for other dialects or languages, there are other trainable aligners available, like

the Prosodylab-Aligner (Gorman et al., 2011).

1This was my own substantive contribution to the FAVE suite.
2These were explored and implemented by Ingrid Rosenfelder.
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3.2 Enrichment of Contextual Information

FAVE-extract provides two diUerent kinds of output Vle types: the Plotnik Vle formant (Labov,

2006a), and a tab delimited Vle. For the purpose of my dissertation, the data available in these

outputs was not entire suXcient. With regards to the contextual coding, they indicate the place,

manner and voicing of the following segment, the nature of the syllable coda, and how many

following syllables in the word, and the quality of the preceding segment. The actual label for

the preceding or following segment is not included, nor the transcription of the word, or any

contextual information across word boundaries. Some of this information is crucial for my anal-

yses, so I enriched the information available from the original FAVE-extract output. Using the

time stamp of the measurement point, I scanned the Praat TextGrids which served as the input

for FAVE-extract and tried to identify the vowel that corresponded to a particular measurement.

This step was complicated by the fact that some vowels were not measured within the boundaries

provided by the FAVE-align, but rather within the boundaries of the preceding segment. Any

vowel which could not be programmatically located in a TextGrid were discarded. In addition,

one speaker’s TextGrid could not be located in the corpus, and their data has also been excluded

from this dissertation.

Once locating the correct vowel in the TextGrid, I extracted the following information for the

vowel.

(3.1) the full CMU transcription for the word the vowel is located in.

(3.2) the preceding segment, disregarding word boundaries.

(3.3) the following two segments, disregarding word boundaries.

(3.4) the location of the vowel in the word, coded as

(a) word initial

(b) word Vnal

(c) coextensive with word boundaries (e.g. I)

(d) word internal

47



These additional pieces of information were crucial for most analyses in this dissertation. For

example, for word Vnal vowels, knowing the following segment was crucial for investigating

whether the conditions on certain phonetic changes applied at the phrase or word level. Also,

with the full CMU transcription of the word, I was able to apply simple syllabiVcation algorithms

which allowed me to, for example, compare open and closed syllables on the conditioning of /ey/,

and to identify which following /t/ and /d/ were Wapped when looking at /ay/.

3.3 Total Data Count

The Ling560 Veldworkers have visited a relatively racially diverse set of neighborhoods. However,

the vast majority of speakers included in the PNC so far are of White European descent. It would

be a mistake to treat data drawn from African American Philadelphians and White Philadelphians

as being drawn from one uniVed speech community. The two social groups clearly form separate,

but mutually inWuencing, speech communities (Labov et al., 1986). In fact, Henderson (2001) found

that listeners could correctly identify White and African American Philadelphians’ race simply

from a recording of them counting from 1 to 20. Despite the facts that the mutual inWuence of

these two dialects on each other is so interesting, and that the White Philadelphian dialect is

spoken now by a numerical minority of all Philadelphians, the nature of the data available at the

moment constrains me to look exclusively at White speakers.

Taking into account that I will only be examining the data from White Philadelphians, that

one speaker had to be excluded because I could not locate their TextGrid, and that some vowel

measurements had to be excluded because the vowel could not be programmatically located in

their TextGrid, I will be working with 735,408 vowel measurements from 308 speakers. Figure 3.1

plots a histogram of how many vowel measurements are available from each speaker.

3.4 Normalization

All of the data were normalized to formant intrinsic z-scores (i.e. Lobanov Normalization) (Adank

et al., 2004). In this dissertation, I will be using the z-score measure directly, rather than rescaling
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Figure 3.1: Histogram of how many vowel measurements are drawn from each speaker.

it to a hertz-like measure.

3.5 Choice of Time Dimension

There are a number of diUerent possible time dimensions available from the corpus (see SankoU

(2006) for an overview of real and apparent time). I could, for example, use a strictly real time

measure, and evaluate the phonetic changes I investigate against their year of interview. There

are also two diUerent apparent time measures available, speakers’ Age and Date of Birth. Figure

3.2 plots the year of interview and the age of the speaker, while Figure 3.3 plots the date of birth

of the speaker, and their age at the time of the interview. What should be clear from Figure 3.3 is

that any result obtained using a speaker’s date of birth is going to be very similar if the speaker’s

age was used instead. The high correlation between speaker’s age and date of birth is simply due

to the facts of human lifespan, and that the Veldwork has covered 40 years.

However, it is possible to compare statistical models that use each kind of time dimension

to see which has the best predictive power. Labov et al. (2013) did this by comparing the r2 of
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each, and I will brieWy replicate that analysis here. Figures 3.4 to 3.6 plot the relationship between

the normalized F1 of pre-voiceless /ay/ and the three possible diachronic dimensions (year of

interview, at at interview, and date of birth).
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Figure 3.4: Relationship between /ay/ raising and year of recording.
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Figure 3.5: Relationship between /ay/ raising and speaker’s age.
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Figure 3.6: Relationship between /ay/ raising and speaker’s date of birth.
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I Vt three generalized additive models to predict the F1 of pre-voiceless /ay/ using cubic re-

gression splines for each sex.3 Table 3.1 displays the r2 and the Akaike Information Criterion

[AIC] for each model. The model predicting pre-voiceless /ay/ F1 using speakers’ date of birth has

the highest r2 and the lowest AIC, suggesting that this ought to be the preferred model.

Predictor r2 AIC

Year 0.03 247
Age 0.49 53
Date of Birth 0.59 -11

Table 3.1: Model comparisons for using diUerent time dimensions to predict pre-voiceless /ay/
height.

Pre-voiceless /ay/ raising exhibits one of the two patterns of change in Philadelphia that Labov

et al. (2013) identiVed (linear incrementation). Just to make sure that date of birth is also the best

diachronic dimension for the other pattern of change (reversal), I Vt three models predicting the

fronting and raising of /aw/ using year of the recording, speakers’ age, and speakers’ date of birth.

The r2 and AIC for these models are displayed in Table 3.2. The model using date of birth again

has the highest r2 and lowest AIC, suggesting that for the changes which reversed course, date of

birth is also the best diachronic dimension to use. The fact that the r2 for the best /aw/ is much

smaller than the r2 of the best /ay/ model is probably due to the fact that /aw/ is more highly

diUerentiated along social dimensions, as Labov et al. (2013) found when they took into account

speakers’ level of education.

Predictor r2 AIC

Year 0 454
Age 0.11 423
Date of Birth 0.13 417

Table 3.2: Model comparisons for using diUerent time dimensions to predict /aw/ raising and
fronting.

Given that date of birth has the best predictive power for both /ay/ and /aw/, which themselves

exemplify the two major patterns of change I investigate in this dissertation, I’ll be using date of

3The formula was gam(F1.n ∼ s(X, bs = ”cs”, by = Sex)).
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birth as the diachronic dimension throughout the dissertation.
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Chapter 4

The Rate of Phonetic Change

When examining the eUect that one speech segment has on an adjacent segment, there is a persis-

tent problem involved in trying to determine whether that eUect should be attributed to phonetic

coarticulation, or to a phonological process, especially since the two can appear to be so similar

(a so-called “duplication problem”, (Ohala, 1990; Cohn, 2007)). This problem is compounded when

these eUects are spread out across generational time. The diXculty in distinguishing between

phonetic coarticulation and phonological processes with synchronic data, among other things,

has led some to propose a much more phonetics-like model of phonology, where the phonol-

ogy operates over much smaller granular primitives (e.g. Flemming, 2001), and where gradient

phonetic realizations are subject to phonological considerations, like contrast.

Meanwhile, an increasing volume of research makes appeals to language change to explain

phonological processes, and the apparent naturalness of phonology. Evolutionary Phonology, as

proposed by Blevins (2004), is a good example. Blevins states the central premise of Evolutionary

Phonology this way:

Principled diachronic explanations for sound patterns have priority over competing
synchronic explanations unless independent evidence demonstrates, beyond reason-
able doubt, that a synchronic account is warranted. (Blevins, 2004, p 23.)

A key problem for lines of research like this one is that few utilize evidence from language

change in progress to support their arguments. Most of the argumentation in Blevins (2004), for
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example, is based on comparative reconstructions, which provide us with proto forms A, and

daughter forms B, C, and D, thus indicating 3 diUerent sound changes: A → B, A → D, and A

→ C. Blevins (2004) follows up the identiVcation of sound changes like these with argumentation

for the phonetic naturalness of each change, and how the change may have occurred given this

phonetic naturalness. Blevins proposes some possible mechanisms for sound change (Change,

Chance, Choice), but these mechanisms are supported only by the conceptual plausibility that

they may have generated changes A → B, etc., not by direct evidence of these mechanisms at

work in a sound change in progress.

Another good example of an appeal to sound change that lacks support from change in

progress is Ohala (1990). In that work, Ohala examines the phenomenon of consonantal place

assimilation. First, he identiVes C1C2→ C2C2 as a common sound change.

(4.1)

Latin Italian

scriptu > scritto

nocte > notte

Then, he reports results of experiments where various manipulations to non-word sequences like

[apta] can aUect whether English listeners report hearing [apta], [atta], or [appa]. Unsurprisingly,

subjects in the studies were much more likely to misperceive [apta] as [atta] (93%) than as [appa]

(7%). The inference that Ohala (1990) makes is that these experimental subjects were, in some

sense, recreating a sound change of the type in (4.1). However, even when taking together the

experimental results with matching attested sound changes, the way in which the change took

place remains underdetermined. The change from C1C2 > C2C2 could have been lexically grad-

ual, slowly diUusing through the lexicon, or it could have been lexically abrupt. It could have

started in one context (say kt> tt), then spread to other contexts, or it could have aUected all con-

texts simultaneously. In the case of consonantal place of articulation, it’s unlikely that this change

would have been phonetically gradual, but in the case of post-coronal [u] fronting, another exam-

ple from Ohala (1981), it’s an open question whether it would progress in a phonetically gradual

way, or abruptly. The fact that the way language changes like C1C2 > C2C2 are underdetermined

by experimental work like Ohala (1990) is not just a descriptive gap, but an explanatory one. As

55



I argued in Chapter 2, the way in which language change progresses is determined by what part

of speakers’ linguistic competence is changing, meaning one’s theory of linguistic competence

deVnes possible paths of language changes, and vice versa. A solid result coming out of Ohala

(1981, 1990) is that there appears to be a relationship between the kind of persistent errors listers

make and the outcomes of sound change, but I would argue that is a new fact to be explained, not

an explanation itself.

Simulation of language change has also become an increasingly common tool for researchers

interested in language change. Unfortunately, the success of these simulations is usually judged

by comparing the initial and Vnal states of the simulation to the initial and Vnal states of attested

sound changes, rather than by comparing the dynamics of change in the simulation to the dy-

namics of a known change in progress. For example, Boersma and Hamann (2008) try to model

the fact that speech sounds tend to be maximally dispersed along acoustic dimensions by using

agent based simulations of cross-generational language acquisition with bidirectional constraint

grammars. Their results are interesting and compelling, but their conclusion that their model is

a success is based on the fact that it produced maximally dispersed distributions, not that they

produced realistic patterns of language change when compared to other language changes in

progress.

I am proposing that theoretical models like the ones I’ve just mentioned must compare their

predictions about the dynamics of language change to the dynamics of actual language changes

in progress in order to claim deVnitive empirical support. Fortunately, there is a well established

Veld of inquiry into the dynamics of language change in progress, Quantitative Sociolinguistics,

with similarly well established methodologies for the study of language change in progress (e.g.

Labov, 1994, ch. 3, 4). In order to compare the results of simulation and experiment to language

changes in progress, it is crucial to hash out exactly what patterns of language change we ought

to see based on diUerent theories of phonology and phonetics, which is one of the partial goals of

this dissertation.

The goal of this chapter is to both introduce a novel technique for distinguishing between

phonetic and phonological inWuences on phonetic change, and to establish some basic facts about
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the dynamics of sound changes which are subject to some kind of conditioning factors: comparing

the rate of inter-generational sound change of vowels across diUerent linguistic contexts. While

these basic facts will be of considerable intrinsic interest to theories of language change, I believe

I’ve made it clear that they will also be of considerable interest to phonological theory more

broadly construed.

4.1 Phonetic Coarticulation vs Phonological DiUerentiation

Strycharczuk (2012, ch. 2) outlines a number of ways that researchers have attempted to distin-

guish between phonological processes and phonetic coarticulation.

(4.2) Compare segments which are ambiguous between phonetic coarticulation and

phonological assimilation to segments which are unambiguous. e.g. compare intervocalic

/s/, which may undergo either categorical voicing assimilation or phonetic voicing

coarticulation, to phonemic /z/.

(4.3) Examine the coarticulatory eUect over the duration of the segment. A phonetic cline, with

its highest point adjacent to the coarticulatory source is indicative of phonetic

coarticulation, while a phonetic plateau across the entire duration of the segment is

indicative of a phonological process (Cohn, 1993).

(4.4) Estimate the bimodality of the phonetic distribution of the ambiguous segments, with the

hypothesis that strong bimodality is indicative of a phonological distinction.

(4.5) Examine the coarticulatory eUect’s sensitivity to speech rate. The hypothesis is that

phonetic coarticulation should be sensitive speech rate, but phonological assimilation

should not be.

Both (4.2) and (4.3) appear to me to be reasonable approaches to the problem, but unfortu-

nately not universally applicable. None of the cases studies I will be investigating involve neu-

tralization, which is key for (4.2), comparing the phonetics of derived segments to underlying

segments. For example, I will be looking at the eUect of nasals on the /aw/ diphthong. The most
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conservative realization for the nucleus of this diphthong is [æ], when followed by oral segments.

However, even the most conservative realizations of the /aw/ nucleus are considerably fronter and

higher when followed by nasal segments, [æfi∼efl]. I’m unable to utilize (4.2), because pre-nasal /aw/

isn’t neutralized to a diUerent segment which appears independently, so I have no unambiguously

phonological form of [æfiU] to compare pre-nasal /aw/ to.

The next option of comparing phonetic clines to plateaus (4.3) is also diXcult to bring to

bear on the case studies at hand. To begin with, the Philadelphia Neighborhood Corpus, in the

form I’ve had available for this dissertation, only contained point measurements for the nuclei

of diphthongs. However, it is even diXcult conceptually to determine what would constitute a

cline, and what would constitute a plateau in the cases I will be looking at. Using the example

of /aw/ again, its raising and fronting when adjacent to a nasal is undoubtedly related to nasality

in some way. However, the dimension along which the eUect of the following nasal plays out is

in vowel height and frontness, which are only indirectly related to nasality. Moreover, /aw/ is an

intrinsically dynamic speech segment with two targets. Determining whether the eUect which

fronts and raises the nucleus of /aw/ is somehow stronger in the glide, or whether it’s a constant

eUect throughout the entire diphthong would be a complicated exercise indeed.

The remaining two options, examining bimodality of the distributions (4.4) and determining

speech rate eUects (4.5) could be feasibly applied to the cases I’m examining, but there are good

reasons to call the diagnostic validity of these approaches into question. To begin with bimodality,

it is trivial to come up with examples of bimodal distributions which clearly don’t correspond to

phonological diUerences. Figure 4.1 plots the distribution of mean F1 and F2 measurements for

/I/ for all speakers in the PNC. The distribution of /I/ is strongly bimodal, but this bimodality is

due to the sex of the speaker, since Figure 4.1 is displaying unnormalized data. There is no reason

to believe that men and women have fundamentally diUerent phonological representations or

even diUerent intended phonetic implementations for /I/. Rather, men and women clearly have

the same targets of phonetic implementation for the same phonological object, and those targets

have then been Vltered through phonetic contingencies (the sex linked diUerences in vocal tract

length).
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Figure 4.1: Sex diUerences in the acoustic realization of /I/ in unnormalized F1×F2 space.

The inter-speaker eUect of vocal tract length on the realization of vowels is an extreme case of

what I will henceforth be referring to as a “phonetic eUect.” However, at the moment there is no

theory of what the upper limit of intra-speaker phonetic eUects due to coarticulation ought to be,

especially if the degree of articulatory overlap is a language speciVc property, per the discussion in

§2.1.5. Another case study in this chapter will be on the eUect of a following /l/ on preceding /ow/

and /uw/. As /l/ in Philadelphia is frequently much more glide-like, especially in coda positions

(Ash, 1982), with its primary place of articulation being dorsal, it is conceivable that it may have

a considerable coarticulatory eUect on /ow/ such that a bimodal distribution of [ow]∼[owl] is the

product. This is doubly so if the phonetic alignment constraints for the Philadelphia dialect allow

for substantial gestural overlap of the /ow/ vowel and the dorsal /l/ gesture. Given these facts, it is

not strictly necessary that strongly bimodal distributions are indicative of phonologically distinct

targets.

Furthermore, there is also no theory for what the lower limit of phonetic diUerence is for two

phonologically distinct targets. For example, Labov and Baranowski (2006) note that in the Inland

North dialect region, the lowering and backing of /E/ and the fronting of /A/ has led to considerable
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overlap between these vowels for many speakers, without resulting in merger. They argue that an

average duration diUerence of 50ms is suXcient to maintain and signal the phonemic diUerence

in this case. This is a relatively small diUerence. For comparison, I calculated the Median Absolute

Deviation4 for the duration of /A/ for all speakers in the Philadelphia Neighborhood corpus. The

median MAD across speakers is 45ms. While it is diXcult to make direct comparisons between

these two studies due to the drastic diUerences in the dialects, the fact remains that the size of

between category diUerences in the Inland North is about the same size as the within category

variation in Philadelphia.

So, it is both the case that strong phonetic bimodality is not necessarily an indicator of phono-

logical diUerentiation, and the absence of strong phonetic bimodality is not necessarily an indica-

tor of the absence of phonological diUerentiation. As such, I will not be utilizing bimodality as a

diagnostic for distinguishing between phonetic and phonological eUects.

The fourth option, determining whether the eUect of one segment on another is sensitive

to speech rate (4.5) would be possible to implement with the PNC data. However, the operating

assumption behind this method that phonological processes should not be sensitive to speech rate

does not stand up to the results of sociolinguistic research. The concept of a variable phonological

rule was Vrst introduced by Weinreich et al. (1968), and since then, variable linguistic processes

of all sorts have been found to be sensitive to both grammatical and extra-grammatical variables,

like speaking style.

Using the case of /ow/ followed by /l/ to make this argumentation concrete, we could imagine

that there is a variable phonological process which spreads some additional dorsal feature from

/l/ to /ow/, producing a phonetically fully back [o:]. This phonological process could be close to

categorical at extremely fast speech rates, but as speech rate slows, its probability of application

falls oU. When /l/ doesn’t spread its phonological features to /ow/, however, it might still be

phonetically coarticulated with /ow/, an eUect which itself might decrease as speech rate slows

even further. The resulting data would appear to show a gradually decreasing eUect of /l/ on /ow/

as speech rate decreases, and we would miss the generalization of a phonological process at work

4The MAD is calculated by Vrst calculating the distance of all data points from the sample median, then taking the
median of their absolute values. i.e. median(|xi −median(x)|)
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if we were to interpret this to mean the eUect of /l/ on /ow/ is purely coarticulatory.

4.1.1 Phonological vs Phonetic Processes in Sound Change

I would like to bring evidence from sound change to bear on the question of whether the inWuence

of one segment on another is due to phonetic coarticulation of phonological diUerentiation. Let’s

assume that we are analyzing some hypothetical vowel, /V/, which appears in two diUerent seg-

mental contexts, / x/ and / y/. The distributions of [Vx] and [Vy] in F1×F2 space are given

in Figure 4.2.
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Figure 4.2: Distribution of contextual variants of a hypothetical vowel

There are two distinct ways in which the data in Figure 4.2 could have been generated. First,

/y/ could have spread some feature f onto V, creating a featurally distinct, thus phonologically

distinct allophone of /V/.

(4.6) V→ Vf / y

As phonologically distinct objects, [V] and [Vf ] can have independent targets for phonetic im-

plementation. The target of implementation for [Vf ], in this case, happens to be further back

along F2. In Figure 4.3, the two independent targets for [V] and [Vf ] are represented as two larger

points in the centers of their respective distributions.
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Figure 4.3: Independent targets of phonetic implementation produced by phonological diUerenti-
ation.

Alternatively, there could be no phonological process involved here at all. Instead, the map-

ping from phonological representations to phonetic targets could produce only one target, that

for [Vx]. However, segment [y] exerts a large coarticulatory pressure on [V], pulling the actual

productions of [Vy] back from their intended target. This coarticulatory shift is represented by

the arrow in Figure 4.4. The distribution for [Vy] does not have a larger point at the center of its

distribution in Figure 4.4 in order to indicate that it does not have its own independent target for

phonetic implementation.

As I have argued above, it is not possible to distinguish between these two scenarios given

the most common methodologies, nor by just eyeballing the data. However, we should expect

to see diUerent patterns in diachronic change depending on which process is operating. The key

diUerence is that in the case of phonological feature spreading, [V] and [Vf ] have independent

targets of phonetic implementation, while in the case of phonetic coarticulation, the realization

of [Vy] is yoked to [Vx]. Thus, it should be possible for these contextual variants of /V/ to have

separate diachronic trajectories only in the case of phonological feature spreading, while in the
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Figure 4.4: The eUect of coarticulation on shifting productions from intended targets.

phonetic coarticulation case, the realization of one variant should be yoked to the diachronic

trajectory of the other.

Figure 4.5 illustrates the interaction between phonological feature spreading and diachronic

phonetic change. The data in this Vgure represents a shift in one generation from Figure 4.3 where

the target of [V] has shifted frontwards along F2, but the target of [Vf ] has remained stable. The

target for [V] from the previous generation is represented as a large faint point. The important

point is that [V] has shifted independently from [Vf ], which contrasts sharply with Figure 4.6

Figure 4.6 represents the interaction of phonetic coarticulation and diachronic phonetic change.

Again, the target for [Vx] has shifted frontwards along F2, but because the realization of [Vy] is

the product of a coarticulatory shift, which has remained constant, [Vy] has also shifted front-

wards along F2.
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Figure 4.5: The interaction of phonological feature spreading and diachronic phonetic change.
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Figure 4.6: The interaction of phonetic coarticulation and diachronic phonetic change.
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4.2 The Rate of Language Change

In this section, I’ll be Weshing out more completely the way in which phonological feature spread-

ing and phonetic coarticulation produce diUerent predicted dynamics of sound change. Figure 4.5

illustrates the expected diUerence between two generations when phonetic change interacts with

phonological feature spreading. [V] moves frontwards along F2, leaving [Vf ] behind. Figure 4.7

presents a Vner grained illustration of this eUect over age cohorts. The top facet of Figure 4.7

illustrates the target for [V] moving along F2 from 0 to 2 along a classic S-shaped trajectory. The

phonetic target for [Vf ], on the other hand, remains constant at -2. The bottom facet of Figure 4.7

represents the year-to-year change in F2 for [V] and [Vf ].
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Figure 4.7: The rate of phonetic change in the context of phonological feature spreading.

By its very deVnition, the rate of change for [V] reaches its maximum in the bottom facet of

Figure 4.7 at the midpoint of the S-shaped curve in the top facet, because it is at the midpoint

of the S-shaped curve that the change is progressing at its fastest. The rate of change for [Vf ]

remains at 0 throughout, because it is not undergoing any phonetic change at all.

Another way to think about the relationship between the rate of change in the bottom facet

of Figure 4.7 and the trajectory of change in the top facet is that the trajectory in the top facet

represents the cumulative sum of values in the bottom facet. For example, the rate of change for
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[V] in 1950 is approximately 0.04. This means that the predicted value of F2 in 1950 is equal to

the value of F2 in 1949 plus 0.04. The value of F2 in 1949 was 1.42, so the predicted value of F2

in 1950 is 1.42 + 0.04 = 1.46. To Vgure out how diUerent the F2 of [V] is in 1950 from 1888 (the

earliest point in time in these Vgures), we merely need to sum up all of the rates of change from

1888 to 1950, and add that to the value of F2 in 1888. In 1888, F2 was 0, and the sum of all by-year

rates of change between 1888 and 1950 is 1.46, so the predicted value of F2 in 1950 is, again, 0 +

1.46 = 1.46. Meanwhile, the rate of change for [Vf ] in 1950 is 0, meaning the predicted value of F2

for [Vf ] 1950 is the value of F2 in 1949 plus 0; -2 + 0 = -2. The sum of all by-year rates of change

from 1888 to 1950 for [Vf ] is also 0, meaning that [Vf ] is expected to have the same F2 in 1950 as

in 1888.

A more technically accurate description of of the relationship between the rate of change and

the trajectory of change is that the rate of change is the Vrst derivative of the trajectory of change.

I will continue to describe the rate of change in terms of year-to-year diUerences for the sake of

interpretability. However, keeping in mind that I am really trying to model f ′(x), where f(x)

is the trajectory of change, could be useful for technical advancements of these methods in the

future.

The key takeaway from Figure 4.7 is that [V] and [Vf ] have diUerent rates of change, and as

I argued in §4.1.1, this is only possible because they are phonologically distinct objects, and thus

have diUerent targets of phonetic implementation.

Figure 4.8 illustrates the expected dynamics of phonetic change if the contextual variants of

/V/ were due to phonetic coarticulation. The solid line represents the movement of the target for

[Vx] along F2. The arrows indicate the coarticulatory eUect, shifting the productions of [Vy] back

along F2 from the target for [Vx]. This coarticulatory eUect remains constant over time, producing

a trajectory for [Vy] which is yoked to [Vx], thus parallel to it over time.

The rates of change of two parallel trajectories, even if these trajectories are displaced upwards

or downwards, will always be the same. This is represented in the bottom facet of Figure 4.8. At

all points in time, [Vx] and [Vy] have the same rate of change because they are moving in parallel,

because [Vy] is yoked to [Vx] because they share a target for V.
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Figure 4.8: The rate of phonetic change in the context of phonetic coarticulation

The diUerence between phonological diUerentiation and phonetic coarticulation is large and

qualitative. What I hope to have illustrated so far is that this qualitative diUerence can be con-

nected to quantitative diUerences in the way the system changes over time. SpeciVcally, for any

given vowel which has two contextual variants, if we can estimate the rate of change of these two

variants over time and determine whether they have a shared or diUerent rate of change, then we

can then use this information as an indicator of a qualitative diUerence.

Perhaps most importantly, we can utilize the comparison of rates of change to identify cases

where phonetic coarticulation has been reanalyzed as phonological diUerentiation. That is, for

some changes, the diUerence between [Vx] and [Vy] could have been originally due to phonetic

coarticulation, but then speakers reanalyzed this diUerence as actually being due to a phonological

process, with featurally distinct objects, [V] and [Vf ], and targets. This process of reanalysis has

been called “phonologization” (Hyman, 1976) or “stabilization” (Bermúdez-Otero, 2007), and is

argued by some to be the primary source of naturalness in phonology (e.g. Cohn, 2006, 2007).

The eUect this reanalysis would have on the dynamics of sound change is illustrated in Figure

4.9. At the beginning of the sound change, the diUerence in contextual variants of V is due to
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phonetic coarticulation, and the trajectory of [Vy] is yoked to [Vx], causing them to have the

same rate of change. The dark vertical line represents represents the time point when the coar-

ticulatory eUect is reanalyzed as being phonological. A process like (4.6) enters the phonological

grammar, producing featurally distinct allophones, [V] and [Vf ], which have independent targets

of phonetic implementation. In this illustration, the trajectory of [V] continues along is previous

path, but [Vf ] ceases to undergo change.
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Figure 4.9: The reanalysis of phonetic coarticulation as phonological feature spreading, and its
eUect on the rate of phonetic change.

Looking at the trajectories alone, it would be diXcult to pinpoint with much accuracy when

the reanalysis occurred if were not indicated on the graph. The rates of change, on the other

hand, indicate rather unambiguously a sharp point at which [Vf ] diverged from [V]. It is possi-

ble to model the trajectories directly using, for example, cubic regression splines, and comparing

models where the trajectories are constrained to be the same to models where they are allowed

to be diUerent. This sort of modeling approach would tell us that in cases phonological feature

spreading, like Figure 4.7, the trajectories diUer signiVcantly, while in the case of phonetic coartic-

ulation, like Figure 4.8, they don’t. However, this approach would also tell us that the trajectories

diUer signiVcantly in cases where phonetic coarticulation has become reanalyzed as phonological

feature spreading, like Figure 4.9. Given that we want to be able to disambiguate instances of all
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three kinds of inWuences on sound change, and that in the case of reanalysis, we want to be able

estimate a time point in the sound change when reanalysis occurred, a more complex approach is

necessary, which involves directly modeling the rate of change.

I hope to have made clear, in this section, the possible diagnostic capacity of the rate of change.

In principle, we should be able to not only identify qualitative diUerences through quantitative

measure (i.e. the diUerence between phonetic coarticulation and phonological diUerentiation), but

also identify the point in time where new qualitative options enter the grammar (i.e. the reanalysis

of phonetic coarticulation as phonological diUerentiation).

4.3 The Model and the Data

This section will be devoted to the speciVcs of implementing a statistical model to estimate and

compare the rates of change of diUerent contextual variants, as well as the data behind the case

studies I will be applying the model to.

4.3.1 The Model

As I stated above, we can conceptualize the rate of change as actually representing year-to-year

diUerences along any particular phonetic dimension. Let’s represent the rate of change for year l

for a vowel in context k as δlk, which will be equal to the diUerence along the phonetic dimension

between year l−1 and l. This is the parameter of primary interest, speciVcally for particular years

whether δlk is the same for diUerent contexts. Contexts will be indexed by diUerent values for k.

The context k = 1 will always be some reference level context. For example, the Vrst case study

will focus on the eUect of following nasals on /aw/. In this case, /aw/ followed by oral segments

will be given index k = 1, and vowels followed by nasal segments will be given the index k = 2.

Once we have estimated δlk=1 and δlk=2 for all l dates of birth, we will make the a quantitative

comparison to see if δlk=1 = δlk=2 or δlk=1 6= δlk=2. More precisely, we will be looking at the

diUerence, δlk=1 − δlk=2. There are three possible results for this comparison.

(4.7) δlk=1 − δlk=2 > 0
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This means that δlk=1 > δlk=2 therefore δlk=1 6= δlk=2, therefore the vowel has diUerent

rates of change between contexts k = 1 and k = 2.

(4.8) δlk=1 − δlk=2 < 0

This means that δlk=1 < δlk=2 therefore δlk=1 6= δlk=2, therefore the vowel has diUerent

rates of change between contexts k = 1 and k = 2.

(4.9) δlk=1 − δlk=2 = 0

This means that δlk=1 = δlk=2, therefore the vowel has the same rate of change in contexts

k = 1 and k = 2.

Now, δlk is not a directly observable variable in the data. Rather, it is a latent variable that we

will be attempting to estimate from the data. For this reason, along with all of the usual constraints

on statistical inference from a sample to a population, we will not be estimating precise values

for δlk=1 − δlk=2. Instead, we will estimating credible intervals for the value δlk=1 − δlk=2. If

the credible interval excludes 0, then our inference will be that it is more likely than not5 that

δlk=1 − δlk=2 6= 0. On the other hand, if the credible interval includes 0, our inference should be

more cautious. It may actually be the case that δlk=1 − δlk=2 ≈ 0, or it may be the case that the

data is too sparse for either k = 1 or k = 2 to reliably determine otherwise.

As illustrated in Figures 4.7, 4.8 and 4.9, δlk should be modeled as a function of date of birth.

However, I have no theoretically driven hypothesis about what the shape of that function ought

to be. As such, I made the decision to model δlk using b-splines. I chose b-splines over other kinds

of curve Vtting because they are relatively easy to implement, conceptually easy to understand,

and Wexible in the kinds of curves they can approximate. Fitting a curve with b-splines begins by

deVning the “basis” of the curve. In the context of curve Vtting, “basis” has a technical meaning of

approximately a collection of curves which are then scaled and summed over to produce the Vnal

curve. Figure 4.10 displays the b-spline basis used in all of the models in this chapter, which was

constructed with the splines package in R (R Core Team, 2012). This particular basis consists of

three cubic polynomial curves which are evenly spaced along the time dimension, and one linear

intercept term.
5In fact, for the credible intervals displayed in this work, it will be 95% more more likely than not.
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Figure 4.10: B-spline basis used in all following models.

After establishing the basis of the b-spline, you then estimate weighting coeXcients for each

curve in the basis. Usually, the weighting coeXcients will be estimated from the data, but in

this illustration, 4 coeXcients were randomly chosen from a normal distribution. You then scale

each polynomial by multiplying it by its corresponding weighting coeXcient. The weighted form

of the basis is represented in the top facet of Figure 4.11. In the Vnal step, you sum across the

polynomial along the x-axis, resulting in the Vnal b-spline Vt, which is represented in the bottom

facet of Figure 4.11. Figure 4.12 displays Vve more b-spline Vts based on more randomly generated

weighting coeXcients in order to to provide a qualitative sense of how smooth b-spline Vts with

the basis in Figure 4.10 will be.

The degree of wiggliness of a b-spline Vt is highly dependent on the size of the basis. For

example, Figure 4.13 displays the kind of curve that a larger b-spline basis could Vt. I will be

restricting my modeling of δlk to the smaller basis displayed in Figure 4.10 for the following

reasons.

(4.10) As the size of the basis increases, the number of weighting coeXcients increases, and the

over all uncertainty about the Vnal Vt of the curve increases.
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Figure 4.11: Weighted b-spline basis, and resulting spline Vt.
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Figure 4.12: Five randomly generated b-spline curves
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Figure 4.13: The eUect of a larger basis on the Vt’s ‘wiggliness’.

(4.11) Since δlk is a latent variable, there is already a higher degree of uncertainty built into its

estimation.

(4.12) Additionally, since δlk represents the Vrst derivative of the trajectory of change, it can

aUord to be relatively simpler than the actual trajectory, since f ′(x) is always one degree

less than f(x).

I will represent the fact that δlk is modeled by a b-spline smooth of date of birth, which is also

the index for l, as follows.

δlk = b.spline(l) (4.13)

After estimating δlk for every date of birth, we then need to estimate the expected value along

the phonetic dimension for that date of birth. That is, if the change we are modeling is /ow/

fronting along F2, δlk will represent how far /ow/ fronted along F2 between the years l − 1 to l,

but we also need to estimate what the actual value of F2 is in year l. As was discussed in §4.2,

this can be done by taking the cumulative sum of δlk from 1888 up to year l, then adding it to

73



the value of F2 in 1888. The cumulative sum will be represented by ∆lk, the value in 1888 will be

represented by βk, and the expected value in year l will be represented by µlk.

∆lk =

l∑
x=1888

δxk (4.14)

µlk = βk + ∆lk (4.15)

At this point, µlk represents the expected phonetic target for a vowel in context k for a speaker

born in year l. However, it would not be expected for all speakers born in year l to have the precise

target of µlk. Obviously, inter-speaker variability exists for all manner of systematic reasons, some

of which could be incorporated into the model, like socio-economic class, education, etc. Just as

obviously, there are systematic causes of inter-speaker variation that we cannot include in the

model because it didn’t occur to us to document them, we have yet to operationalize measures for

them, or they are in some sense immeasurable, related to the accidental personal history of every

individual. Finally, even with a full accounting of all possible factors that predict inter-speaker

variation, and well formulated operationalizations and measurements of those factors, there will

always be some variation between individuals which is irreducible.

For these reasons, we will add an additional layer to the model, where we estimate phonetic

targets for every individual speaker in the corpus, which will be represented as µsjk, where j is an

index for each speaker. These speaker-level parameters will be drawn from a normal distribution

centered around µlk. The variance of the distribution will be another parameter in the model σk.

The reason we want to include σk as a parameter in the model is that we want to allow speakers

to be as similar to each other, or as diUerent from each other as is warranted by the data. Notice

that σk is also indexed by the context k. This means that inter-speaker variation can be greater or

lesser for each context under question. In the following equations, DOBj represents the date of

birth for speaker j.

DOB1,2,...n.speaker (4.16)

l = DOBj (4.17)
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µsjk ∼ N (µlk, σk) (4.18)

Additionally, we should recognize that speakers will diUer in the degree to which the in-

dividual tokens they produce are scattered around their target. Some speakers may have very

small variance, with most of their productions being clustered tightly around their basic target,

µskj , while other speakers may have much larger variance. As such, we will also be estimating

speaker-level variances, which will be represented as σsj .

An additional point of complexity to the data is that not only is it generated by many diUerent

speakers, but also represent many diUerent lexical items. Whether or not lexical items play an

important role in sound change over and above environmental conditioning is a long, and ongo-

ing debate (Labov, 1981, 1994, 2010a; Pierrehumbert, 2002; Bybee, 2002 inter alia). Regardless of

whether or not lexical items can have individualized phonetic targets, I will be including by-word

random eUects in this model for much the same reason as why by-speaker random eUects were

included. It is certainly the case that there are systematic properties of lexical items which aUect

their phonetic realizations which we have not accounted for, and are therefore missing from the

model. Therefore, we will be estimating by-word random eUects drawn from a normal distribu-

tion centered around 0, with a variance parameter which will be estimated on the basis of the

data. The random eUect for each word will be indexed by m, and will be represented as µwm. As

can be seen in the equation below, µwm is not sensitive to any properties of the speaker, including

date of birth, making it time insensitive. It would be ideal to model the eUect of a word as being

variable over time, to see if it changes or remains stable, but the model as I’ve laid it out up to this

point is already very complex, and making the by-word eUects time sensitive would minimally

involve adding two parameters to the model for every lexical item: slope and intercept. Therefore,

I will be backing oU from an ideal model of lexical eUects to a merely suXcient one.

µwm ∼ N (0, σw) (4.19)

Finally, we come to the raw data layer of the model. The raw acoustic data will be represented

by yi, where i is an index for every observation. The total number of observations is represented
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as n, J is a vector of speaker indices, K is a vector of context indices, and W is a vector of

word indices. We will be adding speakers’ expected phonetic target for a vowel in context k,

represented by µsjk, to the word level eUect, µwm, to arrive at the expected target for observation

yi. Of course, any particular observation from a particular speaker of a particular word will not

precisely be equal to µsjk + µwm for all of the reasons which have already been stated, so we will

actually be presuming that yi is drawn from a normal distribution centered around µsjk +µwm with

a speaker speciVc variance, σsj , which was mentioned above.

y1,2,...n (4.20)

J1,2,...n (4.21)

K1,2,...n (4.22)

W1,2,...n (4.23)

j = Ji (4.24)

k = Ki (4.25)

m = Wi (4.26)

yi ∼ N (µsjk + µwm, σ
s
j ) (4.27)

Human Readable Form

This model of the rate of change has three levels. At the highest level, the year-over-year diUer-

ences are estimated using non-linear curve Vtting. I didn’t assume that the rate of change was

constant across the lifespan of the phonetic change because, in fact, all three of the changes I look

at in this chapter move in one direction, stop, then reverse, and also, the relative timing of when

contextual variants diverge in their rate of change is of key interest. At the next level, the esti-

mated phonetic targets of each speaker are estimated. The expected phonetic target for a speaker

born in a particular year is estimated by summing up the year-over-year diUerences from the Vrst

layer of the model. The phonetic targets of the actual speakers in the model are assumed to be
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normally distributed around the expected target for their date of birth. By-word random errors

are also assumed to be normally distributed around 0. The third, and lowest level, treats each

individual measurement as being drawn from a normal distribution centered around the speciVc

speaker’s phonetic target plus the particular word’s random error.

Some readers may be more familiar with the syntax of mixed eUects linear models as imple-

mented in the lme4 R library. Faux-lme4 syntax for this rate of change model is provided in (4.28)

and (4.29). It includes random intercepts for speaker and word.

(4.28) rate_of_change ∼ b_spline(DOB)

(4.29) F2 ∼ sum(rate_of_change) + (1|Speaker) + (1|Word)

4.3.2 Implementing the model

The model I have just described does not easily submit to a reformulation as a linear regression,

or even in terms of modeling techniques like generalized additive models. As such, I have im-

plemented it in Stan (Stan Development Team, 2012). Stan is a package designed to implement

graphical Bayesian models with Hamiltonian Monte Carlo (HoUman and Gelman, 2011). Provid-

ing a precise description of HMC is well beyond the scope of this dissertation. Generally speaking,

HMC is is closely related to Markov chain Monte Carlo methods of model estimation, for which

Kruschke (2011) is an excellent introduction. In an iterative process, the system samples possible

values for the parameters it’s trying to estimate from a probability distribution which is in part

determined by its prior probability, the probability of the other parameter values estimated so far,

and the observed data. After a suXcient number of iterations, the samples produced by the system

will approximate the posterior probability distribution of the parameters, which is what we will

use for our inferences. As it is an iterative process, we want to be sure that it is not sensitive to its

initial values, so the model will be Vt multiple times with diUerent random initializations, and the

results compared across the Vts (or chains) to verify that they have converged on the same values.

Figure 4.14 illustrates the convergence of three chains to stable distribution. The parameter being

estimated in this case is δlk (the rate of change in year l for context k) for women in 1940 for /aw/

in pre-oral contexts. The top facet represents the full trace of the three chains. As can be seen,
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in the Vrst few iterations, the values being estimated for δlk vary broadly, but rapidly converge

to a narrower range. Not all parameters converge this quickly, so as a general practice, the Vrst

half of the samples are discarded as a “burn-in.” The second half of the samples are taken to be

representative of the posterior distribution, which is represented in the bottom facet of Figure

4.14.
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Figure 4.14: The full trace for three chains estimating δlk for l = 1940, and the sample approxi-
mating the posterior.

There are a number of diUerent diagnostics for determining how well converged a model is.

Note, these are not diagnostics of how well the model estimates match reality, which is unknown,

but rather, how consistent the model’s estimates are. I will be employing the Gelman and Rubin

Potential Scale Reduction Factor, represented by R̂, which compares the between-chain variance

to the within-chain variance. Values of R̂ close to 1 indicate good convergence, and the example

in Figure 4.14 has R̂ = 1.06.

As a Bayesian model, it’s necessary to deVne prior probability distributions over the param-

eters it is going to estimate. I’ve already speciVed some of the model priors above. For example,

I speciVed that the speaker-level target estimates, µsjk should be normally distributed around the

community-level estimate for that speaker’s date of birth, µlk. However, there are many param-

eters for which I have not mentioned what their prior probability distribution should be, like
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the variance parameters, σ, σsj , σw, or the b-spline weighting coeXcients. These parameters,

and any others not explicitly mentioned in the description above, were given non-informative,

or weakly informative priors. SpeciVcally, scale and variance parameters were given a uniform

prior between 0 and 100, ∼ U(0, 100), and all other parameters were given a normal prior with

mean 0 and standard deviation 1,000, ∼ N (0, 1000). Given the scale of the data, which is z-score

normalized Hz measurements, these constitute, at most, weakly informative priors.

4.3.3 I have just described a generative model

The model I have described is called a generative model in statistical terminology, because it de-

scribes a model of how the observed data was generated. That is, it models observations as being

drawn from speakers speaking speciVc words, and speakers as being drawn from a larger and

dynamically changing population. However, I believe there is also a felicitous convergence of

terminology here with “generative” as it is used in Linguistics. To begin with, the speciVcation of

any statistical model is theory laden, and the reason I have speciVed the model above is driven

primarily by the linguistic theory I want to evaluate, which is based on generative phonology and

phonetics. Moreover, some of the parameters in the model correspond nicely to theoretical con-

cepts in linguistics. SpeciVcally, µlk, which represents the expected phonetic target of a speaker

born in year l, could be understood as representing the “community grammar,” in the sense of

Weinreich et al. (1968). Alternatively, it could just as easily be conceived of as representing the

knowledge of

. . . an ideal speaker-listener, in a completely homogeneous speech-community, who
knows its language perfectly and is unaUected by such grammatically irrelevant con-
ditions as memory limitations, distractions, shifts of attention and interest, and errors
(random or characteristic) in applying his knowledge of the language in actual per-
formance. (Chomsky, 1965)

In the model, speaker-level factors such as memory limitations, distractions etc. are factored out

by σsjk to arrive at the idealized knowledge of each speaker, µsjk. Community level factors, such

as unaccounted for heterogeneity, is factored out by σk, to arrive at the idealized knowledge of

an idealized speaker, µlk. The goal of this model is to determine what factors can account for

79



the idealized knowledge of an idealized speaker, which is also a goal of generative linguistics as I

understand it.

4.4 Case Studies

All of the the cases studies presented here are based on data drawn from the Philadelphia Neigh-

borhood Corpus (Labov and Rosenfelder, 2011). The measurements used are those produced by

the FAVE suite (Rosenfelder et al., 2011), but additional contextual information has been collected

from the PNC raw data.

Figure 4.15 is presented as background, and represents the trajectories of sound change in

the 1970s as determined by the LCV study in Philadelphia. I will be examining the conditioning

factors on /aw/, /ow/ and /uw/ here. Table 4.1 provides a broad IPA transcription for these vowel

classes, their corresponding Wells Lexical Set labels, and an approximate transcriptions deVning

the range of phonetic variation.
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Figure 4.15: The Philadelphia Vowel System in the 1970s. From Labov (2001).

Before moving forward, I should note that for all of the following analyses, vowel tokens

that were either word initial, or co-extensive with the word were excluded. I did this, in part, to

exclude as many cases which could be attributable to errors in forced alignment, but also to reduce
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Label Broad IPA Wells Lexical Set Range of Variation

/aw/ [æw] Mouth [eO]∼[æU]
/ow/ [ow] Goat [9U]∼[o:]
/uw/ [uw] Goose [1u]∼[u:]

Table 4.1: The case studies in this chapter, a broad IPA transcription, Wells Lexical Set labels, and
IPA transcription of the range of variation.

the number of cases being examined. As we will see, the vowel in each case study is already

subdivided in many ways, and including parameters for word initial and co-extensive tokens

would have expanded the size of the statistical models further, without any clear advantages in

return.

4.4.1 /aw/

In the 1970s, the fronting and raising of /aw/ along the front diagonal of the vowel space was iden-

tiVed as a vigorous change in progress (Labov, 2001). In the PNC, /aw/ raising has been found to

be reversing, starting with speakers born around the 1960s. It also exhibits strong sociolinguistic

conditioning, with a large diUerence between women, who are more advanced, and men (Labov

et al., 2013). Figure 4.16 plots the basic, smoothed trajectory for /aw/ in F1×F2 space, overlaid on

the full vowel triangle for for context.

The PNC group has found that the best way to capture movements along the front diagonal

of the vowel space is with a diagonal measure given as (F2 −βF1), where β depends on the

transformed scale of the data. In the z-score normalized space, which I am presenting here, the

optimal value for β is 1, so Diag, in all future Vgures and statistics, is simply (F2− F1). Figure 4.17

displays the basic trajectory of /aw/ over time. Each point represents the mean value of Diag for

one speaker.

The largest conditioning factor on the raising and fronting of /aw/ is whether it is followed

by a nasal or oral segment (Labov et al., 1986). Figure 4.18 displays the mean values for speakers

for /aw/ in pre-oral and pre-nasal contexts. Throughout the entire change, [awN] is consider-
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Figure 4.16: /aw/ Trajectory in F1×F2 Space
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Figure 4.17: /aw/ change trajectory
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ably more advanced along the Diag scale for both men and women. At this point, it appears

impressionistically that the eUect of following nasals remains consistent across the 20th century.
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Figure 4.18: The eUect of following nasals on /aw/.

Given that following nasals have such a strong eUect on /aw/, I also coded /aw/ according to

whether it was preceded by a nasal (to be represented by [Naw]), and whether it was sandwiched

by nasals (to be represented by [NawN]). Also, for maximal parallelism between the rest of the

analyses in this section, I also coded /aw/ for whether or not it was word-Vnal, or followed by an

/l/. Table 4.2 describes the coding critera.

Variant Criteria

awN Is followed by /m, n, N/ within the same word
Naw Is preceded by /m, n, N/, and is not word Vnal
NawN Is preceded and followed by /m, n, N/ within the same word

awF Is word Vnal, and not preceded by /m, n, N/
NawF Is word Vnal, and preceded by /m, n, N/

awL Is followed by /l/ within the same word
aw Remaining cases

Table 4.2: Coding criteria for /aw/

Table 4.3 displays the token counts of each variant in the corpus. Given that [awL], [Naw]

and [NawN] are relatively rare, and that the parameter δlk is already fairly abstracted away from

the data, I will be excluding these contexts from further analysis in this section. That leaves [aw],

[awN], [NawF] and [awF]. The results for [NawF] should be taken with some caution, however,
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Variant N Word Types

aw 6382 150
awN 5494 147

NawF 2504 1
awF 1377 11

NawN 183 21
Naw 92 12

awL 14 5

total 16046 343

Table 4.3: Token counts of each variant

because even though it is relatively frequent, it consists entirely of tokens of the word now. As

I mentioned in §4.3, a reference level must be chosen to compare the other variants to. In this

case, that will be /aw/. As a Vrst pass visualization of the data, Figure 4.19 plots cubic regression

splines over speaker means for each of these /aw/ variants. For the most part, all variants seem

the follow the same trajectory transposed up and down with the possible exception of [awF] for

women. The extreme wobbliness of [awF] for women is almost certainly not “real”, but is rather

a common result of sparse data for these curve Vtting methods.
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Figure 4.19: The /aw/ variants to be modeled.
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Model Fit

As a Vrst step to evaluating the quality of the model Vt, we’ll Vrst examine the trajectory of change

it predicted. Figure 4.20 displays the distribution of R̂ values for the estimated trajectories of [aw],

[awN], [awF] and [NawF]. Values of R̂ indicate good convergence of the model. Unfortunately,

the model appears not to have converged well at all for [NawF], with most of its R̂ values being

greater than 2. As mentioned before, this is probably due to the fact that [NawF] is represented

by just 1 lexical item in the corpus: now. For this reason, the data is actually sparser for [NawF]

than the raw data might suggest, and the model estimation would face considerable ambiguity

between attributing the target of [NawF] to its speciVc µlk value, or to its word-level eUect, µwm.

Moving forward, [NawF] will be excluded from the analysis.
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Figure 4.20: R̂ for the predicted trajectories of /aw/ variants.

Figure 4.21 displays the 95% Highest Posterior Density intervals for the predicted trajectories

of change for [aw], [awN] and [awF]. There is a slightly larger probability range for the trajec-

tory of [awF], but over all, these trajectories seem to fairly well Vt, approximating closely the

trajectories in Figure 4.19, suggesting that the model has not “blown up.”

Figure 4.22 plots the estimates of the parameter of central interest, δlk, representing the year-

to-year diUerences. All three variants appear to share approximately the same rates of change,

but [aw] appears to be slightly more exaggerated than the other two. In this Vgure, and the ones

that follow, the color of the lines along the edges of the 95% HPD indicate whether or not 0 is

excluded. As we can see in Figure 4.22, all three variants of /aw/ have signiVcantly positive rates

of change starting somewhere around the mid 1910’s and continuing into the 1950’s. For [awF]
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Figure 4.21: Predicted trajectories of change for /aw/ variants.

for women, the 95% HPD never actually excludes 0 in this time period, but its over-all trend is the

same. For women, the rate of change for [aw] and [awN] turns negative as the change begins to

reverse in the early 1960’s.

However, the key comparison to make is whether [awF] and [awN] have reliably diUerent

rates of change from [aw]. This comparison is made in Figure 4.23, and as can be seen, neither

[awF] nor [awN] exhibit considerable diUerences from [aw]. There is a brief period of about 5

years where [awF] seems to be changing more slowly than [aw], and in fact, looking at Figure

4.21, this is because [awF] appears to be moving downwards. Given the fact that this trend is

so brief (less than 10 years), and that it is located so early in the sample, where there are fewer

speakers, I’ll attribute this blip to the the idiosyncrasies of a few speakers’ data, rather than to a

real trend.

Discussion

In the cases where there was enough data to make the comparison, it appears as if the diUerent

contextual variants of /aw/ share the same rate of change. Over the course of 100 years, [aw],

[awN] and [awF] follow parallel trajectories, a remarkable fact in and of itself. My conclusion

for /aw/ is that its most notable conditioning factor, the presence of a following nasal, is due to
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phonetic coarticulation, not due to any categorical phonological process. That is, there is just one

target for /aw/ that changes over time, and that target is merely shifted upwards in production by

the presence of a following nasal.

4.4.2 /ow/

The next case study in this chapter is /ow/ fronting. Again, /ow/ fronting was found to be a change

in progress in Philadelphia in the 1970’s that has since began reversing (Labov, 2001; Labov et al.,

2013). Figure 4.24 plots the trajectory of /ow/ in the F1×F2 space. Women underwent a fronting

change which has reversed, but the pattern for men is a bit more ambiguous.
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Figure 4.24: /ow/ Trajectory in F1×F2 Space

As a fronting change, the acoustic measure being used in this section is simply normalized F2.

There are two major conditioning factors on /ow/ of note. First is whether or not /ow/ is absolute

word Vnal, which favors a more fronted form of /ow/, and whether or not it is followed by /l/,

which favors a backer form of /ow/.

Figure 4.25 plots speaker means for these /ow/ variants. The Vrst thing to note is that there

is much stronger sociolinguistic diUerentiation between men and women for /ow/ than there was

for /aw/. For /aw/, men lagged behind women, but were still participating in the change. For /ow/,

it does not appear as if men undergo any change at all. The directions of the contextual eUects

are the same between men and women, but there is not much diachronic pattern to speak of for

men. The second thing to note is that for women, the diUerentiation of [ow] and [owL] looks
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Figure 4.25: The eUect of following /l/ and a word boundary on /ow/.

strikingly similar to the hypothetical patterns of phonological processes interacting with sound

change from §4.2.

To keep the results for /ow/ as comparable to the results for /aw/ as possible, I coded /ow/

in the same way. Table 4.4 displays the coding scheme for /ow/, and Table 4.5 displays the total

number of tokens for each variant.

Variant Criteria

owN Is followed by /m, n, N/ within the same word
Now Is preceded by /m, n, N/, and is not word Vnal
NowN Is preceded and followed by /m, n, N/ within the same word

owF Is word Vnal, and not preceded by /m, n, N/
NowF Is word Vnal, and preceded by /m, n, N/

owL Is followed by /l/ within the same word
ow Remaining cases

Table 4.4: Coding criteria for /ow/

As with /aw/, the /ow/ variant sandwiched by nasals is too low frequency to include in the

model, and will be excluded from here on out. All of the other variants are relatively high fre-

quency. Unsurprisingly, the highest frequency variant, [NowF], is dominated by the lexical items

no and know, but is not exclusively constituted of them, so it should not exhibit the same ill Vtting

that [NawF] did. Figure 4.26 displays cubic regression splines over speaker means for the /ow/
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Variant N Word Types

NowF 12956 33
owF 11092 200
owN 6091 164
ow 5629 592
owL 1946 153

Now 1836 123
NowN 95 11

total 39645 1253

Table 4.5: Token counts of each variant

variants to be included in the model. In the model, as with /aw/, the reference variant will be [ow],

which corresponds to non-word Vnal /ow/ that is not followed by /l/, and is neither preceded nor

followed by a nasal consonant.
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Figure 4.26: The /ow/ variants to be modeled.

Model Fit

Again, we’ll examine how well the model estimated the basic trajectories of /ow/. Figure 4.27 dis-

plays the R̂ convergence estimates for the trajectories, broken down by variant. As with /NawF/,

/NowF/ is the least well converged variant, but in this case, its R̂ values are not dire, so we will

keep /NowF/ in for the rest of the analysis.
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Figure 4.27: R̂ for the predicted trajectories of /ow/ variants.

Since there are six diUerent variants of /ow/, I will not be plotting them over each other.

Instead, Figure 4.28 plots a row of facets for each /ow/ variant and superimposes the predicted

trajectory for [ow] on each one. All of the trajectories appear to be Vt to comparable degrees of

certainty, and look very similar to the trajectories in Figure 4.26. Again, there seems to be a strik-

ing diUerence between [owL] and all other variants. Every other variant of /ow/ (for women at

least) appears to undergo some sort of fronting and subsequent backing, and [owL] is completely

divergent from this pattern. The divergence of [owL] appears equally strongly when looking at

the rates of change in Figure 4.29.

For women, [ow], [owF], [NowF], [Now] and [owN] all exhibit a very clear pattern of a pos-

itive rate of change in fronting beginning somewhere near the turn if the century, followed by

a reversal starting around the 1960’s. In contrast, the rate of change for [owL] is plausibly 0

throughout the entire century. The pattern for men is much more ambiguous. There is some hint

of fronting for some variants centered approximately around the 1950’s, but it is very subtle.

Finally, we come to the diUerences in the rates of change between [ow] and the other variants

in Figure 4.30. Men have virtually no diUerence between [ow] and the the other variants, so the

rest of this discussion will focus exclusively on women.

As expected, [owL] has a reliably diUerent rate of change from [ow] almost from the very

beginning of /ow/ fronting. The earliest date of birth where [ow] has a rate of change reliably

greater than 0 (as depicted in the top row of facets in Figure 4.29) is 1906, and the earliest [owL]
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exhibits a reliably diUerent rate of change from [ow] is 1908. These dates are obviously overly pre-

cise, but support the interpretation where [ow] and [owL] have been categorically diUerentiated

from the very beginning of /ow/ fronting.

Importantly, is highly unlikely that the diUerentiation of [ow] and [owL] could be due to

changing degrees of coarticulation between /ow/ and /l/. In this change, [ow] is undergoing a

fronting change, and [owL] is being left behind. The estimated rate of change for [owL] (Figure

4.29) contains 0 across the entire century, meaning that if the diUerence between [ow] and [owL]

were due to phonetic coarticulation, the strength of the coarticulation eUect would have to be

increasing exactly in proportion to the degree of frontness of [ow]. This is highly unlikely, and

positing a categorical diUerentiation between [ow] and [owL] is the simpler explanation.

Surprisingly, even though [owF], [NowF] and [owN] share the same proVles as [ow] in both

their over all trajectories and in their rates of change, there are some reliable diUerences between

their rates of change. All four of these variants began fronting at approximately the same time

around the turn of the century, but [ow] continued fronting until about 1960, while [owF], [NowF]

and [owN] stopped fronting in the 1930’s. Table 4.6 contains the model estimates for the dates

when fronting began and ended, based on when the lower bound of the HPD for δlk excluded 0.

[owF] and [NowF] also appear to be sluggish in participating in /ow/ retraction which began in

the mid-1960’s for [ow].

Variant Began Fronting Stopped Fronting

ow 1906 1959
owF 1898 1938

NowF 1904 1930
owN 1909 1939

Table 4.6: Dates that /ow/ variants began and stopped fronting, based on δlk

I think a reasonable analysis for [owF] and [NowF] is that we are observing a ceiling eUect.

Looking at the trajectories of change, [owF] and [NowF] in Figure 4.28 are the most fronted /ow/

variants, an eUect that can be probably be simpliVed to simply being word Vnal. If, for reasons

which are unclear, there were a maximal degree to which /ow/ could be fronted phonetically, then

it would make sense that [owF] and [NowF] would hit this limit Vrst, and bottom out. In fact,
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if we look at the trajectories of change for [ow], [owF] and [NowF], and examine the estimates

for the maximum values of F2 these variants reached, we see that all three variants reached very

similar peaks, even though the times at which they reached these peaks are spread out over 25

years. This suggests that there is, in fact, some ceiling value around F2 ≈ -0.5 which [owF] and

[NowF] hit Vrst, slowing down their rates of change.

Variant Maximum F2 Date of maximum

ow -0.49 1964
owF -0.56 1948

NowF -0.61 1940

Table 4.7: Maximum /ow/ F2 values, and dates they were reached.

This ceiling analysis does not extend to [owN], however, which also stops fronting much

earlier than [ow], but reaches a much lower peak value. The fact that [owN] could not possibly

be slowing down due to a ceiling eUect, and that its rate of change is reliably slower than [ow]

starting in the mid 1940’s, means that this may be a candidate example for the reanalysis of a

phonetic eUect as a phonological process.

Discussion

This analysis of /ow/ illustrates some interesting limitations of the rate of change diagnostic. First,

in order to be able to diagnose anything at all, there must be a change occurring. In this case, the

non-participation of men in /ow/ fronting meant that nothing can be said with much certainty

about the phonetic and phonological status of contextual variants of /ow/ in their speech. Second,

the analysis will be sensitive to ceiling and Woor eUects. Both [owF] and [NowF] phonetically

favored fronter /ow/, and therefore reached the ceiling in the phonetic space (at approximately

−0.5) Vrst, which Wattened out their trajectory of change, reducing their rate of change. I believe

saying that the reduction in the rate of change of [owF] and [NowF] relative to [ow] is due to a

ceiling eUect is well founded, because [owF], [NowF] an [ow] all reached the same peak F2 value,

but at diUerent points in time. The fact that the rate of change for /owN/ slowed at a point which

could not be considered a ceiling means that it should be held out as a potential case of a phonetic
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bias becoming reanalyzed as a phonological process.

Finally, I will be analyzing the categorical exemption of /owL/ from fronting as a phonological

distinction. For now, I will propose the process in (4.30) which I will further support in §4.5.

(4.30) ow→ o:/ l

Under this analysis, only /ow/ which has a phonological glide target is aUected by /ow/ fronting,

while the long monophthong remains fully back.

4.4.3 /uw/

The third and Vnal back-upgliding diphthong I’ll be analyzing is /uw/. /uw/ has also undergone a

fronting change which has also been reversed. As with /ow/, men have had very limited involve-

ment in /uw/ fronting. Figure 4.31 displays the basic trajectories of /uw/ for men and women in

F1×F2 space. As with /uw/, the primary acoustic dimension describing the change is F2, so the

following models will focus on normalized F2.
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Figure 4.31: /uw/ Trajectory in F1×F2 Space

The two biggest conditioning factors on /uw/ fronting are following /l/, which favors backer

/uw/, and preceding coronals, which favor fronter /uw/. The possible reasons for /l/ favoring

backer /uw/ carry over from the discussion of /ow/. The eUect of preceding coronals, however,

is new. It is, in fact, a more general property of North American English that /uw/ tends to be

fronter when preceded by a coronal, as discussed in the Atlas of North American English (Labov
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et al., 2006, ch 12). The ANAE proposes that this phenomenon is related to the merger of /juw/

and /uw/ post-coronally in North America. For example, there are the diUerences between RP and

“Standard American” presented in Table 4.8, with very broad transcriptions. The ANAE argument

is that before /j/ was lost in this context in North America, it had the eUect of fronting the nucleus

of /uw/, which has persisted. Furthermore, /tu:/ sequences which never had a /j/ (e.g. do vs. dew)

have merged to the fronted version. This is a classic phonologization argument, in the sense if

Hyman (1976), and is brieWy sketched out in Table 4.9.6

RP North American

tube /tju:b/ /tu:b/
tune /tju:n/ /tu:n/

Table 4.8: Examples of post coronal /j/ loss in North America

tju:b > tj1u
“
b > t1u

“
b

Initial state: little coarticulation Coarticulation of /j/ and /uw/ Phonologization

Table 4.9: The phonologization of post-coronal /uw/ fronting

Another possible account for the coronal eUect on /uw/ fronting is that it is simply a case of

coarticulation. Figure 4.32 is an illustration of the coarticulatory eUect of coronals on back vowels

from Ohala (1981). This illustration is of anticipatory coarticulation, where the coronal follows

the vowel, but it could extend in principle to the case here where the coronal precedes the vowel.

Figure 4.32: Illustration of the eUect of coarticulation on /uw/ from Ohala (1981)

6A very similar account could be given the development of [tjub]>[Ùub] for many British speakers.
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The diUerence between the ANAE account of the coronal eUect and Ohala’s is, in fact, pre-

cisely the diUerence between phonological and phonetic conditioning that I would like to use the

rate of change analysis to resolve.
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Figure 4.33: The eUect of following /l/ and preceding coronal on /uw/.

Figure 4.33 displays the trajectories of the three basic variants to be investigated in this section.

Again, it looks as if the [uwL] variant is categorically exempted from the change, but the pattern

is more ambiguous for [Tuw]. Table 4.10 lists the coding criteria for /uw/ variants, and Table 4.11

displays the counts for each variant. I coded for whether /uw/ was followed by a nasal, /l/, or was

word Vnal, and for whether or not it was preceded by a coronal.

Variant Criteria

TuwN Is preceded by a coronal and followed by a nasal within the same word
TuwF Is preceded by a coronal and is word Vnal
TuwL Is preceded by a coronal and followed by /l/ within the same word
Tuw Remaining cases which are preceded by a coronal

uwN Is followed by a nasal
uwF Is word Vnal
uwL Is followed by /l/
uw Remaining cases

Table 4.10: Coding criteria for /uw/

The most frequent variant, [TuwF], is composed mostly of the lexical items do, to, two, too, but

also consists of a number of other lexical items, so it should be well modeled. The variants [uwN]

and [TuwL] are too infrequent to model in this way, which is especially unfortunate for [TuwL],
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Variant N Word Types

TuwF 9564 27
uw 2035 149
uwL 1474 31

Tuw 1461 180
uwF 883 24

TuwN 589 56
uwN 148 27

TuwL 78 16

total 16232 509

Table 4.11: Token counts of each /uw/ variant

since it could be crucial to see how a favoring and disfavoring context interact. Figure 4.34 plots

the trajectories of the remaining variants which were Vtted by the model. The reference variant

in this model will be [uw], the variant which is not post-coronal, pre-nasal, pre-/l/, nor word Vnal.
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Figure 4.34: The /uw/ variants to be modeled.

Model Fit

Figure 4.35 displays the distribution of the R̂ convergence diagnostic for the estimated trajectory

of /uw/ variants. [TuwF] and [uwF] have the largest R̂ values, but they are still acceptably close

to 1 to include them in the analysis.

Figure 4.36 plots the estimated trajectories of /uw/ variants, following the same convention
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Figure 4.35: R̂ for the predicted trajectories of /uw/ variants.

used for /ow/, where the trajectory of the reference level, [uw], is superimposed over the tra-

jectory of each other variant. The trajectories Vtted by the model replicate the disfavoring and

diverging eUect of [uwL], as well as the favoring eUect of a preceding coronal, which is stably

in place regardless of the following segment, since [Tuw], [TuwF] and [TuwN] are all displaced

upwards along F2. The sociolinguistic diUerence between men and women is also on display in

Figure 4.36, where men appear to be only minimally participating in the change. Based on the

results for /ow/, this will mean that the rate of change diagnostics for men will be only minimally

informative.

Figure 4.37 plots the estimated rates of change for these /uw/ variants. [uw] has a positive

rate of change starting at the turn of the century, as does [uwF] and most post-coronal variants.

Before /l/, it looks like [uwL] has been completely Wat over the course of the century, just like

/ow/, and may have even undergone some retraction in the 1970s. A notable pattern for many of

the post-coronal variants is a double dip, where they start out with a positive rate of change, level

out, and then begin fronting again. There is a positive rate of change around the mid 1960s and

1970s for [TuwF] for women, and [Tuw] and [TuwN] for men, which is not present in either [uw]

or [uwF].

Turning now the the crucial comparison of the rate of change of [uw] to the other variants,

we see that [uwL] has had a reliably slower rate of change than [uw], unsurprisingly. A number

of post-coronal variants also appear to have a period of time where their rate of change is slower
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Figure 4.36: Predicted trajectories of change for /uw/ variants.
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than [uw]: [Tuw] and [TuwF] for women, and [TuwN] for men.
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Figure 4.38: Rate of change diUerences from [uw]. Note: y-axis ranges diUer across each horizon-
tal set of facets.

Given that a preceding coronal favors /uw/ fronting, can we attribute the reliably slower rates

of change for these post-coronal variants to a ceiling eUect, like I proposed for word Vnal /ow/?

It is a possibility, but it seems less likely in this case. My argument for a ceiling eUect on /ow/

rested on the fact that all of the /ow/ variants reached very similar maxima, but at diUerent times.

In the case of post-coronal /uw/, these variants had clearly not reached their maxima in the 1930s

and 1940s, because in the 1960s and 1970s they began to front some more, as was seen in Figure

4.37. Perhaps this second phase of fronting for post-coronal /uw/ could be interpreted as being

a phonological reanalysis of the coronal coarticulatory eUect. If so, however, it occurred at the

strangest time: when [uw] and [Tuw] were actually minimally diUerent, as can be seen in Figure

4.36. It seems clear from the rate of change diagnostic that post-coronal /uw/ is phonologically

distinguished from /uw/ in other contexts, but unfortunately, the timing of when this phonological

diUerentiation entered the grammar relative to the phonetic fronting of /uw/ is ambiguous.
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The eUect of following /l/, on the other hand, is unambiguous. [uwL] has a reliably slower

rate of change from [uw] almost as soon as [uw] begins fronting. Just like it was for /ow/, the

pre-/l/ variant of /uw/ is being categorically exempted from ever undergoing the change.

Event Year

[uw] is reliably fronting 1902
[uwL] is reliably slower than [uw] 1906

Table 4.12: Comparing the timing of [uw] fronting and the diUerentiation of [uwL]

4.5 Summary of /Vw/ results

Table 4.13 summarizes the results of the case studies just presented. The conditioning factors

which were labeled in previous literature as having substantial eUects are bolded. There is only

one case which Vts the proVle of potential phonological reanalysis of a phonetic eUect, [owN].

The rest of the unambiguous cases either exhibit parallelism throughout the change (with the

exception of [owF], which is explicable by a ceiling eUect), or were divergent from the very start

of the change.

/aw/ /ow/ /uw/

VwN Always Parallel Potential Reanalysis –
NVw – Always Parallel –

VwL – Divergent from start Divergent from start

VwF Always Parallel Ceiling EUect Always Parallel

TVw – – Ambiguous

Table 4.13: Summary of /Vw/ Results

The possible source of the /l/ eUect

The stand out eUect here has been following /l/. For both /uw/ and /ow/, a following /l/ has

categorically blocked fronting since the very beginning of the change. It is true that we would ex-

pect a following /l/ to disfavor the fronting of back vowels phonetically, especially in Philadelphia
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where /l/ undergoes darkening and vocalization at a higher rate and in more environments than

other North American dialects (Ash, 1982). But based on the argumentation in §4.1.1 and §4.2, the

categorical nature of /l/ blocking means that /l/ must have had a categorical phonological eUect

on these vowels that was present in the grammar either before, or concurrent with the phonetic

fronting of the other /ow/ allophones. In fact, I believe it is plausible to argue that this eUect is

due to glide simpliVcation.

A rather salient feature of the Philadelphia dialect is that the glide of /aw/ is deleted when

followed by an /l/. This is a rather old feature of the dialect, as it was mentioned by Tucker (1944),

who said:

When ou, pronounced [æU], loses its second element, the result simply ‘Wat a’: hour
[æ:r], owl [æ:l], Powell [pæ:l], the latter two hardly to be distinguished from Al and
pal.

In this same description of the Philadelphia dialect, Tucker also explicitly notes that Philadelphi-

ans make no distinction in the vowel quality of /ay/ before voiceless segments. The PNC data

shows pre-voiceless /ay/ raising entering into the Philadelphia dialect with speakers born in the

1920s, meaning that we can reasonably place this process of glide deletion as being present in the

dialect well before that. We could formulate the process of /aw/ glide deletion as follows.

(4.31) æw→ æ: / l

This eUectively captures the argument of Dinkin (2011a) that in Philadelphia /æl/ has merged with

/awl/, leading to the raising and tensing of /æ/ before /l/. Dinkin (2011a) argues that rather than

this being an extension of the Philadelphia split short-a pattern, this tensing and raising of /æ/

before /l/ is actually because its phonetic target is that of the nucleus of /aw/.

It would be reasonable to extend this process to cover both /ow/ and /uw/. To begin with, the

phonetic realizations of the fully back /ow/ and /uw/ before /l/ is as long monophthongs: bowl

[bo:î],7 school [sku:î]. Secondly, it is reasonable to categorize /aw/, /ow/ and /uw/ as belonging

to a phonological natural class. The common patterning of these vowels cross-dialectally was the

7I’m using [î] to represent the extreme reduction of /l/ to a velar approximant. /l/ is not always vocalized in these
contexts, and the coda can be occasionally accompanied by light velar frication.
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motivating force behind the Labovian transcription conventions for these vowels, which I have

largely adopted, and in Philadelphia, we observe all three undergoing a simultaneous fronting and

reversal in parallel, a phenomenon which will be covered in depth in later chapters. The extension

of glide deletion to /ow/ and /uw/ could be formulated as follows.

(4.32) Vw→ V:/ l

This could be reformulated in moraic terms. We start out with an underlying form like (4.33). The

/Vw/ glide is then delinked, triggered by the following /l/ (4.34). This may be an OCP eUect of some

sort, especially if /l/ is really a velar approximant in this position. Crucially, the mora originally

associated with the glide becomes associated with the nucleus, creating a long monophthong

(4.35). This would have the eUect of exempting /ow/ and /uw/ from fronting in this context,

because fronting only aUects the nucleus of these vowels, i.e. the Vrst mora.

(4.33) µ µ µ

V w l

(4.34) µ µ µ

V

y
y

w l

(4.35) µ µ µ

V

yyyy
l

4.5.1 Connection to Broader Theory

I am proposing that the glide deletion process discussed above was categorical, and must have

been present in speakers grammars at the very start of the phonetic change that fronted /ow/

and /uw/ in all other contexts in order to categorically block fronting. Since neither [uwL]

nor [owL] ever underwent fronting, and since the phonetic diUerence between [uw]∼[uwL] and

[ow]∼[owL] was still very small at the time that categorical blocking was in place, this phonologi-

cal process was not the reanalysis of phonetic coarticulation. This supports my general argument

that phonetic change operates over the representations produced by a distinct phonology, and
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that theories of sound change based solely in phonetics are insuXcient to capture the facts of all,

or most sound change.

4.6 Conclusion

In this chapter, I have laid out my deVnition of a phonetic eUect, or phonetic coarticulation, in

contrast to phonological diUerentiation, and examined how these diUerent phenomena ought to

interact with sound change. Importantly, my deVnition of an eUect being phonological or phonetic

is based on which domain of the sound system the eUect originates, not on its size. It is possible

under the model of the phonology-phonetics interface I have adopted for eUects originating in

the phonetics to be large, and produce discrete non-overlapping distributions, and for eUects

originating in the phonology to be small, and produce partially overlapping distributions. Before

even examining empirical case studies, the phonology-phonetics interface model Vrst described in

Chapter 2, and Weshed out in more detail in this chapter, when combined with diachronic change,

produces what I’ll call the “Unity Principle,” and is very similar to what Kroch (1989) called the

“Constant Rate EUect.”

(4.36) The Unity Principle

If two contextual variants have the same surface phonological representation, then they

must shift in parallel diachronically. Contrapositively, if two contextual variants have

divergent diachronic trajectories, they must not have the same surface phonological

representation.

The Unity Principle is not itself a falsiVable hypothesis, but rather a logical consequence of the

phonology-phonetics model I have adopted. It serves as a tool for investigating the interaction of

phonology and phonetics over the course of phonetic change.

Applying the Unity Principle to the fronting of /aw/, /ow/ and /uw/ was successful in terms

of discovering new details about these particular changes and the broader generalizations they

imply, as well as a demonstrating the utility of the Unity Principle for phonological investigation.

Some conditioning eUects, like that of following nasals on /aw/, appear to be strictly phonetic,
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despite for their large eUect size, because they move in parallel over the entire course of the

change. Many apparent exceptions to parallelism are reasonably understood in terms of ceiling

eUects. The biggest exception to parallelism was for /ow/ and /uw/ when followed by /l/. These

variants appeared to be categorically exempt from fronting.

Faced with the divergent trajectories of [ow∼ owL] and [uw∼ uwL], it follows from the unity

principle that these variants must have diUerent surface phonological representations, meaning

we must posit either a phonological process to diUerentiate them, or a diUerent underlying form.

The fact that it is necessary to posit a phonological analysis in the face of the diachronic data

combined with the Unity Principle speaks to both its utility, and the importance of diachronic

data for phonological investigation. Any given snapshot of [ow ∼ owL] [uw ∼ uwL] based on a

demographically narrow set of speakers would be ambiguous, and open for reasoned argument

for either a purely phonetic or purely phonological explanation. It is the diachronic dimension

in combination with a moderately articulated model of the phonology-phonetics interface which

disambiguates the two sources of explanation, and opens the door for more detailed inquiry.

The more surprising result with broader implications for language change in general is the

relative timing of the phonetic change which began fronting [ow] and [uw], and when the phono-

logical process diUerentiating [owL] and [uwL] must have been in the phonological grammar.

Rather than the slow and gradual reanalysis of coarticulated [owL] and [uwL] as being their own

phonological allophones over the course of the change, they behaved as categorically distinct al-

lophones from the very beginning of the change. This eUect of early phonological diUerentiation

in phonological change will reappear in Chapter 5, and is unexpected under most accounts of

conditioned sound change where the introduction of a phonological process follows a period of

accumulated phonetic errors (Ohala, 1981; Blevins, 2004). Even Janda and Joseph (2003) who pro-

pose a “Big Bang” model of phonologization of sound change include a “brief” period of purely

phonetic conditioning. The results presented in this chapter and at the beginning of Chapter 5

suggest that if there is a brief period of pure phonetic conditioning, it is too brief to be detectible

by statistical methods. In fact, the available data is equally consistent with phonologization oc-

curring simultaneously with the onset of the phonetic change.
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Chapter 5

Phonologically conditioned
divergence and convergence

In this chapter, I will further support the argument that neogrammarian phonetic change tar-

gets phonological categories through more detailed analyses of /ay/, and /ey/ raising, /aw/, /ow/

and /uw/ fronting, and /ae:/ and /O: lowering. First, I will show diUerential participation in pho-

netic change for variants within vowel categories which is best explained in terms of phonological

allophony, rather than phonetic predisposition. Second, I will show convergent participation in

phonetic change across multiple categories, which can be best explained as phonetic change tar-

geting a phonological feature which deVnes a phonological natural class.

5.1 Phonologically divergent behavior within categories

5.1.1 /ay/ Raising and Opacity.

I didn’t include pre-voiceless /ay/ raising in the rate of change analysis because even if I found

that pre-voiceless /ay/ had a divergent rate of change from other /ay/ (which it undoubtedly

would), it would still be ambiguous between error accumulation, or increasing coarticulation,

and phonological diUerentiation. Unlike /ow/ and /uw/, where most contexts were undergoing

the change with some contextually restricted variants exemted, for /ay/ raising, the change takes

place only for contextually restricted variants. If this contextual eUect were due to phonological

selection, it would be indistinguishable from a gradually increasing coarticulation.

Fortunately, though, voicing neutralization of /t, d/ by Wapping occurs in Philadelphia, and
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provides the ideal environment for distinguishing between phonetic and phonological condition-

ing of /ay/ raising. In contemporary Philadelphian English, /ay/ raising applies opaquely with

respect to Wapping, producing the same dilemma identiVed by Joos (1942) in Canada.

Table 5.1 provides an ordered rules analysis8 of /ay/ raising in contemporary Philadelphian

English.

writer rider
Input õaitÄ õaitÄ

Raising õ2itÄ –
Flapping õ2iRÄ õaiRÄ

Output õ2iRÄ õaiRÄ

Table 5.1: Opaque interaction between /ay/ raising and Wapping.

This opacity represents an important end point for the process of /ay/ raising. If we were to

assume that /ay/ raising began as a coarticulatory process, then there must be a point in its history

when it became reanalyzed as a phonological process conditioned on the underlying voicing of

the following segment. And, as the rate of change analysis in the previous chapter indicated, this

point of reanalysis must happen within the time period covered by the PNC, since the the onset

of the change in the Vrst place appears to be contained within the PNC.

Foundational Facts

There are some more foundational facts about /ay/ raising that should be established before delv-

ing into its interaction with Wapping. SpeciVcally, I should establish how pre-voiceless /ay/ raising

is conditioned in Philadelphia in contrast with previous descriptions in other dialects. Dailey-

O’Cain (1997), for instance, describes /ay/ raising as applying before /r/ as well as pre-voiceless,

and Idsardi (2007) reports his intuition that it can apply across word boundaries.

Figure 5.1 plots /ay/ height over date of birth as conditioned by manner and voicing of the

following segment. It is clear from this Vgure that it is only voicing which conditions raising.

While there is some considerable contextual variation in height in the following voiced contexts,

it appears to be less extreme within the following voiceless context.
8Intended merely for expository purposes.
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Figure 5.1: The eUect of following voice and manner on /ay/ height.

Most importantly, there is no tendency for /ay/ to raise when followed by /r/, distinguishing

the phonological system of Philadelphia from the Northern dialects which do raise /ay/ before /r/,

as reported by Dailey-O’Cain (1997). This diUerence is suggestive of the fact that pre-voiceless

/ay/ raising is an endogenous change to Philadelphia, not a dialectal borrowing. The process of

dialectal diUusion can lead to structural simpliVcations, but in this case there is no independent

historical reason to assume that /ay/ raising diUused from Northern dialects to Philadelphia, as

there was for the diUusion of the New York City short-a system to Cincinnati and New Orleans

(Labov, 2007).

Next, looking at word Vnal /ay/, there does not appear to be any conditioning of /ay/ raising

by the onset of the following word. The trajectories of word Vnal /ay/ when followed by voiced

and voiceless onsets are virtually identical. Even if we take a targeted subset of word Vnal /ay/

followed by to and the9 there is still no evidence of /ay/ raising being conditioned across word

boundaries. In contrast to the Canadian dialect from which the intuitions reported by Idsardi

(2007) were drawn from, there is no evidence that pre-voiceless /ay/ raising was ever a phrase level

phenomenon in Philadelphia. This in itself is already evidence for phonological conditioning of

9The motivation here is to focus on prosodically weak words which are more likely to “lean” on the preceding /ay/.
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/ay/ raising, since raising is sensitive to word boundaries, and word boundaries are a phonological

property.
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Figure 5.2: EUect of following word onset on word-Vnal /ay/.
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Figure 5.3: EUect of following to and the on word-Vnal /ay/.

Interaction with Wapping

It is necessary to construct two careful subsets of the /ay/ data in order to investigate the history

the interaction between /ay/ raising and /t, d/ Wapping. One is a subset where /ay/ appears before
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/t, d/ which are almost certainly not Wapped. I will be referring to this subset as “surface” /t, d/,

meaning that the underlying voicing contrast is realized on the surface. The second is a subset

which appears before almost exclusively Wapped /t, d/. I’ll be referring to this subset as “Wapped”

/t, d/. I deVned these subsets as follows.

(5.1) Surface: /ay/ followed by /t, d/ which are then followed by a pause, labeled sp in the

forced alignment transcriptions.

(5.2) Flapped: /ay/ followed by /t, d/ which are then followed by an unstressed vowel within the

same word.

I decided to restrict the surface subset to require that the following /t, d/ be followed by a

pause to avoid any ambiguities introduced by phrase level Wapping, or any other phrase level

processes. Occassionally, the aligner will mistake an exceptionally long /t, d/ closure as a pause,

but this kind of error is still acceptable for my purposes here, since a /t, d/ closure long enough to

be labeled a pause will certainly not be resulting from Wapped variants of /t, d/. For the Wapping

subset, the onset of an unstressed syllable meets the structural description for Wapping to occur. I

haven’t inspected these tokens to make sure they are actually Waps, but as I’ll show in the duration

domain, the diUerence between /t/ and /d/ appears to be mostly neutralized. Of course, word Vnal

/t, d/ can also Wap when followed by a word with a vowel onset, but I decided that including /t, d/

in this context would include a mix of Wapped and surface /t, d/, and an auditory inspection of all

these tokens would be necessary.

I also deVned the following exclusions from the Wapping subset as deVned above.

(5.3) Potential glottalizing contexts. e.g. /t/ followed by syllabic /n/, as in frighten [fr2iPn
"
]

(5.4) Exceptional raising words, as identiVed in Fruehwald (2008). e.g. spider, Snyder

A justiVed criticism to the second of these exclusions is that I’ll have excluded exactly those cases

which run counter to my hypothesis. However, examining these cases separately, it appears as

if the exceptional raising in these words is a later development. In the entire PNC, there are 60

tokens of Snyder, 12 of spider and 1 of cider. Figure 5.4 plots the mean F1 for these words for each
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speaker, and contrasts them with the height of /ay/ before Wapped /t, d/ for those same speakers

who contributed exceptional raising words. On average, these exceptional raising words did not

appear raised until approximately 1940, about 20 to 30 years after pre-voiceless raising began in

the dialect. Separating out these items as being reWective of a later development in the dialect

is therefore principled. Table 5.2 displays the counts of observations in each context after taking

these subsets and exclusions.
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Figure 5.4: Exceptional raising words compared to /ay/ before Wapped /t, d/ in all other words.

/t/ /d/

Surface 2155 647
Flap 240 328

Table 5.2: Number of /ay/ observations in each context

Since my goal is to be able to disambiguate between phonetic and phonological conditioning of

/ay/ raising, I’ll Vrst assess the phonetic pressures for /ay/ raising. Pre-voiceless vowel shortening

is the most commonly appealed to phonetic precursor for pre-voiceless /ay/ raising, starting with

Joos (1942) and Chambers (1973). The argument is very similar to that presented for /u/ fronting in

Ohala (1981): the diphthong /ay/ involves a long gesture across articulatory space, and when the

vowel is shortened before voiceless segments, this gesture must be made in a compressed amount

of time. In compensation, it is argued that speakers may raise the nucleus of /ay/ to reduce the
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gesture length. Moreton and Thomas (2007) make some very cogent arguments against the pre-

voiceless shortening account. They point out that in dialects which monophthongize /ay/, the

monophthongization is least advanced before voiceless segments, meaning that in these dialects

/ay/ has the the longest articulatory gesture in the context where it is supposed to be the most

diXcult according to the shortening account of raising. Their alternative hypothesis is that the

glide is peripheralized in pre-voiceless contexts, capturing both the coarticulatory pressure to

raise the nucleus towards the glide, and the resistance to monophthongization. It’s not clear

that either hypothesis can account for raising /ay/ before /r/ in the Inland North, since /ay/ is

both relatively long before this sonorant, and it is one of the most favorable contexts for /ay/

monophthongization. However, since /ay/ does not raise before /r/ in Philadelphia, this may be

beyond the scope of relevance for the data from Philadelphia.
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Figure 5.5: Violin plot representing the distribution of durations of /ay/ before surface and Wapped
/t/ and /d/.

I’ll address these two hypotheses for the phonetic conditioning of /ay/ raising in turn, be-

ginning with the pre-voiceless shortening hypothesis. Figure 5.5 is a violin plot representing the

duration of /ay/ in the relevant contexts. The violin shape represents the density estimate, and the

point within each violin represents the overall median. Based on the distribution in the Vgure, we

can see that vowel duration is incompletely neutralized towards the shorter duration range before
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Waps. Table 5.3 displays /ay/ contexts from shortest to longest.10 Since the PNC data was collected

for the purpose of vowel formant measurements, vowels with durations shorter than 50ms were

excluded. Additionally, the force aligner only has a duration resolution of 10ms. Because the data

was censored at 50ms, and because the instrument of measurement does not have Vne grained

enough resolution, it would be inappropriate to attempt too much statistical inference of vowel

duration as a response variable. However, we can see that over all, /ay/ before Waps and /ay/

before surface /t/ form one set of distributions, and /ay/ before /d/ forms a separate distribution.

Segment Context Median Duration (msec) DiUerence from next shortest

/t/ Wapping 111 –
/t/ surface 144 34
/d/ Wapping 156 11
/d/ surface 237 82

Table 5.3: Median /ay/ durations by context.

If we were to assume that /ay/ raising is phonetically conditioned, and that the relevant pho-

netic conditioning is duration, then we should predict that Wapped /t/, surface /t/ and Wapped /d/

should all participate in raising. Even though the duration diUerence in /ay/ before Wapped /t/

and /d/ is not completely neutralized (in the PNC data by a larger margin than recently reported

by Braver (2011)), the duration of /ay/ before Wapped /d/ is approximately the same as before sur-

face /t/. It is uncontroversially established that /ay/ before /t/ undergoes the raising change, and

if what really matters is the phonetic properties of the pre-/t/ context, we should expect other

contexts with similar properties, like before Wapped /d/, to also undergo the change. The fact that

/ay/ raising ultimately ends up in an opaque relationship with Wapping would necessitate a later

reanalysis of raising as being phonologically conditioned, which would result in a trajectory of

change which would look something like Figure 5.6.

10These medians were calculated in a three step process.

(i) Calculate median /ay/ duration for each word within each speaker.

(ii) From the medians in (i), calculate median /ay/ duration for each speaker in each context.

(iii) From the medians in (ii), calculate median /ay/ duration for each context.

This three step process partially mitigates the imbalanced distribution of observations across speakers and lexical items.
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Figure 5.6: Schematic illustration of the reanalysis of /ay/ raising from being phonetically condi-
tioned to being phonologically conditioned.

As for the glide peripheralization hypothesis, unfortunately glide measurements are not cur-

rently part of the PNC, and the results from other studies are somewhat inconclusive. Figure 5.7

plots data derived from Figures 4.1 and 4.2 of Rosenfelder (2005), a study of /ay/ and /aw/ raising

in Victoria, British Columbia. The solid lines represent the average trajectories for /ay/ before all

voiced and voiceless obstruents. Consistent with the glide peripheralization hypothesis, the glide

targets (represented by the arrow heads) are much more peripheralized before voiceless obstru-

ents than before voiced obstruents to a degree that is not in proportion to the the diUerence in

height of the nucleus. The dashed lines represent trajectories of /ay/ before Wapped /t/ (trajec-

tories for /ay/ before Wapped /d/ were not reported separately in Rosenfelder (2005)). The glide

target for /ay/ before Wapped /t/ is much more similar to the glide target of voiced obstruents than

voiceless obstruents. The diUerence in glide targets between pre-Wap /ay/ and pre-voiced /ay/

appears to be more or less in proportion to the diUerence in nucleus height. Kwong and Stevens

(1999) did a small scale acoustic study of pre-Wap /ay/, and found that there was a statistically

reliable diUerence in glide peripherality between pre-/t/-Wap and pre-/d/-Wap /ay/, but they did

not include nucleus measurements, so it is impossible to tell if this diUerence is proportional to

nucleus height diUerences. Moreover, Kwong and Stevens (1999) do not provide any /ay/ glide

measurements from surface /t, d/ contexts, so it is also not possible to tell if the glide targets
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before Waps pattern similarly across phonological categories, or if they are partially neutralized

towards the pre-voiced glide targets as they appear to be in Rosenfelder (2005). Since Rosenfelder

(2005) provides the relevant contrasts, the best interim assumption would be that before both /t/

and /d/ Waps, /ay/ glide targets are more similar to the targets of voiced obstruents.
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Figure 5.7: Nucleus to glide trajectories in Victoria, B.C. Derived from Rosenfelder (2005) Vgures
4.1 and 4.2

The glide-peripheralization hypothesis makes a very diUerent prediction from the duration

hypothesis. If voiced obstruents and both /t/ and /d/ Waps have similar glide targets, and other

voiceless obstruents have peripheralized glide targets, it would predict that only surface /t/ should

undergo raising. Again, the fact that /ay/ raising ultimately results in an opaque interaction with

Wapping means that if /ay/ raising were conditioned by glide peripheralization at Vrst, it would

eventually have to become reanalyzed as being phonologically conditioned, as illustrated in Figure

5.8.

Table 5.4 summarizes the diUerence between these two hypotheses in terms of which seg-

ments are predicted to undergo raising on the basis of phonetic conditioning. Under the duration

precursor hypothesis, /ay/ preceding the set {surface /t/, Wapped /t/, Wapped /d/} should undergo

raising, while /ay/ preceding {surface /d/} will not. Under the glide peripheralization precursor

hypothesis, only /ay/ preceding the set {surface /t/} will undergo the change while /ay/ preceding

{Wapped /t/, Wapped /d/, surface /d/} will not.
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Figure 5.8: Schematic illustration of the reanalysis of /ay/ raising from being phonetically condi-
tioned to being phonologically conditioned.

Duration Hypothesis Raises Low

surface /t/ Wapped /t/ Wapped /d/ surface /d/

Glide Peripheralization Hypothesis Raises Low

Table 5.4: DeVning the undergoers and non-undergoers phonetically according to two diUerent
precursor hypotheses.

Having established the predictions of these two phonetic conditioning hypotheses, we can

examine the actual data. Figure 5.9 plots cubic regression splines over speaker means for /ay/

in the contexts under discussion. The trajectories in Figure 5.9 don’t match the predictions of

either the duration precursor hypothesis or the glide peripheralization hypothesis. Rather, across

the 20th century, the height of /ay/ appears to pattern according the underlying phonological

voicing of the following segment, with {surface /t/, Wapped /t/} patterning together, and {surface

/d/, Wapped /d/} patterning together.

Of course, the importance of phonological voicing to /ay/ raising is merely a qualitative im-

pression of Figure 5.9 which will be be supported by statistical inference in the next section. The

implications are that /ay/ raising has always been a phonologically conditioned process, and that

this phonological process has always interacted with Wapping opaquely. This would require the

addition of a phonological process to the grammar at the onset of the phonetic change, which at

120



0.5

1.0

1.5

2.0

1900 1925 1950 1975
Date of Birth

N
or
m
al
iz
ed

F1

Context

Surface

Flap

Following
Segment

T

D

Figure 5.9: /ay/ height by date of birth and context. Cubic regression splines are Vt over speaker
means.

Vrst corresponds to a small phonetic diUerence.

Modeling

To investigate the interaction of /ay/ raising and Wapping more precisely, I constructed a hierar-

chical Bayesian model similar to that used in Chapter 4. The goal of this model is to determine

whether there was ever a period of /ay/ raising where /ay/ allophones did not pattern according

to the underlying voicing of following segment. There are at least two diUerent ways we can try

to answer this question.

(5.5) Is there any point in time where the height of /ay/ is diUerent between Wapped and

unWapped versions of the same segment?

(e.g. /ay/ could be a little bit lower before Wapped /t/ than before unWapped /t/).

(5.6) Is there any point in time when the diUerence in height of /ay/ between a following /t/ and

/d/ is smaller when the /t/ and /d/ are Waps than when they are not Wapped.
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(e.g. There could be no height diUerence across the Waps, while there is a reliable diUerence

between non-Wapped /t/ and /d/).

As with the rate of change models from Chapter 4, I will be modeling functions over dates of

birth using b-splines. See Chapter 4 §4.3.1 to review of how b-splines work. For this model, there

are four variables that I want to model as a function of date of birth:

(5.7) The height along F1 of /ay/ before surface /d/.

(5.8) The diUerence in height for /ay/ between surface /d/ and surface /t/.

(5.9) The diUerence in height for /ay/ between surface /d/ and Wapped /d/.

(5.10) The diUerence in height for /ay/ between surface /t/ and Wapped /t/.

Each of these functions will be represented by γle, where l is the date of birth, and e is an index

for the speciVc function. Each γle will be modeled using a b-spline.

γle = b.spline(l) (5.11)

Now, with the exception of γl,1, none of these γle functions model the speciVc height of /ay/ in

a given context. Instead, the community level estimate for the height of /ay/ in a speciVc context

for a speciVc date of birth will be given as flpk, where l is the date of birth, p is the phoneme, and

k is for the context.

flpk (5.12)

p = {D,T} (5.13)

k = {surf, flap} (5.14)

The relationship for each height function flpk to the γle functions is given as follows.

fl,D,surf = γl,1 (5.15)

fl,T,surf = γl,1 + γl,2 (5.16)
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fl,D,flap = γl,1 + γl,3 (5.17)

fl,T,flap = γl,1 + γl,2 + γl,4 (5.18)

As a consequence, each γle function can be interpreted as follows.

(5.19) γl,1

- The height of /ay/ before surface /d/ over time.

(5.20) γl,2

- The height diUerence from /ay/ before surface /d/ to /ay/ before surface /t/ over time.

(5.21) γl,3

- The height diUerence from /ay/ before Wapped /d/ to /ay/ before surface /d/.

(5.22) γl,4

- The height diUerence from /ay/ before Wapped /t/ to /ay/ before surface /t/.

For the sake of clear understanding, I won’t be labeling axes in the Vgures which follow with

the speciVc γle label, but rather these descriptions. Of particular interest will be whether γl,3

(the diUerence in /ay/ between surface and Wapped /d/) and γl,4 (the diUerence in /ay/ between

surface and Wapped /t/) ever exclude 0 at any point in time. If they do, then it would mean that

for that particular point in time, the eUect of the following segment on the preceding /ay/ was not

equivalent between surface and Wapped forms.

Also of interest will be whether the diUerence in hight between /t/ and /d/ is always the same

whether they are Wapped or not. We can represent this estimate as δl.

δl = (fl,D,surf − fl,T,surf )− (fl,D,flap − fl,T,flap) (5.23)

If δl ever excludes 0, that would mean that for that period of time, the diUerence in /ay/ height

before /t/ and /d/ is diUerent depending on whether they are Wapped.

Now, one possible criticism of the model as I’ve laid it out so far is that I’ve built in the

assumption that I’m trying to test. The height of /ay/ before surface /t/ is derived from the height
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of /ay/ from surface /d/ plus γl,T,surf . The height of /ay/ before Waps are then derived from the

height of /ay/ before the surface realizations. However, the functions for γlpe are only very weakly

biased towards 0. If there was not suXcient data to estimate, say, the function for γl,T,flap (the

diUerence in height for /ay/ between surface /t/ and Wapped /t/), its posterior distribution would

be only marginally diUerent from its prior, which in this model was N (0, 1000), meaning that

values ranging from -1000 to 1000 would be well within reason. Given the weak inWuence of the

prior, the actual data should be the primary driver behind the estimate of the posterior, and if

the posterior for all γlpe functions are estimated with approximately equivalent certainty, then it

would be reasonable to assume that this results primarily from the posterior being supported by

the data, rather than by the priors in the model.

As for the rest of the model, it follows very similarly to the one described in Chapter 4. For

every speaker, indexed by j, their central tendency for /ay/ before each phoneme, p, in each

context k was estimated. This by-speaker estimate is represented by µsjpk.

DOB1,2,...n.speaker (5.24)

l = DOBj (5.25)

µsjpk ∼ N (flpk, σk) (5.26)

In addition, to the contextual eUects of the following segments, I have also modeled the eUect

of vowel duration on /ay/ height. This eUect was treated as being the same in all contexts, but I did

allow speakers to diUer in the strength of this eUect. The community level variable is represented

by βd, and a slope term for each speaker is represented by βsj .

βd ∼ N (0, 1000) (5.27)

βsj ∼ N (βd, σ
d) (5.28)

Finally, word level random eUects were also included, and represented by µwm.

µwm ∼ N (0, σw) (5.29)
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At the raw data layer of the model, normalized F1 is the outcome variable being modeled,

represented by yi. The duration variable is passed to the model as xi, and is, in fact log(duration)-

median(log(duration)). The remaining variables are indices for indexing the speaker level and

word level eUects. 11

y1,2,...n (5.30)

J1,2,...n (5.31)

P1,2,...n (5.32)

K1,2,...n (5.33)

W1,2,...n (5.34)

x1,2,...n (5.35)

j = Ji (5.36)

p = Pi (5.37)

k = Ki (5.38)

m = Wi (5.39)

Each observation is modeled as being drawn from a normal distribution with a speaker speciVc

variance σsj . The mean of this normal distribution is the sum of the speaker level estimate for F1

for the speciVc following segment and context, µsjpk, the word level eUect, µwm, and the speaker

level duration eUect, βsjxi

yi ∼ N (µsjpk + µwm + βsjxi, σ
s
j ) (5.40)

This model was implemented in Stan, and was set to run with four chains with a 3,500 iteration

burn in, and a 3,500 iteration sample. All location parameters which were not deVned in the model

11J is for speaker indices, P is for the following segment (/t/ or /d/), K is for the context (surface or Wap), and W is
for word indices.
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above were given a prior of N (0, 1000), and all scale parameters were given a prior of U(0, 100),

which for the scale of this data are relatively uninformative priors. The model converged to very

stable estimates, based on the Gelman-Rubin Potential Scale Reduction Factor, R̂. Figure 5.10 plots

a histogram of R̂ for all parameters in the model. For all parameters, R̂ is very close to 1.
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Figure 5.10: R̂ for all parameters in the model.

Figure 5.11 plots the estimated F1 trajectories for /ay/ in each context, along with 95% highest

density posterior intervals. As it was in Chapter 4, since this model is both Bayesian and Vtting

non-linear curves, I don’t have p-values to report. Rather, there is a 95% probability that the true

value lies within the colored band representing the HPD. There is a strong qualitative similarity

in the trajectories in Figure 5.11 to those in Figure 5.9, which along with the R̂ values close to 1

suggests that the model as described above is an adequate one for the data. Figure 5.12 plots the

same estimated F1 trajectories from Figure 5.11, but this time faceting by the following underlying

stop in order to foreground the eUect of Wapping. While /ay/ before /t/ looks nearly identical

whether or not that /t/ is Wapped, there is a much larger diUerence for /ay/ followed by Wapped

and surface /d/. The eUect on Wapping /t/ and /d/ are highlighted in Figure 5.13, which plots the

diUerence in the curves in each facet of Figure 5.12.

Figure 5.13 plots the diUerence in height of /ay/ between Waps and surface realizations for /t/

and /d/. Values below 0 mean that Waps are lower than surface realizations, and values above 0
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Figure 5.11: Model estimates of /ay/ F1, faceted by surface vs. Wapped realizations.
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Figure 5.12: Model estimates of /ay/ F1, faceted by /t/ vs /d/.
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mean that Waps are higher than surface realizations. Looking at /t/ Vrst, the 95% HPD contains

0 throughout the entire change, meaning that the height of /ay/ is not reliably diUerent between

surface /t/ and Wapped /t/. The edge of the 95% HPD comes very close to excluding 0 around

1910, but this is also true for /d/, with Wapped /d/ being lower than surface /d/. If anything, there

appears to be some kind of Wapping main eUect with /ay/ before Waps being somewhat lower,

although not reliably. The lack of any diUerence between /ay/ before surface /t/ and Wapped /t/

is anomalous under the glide peripheralization precursor hypothesis, which would predict that

/ay/ before Wapped /t/ should pattern more or less like /ay/ before surface /d/ at the onset of

the change. The main eUect of /ay/ before Waps being lower than before surface realizations is

anomalous under the duration precursor hypothesis, which predicted that /ay/ before both /t/ and

/d/ Waps should undergo raising. The eUect of Wapping on /ay/ height, therefore, is not consistent

with either of the phonetic precursor hypotheses.
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Figure 5.13: The diUerence in normalized F1 for /ay/ before Wapped /t/ and /d/ from surface /t/ and
/d/. The y-axis can be understood as (ayCflap - ayCsurf )

Figure 5.14 plots the second relevant comparison, the eUect of /t/ within surface realizations

and Waps. The way to interpret the “surface” facet of 5.14 is that it plots the height diUerence in

/ay/ before surface /t/ and /d/. The “Wap” facet plots the height diUerence in /ay/ before Wapped

/t/ and /d/. The eUect of following /t/ is virtually identical for Waps and surface realizations.

They both begin to exclude 0 at approximately the same time around 1920. Figure 5.15 plots

the diUerence between the surface /t/ eUect and Wapped /t/ eUect. This diUerence between /t/
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eUects contains 0 throughout the 20th century, meaning that the diUerence in /ay/ height between

Wapped /t/ and /d/ has always been the same as the diUerence between surface /t/ and /d/.
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Figure 5.14: The eUect of following phonological voice on /ay/ across context. The y-axis can be
understood as (ayd-ayt).
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Figure 5.15: The diUerence in the eUect of voicing between surface and Wap contexts. The y-axis
can be understood as (aydsurf -aytsurf )-(aydflap-aytflap)

/ay/ Conclusions and Discussion

The results laid out above are strikingly at odds with a model of conditioned sound change which

is based on the accumulation of phonetically conditioned production and perception errors a la
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Ohala (1981). Neither the rate of change nor the degree to which one context or the other favors

the change appears to be proportional to either of the proposed phonetic precursors. Rather, it

seems clear that the conditioning of /ay/ raising must make reference to phonologically deVned

categories rather than phonetically deVned ones. This phonological diUerentiation of of raised

and low /ay/ suggests that a grammatical process like (5.41) entered the phonology at the onset of

the change, and was always in an opaque relationship with respect to Wapping.

(5.41) ay→−low/ −voice

In many respects, this early introduction of a grammatical process is very similar to the Com-

peting Grammars view of language change from historical syntax beginning with Kroch (1989).

Kroch and students have by and large found that syntactic change does not begin in one context

and then spread by analogy to others. Rather, changes begin in all contexts at the same time,

although some may be more favoring than others and boost the overall rate. Given these results

from pre-voiceless /ay/ raising, it is obvious that it did not begin in the most phonetically favoring

environment and then analogically spread to other contexts.

One important diUerence between this case and most syntactic changes is that the introduc-

tion of the new phonological process to raise pre-voiceless /ay/ must have been rapid, in fact, too

rapid to be detectable to the analysis methods I employ in this dissertation. In syntactic change,

the change we observe is the rate of use of the new grammatical process, where in this case use

of the new phonological process must have reached categorical use nearly immediately, and the

change we observe is shifting phonetic implementation of the output of that phonological process.

See Chapter 2 §2.3 for the quantitative arguments that this is the case. In Chapter 6, I’ll discuss the

possibility that there was a precursor phonological process for pre-voiceless /ay/ raising that may

solve this rapidity problem for /ay/ raising, but this rapidity is really a problem for the phonolog-

ical conditioning on sound change discussed in chapter 4 (speciVcally the eUect of /l/ on /ow/ and

/uw/), as well as for /ey/, to be discussed next.
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5.1.2 /ey/ Raising

The conditioned raising of /ey/ in “checked” position was initially described as a new and vigorous

change in Philadelphia in the 1970s (Labov, 2001). However, not as much work has been done on

this change as has been done on /ay/, and since conditioned raising of /ey/ is not a feature shared

by other dialects (or at least not reported to), a bit more exploratory description is necessary

before digging into its conditioning.

To begin with, I have excluded the days of the week (Sunday, Monday. etc.) because of the

relatively frequent lexical variation in these items between /-deI/ and /-di:/ which constitutes a

cross-cutting factor that is not of particular relevance to the patterns discussed below. I’ve also

excluded all cases of /ey/ followed by /g/. There has been a long lasting tendency in Philadelphian

phonology to lax /iy/ and /ey/ before /g/ to /I/ and /E/, leading to such shibboleths as Iggles (Eagles,

the local football team) and beggle (bagle). Figure 5.16 plots ellipses representing the distribution

of /ey/ when followed by various stops. The distribution followed by /g/ is clearly outlying, and

again, a cross-cutting factor not relevant to the problem at hand.
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Figure 5.16: Distribution of /ey/ means by following stop.

As for the remaining possible within-word conditioning eUects, Figure 5.17 plots most of

them out, faceting by voicing and manner, color representing place of articulation. There are no

131



standout eUects, except for that of following /l/, which is more or less Wat. For the rest of this

section, I’ll be collapsing across following consonant, separating out only /l/.
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Figure 5.17: The eUect of following context on word internal /ey/ raising.

One major question regarding /ey/ raising is how it interacts with syllable structure. It has

been mostly deVned in the previous literature as raising in “checked” position, while remaining

low in “free” position. This distinction has been largely operationalized as being word Vnal (free)

versus all other contexts. However, it has not been established whether the distinction between

open versus closed syllables plays any role. To determine whether or not syllabic structure plays a

role in conditioning /ey/ raising, I wrote a simple syllabiVer to categorize the consonants following

word internal /ey/ as to whether they were in the onset of the following syllable (making /ey/ the

nucleus of an open syllable) or in the coda of the syllable with /ey/ (making it closed). The

syllabiVer operated over the CMU dictionary style transcriptions for each word, and maximized

onset (Kahn, 1976) modulo English phonotactics. There was not enough data of /ey/ followed

by /l/ to further subdivide it by syllabicity. Of course, many tokens of /ey/ were pre-hiatus (e.g.
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mayor, saying), and this context was also separated out. For now, I’ve set aside word-Vnal /ey/.
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Figure 5.18: Trajectory of word internal /ey/

Figure 5.18 plots cubic regression splines over speaker means. Colors indicate the category of

following segment (consonant, hiatus, /l/), and pre-consonantal /ey/ has been further subdivided

according to the syllabic relationship between /ey/ and the consonant. There are a few striking

results visible in this Vgure. First, syllabic structure appears to make no diUerence when the

following segment is a consonant. Both baby and babe undergo the change at the same rate.

Second, neither /ey/ followed by /l/ nor /ey/ followed by a vowel appear to undergo the change

at all. Third, the set of contexts where /ey/ undergoes the change is not related to the degree

to which those contexts appeared to favor change at the beginning. This is a change along the

front diagonal of the vowel space, and in the period around 1900, the context where /ey/ was most

advanced along the front diagonal was before /l/. However, the change did not take place before

/l/ at all. This appears to be another clear example where the context where the change seemed

to be happening Vrst is not where it happened fastest (cf. Bailey, 1973).

The diUerence along the front diagonal between /ey/ followed by /l/ and /ey/ followed by

other consonants is very slight in the early period of the change according to Figure 5.18, so more

detailed statistics are necessary to establish its validity. To this end, I Vt a mixed eUects linear
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model using the lme4 package in R. I created a Decade predictor for the model which is equal

to (DOB-1900)/10. This allows us to interpret the intercept eUects as representing diUerences

between the contexts in 1900, and to interpret the slope eUects as representing the degree of

change per decade. The Vxed eUects included in the model were Decade, the following segment

(consonant, vowel, /l/), and their interaction. The random eUects included random intercepts for

speaker and word, as well as a random slope of following segment by speaker, and randoms slope

of decade by word.12 The model estimates are displayed in Table 5.5 along with t-values. For the

purposes of this dissertation, t-values greater than 2 will be taken to indicate a reliable eUect.13

Since all of the t-values in Table 5.5 are greater than 2, we’ll take the reported eUects to be reliable.

C EUects Interactions

Intercept 0.63 t=15.14 0.31 t= 2.66 /l/
-0.55 t=-4.29 V

Decade 0.12 t=14.9 -0.1 t=-4.18 /l/
-0.12 t=-5.22 V

Table 5.5: Regression Estimates for word internal /ey/ raising. Reference levels:
Decade=1900; FolSeg=C. Model formula: Diag ∼ Decade * FolSeg + (FolSeg|Speaker) +
(Decade|Word).

The intercept for /ey/ followed by consonants is 0.63, with a decade-over-decade rate of

change of 0.12. There are approximately 9 decades between 1900 and the most recent date of

birth, 1991, meaning that /ey/ rose 1.09 units along the front diagonal, from 0.63 to 1.73. The

eUect of a following /l/ in 1900 was 0.31, meaning it would take /eyC/ 0.31/0.12=2.55 decades to

reach that level. This eUect of /l/ is reliable and substantial in the direction of the change, but /ey/

does not undergo the change in this context. The slope of /ey/ followed by /l/ is estimated to be 0.1

less than /ey/ followed by other consonants, or 0.12−0.1=0.02. Given the current speciVcation of

the model, it’s not possible to determine whether 0.02 is reliably diUerent from 0, but it is unlikely

to be. To be sure, I reVt the model changing the reference level from a following C to following

/l/. The results are displayed in Table 5.6, and, in fact, the t-value corresponding to the slope of

12Due to the structure of the data, it is not possible to include random slopes for following segment by word, or
decade by speaker.

13p-values are not included because they are non-trivial to calculate for mixed eUects models (Bates, 2006) and
estimation of p-values by MCMC is not yet implemented for models with random slopes.
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/ey/ before /l/ is less than 2, meaning that it is not reliably diUerent from 0. The interaction eUect

of following V is also not reliably diUerent from 0 in Table 5.6, meaning /ey/ followed by /l/ and

/ey/ followed by vowels are not reliably diUerent from parallel.

/l/ EUects Interactions

Intercept 0.94 t=8.12 -0.31 t=-2.66 C
-0.87 t=-5.15 V

Decade 0.02 t=1.08 0.1 t= 4.18 C
-0.02 t=-0.78 V

Table 5.6: Regression Estimates for word internal /ey/ raising. Reference levels:
Decade=1900; FolSeg=/l/. Model formula: Diag ∼ Decade * FolSeg + (FolSeg|Speaker)
+ (Decade|Word).

The qualitative impressions from Figure 5.18 are therefore quantitatively supported. Even

though /eyl/ started out higher and fronter than /eyC/, it did not undergo the raising and fronting

change. In fact, around approximately 1925, /eyC/ crossed over and passed /eyl/.

Unlike /ay/ raising, there has been less work on establishing what the phonetic precursors of

/ey/ raising might have been. Even without that background research, however, I believe it can

still be established that the context for /ey/ raising is phonologically, not phonetically deVned.

Strictly phonetic eUects, like those discussed in Chapter 4, speciVcally §4.1, can be seen to be

operating early on in /ey/ just before the change begins around the turn of the century. When

followed by a vowel, /ey/ is especially low, and when followed by an /l/, it is slightly higher

than when followed by other consonants. Whatever phonetic precursor for raising /ey/ may be

proposed, it is clear that /eyl/ has more of it, because it starts oU in a more advanced position.

The fact that /eyC/ comes from behind and overtakes /eyl/ means that the change must have been

conditioned by something other than phonetic favorability.

The proposal that I’ll put forward here about /ey/ raising is that it is conditioned by following

consonants. I’ll call the phonological allophone [+peripheral], following the fact that it fronts

and raises along the front peripheral track (Labov, 1994). Moreover, the allophone which does not

undergo raising and fronting remains with phonetics roughly similar to the realization of /ey/ in

Southern English, which Labov et al. (2006, ch 3) argues is [−peripheral].
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(5.42) ey→ +peripheral / C

Of course, the Vrst issue that arises is why a following /l/ does not count as a consonant, but

there is precedent for an analysis of /l/ as not being a consonant in Philadelphia. Philadelphia

has fairly aggressive /l/ vocalization, taking place not only word Vnally and in codas, but also

intervocalically and in initial clusters (Ash, 1982). /l/ also has a number of vowel-like eUects

on preceding vowels in Philadelphia, especially to the long back-upgliding vowels /uw, ow, aw/

as discussed in Chapter 4. Notably, it triggers glide deletion in /aw/, leading Dinkin (2011a) to

propose that /l/ is actually the glide in /awl/. Looking only at word internal /ey/, it is not possible

to determine whether /ey/ raising is conditioned or not by other glides and liquids, but this will

be addressed shortly.

Placing /ey/ raising in the grammar.

The fact that /ey/ raising excludes the most phonetically favoring context is fairly good evidence

for its phonological conditioning. It is also possible to see how the proposed phonological process

interacts with other phonological processes, like I did for /ay/ raising. Unfortunately, it appears

that /ey/ raising applies transparently with respect to aXxing, and may even apply at the phrase

level.

The easiest way to demonstrate that /ey/ raising applies transparently with respect to aXxing

is to plot the trajectories if the relatively high frequency words day and days. Figure 5.19 plots

speaker means and cubic regression splines for these two words. Days appears to behave like

every other /eyC/ context by undergoing the change, while day remains low.

Figure 5.20 plots an extended comparison like the one in Figure 5.19. It compares /ey/ followed

by inWectional /-z/ and /-d/ to uninWected forms of the same words where /ey/ is word Vnal, as

well as to /ey/ followed by /z/ and /d/ which are not exponents of any morpheme. /ey/ appears to

pattern the same way regardless of whether the following consonant is inWectional morphology

or not, and in all cases the uninWected form remains low. Again, this qualitative impression

from Figure 5.20 is supported quantitatively in Tables 5.7 and 5.8, where the main eUects and

interactions for the comparison consonants (/z/ and /d/ which are not exponents of agreement)
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Figure 5.19: Trajectories of the words day and days.

are not reliably diUerent from the inWectional morphemes.
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Figure 5.20: Comparison of word Vnal /ey/ to inWected versions of the same words, as well as /ey/
followed by non-morphological /z/ and /d/.

Additionally, there appears to be some conditioning of /ey/ raising for word Vnal /ey/ by

the onset of the following word. Figure 5.21 plots the trajectories of word Vnal /ey/ divided up
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+ed EUects Interactions

Intercept 0.49 t=4.17 0.24 t= 1.67 non-inWectional C
-0.31 t=-2.14 uninWected

Decade 0.09 t=3.3 -0.01 t=-0.25 non-inWectional C
-0.08 t=-2.15 uninWected

Table 5.7: Regression Estimates /ey/ raising in inWected vs uninWected words. Refer-
ence levels: Decade=1900; Context=/+ed/. Model formula: Diag ∼ Decade * Context +
(Context|Speaker) + (Decade|Word).

+s EUects Interactions

Intercept 0.48 t= 4.95 -0.34 t=-1.56 non-inWectional C
-0.26 t=-2.34 uninWected

Decade 0.14 t=6.48 0.05 t= 1.07 non-inWectional C
-0.12 t=-5.11 uninWected

Table 5.8: Regression Estimates /ey/ raising in inWected vs uninWected words. Refer-
ence levels: Decade=1900; Context=/+s/. Model formula: Diag ∼ Decade * Context +
(Context|Speaker) + (Decade|Word).

by the onset of the following word (the “etc.” category consists of following pauses, coughs,

laughs, etc.). The same conditioning eUects appear to be in place, except within a substantially

compressed range and a shallower slope (Figure 5.21 has the same y-axis range as Figure 5.18 for

this comparison).

Both the fact that /ey/ raising interacts transparently with inWection and that it applies across

word boundaries indicate that this must be a low level phonological process. In a stratal approach

to phonology like Lexical Phonology or Stratal OT, this process would be taking place postlexi-

cally, or at the phrase level. I’ll revise the process in (5.42) to reWect this.

(5.43) ey→ +peripheral / C]phrase level

Now, there is frequently ambiguity between phrase level or postlexical rules and strictly pho-

netic processes, but the case for /ey/ raising being a phonological process is still evident at the

phrasal level because of the exclusion of /l/ from the conditioning environments. There is more

diversity in the range of contexts following /ey/ when it is word Vnal than when word internal,
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Figure 5.21: Trajectory of word Vnal /ey/

meaning it’s possible to compare /ey#C/, /ey#l/, and /ey/ followed by other liquids and glides like

/r, w, y/. Figure 5.22 does exactly this, plotting cubic regression splines over speakers’ means

for /ey/ followed by various contexts. The erratic behavior of /ey#r/ is almost certainly due to its

small volume of data, yet it does generally follow the trend of becoming higher and fronter. /ey#y/

and /ey#w/ have essentially identical trajectories as /ey#C/. The only non-participating contexts

are /ey#l/, /ey#V/ and /ey#/.

The analysis that /ey/ raising is phonologically conditioned by following consonants appears

to be supported again by the analysis of word Vnal /ey/. It appears to be phonological for two

reasons. First, the exclusion of /ey#l/ from the set of undergoers cannot seem to be done on a

phonetic basis, as other phonetically similar segments (/r, w/) do undergo the change. Second, the

following contexts appear to arrange themselves into two categorically separate classes: triggers

and non-triggers.
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5.1.3 /ay/ and /ey/ summary

In this section, I have examined divergent diachronic trajectories that occurred within the phone-

mic categories /ay/ and /ey/ and determined that they are best explained by appealing to phono-

logical, rather than phonetic conditioning factors. In neither case did the change occur in propor-

tion to the phonetic favorability of the contexts where it could have. In the case of /ay/ raising,

we should expect /ay/ raising before Waps to have either patterned with surface /t/ or surface /d/

on phonetic grounds, depending on the precursor theory we care to adopt. However, /ay/ raising

appeared to pattern strictly according to the underlying phonological voice of the following seg-

ment. One may try to argue that this result could be achieved through some kind of analogical

process without resorting to phonological processes, so that [2i] in write analogizes to writer. Of

course, whatever explanation based on analogy one comes up with must also allow for raised /ey/

in days not to analogize to day.

In the case of /ey/ raising, the exclusion of /l/ from the set of environments where the change

took place is anomalous on a number of grounds. The exclusion of /eyl/ from undergoing the
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change must be made on grounds other than its phonetic properties (due to the fact that pho-

netically similar segments /r/ and /w/ did undergo the change) or its phonetic favorability for

the change (due to the fact that before the change began, it appeared to be the most favoring

enviornment under consideration here). Since there is independent evidence that /l/ is not quite

consonantal in Philadelphia, and since /ey/ did not raise before vowels, I’ll argue that the deV-

nition of the conditioning environment for /ey/ raising is that the following segment must be a

consonant phonologically.

The conditioning of these two changes support my proposal that the target of phonetic changes

are surface phonological representations. For both of these changes, I have posited phonologi-

cal processes that separate the phonemic categories into two phonological allophones, only one

of which undergoes the change. In the next section, I’ll demonstrate that phonetic changes fre-

quently target phonological natural classes as a whole, and argue that this is the result of changing

phonetic implementation of the phonological features which deVne these natural classes.

5.2 Natural Class Patterns

The most commonly discussed multi-vowel shifts are chain shifts, a useful typology of which

is provided by Labov (1994). The observed patterns in chain shifts are frequently described in

terms of maximizing the “margin of security” between vowels (Martinet, 1952), or by the maxi-

mal dispersion of vowel contrast (Liljencrants and Lindblom, 1972; Labov, 1994, 2001; Flemming,

2004inter alia). For example, the low-back merger of the Lot and Thought vowels (/A/ and /O:/,

or /o/ and /oh/ in Labovian class labels) is implicated in at least two kinds of chain shifts. The Vrst

is the Canadian Shift14 (Clarke et al., 1995; Labov et al., 2006), where the phonetic gap created by

the merger of /o/ to a backer and higher position is Vlled by short-a, /æ/. The remaining front

short vowels then lower, due to the phonetic gap created by /æ/ retraction.

The second kind of shift implicated in the low-back merger involves the lowering of /2/ into

the gap left behind by /o/, which has been attested in Pittsburgh (Labov et al., 2006). Figure 5.24

is a schematic diagram of this Pittsburgh Chain Shift, and Figure 5.25 plots the vowel system of a

14also known as the California Shift or Third Dialect Shift
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Figure 5.23: The Canadian Chain Shift in reaction to the merger of /o/ and /oh/. ModiVed from
Clarke et al. (1995).

representative speaker from the Atlas of North American English dataset.
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Figure 5.24: The Pittsburgh Shift in reaction to the merger of /o/ and /oh/. ModiVed from Labov
et al. (2006).

The retraction of /æ/ and the lowering of /2/ into the gap created by the merger of /o/ and

/oh/ can be motivated on largely phonetic grounds, as can the subsequent lowering of /E/ and

/I/ in the Canadian Shift. Labov (2001) oUers one such explanation for chain shifting whereby

the creation of a phonetic gap allows for outliers to be included in the estimation of the phonetic

target for that category. In the case of the low-back merger, before /o/ merges into /oh/, it has

a phonetic realization of approximately [A]. Outlying pronunciations of /æ/, due to production
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Figure 5.25: Vowel system of a 66 year old woman from Pittsburgh.

error or any other cause, which are produced suXciently back enough may be misinterpreted as

/o/. These exceptionally back realizations of /æ/ wind up not being factored into the estimate for

the phonetic target of /æ/, since they were miscategorized into /o/. However, once /o/ merges into

/o/, moving from a phonetic realization of [A] to [6: ∼ O:], there is no longer a phonemic category

with a realization of [A]. These exceptionally back pronunciations of /æ/ are now less likely to be

miscategorized into /o/, meaning that now they will be included in the estimation of the target for

/æ/, leading to /æ/ retraction. For the Canadian Chain Shift, this process repeats with /E/ leading

to /E/ lowering. For The Pittsburgh Shift, this process played out for /2/ instead of /æ/.

Other implementations of this basic model of chain shifting exist, from more teleological ones,

like Martinet’s (1952) margins of security or Flemming’s MinDist constraints on contrast , to

more mechanistic ones, like those relying on exemplar models and agent based models (de Boer,

2000, 2001; Ettlinger, 2007, e.g. ), or Boersma and Hamann’s (2008) model of bi-directional cue

constraints . A more vexing phenomenon for all of these models which adequately explain either

/æ/-retraction or /2/-lowering in reaction to the low-back merger is when both happen. The

original description of the shift in Clarke et al. (1995) included both /æ/-retraction and /2/ lowering
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(shown schematically in Figure 5.26), and an ANAE speaker from Winnipeg who appears to be

exhibiting both is shown in Figure 5.27.
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Figure 5.26: The Canadian Chain Shift with /2/ lowering. ModiVed from Clarke et al. (1995).
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Figure 5.27: Vowel system of a 36 year old woman from Winnipeg.

The focus of this section, however, is a third reported pattern of the Canadian Shift which

is also inexplicable in terms of gap creation and Vlling, the maximization of contrast, or any

other operationalizations of those concepts. Boberg (2005) reports that in Montreal, the dominant

pattern of movement for /E/ and /I/ is their parallel retraction, rather than a rotation in a chain

shift. Figure 5.28 plots the normalized F1 and F2 values for the 3 generational groups Boberg
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(2005) studied.15 The parallel retraction of /æ/, /E/, and /I/ has also been reported as occurring in

Columbus, OH by Durian (2012, ch 5), who found relatively strong and signiVcant correlation in

the mean F2 of /æ/ and /E/ across speakers. In these cases, the only phonetic pressure explicable

in terms of gap creation and Vlling is for the retraction of /æ/ into the space vacated by /o/. The

subsequent parallel retraction of /E/ and /I/ cannot be similarly explained, especially since this

parallel retraction compresses the distance between the short front vowels and the short back

vowels in a way unexpected under a maximal dispersion kind of account. Instead, it appears that

in Montreal and Columbus, the retraction of /æ/ is generalizing to the other short front vowels

along phonological dimensions.

o
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700

800

900

12001400160018002000
F2

F1

Figure 5.28: The Canadian Parallel Shift. Data from Boberg (2005) Table 4. Points represent 3
generational groups. F1 and F2 have been normalized according to the method reported in Labov
et al. (2006)

5.2.1 Back vowel fronting in Philadelphia

Philadelphia has so far been resistant to the low-back merger (Labov et al., 2006), and there is no

evidence in the PNC of any retraction of the short front vowels. However, the fronting of the back

15Boberg (2005) employed a one-factor Nearey log-mean normalization, similar to that used in the Atlas of North
American English (Labov et al., 2006). The generational groups were deVned as “(1) born before 1946, (2) born 1946-
1965, and (3) born after 1965.”
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Figure 5.29: The Canadian Parallel Shift. ModiVed from Boberg (2005).

up-gliding vowels /aw/, /ow/, /uw/ in Philadelphia appear to progress in parallel, a noted trend

in many North American Dialects (Labov et al., 2006; Fridland, 2001; Baranowski, 2008; Durian,

2012, inter alia). The only plausible “triggering event” for back vowel fronting is proposed by

Labov (2010a). He argues that the merger of post-coronal /iw/ and /uw/ (e.g. dew [dju:] and do

[du:]) triggered the eventual fronting of /uw/. As discussed in Chapter 4, the rate of change data

for [Tuw] is ambiguous with respect to whether [Tuw] and [uw] are phonologically distinct, but in

combination with the plausible historical event of [Tiw ∼ Tuw] merger, and the results in Labov,

Rosenfelder, and Fruehwald (2013) which found that [Tuw] patterns separately from [uw] along

social dimensions, I believe it is reasonable to conclude that [Tuw] and [uw] are phonologically

distinct. Of particular interest in this chapter, however, is the degree to which fronting occurs in

parallel between all of these back upgliding vowels, so I will be excluding [Tuw] from the data in

this section, as well as /aw/, /ow/ and /uw/ followed by /l/, which I found to be phonologically

distinct allophones in Chapter 4. Figure 5.30 plots the trajectory for these back vowels along

normalized F2. /aw/ starts out much fronter than /ow/ and /uw/, and this is probably because its

nucleus has a diUerent phonological speciVcation for backness (in fact Dinkin (2011a) argues that

/aw/ has merged with /æl/). Strikingly, however, all three vowels appear to front at nearly the

same rate, reach a maximum at about the same time, and then begin to reverse together.
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Figure 5.30: The fronting of back vowels in Philadelphia

If we plot speakers’ means for /uw/, /ow/ and /aw/ against each other, as Figures 5.31, 5.32 and

5.33 do, we can see a relatively strong relationship between the frontness of one vowel and the

others, meaning speakers who have very fronted /aw/ are likely to also have very fronted /ow/

and /uw/. This relationship is strongest for the vowels which are adjacent in height (/aw/ and

/ow/, and /ow/ and /uw/), and weakest for the vowels which are two steps away from each other

in height (/aw/ and /uw/). However, correlation tests Vnd that the correlation between all three

pairwise comparisons of /aw/, /ow/ and /uw/ are signiVcant.

Table 5.9 displays the results of statistical tests using three diUerent correlation statistics. The

well known Pearson’s r is a measure of the linear correlation of the two vowels, and Spearman’s

ρ is a similar statistic which measures the correlation of the two vowels given any monotonic

function. Kendall’s τ is a measure of the concordance of two vowels. For example, taking two

speakers and their /ow/ and /aw/ measurements, if the Vrst speakers’ /ow/ and /ow/ were both

fronter than the second speakers’, this would be a “concordant” pair of speakers. On the other

hand, if only the Vrst speaker’s /ow/ were fronter than the second speaker’s, but their /aw/ was

backer, this would be a “discordant” pair of speakers. Kendall’s τ is the proportion of all pairwise
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Figure 5.31: The relationship between /aw/ and /ow/ across speakers.
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Figure 5.32: The relationship between /uw/ and /ow/ across speakers.
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Figure 5.33: The relationship between /uw/ and /aw/ across speakers.

comparisons of speakers which are concordant. For all three of these correlation statistics, the

relationship between /aw/, /ow/ and /uw/ are signiVcantly and positively correlated.

Pearson’s r Spearman’s ρ Kendall’s τ

/uw/∼/ow/ 0.38 (p < 0.001) 0.4 (p < 0.001) 0.28 (p < 0.001)
/ow/∼/aw/ 0.5 (p < 0.001) 0.52 (p < 0.001) 0.36 (p < 0.001)
/uw/∼/aw/ 0.22 (p < 0.001) 0.2 (p = 0.001) 0.14 (p = 0.002)

Table 5.9: Correlation of /uw/, /ow/ and /aw/ across speakers (reported p-values have been Bon-
ferroni corrected within each test statistic).

My argument is that this pattern of parallel fronting and retraction of /aw/, /ow/ and /uw/ is

due to their shared membership in a phonological natural class. I’ve already argued in Chapter

4 that these three vowels are phonologically active together with respect to a following /l/. The

particular label that should be used to deVne the set {aw, ow, uw} is not of great importance.

If Mielke (2008), is correct, the set of phonological features may in fact be “emergent,” meaning

language learners identify sets of phonologically active segments, and assign a label to them.

Following the Labovian approach to the phonology of English vowels (Labov et al., 1972; Labov,

2006b; Labov et al., 2006), I’ll use the label “+Vw” for this set with the understanding that this is
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the label for a feature. In Philadelphia at least, [+Vw] both deVnes a set of phonologically active

vowels, but is also an input to phonetic implementation. At the beginning of the change, the

phonetic implementation rule would have mapped the nuclei of [+Vw] vowels to a relatively back

target. Then the rule changed, and began mapping the nuclei of [+Vw] vowels to slightly fronter

targets, dragging all of the [+Vw] vowels forward. This change continued until approximately

1950, at which point it reached a maximum and began to reverse, dragging all of the [+Vw] vowels

back.

A reasonable counter proposal to the phonological one I’ve put forward here is that the cor-

relation of frontness of /aw/, /ow/ and /uw/ is not due to a shared phonological feature, thus

shared phonetic implementation, but is rather due to a shared sociolinguistic evaluation. This is,

in fact, the argument Watt (2000) makes for the parallel behavior of /ey/ and /ow/ in Tyneside

English, which I will discuss more below. Labov, Rosenfelder, and Fruehwald (2013) argue that

the reversal of /aw/, /ow/ and /uw/ fronting is due to Philadelphia’s dialectal reorientation from

being a Southern dialect city to a Northern one. It could be possible that these three vowels pat-

tern together not because they are phonologically related, but because fronted pronunciations for

them are all understood as being “Southern.” Of course, it is possible for the reversal of fronting

to be socially motivated, but it does not eliminate the need to appeal to their shared phonological

features to explain their parallel behavior. As Labov (2006b, [1966]) pointed out, social evaluation

cannot be tied to strictly phonetic categories. In New York City, [i@] was a stigmatized realiza-

tion of /æh/, and it was frequently corrected to [æ] or [affi]. However, this negative evaluation

was restricted to the phonological-phonetic mapping of /æh/ to [i@], since the mapping of /i:r/ to

[i@] due to NYC r-lessness did not result in the correction of beer to [bæ:]. In the case of [+Vw]

fronting, the social evaluation of fronted /aw/, /ow/ and /uw/ as being “Southern” explains the

motivation for reversing their fronting trend, but it does not explain why this reversal generalized

to all three vowels immediately, nor why it did not eUect any other vowel. For example, the lax,

pre-vocalic allophone of /ey/ which was discussed above is similar to the realization of this vowel

in the Southern Vowel Shift (Labov et al., 2006). The fact that this allophone of /ey/ remained low,

and did not begin to raise at the same time that [+Vw] vowels began to retract is unaccounted
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for under the strictly social evaluation analysis. The combination of a negative social evaluation

of Southern speech in combination with a phonological natural class [+Vw] can explain both the

reversal of [+Vw] fronting and the fact that it applied to all and only [+Vw] vowels.

However, it is possible to try to factor out the eUect of social evaluation of [+Vw] fronting

and see if the frontness of /aw/, /ow/ and /uw/ is still correlated across speakers. Figure 5.34

plots cubic regression splines which were Vt using generalized additive mixed eUects models. For

each vowel, for each gender and educational level, I Vt a gamm where the outcome variable16 was

predicted by a cubic regression spline of date of birth. Also included in the model were random

intercepts by speaker and by word. I’ll be using the by-speaker random intercepts as a sort of

by-speaker residual, by which I mean that any by-speaker eUects which are not accounted for

by their date of birth, sex, and educational level should be captured by their random intercept.

As Figures 5.35, 5.36, and 5.37 show, even after controlling for social factors as much as possible,

there is still a fairly strong relationship in frontness across these three vowels. That is, speakers

with exceptionally front /aw/ for their gender, educational level and birth cohort are also likely

to have exceptionally front /ow/ and /uw/. Due to the constraints on how random intercepts are

estimated, it does not seem appropriate to do signiVcance testing for their correlation. However, I

still calculated the correlation statistics, and compare them to the correlation statistics estimated

just over speaker means in Table 5.10. In some cases, the correlation of the random intercepts is

weaker, but over all they appear to be largely similar.

Pearson’s r Spearman’s ρ Kendall’s τ
means random eUects means random eUects means random eUects

/uw/∼/ow/ 0.38 0.38 0.4 0.39 0.28 0.26
/ow/∼/aw/ 0.5 0.34 0.52 0.34 0.36 0.23
/uw/∼/aw/ 0.22 0.14 0.2 0.14 0.14 0.1

Table 5.10: Comparison of correlation statistics based on speaker means to those based on random
eUects.

Another alternative for the parallel [+Vw] fronting is proposed by Durian (2012), who suggests

it can be understood as “phonetic analogy.” According to Durian (2012), “phonetic analogy refers

16The outcome variable was normalized F2 for /ow/ and /uw/, and normalized F2 minus normalized F1 for /aw/.
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Figure 5.34: Cubic regression spline Vts from the generalized additive mixed eUects models.
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Figure 5.35: The relationship between /aw/ and /ow/ across speakers.
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Figure 5.36: The relationship between /uw/ and /ow/ across speakers.
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Figure 5.37: The relationship between /uw/ and /aw/ across speakers.
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to a process in which a likening between two entities, along some deVnable dimension, in this

case phonetic (and/or possibly phonological) is drawn between two entities, by a speaker.” The

substantive diUerence between Durian’s proposal and the one put forward here is how we propose

the fronting trend generalizes to all [+Vw] vowels. Durian cites the fact that the conditioning

eUects of preceding coronals are so similar between /uw/ and /ow/ as evidence that fronting

is generalizing from context to context. The degree of fronting of /uw/ when preceded by /s/

analogizes from /suw/ to /sow/, and so on, essentially turning the parallel fronting of /uw/ and

/ow/ into multiple simultaneous changes, one for each phonetic context. My proposal is that there

is only one change, and it is to the phonetic implementation of [+Vw], which drags along all [+Vw]

vowels with it. I attribute the fact that the conditioning is so similar across phonetic contexts

to the uniform and independent set of coarticulatory processes in the language. If the eUect

of preceding coronals or following fricatives is strictly due to natural acoustic or coarticulatory

phenomena, then they should be consistent across phonetic context. Ultimately, the appeal to

phonetic analogy and my appeal to phonetic implementation of phonologial features will be able

to account for most of the same phenomena. I believe that my approach will prove to be more

fruitful, however. It is more restrictive, meaning it predicts fewer kinds of possible sound changes

than phonetic analogy, and it provides a linking hypothesis between observed phonetic changes

and phonological representation, meaning that it can lend support to other sorts of phonological

investigation. For example, the fact that {aw, ow, uw} are a phonologically active set of vowels

(losing their glides when followed by /l/) and the fact that they all front in parallel are intrinsically

related, under my account, to the fact that they have a shared phonological feature which I am

calling [+Vw].

5.2.2 Long-ingliding vowel lowering in Philadelphia

Another parallel vowel shift in Philadelphia is the lowering of /oh/ and /æh/. Like the broader

Mid-Atlantic region, Philadelphia’s realization of /oh/ is a mid tense ingliding vowel, ranging

somewhere from [O:] to [ufi@] (Labov, 2001, 2006b; Labov et al., 2006). Also, like New York City,

Philadelphia has a split short-a system, with one allophone being tensed and raised under a num-

154



ber of complex conditions to something between [æfi@] and [i@]. Both of these vowels are un-

dergoing change in both Philadelphia and New York City. Becker and Wong (2010) report that

the complex conditioning of /æh/ is breaking down in favor of something more like a nasal sys-

tem, and Labov, Rosenfelder, and Fruehwald (2013) found a similar pattern in younger speakers

in Philadelphia. Also, Becker (2010) found that /oh/ was lowering among white New Yorkers on

the Lower East Side, and Labov, Rosenfelder, and Fruehwald (2013) found a similar pattern ob-

taining in Philadelphia. For the sake of this discussion, the reorganization of the Philadelphia

short-a system to a nasal system is an orthogonal issue. I am strictly interested in whether the

tense and ingliding short-a is moving in parallel with tense and ingliding /oh/, so the tokens of

short-a under consideration here are those which would be tense under either phonological sys-

tem, meaning only short-a which appear before front nasals /m, n/ in closed syllables. Figure 5.38

plots the relationship between /oh/ and /æh/ height, and there is a substantial correlation, similar

in magnitude to what Labov (2006b, [1966], p.349, Fig 14.1) found in New York City. Using the

same correlation statistics as we did for [+Vw] fronting above, we can see similarly strong and

statistically signiVcant correlations for [+Vh] height in Table 5.11.
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Figure 5.38: The correlation of /oh/ and /æh/ in Philadelphia

Again, the argument could be made that the correlation between /æh/ and /oh/ could be due

to social rather than phonological factors. Both raised /æh/ and /oh/ are subject to negative social
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Pearson’s r Spearman’s ρ Kendall’s τ

/uw/∼/ow/ 0.43 (p < 0.001) 0.39 (p < 0.001) 0.27 (p < 0.001)

Table 5.11: Correlation of /oh/ and /æh/ across speakers.

evaluation (Labov, 2001), and Labov, Rosenfelder, and Fruehwald (2013) found that both education

and gender had an eUect on the height of both of these vowels. Just like I did for [+Vw] vowels,

I Vt a generalized additive mixed eUects model for each vowel for each gender and educational

level where the outcome variable was predicted by a cubic regression spline over date of birth.

Random intercepts for speaker and word were also included, and the speakers’ random intercepts

taken to indicate the individual level variation which was not explained by the other eUects.

Figure 5.39 plots the by speaker random intercepts for /oh/ and /æh/ against each other. The same

basic correlation still exists after accounting for social factors, as the correlation statistics for the

random intercepts show in Table 5.12.
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Figure 5.39: /oh/ and /æh/ Random Intercepts
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Pearson’s r Spearman’s ρ Kendall’s τ
means random eUects means random eUects means random eUects

/oh/∼/æh/ 0.43 0.43 0.39 0.36 0.27 0.25

Table 5.12: Comparison of correlation statistics based on speaker means to those based on random
eUects for /oh/ and /æh/.

5.2.3 Searching for more parallel shifts.

Parallel shifts seem to suUer from having been under-labeled. The conceptual notion of “chain

shifts” is relatively salient in the Veld, and subsequently many sound changes are described in

terms of chain shifting. Parallel shifts, on the other hand, are much less commonly described,

but this may not be due to their rarity in reality. Durian (2012) points out, for example, that the

relatively obvious case of parallel [+Vw] fronting, has occasionally been described as being a chain

shift, even though its mechanics must be diUerent. If the concept of parallel shifting becomes more

salient in the Veld, my belief is that more sound changes will be described as such. Labov (2010a,

ch 5) addresses the question of whether all chain shifts could be recast as parallel shifts of a sort.

The last two stages of the Southern Vowel Shift, for example, is the lowering of /ey/ and /iy/ to a

non-peripheral position, a process which could be described in my framework as a change in the

phonetic implementation rule for non-low front upgliding vowels.

(5.44)

 Vy

-low

 0.5 Diag

However, Labov (2010a) stresses the importance of “bends in the chain of causality,” where the

initial trigger for the subsequent changes cannot be subsumed into the same generalization which

describes them. Keeping with then Southern Vowel Shift Example, the triggering change is argued

to be the monophthongization of /ay/ (Labov et al., 2006). Whether /ay/ monophthongization is a

phonological or phonetic process, it cannot be subsumed under the generalization in (5.44). The

same point can be made about the low-back merger of /A/ and /O/ triggering the Canadian Shift.

So while the notion of sequential, chained, movement is applicable to the triggering of many

shifts, a large portion of the subsequent shifts can be recast as parallel. In this section, I’ll brieWy
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discuss some examples of phonetic changes which I believe could be parallel shifts, even though

they have not been described as being so.

[+Vw] glide fronting in Southern British English

In their description of koine formation in the town of Milton Keynes, Kerswill and Williams (2000)

provide the following transcriptions as possible innovative variants of the [+Vw] vowels.

(5.45) /uw/ [0ff:], [y:]

/ow/ [5Y], [5I]

/aw/ [æU], [a:@], [E:], [EUff], [EI]

Of particular interest to me here is the possibility of fronting the glide in /ow/ and /aw/. Ker-

swill and Williams (2000) don’t describe how common the fronted glide is for /aw/, nor how the

frontness of the /aw/ glide might covary with the frontness of the /ow/ glide, but glide fronting

is a striking possibility especially when compared to North American [+Vw] fronting. For the

most part, when the nuclei of [+Vw] vowels front in North America, the glide retains its high

back target.17 It would seem that in Southern British English, the phonetic implementation of

[+Vw] which is changing not only aUects the nucleus, but the glide as well. The stand out excep-

tion would appear at Vrst to be /uw/, which Kerswill and Williams (2000) describes as fronting as

a long monophthong. However, Chládková and Hamann (2011) provide an acoustic analysis of

Southern British English /uw/ fronting and Vnd that, in fact, fronted /uw/ is diphthongal with a

backward trajectory.

There are two important facts here. First, the same sort of phonetic change (fronting) is af-

fecting the same sets of vowels, but result in two diUerent kinds of phonetic outcomes highlights

the non-triviality of phonetic change. Presumably, North American and Southern British En-

glish speakers have comparable articulatory and perceptual systems such that the fact that North

American [+Vw] fronting retains a back glide target and SBE [+Vw] fronting includes the glide

cannot be explained on grounds of such naturalness. The second important fact, however, is that

17In Philadelphia, the glide may lower to [O], but it certainly doesn’t front.

158



even though North American and Southern British English diUer from each other, they are in-

ternally consistent. If in North America, the glide for /ow/ fronted while the glides for /uw/ and

/aw/ remained back, or vice versa for Southern Britain, that would be inexplicable under my ac-

count of changing phonetic implementation rules. The fact that the fronting is consistent within

each country suggests that within each country there is not three separate fronting processes, but

rather one. In North America there is one change occurring to the phonetic implementation rule

for [+Vw] which leads to a fronter nucleus, and all [+Vw] vowels are aUected. In Southern British

English, there is a diUerent change occurring to the phonetic implementation rule for [+Vw] which

leads to fronted nuclei and glides, and all [+Vw] vowels are aUected.

Goat and Face diphthongization in the North of England.

Haddican et al. (forthcoming) report on a change in /ow/ and /ey/ in York, UK, where they are

diphthongizing from traditional [e:] and [o:] to [eI] and [oU], respectively. Figure 5.40 is from

Haddican et al. (forthcoming), and plots the relationship across speakers in the diphthongality

of /ey/ and /ow/, measured using the Euclidian distance between vowel onset and 90% into the

vowel. The correlation in these two measures is much stronger than the ones presented already

in this chapter. Haddican et al. (forthcoming) report a signiVcant Spearman’s ρ of 0.9.

Watt (2000) reports a similar kind of trend in Tyneside English which is complicated by the

fact that ingliding variants of /ey/ and /ow/ ([I@] and [U@], respectively) are possible. Watt (2000)

Vnds that use of ingliding variants tracks understood patterns of covert prestige, and is used the

most by working class men. However, the overall rate of ingliding variants decreases with age,

and the rate of diphthongal variants is increasing. The rate of use of each kind of variant is tightly

correlated across speaker groups and stylistic contexts. Watt (2000) rejects the kind of internally

motivated parallelism that I am advocating here, largely because his data does not support the

historical development of these vowels that many people have argued for, namely that given in

(5.46).

(5.46)
e:
→

I@
→

eI

o: U@ oU
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  Social correlates of two vowel changes
  

15 
 

15 

Figure 2: Mean Euclidean distances for GOAT and FACE by speaker  

 

 Despite the apparent motivation for treating FACE and GOAT diphthongization as a single 

process of variation and change, we treat these two vowels separately in the analyses to follow, since 

coarticulatory effects have different consequences for these two vowels.  For example, a following 

velar might be expected to favour backer offsets for both GOAT and FACE.  In the case of FACE 

where the tongue body is in anterior position, coarticulation with a following velar requires a greater 

degree of movement than for GOAT, where the tongue body is already back.  Thus, a following velar 

generates a more diphthongal realization for FACE, but not for GOAT.  In addition, much previous 

Figure 5.40: The relationship between /ow/ and /ey/ diphthongization. Figure from Haddican et al.
(forthcoming, Figure 2)

Rather, he argues that the introduction of the diphthongal [eI] and [oU] is introduced through a

process of dialect leveling. As I argued for the case of [+Vw] fronting above, however, while the

motivation for a particular sound change may be socially deVned, we must also explain which

set of sounds the change applies to, and which are excluded in some way, and in this case, as it

was for [+Vw], there is an obvious phonological dimension at work. The combination of a social

evaluation with a phonological dimension across which it applies has the greatest explanatory

adequacy.

The parallel diphthongization of /ey/ and /ow/ in Northern British English is a nice example

of a phonetic change which is not just a movement along the front/back or high/low dimension.

Here, what is changing is the phonetic realization of the long mid vowels, or perhaps just the

phonetic realization of their second mora, depending on how we want to represent diphthongs

phonologically.
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5.2.4 Parallel Shifts are Changing Phonetic Implementations of Phonological

Features, but there are Complications

As I’ve been making the argument that parallel phonetic changes are the result of changing pho-

netic implementations of phonological features, I have not tried to provide a formalization of this

process. There are a few reasons for this. To begin with, the data I am working with are for-

mant measurements of vowel nuclei, but it is not clear whether the mental representations of

phonetic form are the same as these formant measurements. Redoing this study with articulatory

measurements would probably not resolve the issue (although it would certainly reveal other in-

teresting properties (Mielke et al., forthcoming)), since it is not altogether clear that the mental

representation of phonetic forms is strictly articulatory either. As Pierrehumbert (1990) pointed

out, “[p]honetic representation is one of the most diXcult problems in linguistics,” and I will not

be attempting to resolve that problem here. Instead, I’ll refer to these changes as occurring along

abstract phonetic dimensions, like “backness” or “diphthongality,” which can be reinterpreted in

acoustic or articulatory terms as necessary.

Aside from taking the phonetic measurements too literally, a second problem is that a number

of the natural classes which are moving in parallel require multiple phonological features to deVne

them under most feature theories. For example, the parallel retraction of the short front vowels in

Montreal and Columbus does not include the front long vowels. Taking into account that for the

moment we should understand the phonetic dimensions that phonology-phonetic interface rules

map to as being more abstract than just literal acoustic or articulatory dimensions, the interface

rule at the beginning of the phonetic change would have to look something like (5.47), where the

possible values for the phonetic dimension of backness are understood as ranging from 0 to 1.

The interface rule in (5.48) is a later stage, as the vowels have moved further back.

(5.47)

 −back

−long

 0.1 backness

(5.48)

 −back

−long

 0.3 backness
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It is crucial that the long front vowels be excluded from undergoing this change. One option

to avoid using two features to pick out the set of short front vowels for undergoing this change

would be to deVne an ad hoc emergent feature (in the sense of Mielke (2008)) for this class, perhaps

[+V̆]. However, if the phonetic frontness of these short front vowels were determined by this [+V̆]

feature, then the phonetic frontness of /iy/ and /ey/ would be phonologically accidental, meaning

/iy/ and /ey/ would not fall into a phonological natural class with /I/, /E/ and /æ/ with respect

to frontness. While this is not necessarily undesirable a priori, there is some empirical evidence

to suggest that /iy, I/ and /ey, E/ minimally diUer. For example, a number of dialects neutralize

these vowels before /l/ (Labov et al., 2006), leading to the feel∼Vll18 and bail∼bell merger. If the

phonological representation for /iy, ey/ were [−back, +long], and the phonological representation

for /I, E/ were [−back, −long], the process of neutralization before /l/ could be understood as

(5.51) or (5.50).

(5.49)

 −back

+long

→ [−long]/ l

(5.50) *[+long]l

However, if the phonetic backness of /I, E/ were not deVned by the same phonological feature

as it is for /iy, ey/, then to map /iy/→/I/, we would need to eliminate /iy, ey/’s speciVcation for

the phonological feature [±back], and replace it with with the phonological feature for /I, E/, a

decidedly more complex process.

(5.51)

 −back

+long

→


back

long

+V̆

 / l

The phonological inelegance of the above proposal also has empirical problems on the basis

of parallel shifts. For example, for the sake of expository clarity, I deVned an ad hoc phonological

feature [+Vw] which deVnes /uw, ow, aw/ as a natural class. However, in a number of regions of

the Midland and South, back vowel fronting also aUects /U, 2/(Labov et al., 2006; Fridland, 2001;

18http://val-systems.blogspot.com/2008/04/feel-bag.html

162

http://val-systems.blogspot.com/2008/04/feel-bag.html


Labov, 2010a). In Philadelphia, where this is not the case, the back vowel fronting change could

be formalized as in (5.52)19

(5.52)

 +back

+long

 0.9 backness > 0.8 backness

In the Midland and South, on the other hand, the phonological deVnition of the vowels undergoing

the change is more underspeciVed, thus pulling in more vowels.

(5.53) [+back] 0.9 backness > 0.8 backness

The conclusion to be drawn from this discussion of parallel shifts is that while they present

fairly clear evidence that phonological natural classes as deVned by phonological features are

targets of phonetic change, the implications of this result depends a great deal on the theory of

phonological representation and of phonetic implementation one wants to adopt. Minimally, it

must be the case that the objects which are the targets of phonetic change must also be the inputs

to phonetic implementation. If the process of phonetic implementation is restricted to map just

one phonological feature to one phonetic dimension, then a more complex theory of phonological

representation and computation is necessary to account for problems like harmonizing the retrac-

tion of just the short front vowels with their phonological relationship to the long front vowels.

If the phonology phonetics interface can map bundles of features to phonetic dimensions, then

the problem becomes one of limiting the power of the interface rules. For example it would be

undesirable for [−back,−long] to map to a very back target, and have [−back,−long, +low] map

to a very front target, because it would eliminate the isomorphism between phonetic quality and

phonological relatedness which is both the primary cue for linguists doing phonological analysis,

and presumably also language learners.

Proposing a resolution to this problem would be an overreach at the moment, but I hope to

have at least demonstrated that studying patterns of language variation and change will prove

central to resolving them.

19I set aside here the extra complication that /aw/ is probably not phonologically [+back] in Philadelphia.
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5.3 Conclusions

In this chapter I have reported and analyzed results with two overarching patterns.

(5.54) Divergent patterns of change within a vowel category which are best attributed to

categorical allophones created by the phonology.

(5.55) Parallel, or convergent patterns of change across vowel categories which are best

attributed to phonetic change targeting phonological natural classes.

These examples highlight the key thesis of this dissertation that gradient phonetic changes must

be understood in terms of their relationship to categorical phonological representations. As a

consequence, a full understanding of these changes can’t be obtained without also attempting

to understand the system of phonological representation, organization and computation, but at

the same time, these changes provide valuable evidence for trying to understand the systems of

phonological representation, organization and computation.
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Chapter 6

Against Gradual Phonologization

This chapter will serve as a synthesis of the results from Chapters 4 and 5. I will address the

challenges these results pose for the most commonly accepted views of sound change, as well as

their implications for theories of phonology, phonetics, and language acquisition.

6.1 Conventional Wisdom Regarding Sound Change

There is a conventional wisdom regarding conditioned sound changes like those that I’ve investi-

gated here that appears to be roughly comparable across disparate research programs that condi-

tioned phonetic changes are the product of gradual accumulation of errors. The results reported

in the previous two chapters cast doubt on the gradualness of phonologization. That is, the cat-

egorical phonologization of phonetic change appears to occur at the onset these sound changes,

and does so so rapidly that a transition period from pre-phonologization to post-phonologization

is not observable. So as to avoid knocking down strawmen, I’ll Vrst outline a frequently refer-

enced formulation of this conventional wisdom, then describe how it has appeared in a number

of research programs.

I believe the formulation by Ohala (1981) is most representative of the conventional wisdom

I’m addressing, even though other researchers depart from this approach either in detail or mech-

anism. As was mentioned, in Chapter 4, Ohala (1981) proposes a model for back vowel-coronal

consonant coarticulation which is based on natural coarticulatory properties. Figure 6.1 presents
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Ohala’s schematic diagram of this process, whereby the sequencye /ut/ in a hypothetical lan-

guage is coarticulated to a phonetic realization of [yt]. At this historical stage, sound change,

understood as change in speakers’ linguistic competence, has not yet happened, as listeners are

still successfully recovering the surface [yt] production as underlying /ut/. The ontological status

Figure 6.1: Pre-Change Coarticulation, from Ohala (1981)

Ohala assumes for the coarticulation of /ut/ to /yt/ is rather clear from his wording: “distorted

by vocal tract.” This is more or less a fact about the contingencies of living in a human body

and communicating with a physiological apparatus, rather than speakers’ intention or cognitive

system.

Of course, this entire dissertation is devoted to the question of how the observed properties

of a language’s sound system ought to be apportioned to diUerent explanatory models, and there

is good reason to apply this same kind of reasoning and argumentation when trying to determine

whether an eUect is due to purely physiological contingencies, or to the language speciVc system

of phonetic alignment and interpolation constraints. For example, in her discussion of vowel

duration, Keating (1985) points out that while some people have argued that pre-voiceless vowel

shortening has a physiological basis on the grounds that it is a nearly universal eUect in the

world’s languages, it is, in fact, only nearly universal. She found that Polish does not exhibit pre-

voiceless vowel shortening at all. Assuming there is nothing physiologically diUerent between

speakers of Polish and speakers of other languages, then we must conclude that there is not

some proportion of the pre-voiceless shortening eUect which is irreducibly physiological. The

physiological basis of pre-voiceless vowel shortening, or /ut/ coarticulation, is salvageable if we

say that instead of actually producing these eUects, physiological contingencies prefer language

speciVc phonetics which do. Regardless of the exact nature of the physiological or (as Ohala

(1981) made sure to emphasize) the perceptual basis of these phonetic eUects, the key point is
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that they are grounded in properties of the world external to the system of linguistic competence

and acquisition. They then percolate up into speakers’ linguistic competence through systematic

misattribution.

Grounding phonetic changes in the natural systems of production and perception has the

beneVt of deriving the fact that some kinds of sound change are relatively common, and that they

are typically phonetically “natural.” Additionally, once these phonetic changes become phonol-

ogized and added to the grammar, the explanation for their apparent naturalness can be tied to

their origins in phonetic change which in turn have their origins in natural phenomena. As such,

it is unnecessary to posit phonetic naturalness constraints on phonological processes, as their

observed phonetic naturalness is an historical artifact (Blevins, 2004; Hale and Reiss, 2008).

I would posit, however, that given a hypothetical phonetic change for any speech sound along

a single phonetic dimension which is conditioned by one additional factor, that a suXciently

clever analyst could construct a plausible explanation for its naturalness. It appears that for many

researchers the naturalness of phonetic change is deVnitional, rather than a result of empirical

investigation. Garrett and Johnson (2011) do point out that the inverse of many common sound

changes are unattested. One example they give is that while the palatalization of [k] to [Ù] before

front vowels is common, the backing of [Ù] to [k] before front vowels is unattested. However, if

[Ùi] to [ki] were attested, the explanation for its naturalness is given by Ohala (1981) as hyper-

correction, that is, listeners misattributing the phonological target of /Ùi/ as being a coarticulated

form of /ki/. Additionally, Kiparsky (2006) provides an elegant counter argument that purely his-

torical accounts of phonetic naturalness alone cannot account for typological gaps. He lays out

Vve hypothetical scenarios where sequences of common and phonetically natural sound changes

could produce languages with a productive voicing contrast, but with only voiced word Vnal ob-

struents, and argues that despite proposals to the contrary, there is no such language attested. A

more probabilistic way to phrase Kiparsky’s argument is that the rate of attestation of languages

with word Vnal voicing (possibly 0) is disproportionately low given the frequency with which

sound changes that could produce such a pattern happen. I am not arguing here that phonetic

changes aren’t grounded in natural phenomena, but merely that the sheer obviousness of this
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assumption should not be taken for granted.

6.1.1 This conventional wisdom across research programs

I’ll brieWy outline how this conventional wisdom of error accumulation regarding phonetic change

is formulated in a number of research programs here.

Evolutionary Phonology

As outlined by Blevins (2004), the mechanisms of phonetic change assumed by Evolutionary

Phonology are very similar to those proposed by Ohala (1981). The three C’s of Evolutionary

Phonology are Choice, Chance, and Change, and all three are cases of listeners failing to cor-

rectly reconstruct the intentions of speakers. For Choice, Blevins (2006) gives the example of a

speaker intending to say /tuP@laN/, and producing the variants [tuP@laN], [tuP@laN], [tuPlaN]. A

listener then chooses one of these variants as the underlying form for the lexical entry, and if that

happens to be [tuPlaN], then syncope has occurred. This mechanism of Choice is not quite ade-

quate in detail to account for the phonetic changes I’m investigating here. In Chapter 2, I argued

that phonetic changes don’t progress as shifting probabilities over discrete options, but rather

as a continuous shift through phonetic space. Moreover, a more realistic formulation of Choice

would have speakers acquiring probability distributions over the available variants. Nevertheless,

Choice is the most compatible EP mechanism with the conditioned phonetic changes investigated

here, where speakers produce a distribution of phonetic variants, and listeners reconstruct new

expectations over those distributions.

It is also worth noting that Blevins’ (2004, 2006) formulation of the Choice mechanism is

also incompatible with my theoretical commitments. SpeciVcally, if the phonetic implementation

is qualitatively diUerent from is phonological representation, then it is not possible for the pho-

netic production of a speaker to be wholesale adopted as an underlying form. Rather, it must be

translated into a surface phonological representation by the language speciVc phonetics, then pro-

cessed by the phonology. When no distinction is made between surface phonetic production and

phonological representation, then it is, in some sense, trivially true that phonological innovation
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occurs simultaneously with the onset of phonetic change.

At any rate, the primary driving force behind sound change in the Evolutionary Phonology

model is the accumulation of listeners’ errors in reconstructing the intentions of speakers.

Exemplar Theory

Exemplar theories run the gamut with regards to the degrees of abstractness they allow. For

example, Bybee and Mcclelland (2005) appear to rule out any abstractness beyond the stored

phonetic memory traces when they say that

The innovation in this approach is that language knowledge is not stored in the form
of items or rules, but in the form of changes to the strengths of connections among
simple processing units.

Pierrehumbert (2006), on the other hand, advocates a more hybridized theory, where phonetic

memory traces are associated with phonological categories. This latter position appears to be

closer to the mainstream of exemplar theoretic research, so it is this position that I will be referring

to when I discuss “Exemplar Theory,” although the dynamics of error accumulation are essentially

the same under most formulations of ET (e.g. Bybee, 2002).

Simulations of sound change under Exemplar Theory, of which Pierrehumbert (2001) and Gar-

rett and Johnson (2011) are good examples, all involve the same basic mechanism of sampling with

replacement. When a speaker has the intention of producing a particular speech segment, they

sample from their phonetic memory traces and average over them. Typically, either the sample,

the averaging, or both, will be weighted by the individual exemplar’s “activation strength,” which

may be a function many factors including the time since the exemplar was originally perceived,

the time since the exemplar was last activated, the exemplar’s typicality20, and a number of other

potential factors. This average becomes the speakers’ new phonetic intention, which they then

produce. Of course, production (and perception) is an imperfect process, so the value which gets

stored back in the listener’s exemplar cloud is perturbed by this systematic error. Figure 6.2 plots

20Garrett and Johnson (2011) implement the down-weighting of atypical exemplars by excluding them from memory
upon perception, but this is equivalent to storing them and giving them a 0 activation strength.
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an example of of simulated phonetic drift from an exemplar theoretic simulation, based on Pier-

rehumbert (2001).
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Figure 6.2: Phonetic drift based on exemplar simulation. Model based on the description in Pier-
rehumbert (2001).

The primary driving force in sound change under Exemplar Theoretic models is the noise

introduced by the production-perception feedback loop. When there is a systematic bias to the

noise, the exemplar cloud will drift in the direction of that bias. Pierrehumbert (2001) describes

this bias in terms of lenition, but coarticulatory drift like that proposed by Ohala (1981) would

produce a similar result.

Phonologization

The notion of “phonologization,” whereby a phonetic pattern becomes a phonological one, is

central to a number of research programs which posit a qualitative diUerence between phonet-

ics and phonology, including the Lifecycle of Phonological Change (Bermúdez-Otero, 2007) and

much of Labovian Sociolinguistics. While there is, perhaps, less emphasis on the error mecha-

nisms triggering phonetic change in these research programs, they still commonly assume that

phonologization is a gradual process.

The Vrst step of phonologization as described by Hyman (1976, 2008) is some “intrinsic” pho-
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netic eUect becoming “extrinsic.”21 Intrinsic phonetic eUects are those which are caused by natural

properties of the vocal tract, just the same as those I discussed at the beginning of this chapter, and

therefore subject to the same caveats. Extrinsic phonetic eUects are the product of the speaker’s

competence, and therefore part of either the language speciVc phonetics, or phonological system.

Hyman (1976, 2008) does not actually argue that phonologization takes place by the gradual exag-

geration of a phonetic eUect, but crucially he ties the distinction between intrinsic and extrinsic

phonetics to the size of the eUect.

When the F0 perturbations are exaggerated to a degree which cannot be attributed
solely to universal phonetics, we speak of a phonologization process. (Hyman, 1976,
p. 410)

The empirical fact of phonetic change, as established in Chapters 2, 4, and 5, is that the the pho-

netic quality of vowels diUerentiate between contexts gradually, meaning there must be a gradual

transition from the point in time where we could consider a phonetic eUect to be “intrinsic” till the

point in time where the phonetic eUect has gotten large enough for us to consider it “extrinsic.”

This conceptualization is compatible with both approaches where the boundary between phonet-

ics and phonology is fuzzy in reality, not just for researchers, and with approaches which make

a stronger assumption about qualitatively diUerent phonology and phonetics. Under the assump-

tion that phonology and phonetics are qualitatively diUerent, phonologization could be conceived

of as the gradual approach towards a tipping point, whereby a secondary change reinterpreting

the phonetic diUerence of a vowel between contexts is reinterpreted as a phonological one.

Labovian sociolinguistics as a research program has traditionally made a distinction between

phonological and phonetic eUects, and has typically operationalized this diUerence in terms of the

overlap of two phonetic distributions. As Labov, Karen, and Miller (1991) say, “[t]hat linguistic

categories are discretely separated into mutually exclusive nonoverlapping sets is perhaps the

most fundamental concept of linguistics.” This is not quite the same as the phonetic eUect size

metric Hyman (1976, 2008) proposes. They would classify near-mergers, for example, diUerently,

since the size of the phonetic diUerence between categories is small, but so is the degree of overlap.

21The second stage Hyman (1976, 2008) describes involves rule inversion, and the phonemicization of phonological
patterns. On this transition, Bermúdez-Otero (2007) has developed a more articulated model.
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The Labovian approach to distinguishing between phonetic and phonological eUects is perhaps

best illustrated by the discussion of /æ/ tensing in various North American dialects in the Atlas of

North American English (Labov et al., 2006, p 173–184). In particular they contrast two patterns

of /æ/-tensing: the Nasal System and the Continuous System. The Nasal System has two clearly

distinct allophones of /æ/. One is low and front, close to canonical [æ]. The other is longer,

higher, more peripheral, and can have an inglide: [e@]. This tense-/æ/ is restricted to appear just

before nasals, and the phonetic distributions of the two allophones are non-overlapping. The

Continuous System is very similar, covering about the same of phonetic variation, but there is not

a clear separation of allophones into non-overlapping distributions. As Labov et al. (2006, p. 180)

say, however, “[i]t is evident that a continuous system of this sort diUers from the nasal system

only in the degree of diUerentiation of the vowels before nasal consonants.”

The Nasal System could be considered a phonologized version of the Continuous System,

distinguished by a larger phonetic diUerence, and smaller phonetic overlap with /ae/ in non-nasal

contexts. If a dialect with the Continuous System were to transition to a Nasal System, it would

necessarily have to do so gradually, per the results of Chapters 2, 4 and 5.

6.1.2 The challenge posed by my results.

My results pose a challenge to the common and intuitive idea that conditioned phonetic change

occurs due to the accumulation of production and perception errors, and that phonologization is a

gradual and gradient process. First, in Chapter 4, I found that in conditioned changes where some

context did not undergo the change, that context was categorically excluded from the change at its

outset. SpeciVcally, in the case of /ow/ and /uw/ fronting, these vowels before /l/ have remained

unchanged, and never showed any sign of fronting along with the other contextual variants of

these vowels. That is, [owl] and [uwl] allophones appear to be categorically distinguished from

other allophones at the very outset of the change. Moreover, for most of the contextual variants

of the vowels investigated, they moved in parallel throughout the century, even if they had very

large eUects. For example, the eUect of a following nasal on /aw/ fronting is fairly large. In fact,

around the turn of the century, the phonetic diUerence between [aw] and [awN] was greater than
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the phonetic diUerence between [ow] and [owl]. Yet, the size of this eUect is not predictive of

their parallelism. [aw] and [awN] move in lockstep together, even beginning to reverse their

trajectories together, while [ow] and [owl] begin to diverge nearly immediately.

Out of all the phonetic variants investigated, only one Vts the proVle of gradual divergence,

and potential phonologization: /ow/ followed by nasals. Before nasals, /ow/ begins to front at

about the same rate, but stalls out earlier than /ow/ in other contexts. Figure 6.3 plots these

predicted trajectories from the rate of change model, along with [owL] for comparison.

-2.0

-1.5

-1.0

-0.5

1900 1925 1950 1975
Date of Birth

N
or
m
al
iz
ed

F2 VClass

ow

owN

owL

Figure 6.3: Predicted trajectories of change for /ow/ variants.

Perhaps this is the archetypal example of a phonetic process gradually becoming phonological

which would be predicted under the accumulation of error model. However, it is not exactly an

ideal case. Even though [owN]’s rate of change is reliably slower than [ow] (which admittedly

was the diagnostic I proposed for distinguishing between phonetic and phonological eUects), it

still reaches its maximum around the same time as [ow], and even begins to retract with it. Figure

6.4 plots the predicted rates of change for [ow],[owN] and [owl], and while [owN]’s rate of change

curve is in a much more compressed space than [ow], it is qualitatively very similar, especially

when compared to [owl]. It seems clear that the link between [ow] and [owN] was not completely

severed, as it was between [ow] and [owl], and that they are destined for similar outcomes.

If a diUerence between [ow] and [owN] was not phonologized, the question remains as to
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Figure 6.4: Year-to-year diUerences for variants of /ow/

why [owN] stalled in its fronting. The answer may be that the phonetic eUect diUerentiating [ow]

and [owN] is diUerent from the kinds considered in Chapter 4. It should be noted that the eUect

a following nasal has on the F2 of /ow/ (backing) is the opposite of the eUect it has on the F2

of /aw/ (fronting). Figure 6.5 plots density distributions in unnormalized Hz for /aw/ and /ow/,

contrasting oral and nasalized variants. It appears as if the eUect of nasalization biases F2 away

from the vowel system center, rather than consistently in a particular direction along F2. For /aw/,

which is fronting and raising, the direction away from center is essentially unbounded, allowing

[aw] and [awN] to move in parallel without any apparent ceiling eUects. For /ow/, on the other

hand, as it fronts, it is minimizing its distance from center, perhaps amplifying the phonetic eUect

of nasalization. That is, the fact that [owN] slows down and stalls sooner than [ow] may also be

due to a ceiling, or barrier, eUect introduced by nasalization.

If we reconsider the divergence of [owN] as being due to a phonetic barrier, rather than due

to a phonological reanalysis, then in fact none of the phonetic eUects investigated in Chapter 4

became phonologized. Categorical allophones were excluded from the sound change from its very

outset, i.e. they were phonologized from the very beginning. Phonetic variants moved in parallel

with each other until their trajectories were perturbed by other phonetic factors, like ceiling or

barrier eUects.
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nasalized vowels, solid lines oral vowels.

The results in Chapter 4 argue most strongly against a gradual process of phonologization. In

Chapter 5, I found that that the factors which categorize contexts as undergoing or not undergoing

a change are best deVned on phonological, not phonetic, grounds, at least for /ey/ and /ay/ raising.

Perhaps the most surprising result is that /ay/ raising has applied opaquely with respect to Wap-

ping from the very outset of its phonetic change. Despite the demonstrable phonetic diUerences

between surface /t/ and /d/, and their Wapped forms, /ay/ raising has always applied according to

the underlying voicing of the following segment. An alternative explanation to this phonological

one based on lexical analogy would have to somehow take into account that /ey/ raising interacts

transparently with its context. While every lexical item for /ay/ has only one or the other allo-

phone in all contexts ([AI]: ride, rider; [2i]: write, writer), this is not true for lexical items for /ey/,

which may have have one or the other allophone depending on their context ([Ei]: pay, paying,

pay oU; [ei]: pays, paid, pay me). The opaque interaction of /ay/ raising with Wapping is surprising

beyond just the fact that it is unexpected in the model of gradual phonologization. The Lifecycle

of Phonological Change, for example, predicts that new phonological processes ought to interact

transparently, and at the phrase level, like /ey/ raising does. I’ll brieWy discuss an analysis below

which harmonizes this intuition from the Lifecycle with the /ay/ facts in Philadelphia.
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The surprising result from the analysis of /ey/ raising is that the phonetic context which

appeared to favor the direction of the change the most, a following /l/, did not undergo the change

itself. If /ey/ in the other pre-consonantal contexts never reached the degree of fronting and

raising as [eyl], it might have been possible to describe [eyl]’s non-participation in the change

as a ceiling eUect. However, around 1925 pre-consonantal /ey/ clearly crosses over [eyl] and

continues raising, as Figure 6.6 shows. This cross over is unexpected under the accumulation of

error model of phonologization. If [eyl] was higher and fronter than /ey/ in other contexts, then

we should expect errors to accumulate in this context sooner and faster than in the other contexts.

The non-participation of [eyl] can only be accounted for if some other factor besides its phonetic

properties distinguish it from other pre-consonantal /ey/, and I argue that those properties are its

phonological representation.
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Figure 6.6: Trajectory of word internal /ey/

The preponderance of results in this dissertation so far are at least unexpected under the model

of gradual phonologization. At least to the degree those models of gradual phonologization make

predictions about how the process of phonologization ought to appear in diachronic data, my

results have not conformed to those predictions.
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Pre-Existing Phonological Processes

One possible explanation for my results which is still consistent with gradual phonologization

is that in all of the cases of abrupt phonologization in this dissertation, there were actually pre-

existing phonological processes in the grammar which created categorical allophones along some

other phonetic dimension. For example, a diUerent phonological process could have created two

allophones of /ay/ which diUerentiated them along duration, and all that I observed was the fur-

ther diUerentiation of these two allophones along an additional phonetic dimension. In fact, this

is what Bermúdez-Otero (2004, p.c.) proposes to account for the surprising opacity of /ay/ raising

at the outset of the change, which is either not predicted, or predicted not to be possible by the

Lifecycle of Phonological Change (Bermúdez-Otero, 2007). This would mean is that I have not

observed any instances of phonologization in this dissertation at all, just shifts in the phonetic

realizations of pre-existing allophones.

BrieWy, the Lifcycle would predict /ay/ raising to progress in the following stages, if it existed

in a phonological vacuum. First, once phonologized, the new phonological process raising /ay/

to [2i] ought to interact transparently with the surface phonology. This would predict raising in

write, but not writer, and only if the /t/ wasn’t Wapped in a phrasal sequence like right on, as well as

raising of word Vnal /ay/ triggered by a following voiceless word onset. Opaque interaction with

Wapping, producing raising in write and writer, would come about through subsequent domain

narrowing, but the exclusion of raising in phrasal context, like lie to would be harder to account

for.

The results in Chapter 5 demonstrate fairly conclusively that this predicted sequence of his-

torical events is not what happened in Philadelphia. Instead, raising always applied opaquely

with respect to Wapping, and the onsets of following words were never triggers for raising word

Vnal /ay/. Bermúdez-Otero’s proposal is that there was a pre-existing phonological process which

created two allophones of /ay/ that had the same distribution as the raising process: pre-fortis

clipping (i.e. pre-voiceless vowel shortening). Pre-fortis clipping is a long standing phonological

process, is present in most dialects, and crucially, as Bermúdez-Otero (2004) argues, shares the

same distribution as /ay/-raising, including the opaque interaction with Wapping. The argument
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is that before /ay/ began to raise phonetically, there were already two phonological allophones:

[ai] and [ăi], and the phonetic change raising pre-voicless /ay/ targeted only the clipped allo-

phone, [ăi]. Whether or not an additional phonological innovation needs to be posited is an open

question. Perhaps the only phonological process in the grammar is stem-level pre-fortis clipping

(6.1), and all that is changing is its phonetic realization.

(6.1) ai→ ăi / −voice]stem

Or, as has be suggested to me by Bermúdez-Otero, a new phonological process is added at the

phrase level which targets just [ăi].

(6.2) ăi→ 2i]phrase

This analysis preserves my core argument that phonetic changes operate over surface phonolog-

ical representations, but does weaken the argument that phonologization is an abrupt process,

because phonologization has not actually been observed in this case.

It might be possible to make a similar kind of argument for /l/ blocking the fronting of /ow/

and /uw/, because as I pointed out in Chapter 4, glide deletion for /aw/ before /l/ is a long attested

feature of the Philadelphia dialect (Tucker, 1944), and the eUect of /l/ on /ow/ and /uw/ could be

seen as an extension of that process. For the conditioning of pre-consonantal /ey/ raising, though,

it would be more diXcult to propose a pre-existing phonological process. Unlike /ay/ raising,

which is conditioned by just following voiceless consonants, /ey/ raising is conditioned by all

following consonants, including /w/, /y/ and /r/, but not /l/. There isn’t any precedent for /ey/

to split along these phonological lines reported for other dialects in the Atlas of North American

English, and there isn’t any other kind of phonological process I am aware of which diUerentiates

allophones based on whether they are followed by a consonant or a glide, versus a vowel or /l/.

In many ways, /ey/ raising conforms much more closely to the expectations of the Lifecycle of

Phonological Change, especially in that it applies at the phrase level. Yet, it still appears to exhibit

abrupt phonologization. Despite have the phonetic eUect of shifting /ey/ in the direction of the

change, a following /l/ never actually conditions the change itself.

It is worth considering, though, what it would mean if /ey/ raising were actually parasitic on
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a previously existing phonological process. There is no evidence for such a process, but let’s say

that it is principled to say that one must have existed in order to explain the apparently abrupt

phonologization, and that this original process entered the grammar through a mechanism of

gradual phonologization. Furthermore, let’s say that this is a principled explanation for any case

where phonologization appears to be abrupt, which is, in fact, every case analyzed in this disser-

tation. The consequence would be that I have failed to observe any true instances of phonologiza-

tion in this dissertation. If this is true, it would be disappointing, but would also cast doubt on

the observability of phonologization. The answer to the question "What kind of data is necessary

to observe phonologization?" would be "A corpus with a deeper time depth and broader coverage

of the speech community than the PNC." As it is, the PNC is unparalleled in these respects, and

a corpus with even an equivalent time depth and broader coverage of any speech community is

unlikely to be developed any time soon.

6.2 Big Bang

My argument for an abrupt and early process of phonologization is in line with the proposal by

Janda and Joseph (2003) for a “Big Bang” model of sound change, with some modiVcations. Their

outline of their Big Bang model is quoted here in (6.3) (Janda and Joseph, 2003, (3)).

(6.3) A “Big Bang” Theory of Sound-Change –

(a) sound-change originates in a very “small”, highly localized context over a
relatively short temporal span;

(b) purely phonetic conditions govern an innovation at this necessarily
somewhat brief and limited point of origin;

(c) this brief “burst” of (an) innovation partially determines its future
trajectory as it spreads through an individual’s usage and through a
speech community;

(d) the purely phonetic conditions of (b) are rapidly supplanted during spread
– stage (c) immediately above – via speakers’ imposition of phonological
and sociolinguistic conditions, with the result that the future course of the
process is thereby deWected;

(e) further reanalyses wholly or partially in terms of morphological and/or
lexical conditions (= morpholexical – i.e., “grammatical” – ones) represent
commonly occurring ultimate divergences from the initial unity of the
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closely contextualized original innovation (regarding the later stages of at
least one such development, see Janda 1998 on High German umlaut).

It’s not exactly clear whether the examples Janda and Joseph (2003) describe can be accurately be

described as being purely phonetic in origin. For example, in their example of Romance prothesis,

whereby Latin word initial /sC/ clusters became /esC/ in Spanish and French, they reject “word

initial” as being a possible phonetic context, because word boundaries are properly considered

a phonological domain. However, they argue from evidence that the vowel prothesis was sensi-

tive to the Vnal segment of the preceding word, only applying if preceded by a consonant, that

prothesis began “in the form of a syllable-structure-driven repair strategy.” Both syllable struc-

ture and the notion of “repair” seem properly phonological. A much more phonetic explanation

would probably involve something like perceptual reanalysis of consonant release as a vowel, like

Blevins (2004, p. 156-7) suggests is the case for some innovations of epenthesis. It appears that

for Janda and Joseph (2003), “phonetic” conditioning means something more or less like “phrase

level phonology,” while their process of phonologization is more analogous to domain narrowing

for Bermúdez-Otero (2007), or to rule generalization.

However, Baker et al. (2011), in their critique of the error accumulation model, examine a

case which does appear to go from narrow phonetic conditioning to phonological conditioning.

They looked at inter-speaker variation of /s/ retraction in /str/ clusters. They classiVed their

subjects into “retractor” and “non-retractor” groups, measured the centroid frequencies of these

speakers’ /s/ and /S/, and compared this to the centroid frequency of /s/ in the /str/ contexts. Using

ultrasound data which was also collected, they found a positive relationship between the speaker

speciVc similarity between canonical /s/ and /r/ articulations and their degree of /s/ retraction in

/str/ contexts for only the non-retractors. Their reasoning was that the more similar a speaker’s

/s/ and /r/ articulations are, the greater phonetic inWuence the /r/ should have on /s/ in /str/

contexts. The positive relationship between the articulatory similarity of /s/ and /r/ articulations

and the degree of retraction in /str/ contexts suggests that for the non-retractors, /s/ retraction

is simply the result of combining two independent phonetic properties in one context. For the

retractors, however, there was no relationship between /s/ and /r/ articulatory similarity and
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degree of /s/ retraction in /str/ contexts. Instead, these speakers produced very /S/-like tokens

in /str/ contexts uniformly, suggesting that /s/ retraction for these speakers is unconnected to

the independent phonetic properties of their /s/ and /r/ pronunciations. In summary, they found

that for some speakers, their degree of /s/ retraction was strictly proportional to independent

articulatory properties, and that these speakers exhibited a broad range of phonetic variation,

while for other speakers, their degree of /s/ retraction was unconnected to other articulatory

properties, and that these speakers exhibited a narrower range of phonetic variation.

Baker et al. (2011) propose that the broad range of interspeaker phonetic variation among

non-retractors provides the seeds for an eventual sound change. However, the sound change is

not destined to happen, as it would be under the error accumulation model. Instead, they propose

that the sound change leading to phonological /s/ retraction will only occur once there is an acci-

dental alignment of speakers from less to more phonetic retraction along a relevant sociolinguistic

dimension, such that speakers with more phonetic retraction are likely to be emulated.

While this proposal is attractive in that it successfully addresses the actuation problems of

“Why now? Why here? Why not before or elsewhere?” as deVned by Weinreich et al. (1968), it

does not really address how /s/ retraction jumps from being purely phonetically conditioned to

being phonologically conditioned, and unchained from the speaker speciVc articulations of /s/ and

/r/. It is not hard to imagine at least two possibilities for how this comes about, though. The Vrst

possibility is that once the speakers with a high degree of phonetic /s/ retraction are accidentally

socially situated such that most other speakers try to emulate them, the only way for speakers

with little phonetic /s/ retraction to emulate them is to resort to phonological strategies. That is,

the speakers with little /s/ retraction don’t naturally produce retracted /s/ in /str/ contexts, so they

only way for them to emulate speakers who do is to substitute in a diUerent phonological target,

namely, the one they usually have for /S/.

The second possibility is that the model of actuation proposed by Baker et al. (2011) actually

requires two rare events to occur. First, some proportion of speakers must spontaneously reana-

lyze phonetic /s/ retraction as phonological, and second, these speakers must be socially situated

such that the change spreads. This modiVcation still relies on sporadic interspeaker variation as

181



the seed of change, but in this case it would be phonological variation, not phonetic.

This second possibility is most in line with my results, because the speciVc proposal from

Baker et al. (2011) doesn’t Vt with the facts of phonetic change I’m investigating. If phonolo-

gization began Vrst with broad phonetic variation, followed by social convergence on a particular

phonetic target, we should expect to the range of interspeaker variation to be very broad near

the beginning of a sound change, and then begin to narrow. In fact, the interspeaker variation

at the beginning ought to include in its range the eventual phonetic target that the speech com-

munity settles on. Looking at the raising of pre-voiceless /ay/, we can see that this is plainly not

the case. Figure 6.7 plots the height of /ay0/ with quantile regression lines overlaid. The darkest

central line represents the estimated median tendency of the speech community over time. The

Vrst set of slightly lighter lines above and below the median line are the estimated 25th and 75th

percentiles over time. The outermost lines represent the 2.5th and 97.5th percentiles, so that the

area in between then represents the 95% probability range of interspeaker variation. The range

of interspeaker variation has remained fairly constant over time, and it was certainly not broader

at the onset of the change. In fact, the 95% probability range of interspeaker variation from 1975

onwards does not overlap with the 95% range of interspeaker variation prior to 1905. The essen-

tially constant range of interspeaker variation observed in this change remains a big mystery for

the incrementation problem of how the entire speech community of Philadelphia can move in the

same direction year over year, at essentially the same rate.

To recap, my proposal is that the process of phonologization appears to be more similar to the

Big Bang proposed by Janda and Joseph (2003) and Baker et al. (2011) than it is to models of gradual

phonetic error accumulation, like those discussed above. However, additional modiVcations to

the Big Bang model seem to be called for on the basis of my results. The “brief” period of pure

phonetic conditioning of sound change appears to be so brief as to be undetectable. In fact, this

phonetic conditioning should probably not be considered part of the change itself. As Baker

et al. (2011) illustrated, the phonetic conditioning of /s/ retraction was merely the product of the

combination of two independent phonetic properties, and didn’t really involve any innovation,

in terms of a diUerence in linguistic competence between generations. Once an innovation is
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Figure 6.7: Quantile Regression over Speaker Means for [ay0]

observable, it is already phonological.

6.2.1 Plausibility

I am making two speciVc proposals that in this chapter, and in this dissertation, that may strain

credulity.

(6.4) The initial innovation in a conditioned sound change is phonological, thus abrupt.

(6.5) The phonetic correlates of this abrupt phonological innovation are not necessarily large.

However, there is evidence in the literature on language acquisition, phonetics, phonology, and

sociolinguistics which suggest that these two proposals are plausible.

To begin with, it may appear strange that a phonological process should appear in a speaker’s

grammar ex nihilo, out of nothing. However, if we Vrst accept that the origins of sound changes

which cannot be attributed to dialectal borrowing result largely from native language acquisition

errors, then this is not so surprising. The language acquisition literature in general is dotted with

examples of how children exhibit patterns divergent from the target grammar. When it comes
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to phonological processes in particular, a few case studies have identiVed consonant harmony in

children acquiring English (Smith, 1973; Pater and Werle, 2001; Gormley, 2003), a phonological

process decidedly not part of the target English phonology. Of course, consonant harmony has

not become a language change in progress in English, meaning that either most children abandon

consonant harmony grammars before they exit the critical period of language acquisition.

Why would children adopt a phonological process for which there is no evidence in their

linguistic input, only to abandon it later? Yang (2002) proposes that similar mismatches between

children’s syntactic grammar and the syntactic grammar generating their primary linguistic data

can be attributed to their probabilistic evaluation of all possible grammars. An example from

Yang (2002), most children acquiring English go through a stage of pro-drop because it is possible

grammar provided by UG, and in fact most data in children’s PLD is consistent with a pro-drop

grammar. Only as data incompatible with pro-drop accumulates do children abandon the pro-drop

grammar.

The modeling by Yang (2002) is based on a Principles and Parameters model of syntactic

grammar, in which the parameters are Vxed and Vnite. The closest existing analogy to phonology

can be found in “Classical OT” (Prince and Smolensky, 2004), in which the ranking of a Vxed and

Vnite set of constraints is learned (Boersma and Hayes, 2001). However, it isn’t necessary for the

rules or constraints themselves to be Vxed endowments of UG if instead there is some Vxed and

Vnite principles by which language learners can hypothesize new rules. Yang (2002) implicitly

assumes this second possibility when modeling the acquisition of the English past tense. No one

would seriously propose that a rule like I→æ/ Tpast (sing→sang) is a primitive parameter of

UG, but if we assume there are UG principles which constrain hypothesizable rules (Bergelson and

Idsardi, 2009), then there is no problem in treating the probabilistic evaluation of language speciVc,

idiosyncratic rules in a way similar to the probabilistic evaluation of UG parameters. Recently,

Blaho (2008) and Samuels (2009) have made speciVc proposals for a set of minimal principles

by which more complex and idiosyncratic phonological constraints and rules can be formulated.

Blaho (2008) explicitly formulates her proposal in a model of phonological representation which

is radically substance free, meaning she does not assume a universal feature set or characteristic
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phonetics for those features, a position to which I am sympathetic in this dissertation.

Some may still balk at the complexity of the complexity of the language acquisition task I

am assuming. Not only do children need to learn the association between phonetic targets in a

continuous phonetic space and categorical phonological representations, but also the phonologi-

cal feature set and the set of phonological processes.22 Moreover, I’m arguing that phonological

knowledge is not simply the codiVcation of reliable phonetic patterns, so the probability of a

phonological process being present in the grammar is not related to the size of observable pho-

netic diUerences. However, phonetic and phonological acquisition may be aided by the fact that

they are embedded in a network of larger language acquisition tasks, sketched out in Figure 6.8.

For example, Lignos (2012) proposes a model of subtractive word segmentation which crucially

relies on gradually accumulating lexical representations stored in the lexicon. Of course, what

the stored lexical representations are depends on the phonological grammar which processes the

surface phonological representation. A spontaneously hypothesized process in the phonological

grammar could then have the coincidental eUect of boosting performance on word segmentation,

which could then reenforce that process. In the same way, any new hypothesis at any location in

the grammar can have a cascading reaction through this network of interdependent acquisition

tasks. So while any single acquisition task may be highly complex, its interdependence on other

simultaneous acquisition tasks has the eUect of further narrowing the range of possibilities.

22This is, in fact, the exact objection of (Hale and Reiss, 2008, pp. 116-7) to language speciVc phonetics.
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In summary, my proposal is exactly that language acquirers can hypothesize new phonolog-

ical processes ex nihilo because they can freely generate hypotheses which then compete. This

has the interesting result that Bermúdez-Otero’s (2007) observation that most new phonological

processes apply at the phrase level is generalization without as strong an explanation. One pos-

sibility, though, may be that most hypothesized phonological processes which become language

changes are hypothesized early in phonological acquisition, before learners have mastered word

segmentation.

Errors in native language acquisition are likely to be distributed sporadically throughout a

speech community, however, and are likely to be highly idiosyncratic compared to something like

syntactic acquisition. Looking at the literature, some children acquiring English are reported to

hypothesize consonant harmony, while most children undergo a stage where they pro-drop some

proportion of the time (Yang, 2002). The question arises, then, how a phonological process that a

language learner spontaneously hypothesizes becomes a language change, and more importantly,

how the entire speech community could suddenly possess the same phonological process. In an-

swer to this, I think it is instructive to look at a case where a speech community has not converged

on the same phonological process.

Mielke et al. (forthcoming) examine idiosyncratic diUerences between speakers’ articulation

of /r/: bunched or retroWex. The articulatory diUerence between bunched and retroWex /r/ is

large, but there is no, or minimal, diUerence in their acoustics. While most of their subjects were

either categorical bunched or retroWex /r/ users (16 out of 27), the remaining subjects exhibited

variation between the two variants. Mielke et al. (forthcoming) observe a considerable amount of

idiosyncratic constraints on the distribution of bunched versus retroWex /r/. In total, they propose

22 constraints in order to account for the distribution of /r/ variants across all speakers in their

study, and of those 22 constraints, 13 (13/22 = 59%) were represented by only a single speaker,

and 86% (19 out of 22) were represented by three or fewer speakers. However, some constraints

were more common. For example, the constraint *Retroflex/Coda, which disallows retroWex /r/

in codas, was the most common, present in 9 out of 11 variable speakers.
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The fascinating fact about Mielke et al. (forthcoming) is that speakers who vary between

bunched and retroWex /r/ have any structured constraints regarding their distributions at all. Be-

cause there are not reliable acoustic cues to which articulation is being used, there is no data

available to learners as to which variant they are hearing in any given case. But rather than

sporadically distribute bunched and retroWex /r/ across all contexts, speakers appear to develop

internally consistent grammars. In some sense, the distribution of /r/ articulations is a constrained

version of “the forbidden experiment” of language deprivation. Language learners are deprived

of information about which option to take for a decision which is not strongly constrained by UG

principles, and the result is internal consistency, but with a high rate of idiosyncratic variation

when speakers are compared. Even more fascinating is that some patterns are more common than

others, a fact that Mielke et al. (forthcoming) attributed to general tendencies in American En-

glish for exaggerated anterior gestures in syllable onsets, like that observed for light versus dark

/l/ (Sproat and Fujimura, 1993).

We know from language acquisition research that children will spontaneously hypothesize

phonological processes, and from Mielke et al. (forthcoming) that these phonological processes

may not result in any measurable phonetic diUerence, and that in eUective isolation, speakers will

spontaneously hypothesize the same phonological process. As Ringe and Eska (2013) point out

In any major city in the world there must be at least tens of thousands of children
in the [native language acquisition] developmental window at any given time. If
only one child in a thousand persists in a learner error until the period of [native
language acquisition] is past, that type of event will be too rare to be recognizable in
any sociolinguistic survey, yet there will be a steady stream of new variants brought
into the speech community as the children grow up.

And importantly, drawing from the results presented by Mielke et al. (forthcoming), many lan-

guage learners will spontaneously hypothesize and persist in the same “error,” or mismatch from

the grammars of the previous generation. In order to persist into a speaker’s adult grammar, fol-

lowing the logic of Yang (2002), all the newly hypothesized phonological process needs to do is

not lose, meaning there just has to be little enough data inconsistent with it.

In order to be identiVed as a language change, the new phonological process must diUuse

throughout the speech community, and that process imposes its own narrowing eUects on the
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change. Following the reasoning of Ringe and Eska (2013) and Baker et al. (2011) and the results

of Mielke et al. (forthcoming), I’ll suggest that there is a constant stream of children with idiosyn-

cratic phonological grammars surrounding some potential innovation, and that occasionally the

distribution of speakers with the innovation will coincidentally correlate with sociolinguistic di-

mensions which promote its spread through the speech community. Labov (2010b) argues that

language learning is largely outwardly oriented, meaning children are socially motivated to coor-

dinate their grammars to conform to their peer group. Citing work by Payne (1980) and Kerswill

and Williams (2000), he argues that children abandon the models of their parents in favor of their

peer group. This tendency to conform to the consensus of the peer group would, in most cases,

eliminate the idiosyncratic phonological innovation of any single individual, which is why it is

necessary to propose that in order for a language change to take place, it would have to be inde-

pendently innovated by many children, which again appears to be plausible given the results of

Mielke et al. (forthcoming).

This outward orientation of language acquisition may also play a role in the small phonetic

correlates of categorical phonological innovation. The fact that Mielke et al. (forthcoming) found

phonological variation which correlated with nearly uniform acoustics is, I believe, enough of

a plausibility test to demonstrate that phonological diUerences don’t necessarily correspond to

large acoustic diUerences. But with the case of bunched versus retroWex /r/, the fact that there is

no acoustic diUerence is due to the fact that the two articulations produce the same acoustics, and

we might not expect this to be the case for all phonological innovations. Moreover, a shift from

bunched to retroWex /r/, or vice versa, has not become a change in progress, for the very reason

that there is no acoustic diUerence for speakers to attend to.

However, let’s say that a learner hypothesizes a phonological process which creates two allo-

phones of /ay/: [ay1] and [ay2]. The speaker now has to decide what the phonetic realizations of

[ay1] and [ay2] ought to be. If they’re living in a speech community for which most speakers have

only one allophone of /ay/, then the best way to conform their two allophone grammar with the

broader speech community is to decide that [ay1] and [ay2] have very similar phonetics targets.

This is similar to the argument that Dinkin (2011b) makes for the backing of short-o (the Lot
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vowel) in Upstate New York. Most of Upstate New York participates in the Northern Cities Shift,

which includes the fronting of short-o towards [a] or [æ]. However, Upstate New York is bordered

to the South by Western PA, to the North and West by Canada, and to the East by Northern New

England, all of which have the low-back merger of /A/ and /O/. Dinkin (2011b) Vnds that in Up-

state New York, the phonetic diUerence between /A/ and /O/ has been decreasing in response, he

hypothesizes, to contact with merged dialects. This mirrors the famous “Bill Peters EUect,” Labov

(1994) whereby a speaker living in a merged dialect region still produced a reliable phonetic dif-

ference for the phonemic contrast between /A/ and /O/ in free conversation, but produced them

merged in a minimal pairs task. My conclusion on this point is that even if there were a natural

tendency for language learners to posit large phonetic diUerence to go along with phonological

diUerences, these phonetic diUerences could get reduced by sociolinguistic homogenization.

6.2.2 Big Bang Summary

In conclusion, my results are more in line with a “Big Bang” model of conditioned sound change

in which phonological innovations occur at the onset of the change, rather than as a reanalysis

later on. Both the facts that this means that speakers are innovating a new phonological process

ex nihilo, and that towards the beginning of this change the phonological innovation corresponds

to a small phonetic diUerence are plausible given what we know about language acquisition,

phonology, phonetics and sociolinguistics.

6.3 Similarity to syntactic change.

It is worth noting that a debate between gradual versus abrupt phonologization closely mirrors

a similar discussion in syntactic change. Hyman (2008, p 398-9) actually draws the connection

between “phonologization” and “grammaticalization,” drawing the four part analogy “phonetics :

phonology :: pragmatics : syntax.” In a review of grammaticalization and gradualness, Traugott

and Trousdale (2010) describe the basic position on gradualness in much of the grammaticalization

literature:
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Gradualness refers to the fact that most change involves (a series of) micro-changes,
an issue which is sometimes overlooked in considerations of more general patterns
of language change. As Brinton and Traugott (2005: 150) observe, although change
is sometimes understood (or at least formulated) as A > B, studies of gradualness in
linguistic change attempt to uncover “the tiny local steps between A and B that the
arrow ‘>’ encompasses”.

This is very similar to Kroch’s summary of the Veld of historical syntax in 1989.

The idea that language change proceeds context by context, with new forms appear-
ing Vrst in a narrowly restricted context and spreading to others only later, has been
widely accepted. It has seemed obvious that the ordering of contexts in the spread of
a change reWected the linguistic forces causing the change.

Of course, Kroch (1989) was arguing against this position on the basis of the evidence of the

constant rate eUect. Instead, he argued, syntactic change is abrupt and catastrophic, meaning all

possible contexts are included in the scope of the change at its onset. More recently, Denis (2013)

has made the same argument for the distribution of a change across pragmatic contexts. Denis

(2013) examined the frequency of use of utterance Vnal particles (UFP) (e.g. right, you know), and

found that even though younger speakers appear to use the new UFP, right, in a broader range

of pragmatic contexts than older speakers, this appearance is strictly modulated by their baseline

usage frequency of right. That is, in his data, the fact that older speakers are only observed to

use right in 2 out of 10 possible pragmatic contexts is quantitatively indistinguishable from the

hypothesis that they can and do use right in all possible pragmatic contexts, but they use right

at such a low frequency to begin with that it would take more data than is feasible to collect to

observe them doing so.

The results in my dissertation further cement the position of Fruehwald et al. (forthcoming)

that the mechanisms of phonological and syntactic innovation are fundamentally similar. Inno-

vation in both sound change and syntactic change is abrupt, and does not take place through

the gradual reanalysis of phonetic or pragmatic phenomena, respectively. In both cases, after the

original innovation, most of the observed change involves either increasing phonetic diUerentia-

tion or increasing frequency of use of the innovation. There is no reason why sound change and

syntactic change must have been subject to the same dynamics, but it does appear that they are.
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6.4 Additional Challenges, and Directions for Future Research

There are a number of interesting research questions which I have been unable to address in

this dissertation which I will have to reserve for future research. For example, I believe that

the diUerence between phonological allophones and phonetic variants ought to have broader so-

ciolinguistic consequences than I have been able address here. I conclude that the diUerence

between [ow] and [owl] is phonological in origin, while the diUerence between [aw] and [awN]

is phonetic. From this, I would assume that it is possible for [ow] and [owl] to have disconnected

stylistic usage, while it would be impossible for [aw] and [awN]. That is, a speaker could not raise

[awN] to an extreme level for a stylistic purpose that they could not also raise [aw], whereas a

speaker could front [owl] for a stylistic purpose which is separate from the stylistic fronting and

backing of [ow]. It has already been established that pre-voiceless /ay/ has this property, where

the backing of [ay0] indexes masculinity and toughness while the frontness or backness of low

[ay] has not been reported to have any similar indexical purpose (Conn, 2005; Wagner, 2007). At

the moment, however, this reasoning is completely speculative, and requires more careful studies

of stylistic variation which take the distinction between phonological and phonetic variants into

account.

Another interesting direction of research would be to investigate how phonological allophony

for one vowel can inWuence others. Labov (2010a), for example, argues that allophonic chain shift-

ing is impossible. To support this argument, he looks at dialects which have a large diUerence

between pre-nasal and pre-oral /æ/. In those dialects where pre-nasal /æ/ is extremely raised

and fronted, he Vnds no concomitant fronting of pre-nasal /A/. However, in the Northern Cities

Shift, where /æ/ is uniformly raised and fronted, there is concomitant fronting of /A/ to [a] or [æ].

Labov (2010a) attributes the lack of allophonic chain shifts to the “Binding Force” of segmental

phonology, or the dictum that “phonemes change.” While the absence of allophonic chain shifting

cast doubt on loosely structured phonemic representation like those proposed by Exemplar The-

ory, they may not be entirely impossible. Many North American dialects exhibit a phonological

process distinguishing pre-nasal and pre-oral /æ/, but none have been reported to do something

similar for /A/, so while there may be two phonological allophones of /æ/ ([æ̃] and [æ]), there is
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only one for /A/. The fact that pre-nasal /A/ does not front in reaction to pre-nasal /æ/ raising

could simply be because there is no relevant allophone to front. If Labov’s assertion that allo-

phonic chain shifting is impossible is true, a more complex model of the phonology-phonetics

interface than the one I’ve pursued here will be necessary. SpeciVcally, the interface will need

to deVne a relationship between a phonetic target, a surface phonological representation and its

phonemic identity. On the other hand, if an example of an allophonic chain shift is discovered,

then the explanation for the lack of pre-nasal /A/ fronting in the dialects Labov (2010a) investi-

gated will have to shift to the distinction between phonological and phonetic variation that I just

described.

A more important problem to address, however, is the challenge of identifying phonologi-

cal innovation, speciVcally the assertion of Ringe and Eska (2013) that it will be “too rare to be

recognizable in any sociolinguistic survey.” However, if it is the case, as I have argued, that the

phonological innovations which become sound changes are those innovations which multiple

speakers are likely to independently produce, then they shouldn’t be impossible to detect. The

focus and methodology of the sociolinguistic surveys aimed at detecting these innovations may

need to be adjusted. For example, the Peaks model of language change incrementation (Labov,

2001; Tagliamonte and D’Arcy, 2009) places most of the action in incrementation squarely on

adolescents, speciVcally between the time they Vrst enter their peer groups and the end of adoles-

cence. Focusing on this demographic of speakers will be necessary to identify new phonological

innovations.
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Chapter 7

Conclusions

In this dissertation, I have set out to understand how phonology and phonetics interact over the

course of phonetic change with the hope of broadening our knowledge of both sound change,

and the general relationship between phonology and phonetics. Drawing upon the data in the

Philadelphia Neighborhood Corpus, I’ve been able to examine the time course of phonetic change

in Vne detail, and arrived at some surprising results.

(7.1) When a context is observed to exert a categorical eUect (either categorically conditioning

or blocking) a phonetic change, that categorical eUect is typically already in place at the

onset of the change (Chapter 4).

(7.2) Robust phonetic eUects were rarely, or never reanalyzed as being phonological (Chapter 4).

(7.3) The way in which contexts behave as triggers or non-triggers of phonetic changes are

frequently best described in phonological, rather than phonetic terms (Chapter 5).

(a) The raising of pre-voiceless /ay/ has always patterned according to the underlying

voicing of the following segment, not its surface phonetic realization.

(b) The raising of pre-consonantal /ey/ was never conditioned by following /l/, even

though a following /l/ appeared to always phonetically favor that change.

(7.4) There is a striking parallelism across vowel categories for many changes, even after taking

into account their social correlation (Chapter 5).
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On the basis of these results, I arrive at two primary conclusions. First is that the phonetic

changes I have observed in this dissertation operate over surface phonological representations. In

terms of the grammatical model I outlined in Chapter 2, phonetic changes are the shifting pho-

netic implementation of surface phonological representations. It may be possible for alternative

grammatical models to explain the results that I found, but they do not predict them. Secondly,

I argue that phonological innovations are not the product of phonetic change, but rather are in

place at onset of phonetic changes. This conclusion is a rather substantial shift away from the

conventional wisdom regarding phonologizaton, which is why I devote a considerable portion of

Chapter 6 to arguing for the plausibility of this conclusion.

There are a number of ways in which this research project can be pushed forward. First and

foremost, in this dissertation I have examined 7 vowel shifts in Philadelphia. In order for my

results to be maximally credible, replications of these results for as many changes in as many

speech communities as possible will be necessary. Moreover, these results should hold true of

other kinds of phonetic change beyond just shifts in a vowel’s central tendency.

Secondly, there are a number of points I made in the argument for the plausibility of spon-

taneous phonologization which require further investigation. SpeciVcally, a broader search for

idiosyncratic phonological variation which corresponds to small phonetic correlates, like those

discovered by Mielke et al. (forthcoming), should be carried out. A key demographic group to turn

to for such a search would be adolescents. According to the Peaks Model (Labov, 2001; Taglia-

monte and D’Arcy, 2009), adolescents undergo active reorganization of their language from those

forms acquired on the basis their caregiver input, to those further inWuenced and constrained by

the social structure of their peer groups. It would be ideal to capture the idiosyncratic phono-

logical variation, if it exists, at this period of speakers’ life, before they are ironed out by social

forces.

Ideally, studies of this kind could also be added to the toolkit of phonological investigation.

Just as the fact that a set of segments pattern together either as triggers or undergoers of a phono-

logical process can be taken as evidence for their membership in a phonological natural class, so

can the fact that they all undergo the same phonological change. In addition, principles like the
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Unity Principle, which I proposed in Chapter 4, can be used to diUerentiate between phonological

and phonetic processes.
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