
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2013

Formalizing the SSA-based Compiler for Verified
Advanced Program Transformations
Jianzhou Zhao
University of Pennsylvania, jianzhou.zh@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/825
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Zhao, Jianzhou, "Formalizing the SSA-based Compiler for Verified Advanced Program Transformations" (2013). Publicly Accessible
Penn Dissertations. 825.
http://repository.upenn.edu/edissertations/825

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76383858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/825?utm_source=repository.upenn.edu%2Fedissertations%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/825
mailto:libraryrepository@pobox.upenn.edu

Formalizing the SSA-based Compiler for Verified Advanced Program
Transformations

Abstract
Compilers are not always correct due to the complexity of language semantics and transformation algorithms,
the trade-offs between compilation speed and verifiability,etc.The bugs of compilers can undermine the
source-level verification efforts (such as type systems, static analysis, and formal proofs) and produce target
programs with different meaning from source programs. Researchers have used mechanized proof tools to
implement verified compilers that are guaranteed to preserve program semantics and proved to be more
robust than ad-hoc non-verified compilers.

The goal of the dissertation is to make a step towards verifying an industrial strength modern compiler--
LLVM, which has a typed, SSA-based, and general-purpose intermediate representation, therefore allowing
more advanced program transformations than existing approaches. The dissertation formally defines the
sequential semantics of the LLVM intermediate representation with its type system, SSA properties, memory
model, and operational semantics. To design and reason about program transformations in the LLVM IR, we
provide tools for interacting with the LLVM infrastructure and metatheory for SSA properties, memory
safety, dynamic semantics, and control-flow-graphs. Based on the tools and metatheory, the dissertation
implements verified and extractable applications for LLVM that include an interpreter for the LLVM IR, a
transformation for enforcing memory safety, translation validators for local optimizations, and verified SSA
construction transformation.

This dissertation shows that formal models of SSA-based compiler intermediate representations can be used
to verify low-level program transformations, thereby enabling the construction of high-assurance compiler
passes.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Steve Zdancewic

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/825

http://repository.upenn.edu/edissertations/825?utm_source=repository.upenn.edu%2Fedissertations%2F825&utm_medium=PDF&utm_campaign=PDFCoverPages

FORMALIZING THE SSA-BASED COMPILER FOR VERIFIED

ADVANCED PROGRAM TRANSFORMATIONS

Jianzhou Zhao

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2013

Steve Zdancewic, Associate Professor of Computer and Information Science
Supervisor of Dissertation

Val Tannen, Professor of Computer and Information Science
Graduate Group Chairperson

Dissertation Committee

Andrew W. Appel, Eugene Higgins Professor of Computer Science

Milo M. K. Martin, Associate Professor of Computer and Information Science

Benjamin Pierce, Professor of Computer and Information Science

Stephanie Weirich, Associate Professor of Computer and Information Science

ABSTRACT

FORMALIZING THE SSA-BASED COMPILER FOR VERIFIED ADVANCED PROGRAM

TRANSFORMATIONS

Jianzhou Zhao

Steve Zdancewic

Compilers are not always correct due to the complexity of language semantics and transfor-

mation algorithms, the trade-offs between compilation speed and verifiability, etc. The bugs of

compilers can undermine the source-level verification efforts (such as type systems, static analysis,

and formal proofs) and produce target programs with different meaning from source programs. Re-

searchers have used mechanized proof tools to implement verified compilers that are guaranteed to

preserve program semantics and proved to be more robust than ad-hoc non-verified compilers.

The goal of the dissertation is to make a step towards verifying an industrial strength modern

compiler—LLVM, which has a typed, SSA-based, and general-purpose intermediate representation,

therefore allowing more advanced program transformations than existing approaches. The disser-

tation formally defines the sequential semantics of the LLVM intermediate representation with its

type system, SSA properties, memory model, and operational semantics. To design and reason

about program transformations in the LLVM IR, we provide tools for interacting with the LLVM

infrastructure and metatheory for SSA properties, memory safety, dynamic semantics, and control-

flow-graphs. Based on the tools and metatheory, the dissertation implements verified and extractable

applications for LLVM that include an interpreter for the LLVM IR, a transformation for enforc-

ing memory safety, translation validators for local optimizations, and verified SSA construction

transformation.

This dissertation shows that formal models of SSA-based compiler intermediate representations

can be used to verify low-level program transformations, thereby enabling the construction of high-

assurance compiler passes.

ii

Contents

1 Introduction 1

2 Background 5

2.1 Program Refinement . 5

2.2 Static Single Assignment . 7

2.3 LLVM . 9

2.4 The Simple SSA Language—Vminus . 10

3 Mechanized Verification of Computing Dominators 12

3.1 The Specification of Computing Dominators . 13

3.1.1 Dominance . 13

3.1.2 Specification . 15

3.1.3 Instantiations . 16

3.2 The Allen-Cocke Algorithm . 17

3.2.1 DFS: PO-numbering . 18

3.2.2 Kildall’s algorithm . 21

3.2.3 The AC algorithm . 23

3.3 Extension: the Cooper-Harvey-Kennedy Algorithm 25

3.3.1 Correctness . 25

3.4 Constructing Dominator Trees . 27

3.5 Dominance Frontier . 28

3.6 Performance Evaluation . 29

4 The Semantics of Vminus 32

iii

4.1 Dynamic Semantics . 32

4.2 Dominance Analysis . 34

4.3 Static Semantics . 35

5 Proof Techniques for SSA 37

5.1 Safety of Vminus . 38

5.2 Generalizing Safety to Other SSA Invariants . 39

5.3 The Correctness of SSA-based Transformations 40

6 The formalism of the LLVM IR 43

6.1 The Syntax . 43

6.2 The Static Semantics . 48

6.3 A Memory Model for the LLVM IR . 49

6.3.1 Rationale . 49

6.3.2 LLVM memory commands . 50

6.3.3 The byte-oriented representation . 52

6.3.4 The LLVM flattened values and memory accesses 53

6.4 Operational Semantics . 54

6.4.1 Nondeterminism in the LLVM operational semantics 55

6.4.2 Nondeterministic operational semantics of the SSA form 58

6.4.3 Partiality, preservation, and progress . 58

6.4.4 Deterministic refinements . 60

6.5 Extracting an Interpreter . 62

7 Verified SoftBound 64

7.1 Formalizing SoftBound for the LLVM IR . 65

7.2 Extracted Verified Implementation of SoftBound 70

8 Verified SSA Construction for LLVM 73

8.1 The mem2reg Optimization Pass . 73

8.2 The vmem2reg Algorithm . 79

8.3 Correctness of vmem2reg . 83

iv

8.3.1 Preserving promotability . 84

8.3.2 Preserving well-formedness . 85

8.3.3 Program refinement . 87

8.3.4 The correctness of vmem2reg . 91

8.4 Extraction and Performance Evaluation . 91

8.5 Optimized vmem2reg . 93

8.5.1 O1 Level—Pipeline fusion . 94

8.5.2 The Correctness of vmem2reg-O1 . 98

8.5.3 O2 Level—Minimal φ-nodes Placement 105

8.5.4 The Correctness of vmem2reg-O2 . 107

9 The Coq Development 111

9.1 Definitions . 111

9.2 Proofs . 112

9.3 OCaml Bindings and Coq Extraction . 113

10 Related Work 114

11 Conclusions and Future Work 118

Bibliography 122

v

List of Tables

3.1 Worst-case behavior. 30

9.1 Size of the development (approx. lines of code) . 112

vi

List of Figures

2.1 Simulation diagrams that imply program refinement. 7

2.2 An SSA-based optimization. 8

2.3 The LLVM compiler infrastructure . 9

2.4 Syntax of Vminus . 10

3.1 The specification of algorithms that find dominators. 15

3.2 Algorithms of computing dominators . 16

3.3 The postorder (left) and the DFS execution sequence (right). 17

3.4 The DFS algorithm. 18

3.5 Termination of the DFS algorithm. 19

3.6 Inductive principle of the DFS algorithm. 21

3.7 Kildall’s algorithm. 22

3.8 The dominator trees (left) and the execution of CHK (right). 26

3.9 The definition and well-formedness of dominator trees. 27

3.10 Analysis overhead over LLVM’s dominance analysis for our extracted analysis. 29

4.1 Operational Semantics of Vminus (excerpt) . 33

4.2 Static Semantics of Vminus (excerpt) . 36

6.1 Syntax for LLVM (1). 44

6.2 Syntax for LLVM (2). 45

6.3 An example use of LLVM’s memory operations. 46

6.4 Vellvm’s byte-oriented memory model. 51

6.5 Relations between different operational semantics in Vellvm. 54

vii

6.6 LLVMND: Small-step, nondeterministic semantics of the LLVM IR (selected rules). . . 56

7.1 SBspec: The specification semantics for SoftBound. Differences from the LLVMND

rules are highlighted. 66

7.2 Simulation relations of the SoftBound pass . 69

7.3 Execution time overhead of the extracted and the C++ version of SoftBound 71

8.1 The tool chain of the LLVM compiler . 74

8.2 Normalized execution time improvement of the LLVM’s mem2reg, LLVM’s O1, and

LLVM’s O3 optimizations over the LLVM baseline with optimizations disabled. For

comparison, GCC-O3’s speedup over the same baseline is also shown. 75

8.3 The algorithm of mem2reg . 76

8.4 The SSA construction by the mem2reg pass . 77

8.5 The SSA construction by the vmem2reg pass . 80

8.6 Basic structure of vmem2reg_fn . 81

8.7 The algorithm of vmem2reg . 82

8.8 The simulation relation for the correctness of φ-node placement 88

8.9 The simulation relation for DSE and DAE . 90

8.10 Execution speedup over LLVM -O0 for both the extracted vmem2reg and the original

mem2reg. 92

8.11 Compilation overhead over LLVM’s original mem2reg. 93

8.12 Basic structure of vmem2reg-O1 . 94

8.13 eliminate stld of vmem2reg-O1 . 95

8.14 The operations for elimination actions . 96

8.15 Basic structure of vmem2reg-O2 . 97

8.16 eliminate stld of vmem2reg-O2 . 106

8.17 The algorithm of inserting φ-nodes . 107

11.1 The effectiveness of GVN . 119

11.2 The effectiveness of Alias Analysis . 120

List of Abbreviations

AC Allen-Cocke.

ADCE Aggressive dead code elimination.

AH Aycock and Horspool.

CFG Control-flow graph.

CHK Cooper-Harvey-Kennedy.

DAE Dead alloca elimination.

DFS Depth first search.

DSE Dead store elimination.

GVN Global value numbering.

IR Intermediate representation.

LAA Load after alloca.

LAS Load after store.

LICM Loop invariant code motion.

LT Lengauer-Tarjan.

PO Postorder.

PRE Partial redundancy elimination.

SAS Store after store.

SCCP Sparse conditional constant propagation.

SSA Static Single Assignment.

ix

Chapter 1

Introduction

Compiler bugs can manifest as crashes during compilation or even result in the silent generation of

incorrect program binaries. Such mis-compilations can introduce subtle errors that are difficult to

diagnose and generally puzzling to the software developers. A recent study [73] used random test-

case generation to expose serious bugs in mainstream compilers including GCC [2], LLVM [38],

and commercial tools. Whereas few bugs were found in the front end of the compiler, various

optimization phases of the compiler that aim to make the generated program faster was a prominent

source of bugs.

Improving the correctness of compilers is a worthy goal. Large-scale source-code verification

efforts (such as the seL4 OS kernel [36] and Airbus’s verification of fly-by-wire software [61]), pro-

gram invariants checked by sophisticated type systems (such as Haskell and OCaml), and sound pro-

gram synthesis (for example, Matlab/Simulink parallelizes high-level languages into C to achieve

high performance [3]) can be undermined by an incorrect compiler. The need for correct compilers

is amplified when compilers are parts of the trusted computing base in modern computer systems

that include mission-critical financial servers, life-critical pacemaker firmware, and operating sys-

tems.

Verified Compilers are tackling the problem of compiler bugs by giving a rigorous proof that a

compiler preserves the behavior of programs. The CompCert project [42, 68, 69, 70] first imple-

mented a realistic and mechanically verified compiler that is programmed and mechanically verified

in the Coq proof assistant [25] and generates compact and efficient assembly code for a large frag-

ment of the C language. The aforementioned study [73] supports the effectiveness of this approach.

1

Whereas the study uncovered many bugs in other compilers, the only bugs found in CompCert were

in those parts of the compiler not formally verified:

“The apparent unbreakability of CompCert supports a strong argument that developing
compiler optimizations within a proof framework, where safety checks are explicit and
machine-checked, has tangible benefits for compiler users.”

Despite CompCert’s groundbreaking compiler-verification efforts, there still remain many chal-

lenges in applying its technology to industrial-strength compilers. In particular, the original Comp-

Cert development and the bulk of the subsequent work—with the notable exception of CompCert-

SSA [14] (which is concurrent with our work)—did not use a static single assignment (SSA) [28]

intermediate representation (IR), as Leroy [42] explains:

“Since the beginning of CompCert we have been considering using SSA-based inter-
mediate languages, but were held off by two difficulties. First, the dynamic semantics
for SSA is not obvious to formalize. Second, the SSA property is global to the code of
a whole function and not straightforward to exploit locally within proofs.”

In SSA, each variable is assigned statically only once and each variable definition must dom-

inate all of its uses in the control-flow graph. These SSA properties simplify or enable many

compiler optimizations [49, 71] including: sparse conditional constant propagation (SCCP), ag-

gressive dead code elimination (ADCE), global value numbering (GVN), common subexpression

elimination (CSE), global code motion, partial redundancy elimination (PRE), inductive variable

analysis (indvars) and etc. Consequently, open-source and commercial compilers such as GCC [2],

LLVM [38], Java HotSpot JIT [57], Soot framework [58], and Intel CC [59] use SSA-based IRs.

Despite their importance, there are few mechanized formalizations of the correctness properties

of SSA transformations. This dissertation tackles this problem by developing formal semantics

and proof techniques suitable for mechanically verifying the correctness of SSA-based compilers.

We do so in the context of our Vellvm framework, which formalizes the operational semantics of

programs expressed in LLVM’s SSA-based IR [43] and provides Coq [25] infrastructure to facilitate

mechanized proofs of properties about transformations on the LLVM IR. Moreover, because the

LLVM IR is expressive to represent arbitrary program constructors, maintain properties from high-

level programs, and hide details about target platforms, we define Vellvm’s memory model to

encode data along with high-level type information and to support arbitrary bit-width integers,

padding, and alignment issues.

2

The Vellvm infrastructure, along with Coq’s facility for extracting executable code from con-

structive proofs, enables Vellvm users to manipulate LLVM IR code with high confidence in the

results. For example, using this framework, we can extract verified LLVM transformations that

plug directly into the LLVM compiler. In summary,

Thesis statement: Formal models of SSA-based compiler intermediate representations can be used
to verify low-level program transformations, thereby enabling the construction of high-assurance
compiler passes.

Contributions The specific contributions of the dissertation include:

• The dissertation formally defines the sequential semantics of the industrial strength mod-

ern compiler intermediate representation—the LLVM IR that includes its type system, SSA

properties, memory model, and operational semantics.

• To design and reason about program transformations in the IR, the dissertation designs tools

for interacting with the LLVM infrastructure, and metatheory for SSA properties, memory

safety, dynamic semantics, and control-flow-graphs.

• Based on the tools and metatheory, we implement verified and extractable applications for

LLVM that include the interpreter of the LLVM IR, a transformation for enforcing memory

safety, translation validators for local optimizations, and SSA construction.

The dissertation is based on our published work [75, 76, 77]. The rest of the dissertation is

organized as follows: Chapter 2 presents the background and preliminaries used in the dissertation.

To streamline the formalization of the SSA-based transformations, Chapter 2 also describes Vmi-

nus, a simpler subset of our full LLVM formalization—Vellvm [75], but one that still captures the

essence of SSA. Chapter 3 formalizes one crucial component of SSA-based compilers—computing

dominators [77]. Chapter 4 shows the dynamic and static semantics of Vminus. Chapter 5 describes

the proof techniques we have developed for formalizing properties of SSA-style intermediate repre-

sentations in the context of Vminus [76]. To demonstrate that our proof techniques can be used for

practical compiler optimizations, Chapter 6 shows the syntax of the full LLVM IR—Vellvm. Then,

Chapter 6 formalizes the semantics of Vellvm. Chapter 7 presents an application of Vellvm—a veri-

fied program transformation that hardens C programs against spatial memory safety violations (e.g.,

buffer overflows, array indexing errors, and pointer arithmetic errors). Chapter 8 demonstrates that

3

our proof techniques developed in Chapter 5 can be used for practical compiler optimizations in Vel-

lvm: verifying the most performance-critical optimization pass in LLVM’s compilation strategy—

the mem2reg pass [76]. Chapter 9 summarizes our Coq development. Finally, Chapter 10 discusses

the related work, and Chapter 11 concludes.

4

Chapter 2

Background

This chapter presents the background and preliminaries used in the dissertation.

2.1 Program Refinement

In this dissertation, we prove the correctness of a compiler by showing that its output program P′

preserves the semantics of its original program P: informally, P′ cannot do more than what P does,

although P′ can have fewer behaviors than P. With this correctness, a compiler ensures that the

analysis and verification results for source programs still hold after compilation.

Formally, we use program refinement to formalize semantic preservation. Following the Comp-

Cert project [42], we define program refinement in terms of programs’ external behaviors (which

include program traces of input-output events, whether a program terminates, and the returned value

if a program terminates): a transformed program refines the original if the behaviors of the original

program include all the behaviors of the transformed program. We define the operational semantics

using traces of a labeled transition system.

Events e : : = v = fid(vj
j)

Finite traces t : : = ε | e, t

Finite or infinite traces T : : = ε | e,T (coinductive)

We denote one small-step of evaluation as config ` S t−→ S′: in program environment config, pro-

gram state S transitions to the state S′, recording events e of the transition in the trace t. An event e

describes the inputs vj and output v of an external function call named fid. config ` S t ∗−→S′ denotes

5

the reflexive, transitive closure of the small-step evaluation with a finite trace t. config ` S T−→ ∞

denotes a diverging evaluation starting from S with a finite or infinite trace T . Program refinement

is given by the following definition.

Definition 1 (Program refinement).

1. init(prog,fid, vj
j ,S) means S is the initial program state of the program prog with the main

entry fid and inputs vj.

2. final(S,v) means S is the final state with the return value v.

3. ⇐(prog,fid, vj
j , t,v) means ∃SS′. init(prog,fid, vj

j ,S), config ` S t ∗−→S′ and final(S′,v).

4. ⇒(prog,fid, vj
j ,T) means ∃S. init(prog,fid, vj

j ,S) and config ` S T−→ ∞.

5. 6⇐ (prog,fid, vj
j , t) means ∃SS′. init(prog,fid, vj

j ,S), config ` S t ∗−→S′ and S′ is stuck.

6. defined(prog,fid, vj
j) means ∀ t, ¬ 6⇐ (prog,fid, vj

j , t)

7. prog2 refines program prog1, written prog1 ⊇ prog2, if

(a) defined(prog1,fid, vj
j)

(b) ⇐(prog2,fid, vj
j , t,v) ⇒ ⇐(prog1,fid, vj

j , t,v)

(c) ⇒(prog2,fid, vj
j ,T) ⇒ ⇒(prog1,fid, vj

j ,T)

(d) 6⇐ (prog2,fid, vj
j , t) ⇒ 6⇐ (prog1,fid, vj

j , t)

Note that refinement requires only that a transformed program preserves the semantics of a

well-defined original program, but does not constrain the transformation of undefined programs.

We use the simulation diagrams in Figure 2.1 to prove that a program transformation satisfies

the refinement property. Note that in Figure 2.1, we use S to denote program states of a source

program and use Σ to denote program states of a target program. The backward simulation diagrams

imply program refinement for both deterministic and non-deterministic semantics. The forward

simulation diagrams (which are similar to the diagrams the CompCert project [42] uses) imply

program refinement for deterministic semantics. In each diagram, the program states of original

and compiled programs are on the left and right respectively. A line denotes a relation ∼ between

program states. Solid lines or arrows denote hypotheses; dashed lines or arrows denote conclusions.

6

Σ

Lock-step

S

Σ'S'

tt

~

~

ΣS

Σ'

ϵ

~

~

ΣS

S'

ϵ

~

~

ΣS

Σ'S'

tt

~

~

Right “option”

or

ΣS

Σ'S'

tt

~

~

Left “option”

or

(with |S'| < |S|) (with |Σ'| < |Σ|)

ΣS

Σ'S'

tt

~

~

ΣS

Σ'

ϵ

~

~

ΣS

S'

ϵ

~

~

ΣS

Σ'S'

tt

~

~

or

ΣS

Σ'S'

tt

~

~

or

(with |S'| < |S|) (with |Σ'| < |Σ|)

Backward

simulation

Forward

simulation

Figure 2.1: Simulation diagrams that imply program refinement.

At a high-level, we first need to find a relation ∼ between program states and their transformed

counterparts. The relation must hold initially, imply equivalent returned values finally, and imply

that stuck states are related. Then, depending on the transformation, we prove that a specific

diagram holds: lock-step simulation is for variable substitution, right “option” simulation is for

instruction removal, and left “option” simulation is for instruction insertion. Because the existence

of a diagram implies that the source and target programs share traces, we can prove the equivalence

of program traces by decomposing program transitions into matched diagrams. To ensure that an

original program terminates iff the transformed program terminates, the “option” simulations are

parameterized by a measure of program states |S| that must decrease to prevent “infinite stuttering”

problems.

2.2 Static Single Assignment

One of the crucial analysis in compiler design is determining values of temporary variables stati-

cally. With the analysis, compilers can reason about equivalence among variables and expressions,

and then eliminate redundant computation to reduce the runtime overhead. However, the analysis

for an ordinary imperative language is not trivial: a temporary variable can be defined more than

once; therefore, at runtime its value introduced at one definition is alive only by the next definition

of the variable. Moreover, because program transformations can add or remove temporary variables,

change control flow graphs, compilers have to rerun the analysis after transformations.

7

Original Transformed

l1 : · · ·
· · ·
brr0 l2 l3

l2 :r3 = phi int[0, l1][r5, l2]
r4 := r1 ∗ r2
r5 := r3 + r4
r6 := r5 ≥ 100
brr6 l2 l3

l3 :r7 = phi int[0, l1][r5, l2]
r8 := r1 ∗ r2
r9 := r8 + r7

l1 : · · ·
r4 := r1 ∗ r2
brr0 l2 l3

l2 :r3 = phi int[0, l1][r5, l2]

r5 := r3 + r4
r6 := r5 ≥ 100
brr6 l2 l3

l3 :r7 = phi int[0, l1][r5, l2]

r9 := r4 + r7

In the original program (left), r1 ∗ r2 is a partial common expression for the definitions of r4 and
r8, because there is no domination relation between r4 and r8. Therefore, eliminating the common
expression directly is not correct. For example, we cannot simply replace r8 := r1 ∗ r2 by r8 := r4
since r4 is not available at the definition of r8 if the block l2 does not execute before l3 runs. To
transform this program, we might first move the instruction r4 := r1 ∗ r2 from the block l2 to the
block l1 because the definitions of r1 and r2 must dominate l1, and l1 dominates l2. Then we can
safely replace all the uses of r8 by r4, because the definition of r4 in l1 dominates l3 and therefore
dominates all the uses of r8. Finally, r8 is removed, because there are no uses of r8.

Figure 2.2: An SSA-based optimization.

To address the issue, Static Single Assignment (SSA) form [28] 1 was proposed to enforce

referential transparency syntactically [9], therefore simplifying program analysis for compilers.

Informally, SSA form is an intermediate representation distinguished by its treatment of temporary

variables—each such variable may be defined only once, statically, and each use of the variable must

be dominated by its definition with respect to the control-flow graph of the containing function.

Informally, the variable definition dominates a use if all possible execution paths to the use go

through the definition first.

To maintain these invariants in the presence of branches and loops, SSA form uses φ-

instructions, which act like control-flow dependent move operations. Such φ-instructions appear

only at the start of a basic block and, crucially, they are handled specially in the dominance relation

to “cut” apparently cyclic data dependencies.

1 In the literature, there are different variants of SSA forms [16]. We use the LLVM SSA form: for example, memory
locations are not in SSA form; LLVM does not maintain any connection between a variable in LLVM and its original
name in imperative form; and the live ranges of variables can overlap.

8

C, C++, Haskell,
ObjC, ObjC++,
Scheme, Scala...

Alpha, ARM,
PowerPC, Sparc,

X86, Mips, …

Code
Generator/

JIT
LLVM IR

Optimizations/
Transformations

Program analysis

Figure 2.3: The LLVM compiler infrastructure

The left part of Figure 2.2 shows an example program in SSA form, written using the stripped-

down notation of Vminus (defined more formally in Section 2.4). The temporary r3 at the beginning

of the block labeled l2 is defined by a φ-instruction: if control enters the block l2 by jumping from

basic block l1, r3 will get the value 0; if control enters from block l2 (via the back edge of the branch

at the end of the block), then r3 will get the value of r5.

The SSA form is good for implementing optimizations because it identifies variable names with

the program points at which they are defined. Maintaining the SSA invariants thus makes definition

and use information of each variable more explicit. Also, because each variable is defined only

once, there is less mutable state to be considered (for purposes of aliasing, etc.) in SSA form, which

makes certain code transformations easier to implement.

Program transformations like the one in Figure 2.2 are correct if the transformed program refines

the original program (in the sense described above) and the result is well-formed SSA. Proving

that such code transformations are correct is nontrivial because they involve non-local reasoning

about the program. Chapter 5 describes how such optimizations can be formally proven correct by

breaking them into micro transformations, each of which can be shown to preserve the semantics of

the program and maintain the SSA invariants.

2.3 LLVM

LLVM [43] (Low-Level Virtual Machine) is a robust, industrial-strength, and open-source compi-

lation framework. LLVM uses a typed, platform-independent SSA-based IR originally developed

as a research tool for studying optimizations and modern compilation techniques [38]. The LLVM

project has since blossomed into a robust, industrial-strength, and open-source compilation platform

9

Types typ : : = int
Constants cnst : : = Int
Values val : : = r | cnst
Binops bop : : = + | ∗ | && |= | ≥ | ≤ | · · ·
Right-hand-sides rhs : : = val1 bopval2
Commands c : : = r := rhs
Terminators tmn : : = brval l1 l2 | ret typval

Phi Nodes φ : : = r = phi typ [valj, lj]
j

Instructions insn : : = φ | c | tmn
Non-φs ψ : : = c | tmn
Blocks b : : = lφctmn
Functions f : : = fun{b}

Figure 2.4: Syntax of Vminus

that competes with GCC in terms of compilation speed and performance of the generated code [38].

As a consequence, it has been widely used in both academia and industry 2.

An LLVM-based compiler is structured as a translation from a high-level source language to the

LLVM IR (see Figure 2.3). The LLVM tools provide a suite of IR to IR translations, which provide

optimizations, program transformations, and static analyses. The resulting LLVM IR code can then

be lowered to a variety of target architectures, including x86, PowerPC, and ARM (either by static

compilation or dynamic JIT-compilation). The LLVM project focuses on C and C++ front-ends, but

many source languages, including Haskell, Scheme, Scala, Objective C and others have been ported

to target the LLVM IR.

2.4 The Simple SSA Language—Vminus

To streamline the formalization of the SSA-based transformations, we describe the properties

and proof techniques of SSA in the context of Vminus, a simpler subset of our full LLVM

formalization—Vellvm [75], but one that still captures the essence of SSA.

Figure 2.4 gives the syntax of Vminus. Every Vminus expression is of type integer. Operations

in Vminus compute with values val, which are either identifiers r naming temporaries or constants

cnst that must be integer values. We use R to range over sets of identifiers.

2See http://llvm.org/ProjectsWithLLVM/

10

http://llvm.org/ProjectsWithLLVM/
http://llvm.org/ProjectsWithLLVM/

All code in Vminus resides in a top-level function, whose body is composed of blocks b. Here,

b denotes a list of blocks; we also use similar notation for other lists. As is standard, a basic block

consists of a labeled entry point l, a series of φ nodes, a list of commands cs, and a terminator

instruction tmn. In the following, we also use the label l of a block to denote the block itself.

Because SSA ensures the uniqueness of variables in a function, we use r to identify instruc-

tions that assign temporaries. For instructions that do not update temporaries, such as terminators,

we introduce “ghost” identifiers to identify them—r : brval l1 l2. Ghost identifiers satisfy unique-

ness statically but do not have dynamic semantics, and are not shown when we do not distinguish

instructions.

The set of blocks making up the top-level function constitutes a control-flow graph with a well-

defined entry point that cannot be reached from other blocks. We write f [l] = bbc if there is a block

b with label l in function f . Here, the bc (pronounced “some”) indicates that the function is partial

(might return “none” instead).

As usual in SSA, the φ nodes join together values from a list of predecessor blocks of the

control-flow graph—each φ node takes a list of (value, label) pairs that indicates the value chosen

when control transfers from a predecessor block with the associated label. The commands c include

the usual suite of binary arithmetic or comparison operations (bop—e.g., addition +, multiplication

∗, and &&, equivalence =, greater than or equal ≥, less than or equal ≤, etc.). We denote the

right-hand-sides of commands by rhs. Block terminators (br and ret) branch to another block or

return a value from the function. We also use metavariable insn to range over φ-nodes, commands

and terminators, and non-phinodes ψ to represent commands and terminators.

11

Chapter 3

Mechanized Verification of Computing

Dominators

One crucial component of SSA-based compilers is computing dominators—on a control-follow-

graph, a node l1 dominates a node l2 if all paths from the entry to l2 must go through l1 [8]. Domi-

nance analysis allows compilers to represent programs in the SSA form [28] (which enables many

advanced SSA-based optimizations), optimize loops, analyze memory dependency, and parallelize

code automatically, etc. Therefore, one prerequisite to the formal verification of SSA-based com-

pilers is formalizing computing dominators.

In this chapter, we present the formalization of dominance analysis used in the Vellvm project.

To the best of our knowledge, this is the first mechanized verification of dominator computation for

LLVM. Although the CompCertSSA project [14] also formalized dominance analysis to prove the

correctness of a global value numbering optimization, as we explain in Chapter 10, our results are

more general: beyond soundness, we establish completeness and related metatheory results that can

be used in other applications. Because different styles of formalization may also affect the cost of

proof engineering, we also discuss some tradeoffs in the choices of formalization.

To simplify the formal development, we describe the work in the context of Vminus in this

section. The following sections describe how to extend the work for the full Vellvm. Following

LLVM, we distinguish dominators at the block level and at the instruction level. Given the former

one, we can easily compute the latter one. Therefore, we will focus on the block-level analysis.

Section 4.2 discusses the instruction-level analysis, Section 4.3 shows how to use the dominance

12

analysis to design a type checker for the SSA form, and Chapter 5 describes how to verify SSA-

based optimizations by the metatheory of the dominance analysis.

Concretely, we present the following specific contributions:

1. Section 3.1 gives an abstract and succinct specification of computing dominators at the block

level.

2. We instantiate the specification by two algorithms. Section 3.2 shows the standard dominance

analysis [7] (AC). Section 3.3 presents an extension of the standard algorithm [24] (CHK) that

is easy to implement and verify, but still fast. We verify the correctness of both algorithms.

In the meanwhile, we provide a verified depth first search algorithm (Section 3.2.1).

3. Then, Section 3.4 constructs dominator trees that compilers traverse to transform programs.

4. Section 3.6 evaluates performance of the algorithms, and shows that in practice CHK runs

nearly as fast as the sophisticated algorithm used in LLVM.

5. We formalize all the claims of the paper for Vminus and the full Vellvm in Coq (available at

http://www.cis.upenn.edu/~stevez/vellvm/).

Note that in this chapter we present definitions and proofs in Coq; the later chapters use mathe-

matical notations.

3.1 The Specification of Computing Dominators

This section first defines dominators in term of the syntax of Vminus, then gives an abstract and

succinct specification of algorithms that compute dominators.

3.1.1 Dominance

The set of blocks making up the top-level function f constitutes a control-flow graph (CFG) G =

(e,succs) where e is the entry point (the first block) of f ; succs maps each label to a list of its

successors. On a CFG, we use G |= l1→∗ l2 to denote a path ρ from l1 to l2, and l ∈ ρ to denote

that l is in the path ρ. By wf f (which Section 4.3 formally defines), we require that a well-formed

function must contain an entry point that cannot be reached from other blocks, all terminators can

13

http://www.cis.upenn.edu/~stevez/vellvm/
http://www.cis.upenn.edu/~stevez/vellvm/

only branch to blocks within f , and that all labels in f are unique. In this section, we only consider

well-formed functions to streamline the presentation.

Definition 2 (Domination (Block-level)). Given G with an entry e,

• A block l is reachable, written G→∗ l, if there exists a path G |= e→∗ l.

• A block l1 dominates a block l2, written G |= l1�= l2, if for every path ρ from e to l2, l1 ∈ ρ.

• A block l1 strictly dominates a block l2, written G |= l1� l2, if for every path ρ from e to l2,

l1 6= l2∧ l1 ∈ ρ.

Because the dominance relations of a function at the block level and in its CFG are equivalent,

in the following we do not distinguish f and G. The following consequence of the definitions are

useful to define the specification of computing dominators. First of all, we can convert� and�=:

Lemma 1.

• If G |= l1� l2, then G |= l1�= l2.

• If G |= l1�= l2∧ l1 6= l2, then G |= l1� l2.

For all labels in G,�= and� are transitive.

Lemma 2 (Transitivity).

• If G |= l1�= l2 and G |= l2�= l3, then G |= l1�= l3.

• If G |= l1� l2 and G |= l2� l3, then G |= l1� l3.

However, because there is no path from the entry to unreachable labels,�= and� relate every

label to any unreachable labels.

Lemma 3. If ¬(G→∗ l2), then G |= l1�= l2 and G |= l1� l2.

If we only consider the reachable labels in V ,� is acyclic.

Lemma 4 (� is acyclic). If G→∗ l, then ¬G |= l� l.

Moreover, all labels that strictly dominate a reachable label are ordered.

Lemma 5 (� is ordered). If G→∗ l3, l1 6= l2, G |= l1� l3 and G |= l2� l3, then G |= l1� l2∨G |=

l2� l1.

14

Module Type ALGDOM.

Parameter sdom: f -> l -> set l.

Definition dom f l1 := l1 {+} sdom f l1.

Axiom entry_sound: forall f e, entry f = Some e -> sdom f e = {}.

Axiom successors_sound: forall f l1 l2,

In l1 ((succs f) !!! l2) -> sdom f l1 {<=} dom f l2.

Axiom complete: forall f l1 l2,

wf f -> f |= l1 >> l2 -> l1 ‘in‘ (sdom f l2).

End ALGDOM.

Module AlgDom_Properties(AD: ALGDOM).

Lemma sound: forall f l1 l2,

wf f -> l1 ‘in‘ (AD.sdom f l2) -> f |= l1 >> l2.

(**)

(* Properties: conversion, transitivity, acyclicity, ordering and ... *)

(**)

End AlgDom_Properties.

Figure 3.1: The specification of algorithms that find dominators.

3.1.2 Specification

Coq Notations. We use {} to denote an empty set; use {+}, {<=}, ‘in‘, {\/} and {/\} to

denote set addition, inclusion, membership, union and intersection respectively. Our developments

reuse the basic tree and map data structures implemented in the CompCert project [42]: ATree.t

and PTree.t are trees with keys of type l and positive respectively; PMap.t is a map with keys

of type positive. We use ! and !! to denote tree and map lookup respectively. A tree lookup

is partial, while a map lookup returns a default value when the key to search does not exist. succs

are defined by trees. !!! is a special tree lookup for succs, and it returns an empty list when a

searched-for key does not exist. [x] is a list with one element x.

Figure 3.1 gives an abstract specification of algorithms that compute dominators using a Coq

module interface ALGDOM. First of all, sdom defines the signature of a dominance analysis algorithm:

given a function f and a label l1, (sdom f l1) returns the set of strict dominators of l1 in f ; dom

defines the set of dominators of l1 by adding l1 into l1’s strict dominators.

To make the interface simple, ALGDOM requires only basic properties that ensure that sdom is

correct: it must be both sound and complete in terms of the declarative definitions (Definition 2).

Given the correctness of sdom, the AlgDom_Properties module can ‘lift’ properties (conversion,

15

Efficiency

Lengauer-Tarjan (LT, in LLVM and GCC)

Based on graph theory

O(E x log(N))
Cooper-Harvey-Kennedy (CHK)

Extended from AC

Nearly as fast as LT in common cases

Verifiability

Allen-Cocke (AC)

Based on Kildall’s algorithm

A large asymptotic complexity

Figure 3.2: Algorithms of computing dominators

transitivity, acyclicity, ordering, etc.) from the declarative definitions to the implementations of

sdom and dom. Section 3.4, Section 3.5, Section 4.3 and Chapter 8 show how clients of ALGDOM use

the properties proven in AlgDom_Properties by examples.

ALGDOM requires completeness of the algorithm directly. Soundness of the algorithm can be

proven by two more basic properties: entry_sound requires that the entry has no strict dominators;

successors_sound requires that if l1 is a successor of l2, then l2’s dominators must include l1’s

strict dominators. Given an algorithm that establishes the two properties, AlgDom_Properties

proves that the algorithm is sound by induction over any path from the entry to l2.

3.1.3 Instantiations

In the literature, there is a long history of algorithms that find dominators (See Figure 3.2), each

making different trade-offs between efficiency and simplicity. Most of the industrial compilers,

such as LLVM and GCC, use the classic Lengauer-Tarjan algorithm [40] (LT) that has a complexity

of O(E ∗ log(N)) where N and E are the number of nodes and edges respectively, but is complicated

to implement and reason about because it is base on complicated graph theory. The Allen-Cocke

algorithm [7] (AC) based on iteration is easier to design, but suffers from a large asymptotic com-

plexity of O(N3). Moreover, LT explictly creates dominator trees that provide convenient data

structures for compilers whereas AC needs an additional tree construction algorithm with more

overhead. The Cooper-Harvey-Kennedy algorithm [24] (CHK) extends from AC with careful en-

16

entry

{e,5}

{a,4}

{d,2}

{b,3}

{c,1}

{z,_}

{y,_}

stk visited PO_l2p po

e[a d] e
e[d]; a[b] e a
e[d]; a[]; b[c d] e a b
e[d]; a[]; b[d]; c[] e a b c (c,1)
e[d]; a[]; b[]; d[b] e a b c d (c,1)
e[d]; a[]; b[]; d[] e a b c d (c,1); (d,2)
e[d]; a[]; b[]; e a b c d (c,1); (d,2); (b,3)
e[d]; a[]; e a b c d (c,1); (d,2); (b,3); (a,4)
e[] e a b c d (c,1); (d,2); (b,3); (a,4); (e,5)

Figure 3.3: The postorder (left) and the DFS execution sequence (right).

gineering and runs nearly as fast as LT in common cases [24, 31], but is still simple to implement

and reason about. Moreover, CHK generates dominator trees implicitly, and provides a faster tree

construction algorithm.

Because CHK gives a relatively good trade-off between verifiability and efficency, we present

CHK as an instance of ALGDOM. In the following sections, we first review the AC algorithm, and

then study its extension CHK.

3.2 The Allen-Cocke Algorithm

The Allen-Cocke algorithm (AC) is an instance of the forward worklist-based Kildall’s al-

gorithm [35] that computes program fixpoints by iteration. The number of iterations that a

worklist-based algorithm takes to meet a fixpoint depends on the order in which nodes are

processed: in particular, forward algorithms can converge relatively faster when visiting nodes in

reverse postorder (PO) [33].

At the high-level, our Coq implementation of AC works in three steps: 1) calculate the PO of a

CFG by depth-first-search (DFS); 2) compute strict dominators for PO-numbered nodes in Kildall;

3) finally relate the analysis results to the original nodes. We omit the 3rd step’s proofs here.

This section first presents a verified DFS algorithm that computes PO, then reviews Kildall’s

algorithm as implemented in the CompCert project [42], and finally it studies the implementation

and metatheory of AC.

17

Record PostOrder := mkPO { PO_cnt: positive; PO_l2p: LTree.t positive }.

Record Frame := mkFr { Fr_name: l; Fr_scs: list l }.

Definition dfs_F_type : Type := forall (succs: LTree.t (list l))

(visited: LTree.t unit) (po:PostOrder) (stk: list Frame), PostOrder.

Definition dfs_F (f: dfs_F_type) (succs: LTree.t (list l))

(visited: LTree.t unit) (po:PostOrder) (stk: list Frame): PostOrder :=

match find_next succs visited po stk with

| inr po’ => po’

| inl (next, visited’, po’, stk’) => f succs visited’ po’ stk’

end.

Figure 3.4: The DFS algorithm.

3.2.1 DFS: PO-numbering

DFS starts at the entry, visits nodes as deep as possible along each path, and backtracks when all

deep nodes are visited. DFS generates PO by numbering a node after all its children are numbered.

Figure 3.3 gives a PO-numbered CFG. In the CFG, we represent the depth-first-search (DFS) tree

edges by solid arrows, and non-tree edges by dotted arrows. We draw the entry node in a box, and

other nodes in circles. Each node is labeled by a pair with its original label name on the left, and its

PO number on the right. Because DFS only visits reachable nodes, the PO numbers of unreachable

nodes are represented by ‘ ’.

Figure 3.4 shows the data structures and auxiliary functions used by a typical DFS algorithm

that maintains four components to compute PO. PostOrder takes the next available PO number and

a map from nodes to their PO numbers with type positive. The map from a node to its successors

is represented by succs. To facilitate reasoning about DFS, we represent the recursive information

of DFS explicitly by a list of Frame records that each contains a node Fr_name and its unprocessed

successors Fr_scs. To prevent the search from revisiting nodes, the DFS algorithm uses visited

to record visited nodes. dfs_F defines one recursive step of DFS.

Figure 3.3 (on the right) gives a DFS execution sequence (by running dfs_F until all nodes are

visited) of the CFG in Figure 3.3 (on the left) . We use l[l1 · · · ln] to denote a frame with the node l

and its unprocessed successors l1 to ln; (l, p) to denote a node l and its PO p. Initially the DFS adds

the entry and its successors to the stack. At each recursive step, find_next finds the next available

18

Fixpoint iter (A:Type) (n:nat) (F:A->A) (g:A) : A :=

match n with

| O => g

| S p => F (iter A p F g)

end.

Definition wf_stk succs visited stk :=

stk_in_succs succs stk /\ incl visited succs

Program Fixpoint dfs_tmn succs visited po stk

(Hp: wf_stk succs visited stk) {measure (size succs - size visited)}:

{ po’:PostOrder | exists p:nat,

forall k (Hlt: p < k) (g:dfs_F_type),

iter _ k dfs_F g succs visited po stk = po’ } :=

match find_next succs visited po stk with

| inr po’ => po’

| inl (next, visited’, po’, stk’) =>

let _ := dfs_tmn succs visited’ po’ stk’ _ in _

end.

Program Definition dfs succs entry : PostOrder :=

fst (dfs_tmn succs empty (mkPO 1 empty) (mkFr entry [(succs!!!entry)]) _).

Figure 3.5: Termination of the DFS algorithm.

node that is the unvisited node in the Fr_scs of the latest node l′ of the stack. If the next available

node exists, the DFS pushes the node with its successors to the stack, and makes the node to be

visited. find_next pops all nodes in front of l′, and gives them PO numbers. If find_next fails

to find available nodes, the DFS stops.

We can see that the straightforward algorithm is not a structural recursion. To implement

the algorithm in Coq, we must show that it terminates. Although in Coq we can implement the

algorithm by well-founded recursion, such designs are hard to reason about [17]. One of possible

alternatives is implementing DFS with a ‘strong’ dependent type to specify the properties that we

need to reason about DFS. However, this design is not modular because when the type of DFS

is not strong enough—for example, if we need a new lemma about DFS—we must extend or

redesign its implementation by adding new invariants. Instead, following the ideas in Coq’Art [17],

we implement DFS by iteration and prove its termination and inductive principle separately. By

separating implementation and specification, the DFS design is modular and easier to reason about.

19

Figure 3.5 presents our design. Similar to bounded iteration, the top-level entry is iter, which

needs a bounded step n, a fixpoint F and a default value g. iter only calls g when n reaches zero,

and otherwise recursively calls one more iteration of F. If F is terminating, we can prove that there

must exist a final value and a bound n, such that for any bound k that is greater than or equal to n,

iter always stops and generates the same final value. In other words, F must reach a fixpoint with

less than n steps. In fact, the proof of the existence of n is erasable; the computation part of the

proof provides a terminating algorithm for free, not requiring the bound step at runtime.

Figure 3.5 proves that the DFS must terminate, as shown by dfs_tmn, which is implemented

by well-founded recursion over the number of unvisited nodes. Intuitively, this follows because

after each iteration, the DFS visits more nodes. The invariant that the number of unvisited nodes

decreases holds only for well-formed recursion states (wf_stk), which requires that all visited nodes

and unprocessed nodes in frames must be in the CFG. We implemented dfs_tmn by Coq’s Program

Fixpoint, which allows programmers to leave holes for which Program Fixpoint automatically

generates obligations to solve. Using dfs_tmn, dfs defines the final definition of DFS.

To reason about dfs, Figure 3.6 shows a well-founded inductive principle for dfs. In Module

Ind, to prove that the final result has the property wf_po and the property wf_stack holds for all its

intermediate states, we need to show that the initial state satisfies wf_stack, and that find_next

preserves wf_stack when it can find a new available node, and produces a well-formed final result

when no available nodes exist. With the inductive principle, we proved the following properties of

DFS that are useful to establish the correctness of AC and CHK.

Variable (succs: ATree.t (list l)) (entry:l) (po:PostOrder).

Hypothesis Hdfs: dfs succs entry = po.

First of all, a non-entry node must have at least one predecessor that has a greater PO number than

the node’s. This is because 1) DFS must visit at least one predecessor of a node before visiting the

node; 2) PO gives greater numbers to the nodes visited earlier:

Lemma dfs_order: forall l1 p1, l1 <> entry -> (PO_l2p po)!l1 = Some p1,

exists l2, exists p2,

In l2 ((make_preds succs)!!!l1) /\ (PO_l2p po)!l2 = Some p2 /\ p2 > p1.

(* Given succs, (make_preds succs) computes predecessors of each node. *)

Second, a node is PO-numbered iff the node is reachable:

Lemma dfs_reachable:forall l,(PO_l2p po)!l <> None <-> (entry,succs)->* l.

20

Module Ind.

Section Ind.

Variable (succs: ATree.t (list l)) (entry:l) (po:PostOrder).

Hypothesis find_next__wf_stack: forall ... (Hwf: wf_stack visited po stk)

(Heq: find_next succs visited po stk = inl (next, visited’, po’, stk’)),

wf_stack visited’ po’ stk’.

Hypothesis wf_stack__find_next__wf_order: forall ...,

(Hwf: wf_stack visited po1 stk)

(Heq: find_next succs visited po1 stk = inr po2), wf_po po2.

Hypothesis entry__wf_stack:

wf_stack empty (mkPO 1 empty) (mkFr entry [(succs!!!entry)]).

Lemma dfs_wf: dfs succs entry = po -> wf_po po.

End Ind.

End Ind.

Figure 3.6: Inductive principle of the DFS algorithm.

Moreover, different nodes do not have the same PO number.

Lemma dfs_inj: forall l1 l2 p,

(PO_l2p po)!l2 = Some p -> (PO_l2p po)!l1 = Some p -> l1 = l2.

3.2.2 Kildall’s algorithm

Figure 3.7 summarizes the Kildall module used in the CompCert project. The module is param-

eterized by the following components: NS that provides the order to process nodes, and a lattice L

that defines top, bot, equality (eq), least upper bound (lub) and order (ge) of the abstract domain

of an analysis; succs that is a tree that maps a node to their successors; transf that is the transfer

function of Kildall analysis; inits that initializes the analysis. Given the inputs, state records the

iteration states that include sin that records analysis states of each node, and a work list swrk hat

contains nodes to process.

fixpoint implements iterations by Iter.iter—bounded recursion with a maximal step num-

ber (num) [17]. Iter.iter is partial if an analysis does not stop after the maximal number of steps.

A monotone analysis must reach its fixpoint after a fixed number of steps. Therefore, we can alway

pick a large enough number of steps for a monotone analysis.

21

Module Kildall (NS: PNODE_SET) (L: LATTICE).

Section Kildall.

Variable succs: PTree.t (list positive).

Variable transf : positive -> L.t -> L.t.

Variable inits: list (positive * L.t).

Record state : Type := mkst { sin: PMap.t L.t; swrk: NS.t }.

Definition start_st := mkst (start_state_in inits) (NS.init succs).

Definition propagate_succ (out: L.t) (s: state) (n: positive) :=

let oldl := s.(sin) !! n in

let newl := L.lub oldl out in

if L.eq newl oldl

then mkst (PMap.set n newl s.(sin)) (NS.add n s.(swrk)) else s.

Definition step (s: state): PMap.t L.t + state :=

match NS.pick s.(swrk) with

| None => inl s.(sin)

| Some(n, rem) => inr (fold_left

(propagate_succ (transf n s.(sin) !! n))

(succs !!! n) (mkst s.(sin) rem))

end.

Variable num : positive.

Definition fixpoint : option (PMap.t L.t):= Iter.iter step num start_st.

End Kildall.

End Kildall.

Figure 3.7: Kildall’s algorithm.

Initially Kildall’s algorithm calls start_st to initialize iteration states. Nodes not in inits are

initialized to be the bottom of L. Then start_st adds all nodes into the worklist and starts the loop.

step defines the loop body. At step, Kildall’s algorithm checks if there are still unprocessed nodes

in the worklist. If the worklist is empty, the algorithm stops. Otherwise, step picks a node from

the worklist in term of the order provided by NS, and then propagates its information (computed by

transf) to all the node’s successors by propagate_succ. In propagate_succ, the new value of

22

a successor is L.lub of its old value and the propagated value from its predecessor. The algorithm

only adds a successor into the worklist when its value is changed.

Kildall’s algorithm satisfies the following properties:

Variable res: PMap.t L.t.

Hypothesis Hfix: fixpoint = Some res.

First of all, the worklist contains nodes that have unstable successors in the current state. Formally,

each state st preserves the following invariant:

forall n, NS.In n st.(swrk) \/

(forall s, In s (succs!!!n) -> L.ge st.(sin)!!s (transf n st.(sin)!!n)).

Each iteration may only remove the picked node n from the worklist. If none of n’s successors’

values are changed, no matter whether n belongs to its successors, n won’t be added back to the

worklist. Therefore, the above invariant holds. This invariant implies that when the analysis stops,

all nodes hold the in-equations:

Lemma fixpoint_solution: forall s,

In s (succs!!!n) -> L.ge res!!s (transf n res!!n).

The second property of Kildall’s algorithm is monotonicity. At each iteration, the value of a suc-

cessor of the picked node can only be updated from oldl to newl. Because newl is the least upper

bound of oldl and out, newl is greater than or equal to oldl. Therefore, iteration states are always

monotonic:

Lemma fixpoint_mono: incr (start_state_in inits) res.

where incr is a pointwise lift of L.ge for corresponding nodes. In particular, the final states must

be greater than or equal to the initial states. When an iteration does not change states, no nodes

will be added back to the worklist, but the size of worklist must decrease. Therefore, a monotonic

analysis must reach its fixpoint with less than N2 ∗H steps where N is the number of nodes; H is

the height of the lattice of the analysis [33].

3.2.3 The AC algorithm

AC instantiates Kildall with PN that picks nodes in reverse PO (by picking the maximal nodes

from the worklist), and LDoms that defines the lattice of AC. Dominance analysis computes a set

of strict dominators for each node. We represent the domain of LDoms by option (set l). The

23

top and bot of LDoms are Some nil and None respectively. The least upper bound, order and

equality of LDoms are lifted from set intersection, set inclusion, and set equality to option: None is

smaller than Some x for any x. This design leads to better performance by providing shortcuts for

operations on None. Note that using None as bot does not make the height of LDoms to be infinite,

because any non-bot element can only contain nodes in the CFG, and the height of LDoms is N.

AC uses the following transfer function and initialization:

Definition transf l1 input := l1 {+} input.

Definition inits := [(e, LDoms.top)].

Initially AC sets the strict dominators of the entry to be empty, and other nodes’ strict dominators

to be all labels in the function. The algorithm will iteratively remove non-strict-dominators

from the sets until the conditions below hold (by Lemma fixpoint_mono and Lemma

fixpoint_solution):

(forall s, In s (succs!!!n) ->

L.ge (st.(sin))!!s (n{+}(st.(sin))!!n)) /\ (st.(sin))!!e = {}.

which proves that AC satisfies entry_sound and successors_sound.

To show that the algorithm is complete, it is sufficient to show that each iteration state st

preserves the following invariant:

forall n1 n2, ~ n1 ‘in‘ st.(sin)!!n2 -> ~ (e, succs) |= n1 >> n2.

In other words, AC only removes non-strict dominators. Initially, AC sets the entry’s strict dom-

inators to be empty. Because in a well-formed CFG, the entry has no predecessors, the invariant

holds at the very beginning. At each iteration, suppose that we pick a node n and update one of its

successors s. Consider a node n’ not in LDoms.lub st.(sin)!!s (n {+} st.(sin)!!n). If

n’ is not in LDoms.lub st.(sin)!!s, then n’ does not strictly dominate s because st holds the

invariant. If n’ is not in (n {+} st.(sin)!!n), then n’ does not strictly dominate n because st

holds the invariant. Appending the path from the entry to n that bypasses n’ with the edge from n

to s leads to a path from the entry to s that bypasses n’. Therefore, n’ does not strictly dominate

s, either.

24

3.3 Extension: the Cooper-Harvey-Kennedy Algorithm

The CHK algorithm is based on the following observation: when AC processes nodes in a reversed

post-order (PO), if we represent the set of strict dominators in a list, and always add a newly

discovered strict dominator at the head of the list (on the left in Figure 3.8), the list must be sorted

by PO. Figure 3.8 (on the right) shows the execution of the algorithm for the CFG in Figure 3.3.

Because lists of strict dominators are always sorted, we can implement the set intersection (lub)

and the set comparison (eq) of two sorted lists by traversing the two lists only once. Moreover, the

algorithm only calls eq after lub. Therefore, we can group lub and eq into LDoms.lub together.

The following defines a merge function used by LDoms.lub that intersects two sorted lists and

returns whether the final result equals to the left one:

Program Fixpoint merge (l1 l2: list positive) (acc:list positive * bool)

{measure (length l1 + length l2)}: (list positive * bool) :=

let ’(rl, changed) := acc in

match l1, l2 with

| p1::l1’, p2::l2’ =>

match (Pcompare p1 p2 Eq) with

| Eq => merge l1’ l2’ (p1::rl, changed)

| Lt => merge l1’ l2 (rl, true)

| Gt => merge l1 l2’ (rl, changed)

end

| nil, _ => acc

| _::_, nil => (rl, true)

end.

(* (Pcompare p1 p2 Eq) returns whether p1 = p2, p1 < p2 or p1 > p2. *)

3.3.1 Correctness

To show that CHK is still correct, it is sufficient to show that all lists are well-sorted at each iteration,

which ensures that the above merge correctly implements intersection and comparison. First, if a

node with number n still maps to bot, the worklist must contain one of its predecessors that has a

greater number.

25

entry

{e,5}

{a,4}

{b,3}

{d,2}{c,1}

Nodes sin

5 [] [] [] [] [] [] [] [] []
4 · [5] [5] [5] [5] [5] [5] [5] [5]
3 · · [45] [45] [45] [5] [5] [5] [5]
2 · · · [345] [345] [345] [35] [35] [35]
1 · [5] [5] [5] [5] [5] [5] [5] [5]

swrk [54321] [4321] [321] [21] [1] [3] [21] [1] []

Figure 3.8: The dominator trees (left) and the execution of CHK (right).

forall n, in_cfg n succs -> (st.(sin))!!n = None ->

exists p, In p ((make_preds succs)!!!n) /\ p > n /\ PN.In p st.(st_wrk).

(* in_cfg checks if a node is in CFG. *)

This invariant holds in the beginning because all nodes are in the worklist. At each iteration, the

invariant implies that the picked node n with the maximal number in st.(st_wrk) is not bot.

Suppose it is bot, there cannot be any node with greater number in the worklist. This property

ensures that after each iteration, the successors of n cannot be bot, and that the new nodes added

into the worklist cannot be bot, because they must be those successors. Therefore, the predecessors

of the remaining bot nodes still in the worklist cannot be n. Since only n is removed, the rest of the

bot nodes still hold the above invariant.

In the algorithm, a node’s value is changed from bot to non-bot when one of its non-bot

predecessors is processed. With the above invariant, we know that the predecessor must be of larger

number. Once a node turns to be non-bot, no new elements will be added in its set. Therefore,

this implies that, at each iteration, if the value of a node is not bot, then all its candidate strict

dominators must be larger than the node:

forall n sdms, (st.(sin))!!n = Some sdms -> Forall (Plt n) sdms.

(* Plt is the less-than of positive. *)

Moreover, a node n is considered as a candidate of strict dominators originally by tranf that

always cons n at the head of (st.(sin))!!n. Therefore, we proved that the non-bot value of a

node is always sorted:

forall n sdms, (st.(sin))!!n = Some sdms -> Sorted Plt (n::sdms).

26

Inductive DTree : Set :=

| DT_node : l -> DTrees -> DTree

with DTrees : Set :=

| DT_nil : DTrees

| DT_cons : l -> DTrees -> DTrees.

Variable (f: function) (entry:l).

Inductive wf_dtree : DTree -> Prop :=

| Wf_DT_node : forall l0 dts (Hrd: f |= entry ->* l0)

(Hnotin: ~ l0 ‘in‘ (dtrees_dom dts)) (Hdisj: disjoint_dtrees dts)

(Hidom: forall_children idom l0 dts) (Hwfdts: wf_dtrees dts),

wf_dtree (DT_node l0 dts)

(* (dtrees_dom dts) returns all labels in dts. *)

(* (disjoint_dtrees dts) ensures that labels of dts are disjointed. *)

(* (forall_children idom l0 dts)) checks that l0 immediate-dominates all *)

(* roots of dts. *)

with wf_dtrees : DTrees -> Prop :=

| Wf_DT_nil : wf_dtrees DT_nil

| Wf_DT_cons : forall dt dts (Hwfdt: wf_dtree dt) (Hwfdts: wf_dtrees dts),

wf_dtrees (DT_cons dt dts).

Figure 3.9: The definition and well-formedness of dominator trees.

3.4 Constructing Dominator Trees

In practice, compilers construct dominator trees from dominators, and analyze or optimize

programs by recursion on dominator trees.

Definition 3.

• A block l1 is an immediate dominator of a block l2, written G |= l1≫ l2, if G |= l1� l2 and

(∀G |= l3� l2,G |= l3�= l1).

• A tree is called a dominator tree of G if the tree has an edge from l to l′ iff G |= l≫ l′.

Figure 3.8 shows the dominator tree of the CFG in Figure 3.3. In Figure 3.8, solid edges

represent tree edges, and dotted edges represent non-tree but CFG edges.

Formally, we define dominator trees in Figure 3.9 that has the inductive well-formed

(wf_dtree) property with which we can reason about recursion on dominator trees: given a tree

node l, 1) l is reachable; 2) l is different from all labels in l’s descendants; 3) labels of l’s subtrees

are disjointed; 4) l immediate-dominates its children; 5) l’s subtrees are well-formed.

27

Consider the final analysis results of CHK in Figure 3.8, we can see that for each node, its list

of strict dominators exactly presents a path from root to the node on the dominator tree. Therefore,

we can construct a dominator tree by merging the paths. We proved that the algorithm correctly

constructs a well-formed dominator tree (See our code). For the sake of space, we only present

that each tree edge represents ≫ by showing that for any node l in the final state, the list of l’s

dominators must be sorted by≫.

We first show that the list is sorted by �. Consider two adjacent nodes in the list, l1 and

l2, such that l1 < l2. Because of soundness, G |= l1 �= l and G |= l2 �= l. By Lemma 5,

G |= l2 � l1 ∨G |= l1 � l2. Suppose G |= l1 � l2, by completeness, l1 must be in the strict

dominators computed for l2, and therefore, be greater than l2. This is a contradiction. Then, we

prove that the list is sorted by≫. Suppose G |= l3� l1. By Lemma 1 and Lemma 2, G |= l3� l.

By completeness, l3 must be in the list. We have two cases:

1. l3 ≥ l2: Because the list is sorted by�, G |= l3�= l2.

2. l3 ≤ l1: Similarly, G |= l1�= l3. This is a contradiction by Lemma 4.

3.5 Dominance Frontier

Another application of computing dominators is the calculation of dominance frontiers that has

applications to SSA construction algorithms, computing control dependence, and etc.

Cytron et al. define the dominance frontier of a node, b, as:

... the set of all CFG nodes, y, such that b dominates a predecessor of y but does not
strictly dominate y [28].

They propose finding the dominance frontier set for each node in a two step manner. They begin

by walking over the dominator tree in a bottom-up traversal. At each node, b, they add to b’s

dominance-frontier set any CFG successors not dominated by b. They then traverse the dominance-

frontier sets of b’s dominator-tree children each member of these frontiers that is not dominated by

b is copied into b’s dominance frontier.

We follow an algorithm designed by Cooper, Harvey and Kennedy [24] that approaches the

problem from the opposite direction, and tends to run faster than Cytron et al.’s algorithm in prac-

tice. The algorithm is based on three observations. First, nodes in a dominance frontier represent

28

0%

50%

100%

150%

200%

250%

O
ve

rh
ea

d
ov

er
 L

L
V

M

CHK-tree

CHK

AC-tree

AC

go
compress ijpeg gzip vpr

mesa art
ammp

equake
256.bzip2

parser
twolf

401.bzip2 gcc mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Figure 3.10: Analysis overhead over LLVM’s dominance analysis for our extracted analysis.

join points in the graph, nodes into which control flows from multiple predecessors. Second, the

predecessors of any join point, j, must have j in their respective dominance-frontier sets, unless

the predecessor dominates j. This is a direct result of the definition of dominance frontiers, above.

Finally, the dominators of j’s predecessors must themselves have j in their dominance-frontier sets

unless they also dominate j.

These observations lead to a simple algorithm. First, we identify each join point, j—any node

with more than one incoming edge is a join point. We then examine each predecessor, p, of j

and walk up the dominator tree starting at p. We stop the walk when we reach j’s immediate

dominator— j is in the dominance frontier of each of the nodes in the walk, except for j’s immediate

dominator. Intuitively, all of the rest of j’s dominators are shared by j’s predecessors as well. Since

they dominate j, they will not have j in their dominance frontiers.

As shown previously [24], this approach tends to run faster than Cytron et al..’s algorithm in

practice, almost certainly for two reasons. First, the iterative algorithm has already built the domina-

tor tree. Second, the algorithm uses no more comparisons than are strictly necessary. Section 8.5.3

will revisit the implementation of the algorithm.

3.6 Performance Evaluation

As we discussed, computing dominators is crucial in SSA-based compilers. Therefore, we use the

Coq extraction to obtain a certified implementation of AC and CHK and evaluate the performance

29

Instance Analysis Times (s)
Name Vertices Edges LT CHK CHK-tree AC AC-tree
idfsquad 6002 10000 0.08 10.54 24.87
ibfsquad 4001 6001 0.14 11.38 13.16 12.43 30.00
itworst 2553 5095 0.14 8.47 11.22 19.16 69.72
sncaworst 3998 3096 0.19 17.03 32.08 205.07 740.53

Table 3.1: Worst-case behavior.

of the resultant code on a 1.73 GHz Intel Core i7 processor with 8 GB memory running benchmarks

selected from the SPEC CPU benchmark suite that consist of over 873k lines of C source code.

Figure 3.10 reports the analysis time overhead (smaller is better) over the C++ version of LLVM

dominance analysis (which uses LT) baseline. LT only generates dominator trees. Given a domina-

tor tree, the strict dominators of a tree node are all the node’s ancestors. The second left bar of each

group shows the overhead of CHK, which provides an average overhead of 27%. The right-most

bar of each group is the overhead of AC, which provides 36% on average.

To study the asymptotic complexity, Table 3.1 shows the result of graphs that elicit the worst-

case behavior used previously [31]. On average, CHK is 86 times slower than LT. The ‘ ’ indicates

that the running time is too long to collect. For the testcases on which AC stops, AC is 226 times

slower than LT.

The results of CHK match earlier experiments [24, 31]: in common cases, CHK runs nearly

as fast as LT. For programs with reducible CFGs, a forward iteration analysis in reverse PO will

halt in no more than size passes [33], and most CFGs of the common benchmarks are reducible.

The worst-case tests contain huge irreducible CFGs. Different from these experiments, AC does

not provide large overhead, because we use None to represent bot, which provides shortcuts for set

operations.

As shown in Section 3.4, CHK computes dominator trees implicitly, while AC needs additional

costs to create dominator trees. Figure 3.10 and Table 3.1 also report the performance of the

dominator tree construction. CHK-tree stands for the algorithm that first computes dominators

by CHK and then runs the tree construction defined in Section 3.4. AC-tree stands for the algorithm

that first computes dominators by AC, sorts strict dominators for each node, and then runs the same

tree construction. For common programs, on average, CHK-tree provides an overhead 40% over

the baseline; AC-tree provides an overhead 78% over the baseline. Note that in Figure 3.10 the

30

testcase gcc’s overhead for AC-tree is 361%. The additional overhead of AC-tree is from its sorting

algorithm. For worst-case programs, on average, CHK-tree is 104 times slower than LT. For the

testcases on which AC-tree stops, on average, AC-tree is 738 times slower than LT.

These results match the previous evaluation [24] and indicate that CHK makes a good trade-off

between simplicity and efficiency.

31

Chapter 4

The Semantics of Vminus

Given the formalism in Chapter 3, this chapter presents the semantics of Vminus. Chapter 6 extends

the semantics for the full Vellvm.

4.1 Dynamic Semantics

The operational semantics rules in Figure 4.1 are parameterized by the top-level function f , and

relate evaluation frames σ before and after an evaluation step. An evaluation frame keeps track of

the integer values v bound to local temporaries r in δ and current program counter. We also use

σ.pc and σ.δ to denote the program counter and locals of σ respectively. Because Vminus has no

function calls, the rules ignore program traces. This simplification does not affect the essence of the

proof techniques. Section 6.4 shows the full Vellvm semantics with traces.

Instruction positions are denoted by program counters pc: l.i indicates the i-th command in

the block l; l. t indicates the terminator of the block l. We write f [pc] = binsnc if some insn is at

the program counter pc of function f . We also use l.(i+ 1) to denote the next program counter

of l.i. When l.i is the last command of block l, l.(i+ 1) = l. t. To simplify presentation of the

operational semantics, we use l,c, tmn to “unpack” the instructions at a program counter in function

f . Here, l is the current block, c and tmn are the instructions of l that are not executed yet. “block

& offset” specification is equivalent to the “continuation commands” representation. To streamline

some presentations, we also use temporaries or ghost identifiers to represent program counters.

32

Values v : : = Int Locals δ : : = r 7→ v
Frames σ : : = (pc,δ) Prog Counters pc : : = l.i | l. t

JvalKδ = bvc l3 = (v?l1 : l2)
f [l3] = b(l3 φ3 c3 tmn3)c Jφ3Kl

δ
= bδ′c

f ` (l, /0,brval l1 l2,δ)−→ (l3,c3, tmn3,δ′)
E BR

Jval1Kδ = bv1c Jval2Kδ = bv2c
c = r := val1 bopval2 eval(bop,v1,v2) = v3

f ` (l,(c,c), tmn,δ)−→ (l,c, tmn,δ{v3/r})
E BOP

Figure 4.1: Operational Semantics of Vminus (excerpt)

Most of the Vminus commands have straight-forward interpretation. The arithmetic and logic

instructions are all unsurprising (as shown in rule E BOP)—the JvalKδ function computes a value

from the local state δ and val, looking up the meanings of variables in the local state as needed; eval

implements arithmetic and logic operations. We use JrhsKδ to denote evaluating the right-hand-side

rhs in the state δ.

There is one wrinkle in specifying the operational semantics when compared to a standard

environment-passing call-by-value language. All of the φ instructions for a block must be executed

atomically and with respect to the “old” local value mapping due to the possibility of self loops and

dependencies among the φ nodes. For example the well-formed code fragment below has a circular

dependency between r1 and r2.

l0 : · · ·

l1 : r1 = phi int[r2, l1][0, l0]

r2 = phi int[r1, l1][1, l0]

r3 := r1 = r2

brr3 l1 l2

l2 : · · ·

Although front-ends usually do not generate codes with the circular dependency, optimizations,

such as copy propagation, may produce the above code [16]. In the code fragment, if control enters

this block from l0, r1 will map to 0 and r2 to 1, which causes the conditional branch to fail, jumping

back to the label l1. The new values of r1 and r2 should be 1 and 0, and not 1 and 1 as might

be computed if they were handled sequentially. This atomic update of the local state, similar to

“parallel assignment”, is handled by the Jφ3Kl
δ

function as shown in rule E BR.

33

4.2 Dominance Analysis

Dominance analysis plays an important role in the type system. To check that a program is in SSA

form, we need to extend domination relations from the block-level (Chapter 3) to the instruction-

level. Instruction positions are denoted by program counters pc. We write f [pc] = binsnc if insn is

at pc of f .

Definition 4 (Instruction-level domination).

• val usesr , val = r.

• insnusesr , ∃val.val usesr∧ val is an operand of insn.

• A variable r is defined at a program counter pc of function f , written f definesr @ pc if and

only if f [pc] = binsnc and r is the left-hand side of insn.

• In function f , pc1 strictly dominates pc2, written f |= pc1� pc2, if pc1 and pc2 are at distinct

blocks l1 and l2 respectively and f |= l1� l2; if pc1 and pc2 are in the same block, and pc1

appears earlier than pc2.

• sdom f (pc) is the set of variables strictly dominating pc:

sdom f (pc) = {r | f definesr @ pc′ and f |= pc′� pc}

We prove the following lemmas about the instruction-level domination relations, which are

needed to establish the SSA-based program properties in the following sections.

Lemma 6 (Domination is transitive). If f ` pc1� pc2 and f ` pc2� pc3, then f ` pc1� pc3.

Lemma 7 (Strict domination is acyclic). If f ; pc (pc is reachable), then ¬ f ` pc� pc.

By Lemma 6, sdom f (pc) has the following properties:

Lemma 8 (sdom step).

1. If l.i and l.(i+1) are valid program counters of f , then sdom f (l.(i+1)) = sdom f (l.i)∪{r}

where f definesr @ l.i.

34

2. If l. t and l′.0 are valid program counters of f , and l′ is a successor of l, then sdom f (l′.0)−

defs(φ)⊆ sdom f (l. t) where φ are from the block l′ and defs(φ) denotes all variables defined

by φ.

4.3 Static Semantics

Vminus requires a program satisfy certain invariants to be considered well formed: every variable

in the top-level function must dominate all its uses and be assigned exactly once statically. At

a minimum, any reasonable Vminus transformation must preserve these invariants; together they

imply that the program is in SSA form [28].

Figure 4.2 shows the judgments to check the SSA invariants with respect to the control-flow

graph and program points of the function f .

Rule WF F ensures that variables defs(f) defined in the top function must be unique, which

enforces the single-assignment part of the SSA property; additionally all block labels labels(f)

in the function must also be unique for a well-formed control-flow graph; the entry block has no

predecessors (wf entry f).

Rule WF B checks that all instructions in reachable blocks (written f ; l) satisfy the SSA

domination invariant. Because unreachable blocks have no effects at runtime, the rule does not

check them. Rule NONPHI ensures that a ψ at pc must be strictly dominated by the definitions of

all variables used by ψ; the rule PHI ensures that the number of incoming values is not zero, that

all incoming labels are unique, and that the current block’s predecessors is the same as the set of

incoming gables. If an incoming value valj from a predecessor block lj uses a variable rj at pcj, then

pcj must strictly dominate the terminator of lj. Importantly, this rule allows “cyclic” uses of SSA

variables of the kind used in the example above (Section 4.1).

Given the semantics in this chapter, the next chapter presents the proof techniques for reasoning

about SSA-based program properties and transformations of Vminus.

35

f �̀ ψ @ pc

∀r.(ψusesr =⇒ r ∈ sdom f (pc))
f �̀ ψ @ pc

NONPHI

f , l �̀ φ

uniq(lj
j
) lj

j
= preds(f , l)

∀rj.(valj usesrj =⇒ rj ∈ sdom f (lj. t))
j

len([valj, lj]
j
)> 0 f ` valj : typ

j

f , l �̀ r = phi typ [valj, lj]
j PHI

f ` ψ

f ` val1 : int f ` val2 : int
f ` r := val1 bopval2

WF BOP

f ` val : int f [l1] = bb1c f [l2] = bb2c
f ` brval l1 l2

WF BR

f ` val : typ
f ` ret typval

WF RET

f ` ψ @ pc

f �̀ ψ @ pc f ` ψ

f ` ψ @ pc
WF NONPHI

f ` b

f ; l =⇒ (f , l �̀ φj
j∧ f ` ci @ l.i

i∧ f ` tmn @ (l. t))

f ` lφj
j ci

i tmn
WF B

` f

uniq(defs(f)) uniq(labels(f)) f = fun{bj
j} f ` bj

j wf entry f
` f

WF F

Figure 4.2: Static Semantics of Vminus (excerpt)

36

Chapter 5

Proof Techniques for SSA

This section describes the proof techniques we have developed for formalizing properties of SSA-

style intermediate representations. To most clearly articulate the approach, we present the results

using Vminus (see Chapter 4).

The key idea of the technique is to generalize the invariant used for Vminus’s preservation

lemma for proving safety to other predicates that are also shown to be invariants of the operational

semantics. Crucially, these predicates all share the same form, which only constrains variable

definitions that strictly dominate the current program counter. Because Vminus is such a stripped-

down language, the relevant lemmas are relatively straightforward to establish; Chapter 8 shows

how to scale the proof technique to the full Vellvm model of LLVM to verify the mem2reg pass.

Instances of this idea are found in the literature (see, for example, Menon, et al. [48]), and

related proof techniques have been recently used in the CompCertSSA [14] project, but as we

explain in Chapter 10, our results are more general: we provide proof techniques applicable to

many SSA-based optimizations and transformations.

The remainder of this section first proves safety (which in this context simply amounts to

showing that all variables are well-scoped). We then show how to generalize the safety invariant to

a form that is useful for proving program transformations correct and demonstrate its applicability

to a number of standard optimizations.

We mechanically verified all the claims in this chapter for Vminus in Coq.1

1Annotated Coq source available at http://www.cis.upenn.edu/~stevez/vellvm/.

37

http://www.cis.upenn.edu/~stevez/vellvm/
http://www.cis.upenn.edu/~stevez/vellvm/

5.1 Safety of Vminus

There are two ways that a Vminus program might get stuck. First, it might try to jump to an

undefined label, but this property is ruled out statically by WF BR. Second, it might try to access

a variable whose value is not defined in δ. We can prove that this second case never happens by

establishing the following safety theorem:

Theorem 9 (Safety). If ` f and f ` (l.0, /0)−→∗ σ, then σ is not stuck. (Here, l is the entry block

of function f and /0 denotes an empty mapping for identifiers.)

The proof takes the standard form using preservation and progress lemmas with the invariant

for frames shown below:

pc ∈ f ∀r.(r ∈ sdom f (pc) =⇒∃v.δ[r] = bvc)
f ` (pc,δ)

WF FR

This is similar to the predicate used in prior work for verifying the type safety of an SSA-based

language [48]. The invariant WF FR shows that a frame (pc,δ) is well-formed if every definition

that strictly dominates pc is defined in δ. The initial program state satisfies this invariant trivially:

Lemma 10 (Initial State). If ` f then f ` (l.0, /0), where l is the entry block of f .

The preservation and progress lemmas are straightforward—but note that they crucially rely on

the interplay between the invariant on δ “projected” onto sdom f (pc) (Lemma 8), and the PHI and

NONPHI rules of the static semantics.

Lemma 11 (Preservation). If ` f , f ` σ and f ` σ−→ σ′, then f ` σ′.

Proof. The proof proceeds by case analysis on the reduction rule. At the E BOP case: Let σ =

(l.i,δ), σ′ = (l.(i+1),δ{v3/r}), and f [l.i] = br := val1 bopval2c. The conclusion holds by Lemma 8.

At the E BR case: Let σ = (l. t,δ), σ′ = (l3.0,δ′), f [l. t] = bbrval l1 l2c, Jφ3Kl
δ
= bδ′c, and φ3 is

from the block l3. Suppose r ∈ sdom f (l3.0). If r ∈ defs(φ3), then r must be defined in δ′ by the

definition of TUl
φ3

. Otherwise, if ¬r ∈ defs(φ3), the conclusion holds by Lemma 8.

Lemma 12 (Progress). If ` f , f ` σ, then σ is not stuck.

38

Proof. Assume that σ = (pc,δ). Since pc ∈ f , then ∃insn. f [pc] = binsnc. The proof proceeds by

case analysis on the insn. At the case when insn = r := val1 bopval2: The rule NONPHI ensures

that the definitions of the variables used by val1 and val2 strictly dominate pc, so are in sdom f (pc).

Therefore, σ is not stuck.

At the case when insn = brval l1 l2: First, the rule NONPHI ensures that the val must use

the variable defined in sdom f (pc). Therefore, JvalKδ = bvc. Suppose l3 = (v?l1 : l2), f [l3] =

b(l3 φ3 c3 tmn3)c, and insn is at block lj. The rule PHI ensures that the definitions of the j-th

incoming variables dominate lj. t, so are in sdom f (pc). Therefore, Jφ3Kl
δ
= bδ′c.

At the case when insn = ret typval: The program terminates.

5.2 Generalizing Safety to Other SSA Invariants

The main feature of the preservation proof, Lemma 11, is that the constraint on sdom f (pc) is an

invariant of the operational semantics. But—and this is a key observation—we can parameterize

rule WF FR by a predicate P, which is an arbitrary proposition about functions and frames:

σ.pc ∈ f P f (σ| f)

f ,P ` σ

GWF FR

Here, σ| f is (σ.pc,(σ.δ)|(sdom f (σ.pc))) and we write (δ|R)[r] = bvc iff r ∈ R and δ[r] = bvc and

observe that dom(δ|R) = R. These restrictions say that we don’t need to consider all variables:

Intuitively, because SSA invariants are based on dominance properties, when reasoning about a

program state we need consider only the variable definitions that strictly dominate the program

counter in a given state.

For proving Theorem 9, we instantiated P to be:

Psafety , λ f .λσ.∀r.r ∈ dom(σ.δ) =⇒∃v.(σ.δ)[r] = bvc

For safety, it is enough to show that each variable in the domination set is well defined at its

use. To prove program transformations correct, we instantiate P with a different predicate, Psem,

that relates the syntactic definition of a variable with the semantic value:

λ f .λσ.∀r. f [r] = brhsc=⇒ (σ.δ)[r] 6= none =⇒ (σ.δ)[r] = JrhsK(σ.δ)

39

This predicate ensures that if a definition r is in scope, the value of r must equal to the value to

which the right-hand-side of its definition evaluates.

Just as we proved preservation for Psafety, we can also prove preservation for Psem (using

Lemma 4):

Theorem 13. If ` f and f ,Psem ` σ and f ` σ−→ σ′, then f ,Psem ` σ′.

Proof (sketch): Suppose a command r := rhs is defined at a program counter pc1. The NONPHI

rule ensures that all variables used by rhs must strictly dominate pc1. Because strict domination

relation is acyclic (Lemma 4), at any program counter pc2 that pc1 strictly dominates, the program

cannot define r and any variable used by rhs. In other words, the values of r and rhs are not changed

between pc1 and pc2. The result follows immediately.

Theorem 13 shows the dynamic property of an SSA variable: the value of r is invariant in any

execution path that its definition strictly dominates. As we show next, Theorem 13 can be used to

justify the correctness of many SSA-based transformations. Instantiating P with other predicates

can also be useful—Section 8.3 shows how.

5.3 The Correctness of SSA-based Transformations

Consider again the example code transformation from Figure 2.2. It, and many other SSA-based

optimizations, can be defined by using a combination of simpler transformations: deleting an unused

definition, substituting a constant expression for a variable, substituting one variable by another,

or moving variable definitions. Each such transformation is subject to the SSA constraints—for

example, we can’t move a definition later than one of its uses—and each transformation preserves

the SSA invariants. By pipelining these basic transformations, we can define more sophisticated

SSA-based program transformations whose correctness is established by the composition of the

proofs for the basic transformations.

In general, an SSA-based transformation from f to f ′ is correct if it preserves both well-

formedness and program behavior.

1. Preserving well-formedness: if ` f , then ` f ′.

2. Program refinement: if ` f , then f ⊇ f ′.

40

Here, behaviors of a Vminus program include whether the program terminates, and the returned

value if it does (see Section 2.1).

Each of the basic transformations mentioned above can be proved correct by using Theorem 13.

Here we present only the correctness of variable substitution (although we proved correct all the

mentioned transformations in our Coq development). Chapter 8 shows how to extend the transfor-

mations to implement memory-aware optimizations in the full Vellvm.

Variable substitution Consider the step of the program transformation from Figure 2.2 in which

the use of r8 on the last line is replaced by r4 (this is valid only after hoisting the definition of

r4 so that it is in scope). This transformation is correct because both r4 and r8 denote the same

value, and the definition of r4 (after hoisting) strictly dominates the definition of r8. In Figure 2.2,

it is enough to do redundant variable elimination—this optimization lets us replace one variable

by another when their definitions are syntactically equal; other optimizations, such as global value

numbering, allow a coarser, more semantic, equality to be used. Proving them correct follows the

same basic pattern as the proof shown below.

Definition 5 (Redundant Variable). In a function f , a variable r2 is redundant with variable r1 if:

1. f definesr1 @ pc1, f definesr2 @ pc2 and f |= pc1� pc2

2. f [pc1] = bc1c, f [pc1] = bc2c and c1 and c2 have syntactically equal right-hand-sides.

We would like to prove that eliminating a redundant variable is correct, and therefore must relate

a program f with f{r1/r2}, in which all uses of r2 have been substituted by r1.

Since substitution does not change the control-flow graph, it preserves the domination relations.

Lemma 14.

1. f |= l1�= l2 ⇐⇒ f{r2/r1} |= l1�= l2

2. f |= pc1� pc2 ⇐⇒ f{r2/r1} |= pc1� pc2

Applying Lemma 2 and Lemma 14, we have:

Lemma 15 (f{r2/r1} preserves well-formedness). Suppose that in f , r1 is redundant with r2. If

` f , then ` f{r2/r1}.

41

Let two program states simulate each other if they have the same local state δ and program

counter. We assume that the original program and its transformation have the same initial state.

Lemma 16. If ` f , r2 is redundant with r1 in f , and (pc,δ) is a reachable state, then

1. If val is an operand of a non-phinode at program counter pc, then ∃v.JvalKδ =

bvc∧ Jval{r1/r2}Kδ = bvc.

2. If pc is li. t, and li is a previous block of a block with φ-nodes φj
j, then ∃δ′.Jφj

jKli
δ
= bδ′c∧

Jφj{r1/r2}
j
Kli

δ
= bδ′c.

Proof (sketch): The proof makes crucial use of Theorem 13. For example, to show part 1 for

a source instruction r := rhs (with transformed instruction r := rhs{r1/r2}) located at program

counter pc, we reason like this: if r2 is an operand used by rhs, then r2 ∈ sdom f (pc) and by

Theorem 13, property Psem, implies that δ[r2] = Jrhs2Kδ for some rhs2 defining r2. Since r1 is used

as an operand in rhs{r1/r2}, similar reasoning shows that δ[r1] = Jrhs1Kδ, but since r2 is redundant

with r1, we have rhs2 = rhs1, and the result follows immediately.

Using Lemma 16, we can easily show the lock-step simulation lemma, which completes the

correctness proof:

Lemma 17. If ` f , r2 is redundant with r1 in f , f{r1/r2} ` σ1 −→ σ2, then f ` σ1 −→ σ2.

This chapter showed the proof techniques for reasoning about SSA-based program properties

and transformations of Vminus. To demonstrate that our proof techniques can be used for practical

compiler optimizations, the following chapters present how to verify program transformations of

the full LLVM IR.

42

Chapter 6

The formalism of the LLVM IR

Vminus provides a convenient minimal setting in which to study SSA-based optimizations, but it

omits many features necessary in a real intermediate representation. To demonstrate that our proof

techniques can be used for practical compiler optimizations, we next show how to apply them to the

LLVM IR.

The Vellvm infrastructure provides a Coq implementation of the full LLVM intermediate lan-

guage and defines (several) operational semantics along with some useful metatheory about the

memory model. Vellvm’s formalization is based on the LLVM release version 3.0, and the syntax

and semantics are intended to model the behavior as described in the LLVM Language Reference 1,

although we also used the LLVM IR reference interpreter and the x86 backend to inform our design.

The chapter describes the syntax and semantics of the LLVM IR, emphasizing those features that

are either unique to the LLVM or have non-trivial implications for the formalization.

6.1 The Syntax

Figure 6.1 and Figure 6.2 show the abstract syntax for the subset of the LLVM IR formalized in

Vellvm. The metavariable id ranges over LLVM identifiers, written %X, %T, %a, %b, etc., which

are used to name local types and temporary variables, and @a, @b, @main, etc., which name global

values and functions.

1See http://llvm.org/releases/3.0/docs/LangRef.html

43

http://llvm.org/releases/3.0/docs/LangRef.html
http://llvm.org/releases/3.0/docs/LangRef.html

Floats fp : : = float | double

Types typ : : = isz | fp | void | typ∗ | [sz × typ] | { typj
j } | typ typ j

j | id | opaque

Bin ops bop : : = add | sub | mul | udiv | sdiv | urem | srem | shl | lshr | ashr
| and | or | xor

Float ops fbop : : = fadd | fsub | fmul | fdiv | frem

Extension eop : : = zext | sext | fpext

Trunc ops trop : : = truncint | truncfp

Cast ops cop : : = fptoui | fptosi | uitofp | sitofp | ptrtoint | inttoptr | bitcast

Conditions cond : : = eq | ne | ugt | uge | ult | ule | sgt | sge | slt | sle

Float conditions fcond : : = oeq | ogt | oge | olt | ole | one | ord | fueq | fugt | fuge | · · ·

Constants cnst : : = isz Int
| fpFloat
| typ∗ id
| (typ∗)null
| typzeroinitializer
| typ[cnstj

j]

| {cnstj
j }

| typundef
| bopcnst1 cnst2
| fbopcnst1 cnst2
| tropcnst to typ
| eopcnst to typ
| copcnst to typ
| getelementptrcnst cst j

j

| selectcnst0 cnst1 cnst2
| icmpcond cnst1 cnst2
| fcmp fcond cnst1 cnst2

| extractvaluecnst cnstj
j

| insertvaluecnst cnst′ cnstj
j

Figure 6.1: Syntax for LLVM (1).

Each source file is a module mod (which is also called a program P) that includes data layout

information layout (which defines sizes and alignments for types; see below), named types, and a

list of prods that can be function declarations, function definitions, and global variables. Figure 6.3

shows a small example of LLVM syntax (its meaning is described in more detail in Section 6.3).

Every LLVM expression has a type, which can easily be determined from type annotations that

provide sufficient information to check an LLVM program for type compatibility. The LLVM IR is

44

Modules mod,P : : = layout namedt prod

Layouts layout : : = bigendian | littleendian | ptrszalign0 align1 | intszalign0 align1
| floatszalign0 align1 | aggrszalign0 align1 | stackszalign0 align1

Products prod : : = id = global typconst align | define typ id(arg){b} | declare typ id(arg)

Values val : : = id | cnst

Blocks b : : = lφctmn

φ nodes φ : : = id = phi typ [valj, lj]
j

Tmns tmn : : = brval l1 l2
| br l
| ret typval
| retvoid
| unreachable

Commands c : : = id = bop(intsz)val1 val2
| id = fbopfpval1 val2
| store typval1 val2 align
| id = load(typ∗)val1 align
| id = malloc typval align
| free(typ∗)val
| id = alloca typval align
| id = trop typ1 val to typ2
| id = eoptyp1 val to typ2
| id = coptyp1 val to typ2
| id = icmpcond typval1 val2
| id = selectval0 typval1 val2
| id = fcmp fcond fpval1 val2
| option id = call typ0 val0 param
| id = getelementptr(typ∗)val val j

j

| id = extractvalue typval cnstj
j

| id = insertvalue typval typ′ val′ cnstj
j

Figure 6.2: Syntax for LLVM (2).

not a type-safe language, however, because its type system allows arbitrary casts, calling functions

with incorrect signatures, accessing invalid memory, etc. The LLVM type system ensures only that

the size of a runtime value in a well-formed program is compatible with the type of the value—a

well-formed program can still be stuck (see Section 6.4.3).

Types typ include arbitrary bit-width integers i8, i16, i32, etc., or, more generally, isz where

sz is a natural number. Types also include float, void, pointers typ∗, arrays [sz × typ] that have

45

%ST = type { i10 , [10 x i8*] }

define %ST* @foo(i8* %ptr) {

entry:

%p = malloc %ST, i32 1

%r = getelementptr %ST* %p, i32 0, i32 0

store i10 648, %r ; decomposes as 136, 2

%s = getelementptr %ST* %p, i32 0, i32 1, i32 0

store i8* %ptr, %s

ret %ST* %p

}

Here, %p is a pointer to a single-element array of structures of type %ST. Pointer %r indexes into the
first component of the first element in the array, and has type i10*, as used by the subsequent store,
which writes the 10-bit value 648. Pointer %s has type i8** and points to the first element of the
nested array in the same structure.

Figure 6.3: An example use of LLVM’s memory operations.

a statically-known size sz. Anonymous structure types { typj
j } contain a list of types. Functions

typ typ j
j have a return type, and a list of argument types. Here, typj

j denotes a list of typ compo-

nents; we use similar notation for other lists throughout the paper. Finally, types can be named by

identifiers id which is useful to define recursive types.

The sizes and alignments for types, and endianness are defined in layout. For example.

intszalign0 align1 dictates that values with type isz are align0-byte aligned when they are within an

aggregate and when used as an argument, and align1-byte aligned when emitted as a global.

Operations in the LLVM IR compute with values val, which are either identifiers id naming

temporaries, or constants cnst computed from statically-known data, using the compile-time analogs

of the commands described below. Constants include base values (i.e., integers or floats of a

given bit width), and zero-values of a given type, as well as structures and arrays built from other

constants.

To account for uninitialized variables and to allow for various program optimizations, the LLVM

IR also supports a type-indexed undef constant. Semantically, undef stands for a set of possible

bit patterns, and LLVM compilers are free to pick convenient values for each occurrence of undef

to enable aggressive optimizations or program transformations. As described in Section 6.4, the

presence of undef makes the LLVM operational semantics inherently nondeterministic.

46

All code in the LLVM IR resides in top-level functions, whose bodies are composed of block

bs. As in classic compiler representations, a basic block consists of a labeled entry point l, a series

of φ nodes, a list of commands, and a terminator instruction. As is usual in SSA representations,

the φ nodes join together values from a list of predecessor blocks of the control-flow graph—each

φ node takes a list of (value, label) pairs that indicates the value chosen when control transfers from

a predecessor block with the associated label. Block terminators (br and ret) branch to another

block or return (possibly with a value) from the current function. Terminators also include the

unreachable marker, indicating that control should never reach that point in the program.

The core of the LLVM instruction set is its commands (c), which include the usual suite of

binary arithmetic operations (bop—e.g., add, lshr, etc.), memory accessors (load, store), heap

operations (malloc and free), stack allocation (alloca), conversion operations among integers, floats

and pointers (eop, trop, and cop), comparison over integers (icmp and select), and calls (call).

Note that a call site is allowed to ignore the return value of a function call. Finally, getelementptr

computes pointer offsets into structured datatypes based on their types; it provides a platform- and

layout-independent way of performing array indexing, struct field access, and pointer arithmetic.

Omitted details This dissertation does not discuss all of the LLVM IR features that the Vellvm

Coq development supports. Most of these features are uninteresting technically but necessary to

support real LLVM code: (1) The LLVM IR provides aggregate data operations (extractvalue and

insertvalue) for projecting and updating the elements of structures and arrays; (2) the LLVM switch

instruction, which is used to compile jump tables, is lowered to the normal branch instructions that

Vellvm supports by a LLVM-supported pre-processing step.

Unsupported features Some features of LLVM are not supported by Vellvm. First, the LLVM

provides intrinsic functions for extending LLVM or to represent functions that have well known

names and semantics and are required to follow certain restrictions—for example, functions from

standard C libraries, handling variable argument functions, etc. Second, the LLVM functions,

global variables, and parameters can be decorated with attributes that denote linkage type, calling

conventions, data representation, etc. which provide more information to compiler transformations

than what the LLVM type system provides. Vellvm does not statically check the well-formedness

of these attributes, although they should be obeyed by any valid program transformation. Third,

47

Vellvm does not support the invoke and unwind instructions, which are used to implement exception

handling, nor does it support variable argument functions. Forth, Vellvm does not support vector

types, which allow for multiple primitive data values to be computed in parallel using a single

instruction.

6.2 The Static Semantics

Following the LLVM IR specification, Vellvm requires that every LLVM program satisfy certain

invariants to be considered well formed: every variable in a function is well-typed, well-scoped,

and assigned exactly once. At a minimum, any reasonable LLVM transformation must preserve

these invariants; together they imply that the program is in SSA form [28].

All the components in the LLVM IR are annotated with types, so the typechecking algorithm is

straightforward and determined only by local information.The only subtlety is that types themselves

must be well formed. All typs except void and function types are considered to be first class,

meaning that values of these types can be passed as arguments to functions. A set of first-class

type definitions is well formed if there are no degenerate cycles in their definitions (i.e., every cycle

through the definitions is broken by a pointer type). This property ensures that the physical sizes of

such typs are positive (non-zero), finite, and known statically.

The LLVM IR has two syntactic scopes—a global scope and a function scope—and does not

have nested local scopes. In the global scope, all named types, global variables and functions have

different names, and are defined mutually. In the scope of a function fid in module mod, all the

global identifiers in mod, the names of arguments, locally defined variables and block labels in the

function fid must be unique, which enforces the single-assignment part of the SSA property.

The set of blocks making up a function constitute a control-flow graph with a well-defined entry

point. All instructions in the function must satisfy the SSA scoping invariant with respect to the

control-flow graph: the instruction defining an identifier must dominate all the instructions that use

it. These well-formedness constraints must hold only of blocks that are reachable from a func-

tion’s entry point—unreachable code may contain ill-typed and ill-scoped instructions. Chapter 5

described the proof techniques we have developed for formalizing the invariant in the context of

Vminus. We applied the idea in the full Vellvm.

48

6.3 A Memory Model for the LLVM IR

6.3.1 Rationale

Vminus does not include memory operations because the LLVM IR does not represent memory in

SSA. However, understanding the semantics of LLVM’s memory operations is crucial for reasoning

about LLVM programs. LLVM developers make many assumptions about the “legal” behaviors of

such LLVM code, and they informally use those assumptions to justify the correctness of program

transformations.

There are many properties expected of a reasonable implementation of the LLVM memory

operations (especially in the absence of errors). For example, we can reasonably assume that

the load instruction does not affect which memory addresses are allocated, or that different calls

to malloc do not inappropriately reuse memory locations. Unfortunately, the LLVM Language

Reference Manual does not enumerate all such properties, which should hold of any “reasonable”

memory implementation.

On the other hand, details about the particular memory management implementation can be

observed in the behavior of LLVM programs (e.g., you can print a pointer after casting it to an

integer). For this reason, and also to address error conditions, the LLVM specification intentionally

leaves some behaviors undefined. Examples include: loading from an unallocated address; loading

with improper alignment; loading from properly allocated but uninitialized memory; and loading

from properly initialized memory but with an incompatible type.

Because of the dependence on a concrete implementation of memory operations, which can be

platform specific, there are many possible memory models for the LLVM. One of the challenges

we encountered in formalizing the LLVM was finding a point in the design space that accurately

reflects the intent of the LLVM documentation while still providing a useful basis for reasoning

about LLVM programs.

In this dissertation we adopt a memory model that is based on the one implemented for Comp-

Cert [42]. This model allows Vellvm to accurately implement the LLVM IR and, in particular,

detect the kind of errors mentioned above while simultaneously justifying many of the “reason-

able” assumptions that LLVM programmers make. The nondeterministic operational semantics

presented in Section 6.4 takes advantage of this precision to account for much of the LLVM’s

under-specification.

49

Although Vellvm’s design is intended to faithfully capture the LLVM specification, it is also

partly motivated by pragmatism: building on CompCert’s existing memory model allowed us to

re-use a significant amount of their Coq infrastructure. A benefit of this choice is that our memory

model is compatible with CompCert’s memory model (i.e., our memory model implements the

CompCert Memory signature).

This Vellvm memory model inherits some features from the CompCert implementation: it is

single threaded (in this paper we consider only single-threaded programs); it assumes that pointers

are 32-bits wide, and 4-byte aligned; and it assumes that the memory is infinite. Unlike CompCert,

Vellvm’s model must also deal with arbitrary bit-width integers, padding, and alignment constraints

that are given by layout annotations in the LLVM program, as described next.

6.3.2 LLVM memory commands

The LLVM supports several commands for working with heap-allocated data structures:

• malloc and alloca allocate array-structured regions of memory. They take a type parameter,

which determines layout and padding of the elements of the region, and an integral size that

specifies the number of elements; they return a pointer to the newly allocated region.

• free deallocates the memory region associated with a given pointer (which should have been

created by malloc). Memory allocated by alloca is implicitly freed upon return from the

function in which alloca was invoked.

• load and store respectively read and write LLVM values to memory. They take type param-

eters that govern the expected layout of the data being read/written.

• getelementptr indexes into a structured data type by computing an offset pointer from an-

other given pointer based on its type and a list of indices that describe a path into the datatype.

Figure 6.3 gives a small example program that uses these operations. Importantly, the type an-

notations on these operations can be any first-class type, which includes arbitrary bit-width integers,

floating point values, pointers, and aggregated types—arrays and structures. The LLVM IR seman-

tics treats memory as though it is dynamically typed: the sizes, layout, and alignment, of a value

50

Blk ... Blk 39Blk 11

mb(10,2)

muninit

mptr(b39,24,0)

mptr(b39,24,1)

mptr(b39,24,2)

mptr(b39,24,3)

muninit

mb(10,136)
i10

muninit

mptr(b11,32,0)

mptr(b11,32,1)

mptr(b11,32,2)

mptr(b11,32,3)

muninit

i32

i16*

muninit

muninit
{i10, i8*}

32

33

34

35

36

37

38

39

offset

20

21

22

23

24

25

26

27

offset

...

...

...

...

...

Blk 40

Allocated

Blk 5Blk ...

valid valid validinvalid invalidvalid

Next block

i8*

[10 x i8*]

This figure shows (part of) a memory state. Blocks less than 40 were allocated; the next fresh block
to allocate is 40. Block 5 is deallocated, and thus marked invalid to access; fresh blocks (≥ 40)
are also invalid. Invalid memory blocks are gray, and valid memory blocks that are accessible are
white. Block 11 contains data with structure type {i10, [10 x i8*]} but it might be read (due
to physical subtyping) at the type {i10, i8*}. This type is flattened into two byte-sized memory
cells for the i10 field, two uninitialized padding cells to adjust alignment, and four pointer memory
cells for the first element of the array of 32-bit i8* pointers. Here, that pointer points to the 24th

memory cell of block 39. Block 39 contains an uninitialized i32 integer represented by four muninit
cells followed by a pointer that points to the 32nd memory cell of block 11.

Figure 6.4: Vellvm’s byte-oriented memory model.

read via a load instruction must be consistent with that of the data that was stored at that address,

otherwise the result is undefined.

This approach leads to a memory model structured in two parts: (1) a low-level byte-oriented

representation that stores values of basic (non-aggregated) types along with enough information to

indicate physical size, alignment, and whether or not the data is a pointer, and (2) an encoding that

flattens LLVM-level structured data with first-class types into a sequence of basic values, computing

appropriate padding and alignment from the type. The next two subsections describe these two parts

in turn.

51

6.3.3 The byte-oriented representation

The byte-oriented representation is composed of blocks of memory cells. Each cell is a byte-sized

quantity that describes the smallest chunk of contents that a memory operation can access. Cells

come in several flavors:

Memory cellsmc : : = mb(sz,byte) | mptr(blk,ofs, idx) | muninit

The memory cell mb(sz,byte) represents a byte-sized chunk of numeric data, where the LLVM-

level bit-width of the integer is given by sz and whose contents is byte. For example, an integer with

bit-width 32 is represented by four mb cells, each with size parameter 32. An integer with bit-width

that is not divisible by 8 is encoded by the minimal number of bytes that can store the integer, i.e.,

an integer with bit-width 10 is encoded by two bytes, each with size parameter ten (see Figure 6.4).

Floating point values are encoded similarly.

Memory addresses are represented as a block identifier blk and an offset ofs within that block;

the cell mptr(blk,ofs, idx) is a byte-sized chunk of such a pointer where idx is an index identifying

which byte the chunk corresponds to. Because Vellvm’s implementation assumes 32-bit pointers,

four such cells are needed to encode one LLVM-pointer, as shown in Figure 6.4. Loading a pointer

succeeds only if the 4 bytes loaded are sequentially indexed from 0 to 3.

The last kind of cell is muninit, which represents uninitialized memory, layout padding, and

bogus values that result from undefined computations (such as might arise from an arithmetic

overflow).

Given this definition of memory cells, a memory state M = (N,B,C) includes the following

components: N is the next fresh block to allocate, B maps a valid block identifier to the size of the

block; C maps a block identifier and an offset within the block to a memory cell (if the location is

valid). Initially, N is 1; B and C are empty. Figure 6.4 gives a concrete example of such a memory

state for the program in Figure 6.3.

There are four basic operations over this byte-oriented memory state: alloc, mfree, mload, and

mstore. alloc allocates a fresh memory block N with a given size, increments N, fills the newly

allocated memory cells with muninit. mfree simply removes the deallocated block from B, and its

contents from C. Note that the memory model does not recycle block identifiers deallocated by a

mfree operation, because this model assumes that a memory is of infinite size.

52

The mstore operation is responsible for breaking non-byte sized basic values into chunks and

updating the appropriate memory locations. Basic values are integers (with their bit-widths), floats,

addresses, and padding.

Basic values bv : : = Int sz | Float | blk.ofs | padsz

Basic types btyp : : = isz | fp | typ∗

mload is a partial function that attempts to read a value from a memory location. It is annotated by

a basic type, and ensures compatibility between memory cells at the address it reads from and the

given type. For example, memory cells for an integer with bit-width sz cannot be accessed as an

integer type with a different bit-width; a sequence of bytes can be accessed as floating point values

if they can be decoded as a floating point value; pointers stored in memory can only be accessed

by pointer types. If an access is type incompatible, mload returns padsz, which is an “error”

value representing an arbitrary bit pattern with the bitwidth sz of the type being loaded. mload is

undefined in the case that the memory address is not part of a valid allocation block.

6.3.4 The LLVM flattened values and memory accesses

LLVM’s structured data is flattened to lists of basic values that indicate its physical representation:

Flattened Valuesv : : = bv | bv,v

A constant cnst is flattened into a list of basic values according to it annotated type. If the cnst

is already of basic type, it flattens into the singleton list. Values of array type [sz × typ] are first

flattened element-wise according to the representation given by typ and then padded by uninitialized

values to match typ’s alignment requirements as determined by the module’s layout descriptor. The

resulting list is then concatenated to obtain the appropriate flattened value. The case when a cnst is

a structure type is similar.

The LLVM load instruction works by first flattening its type annotation typ into a list of basic

types, and mapping mload across the list; it then merges the returned basic values into the final

LLVM value. Storing an LLVM value to memory works by first flattening to a list of basic values

and mapping mstore over the result.

This scheme induces a notion of dynamically-checked physical subtyping: it is permitted to read

a structured value at a different type from the one at which it was written, so long as the basic types

53

LLVMND

∈

LLVMInterp ≈ LLVMD & LLVM∗DFn & LLVM∗DB

Figure 6.5: Relations between different operational semantics in Vellvm.

they flatten into agree. For non-structured data types such as integers, Vellvm’s implementation is

conservative—for example, reading an integer with bit width two from the second byte of a 10-bit

wide integer yields undef because the results are, in general, platform specific. Because of this

dynamically-checked, physical subtyping, pointer-to-pointer casts can be treated as the identity.

Similar ideas arise in other formalizations of low-level language semantics [54, 55].

The LLVM malloc and free operations are defined by alloc and mfree in a straightforward

manner. As the LLVM IR does not explicitly distinguish the heap and stack and function calls

are implementation-specific, the memory model defines the same semantics for stack allocation

(alloca) and heap allocation (malloc) — both of them allocate memory blocks in memory. However,

the operational semantics (described next) maintains a list of blocks allocated by alloca for each

function, and it deallocates them on return.

6.4 Operational Semantics

Vellvm provides several related operational semantics for the LLVM IR, as summarized in Fig-

ure 6.5. The most general is LLVMND, a small-step, nondeterministic evaluation relation given by

rules of the form config ` S� S′ (see Figure 6.6). This section first motivates the need for nonde-

terminism in understanding the LLVM semantics and then illustrates LLVMND by explaining some

of its rules. Next, we introduce several equivalent deterministic refinements of LLVMND—LLVMD,

LLVM∗DB, and LLVM∗DFn—each of which has different uses, as described in Section 6.4.4. All of

these operational semantics must handle various error conditions, which manifest as partiality in

the rules. Section 6.4.3 describes these error conditions, and relates them to the static semantics of

Section 6.2.

Vellvm’s operational rules are specified as transitions between machine states S of the form

M,Σ, where M is the memory and Σ is a stack of frames. A frame keeps track of the current

function fid and block label l, as well as the “continuation” sequence of commands c to execute next

54

ending with the block terminator tmn. The map ∆ tracks bindings for the local variables (which

are not stored in M), and the list α keeps track of which memory blocks were created by the alloca

instruction so that they can be marked as invalid when the function call returns.

Value sets V : : = {v |Φ(v)} Locals ∆ : : = id 7→ V

Allocas α : : = [] | blk,α Frames Σ : : = fid, l,c, tmn,∆,α

Call stacks Σ : : = [] | Σ,Σ Program states S : : = M,Σ

6.4.1 Nondeterminism in the LLVM operational semantics

There are several sources of nondeterminism in the LLVM semantics: the undef value, which stands

for an arbitrary (and ephemeral) bit pattern of a given type, various memory errors, such as reading

from an uninitialized location. Unlike the “fatal” errors, which are modeled by stuck states (see

Section 6.4.3), we choose to model these behaviors nondeterministically because they correspond

to choices that would be resolved by running the program with a concrete memory implementation.

Moreover, the LLVM optimization passes use the flexibility granted by this underspecificity to

justify aggressive optimizations.

Nondeterminism shows up in two ways in the LLVMND semantics. First, stack frames bind local

variables to sets of values V; second, the � relation itself may relate one state to many possible

successors. The semantics teases apart these two kinds of nondeterminism because of the way that

the undef value interacts with memory operations, as illustrated by the examples below.

From the LLVM Language Reference Manual: “Undefined values indicate to the compiler that

the program is well defined no matter what value is used, giving the compiler more freedom to

optimize.” Semantically, LLVMND treats undef as the set of all values of a given type. For some

motivating examples, consider the following code fragments:

(a) %z = xor i8 undef undef

(b) %x = add i8 0 undef

%z = xor i8 %x %x

(c) %z = or i8 undef 1

(d) br undef %l1 %l2

55

co
nfi

g
`

S
�

S′

ev
al

N
D
(g
,∆

,v
al
)
=
bV
c

fin
df

de
f(

m
od

,θ
,v
)
=
bd

efi
ne

ty
p

fid
′ (

ar
g)
{(

l′ [
]c
′ tm

n′
),

b}
c

v
∈

V
in

itl
oc

al
s(

g,
∆
,a

rg
,p

ar
am

)
=
b∆
′ c

c 0
=
(o

pt
io

n
id

=
ca

ll
ty

p
va

lp
ar

am
)

m
od

,g
,θ
`

M
,(
(fi

d,
l,
(c

0,
c)
,t

m
n,

∆
,α

),
Σ
)
�

M
,(
(fi

d′
,l
′ ,

c′
,t

m
n′
,∆
′ ,
[]
),
(fi

d,
l,
(c

0,
c)
,t

m
n,

∆
,α

),
Σ
)

N
D

S
C

A
L

L

ev
al

N
D
(g
,∆

,v
al
)
=
bV
c

c 0
=
(o

pt
io

n
id

=
ca

ll
ty

p
va

lp
ar

am
)

fr
ee

al
lo

ca
s(

M
,α
′)
=
bM
′ c

m
od

,g
,θ
`

M
,(
(fi

d′
,l
′ ,
[]
,r

et
ty

p
va

l,
∆
′ ,

α
′)
,(

fid
,l
,(

c 0
,c
),

tm
n,

∆
,α

),
Σ
)
�

M
′ ,
((

fid
,l
,c
,t

m
n,

∆
{i

d
←

V
},

α
),

Σ
)

N
D

S
R

E
T

ev
al

N
D
(g
,∆

,v
al
)
=
bV
c

tr
ue
∈

V
fin

db
lo

ck
(m

od
,fi

d,
l 1
)
=
(l

1φ
1c

1t
m

n 1
)

co
m

pu
te

ph
in

od
es

N
D
(g
,∆

,l
,l

1,
φ

1)
=
b∆
′ c

m
od

,g
,θ
`

M
,(
(fi

d,
l,
[]
,b

rv
al

l 1
l 2
,∆

,α
),

Σ
)
�

M
,(
(fi

d,
l 1
,c

1,
tm

n 1
,∆
′ ,

α
),

Σ
)

N
D

S
B

R
T

R
U

E

ev
al

N
D
(g
,∆

,v
al
)
=
bV
c

v
∈

V
c 0

=
(i

d
=

m
al

lo
ct

yp
va

la
lig

n)
m

al
lo

c(
M
,t

yp
,v
,a

lig
n)

=
bM
′ ,

bl
kc

m
od

,g
,θ
`

M
,(
(fi

d,
l,
(c

0,
c)
,t

m
n,

∆
,α

),
Σ
)
�

M
′ ,
((

fid
,l
,c
,t

m
n,

∆
{i

d
←
{b

lk
.0
}}

,α
),

Σ
)

N
D

S
M

A
L

L
O

C

ev
al

N
D
(g
,∆

,v
al
)
=
bV
c

v
∈

V
c 0

=
(i

d
=

al
lo

ca
ty

p
va

la
lig

n)
m

al
lo

c(
M
,t

yp
,v
,a

lig
n)

=
bM

,b
lk
c

m
od

,g
,θ
`

M
,(
(fi

d,
l,
(c

0,
c)
,t

m
n,

∆
,α

),
Σ
)
�

M
′ ,
((

fid
,l
,c
,t

m
n,

∆
{i

d
←
{b

lk
.0
}}
,(

bl
k,

α
))
,Σ
)

N
D

S
A

L
L

O
C

A

ev
al

N
D
(g
,∆
,v

al
1)

=
bV

1c
ev

al
N

D
(g
,∆

,v
al

2)
=
bV

2c
ev

al
bo

p N
D
(b

op
,s

z,
V

1,
V

2)
=

V
3

m
od

,g
,θ
`

M
,(
(fi

d,
l,
(i

d
=

bo
p(

in
ts

z)
va

l 1
va

l 2
,c
),

tm
n,

∆
,α

),
Σ
)
�

M
,(
(fi

d,
l,

c,
tm

n,
∆
{i

d
←

V
3}
,α

),
Σ
)

N
D

S
B

O
P

Fi
gu

re
6.

6:
L

LV
M

N
D

:S
m

al
l-

st
ep

,n
on

de
te

rm
in

is
tic

se
m

an
tic

s
of

th
e

L
LV

M
IR

(s
el

ec
te

d
ru

le
s)

.

56

The value computed for %z in example (a) is the set of all 8-bit integers: because each occurrence

of undef could take on any bit pattern, the set of possible results obtained by xoring them still

includes all 8-bit integers. Perhaps surprisingly, example (b) computes the same set of values for %z:

one might reason that no matter which value is chosen for undef, the result of xoring %x with itself

would always be 0, and therefore %z should always be 0. However, while that answer is compatible

with the LLVM language reference (and hence allowed by the nondeterministic semantics), it is

also safe to replace code fragment (b) with %z = undef. The reason is that the LLVM IR adopts

a liberal substitution principle: because %x = undef would be a legitimate replacement for first

assignment in (b), it is allowed to substitute undef for %x throughout, which reduces the assignment

to %z to the same code as in (a).

Example (c) shows why the semantics needs arbitrary sets of values. Here, %z evaluates to the

set of odd 8-bit integers, which is the result of oring 1 with each element of the set {0, . . . ,255}.

This code snippet could therefore not safely be replaced by %z = undef; however it could be

optimized to %z = 1 (or any other odd 8-bit integer).

Example (d) illustrates the interaction between the set-semantics for local values and the nonde-

terminism of the� relation. The control state of the machine holds definite information, so when a

branch occurs, there may be multiple successor states. Similarly, we choose to model memory cells

as holding definite values, so when writing a set to memory, there is one successor state for each

possible value that could be written. As an example of that interaction, consider the following ex-

ample program, which was posted to the LLVMdev mailing list [5], that reads from an uninitialized

memory location:

%buf = alloca i32

%val = load i32* %buf

store i32 10, i32* %buf

ret %val

The LLVM mem2reg pass optimizes this program to program (a) below; though according to

the LLVM semantics, it would also be admissible to replace this program with option (b) (perhaps

to expose yet more optimizations):

(a) ret i32 10 (b) ret i32 undef

57

6.4.2 Nondeterministic operational semantics of the SSA form

The LLVMND semantics we have developed for Vellvm (and the others described below) is param-

eterized by a configuration, which is a triple of a module containing the code, a (partial) map g

that gives the values of global constants, and a function pointer table θ that is a (partial) map from

values to function identifiers. The globals and function pointer maps are initialized from the module

definition when the machine is started.

Fun tables θ : : = v 7→ id Globals g : : = id 7→ v Configurations config : : = mod,g,θ

The LLVMND rules relate machine states to machine states, where a machine state takes the form

of a memory M (from Section 6.3) and a stack of evaluation frames. The frames keep track of the

(sets of) values bound to locally-allocated temporaries and which instructions are currently being

evaluated. Figure 6.6 shows a selection of evaluation rules from the development.

Most of the commands of the LLVM have straight-forward interpretation: the arithmetic, logic,

and data manipulation instructions are all unsurprising—the evalND function computes a set of flat-

tened values from the global state, the local state, and an LLVM val, looking up the meanings of

variables in the local state as needed; similarly, evalbopND implements binary operations, com-

puting the result set by combining all possible pairs drawn from its input sets. LLVMND’s malloc

behaves as described in Section 6.3, while load uses the memory model’s ability to detect ill-typed

and uninitialized reads and, in the case of such errors, yields undef as the result. Function calls push

a new stack frame whose initial local bindings are computed from the function parameters. The α

component of the stack frame keeps track of which blocks of memory are created by the alloca in-

struction (see rule NDS ALLOCA); these are freed when the function returns (rule NDS RET). As

discussed in Section 4.1, the computephinodesND function in the operational semantics, as shown,

for example, in rule NDS BR TRUE implements “parallel assignment”.

6.4.3 Partiality, preservation, and progress

Throughout the rules the “lift” notation f (x) = bvc indicates that a partial function f is defined on

x with value v. As seen by the frequent uses of lifting, both the nondeterministic and deterministic

semantics are partial—the program may get stuck.

58

Some of this partiality is related to well-formedness of the SSA program. For example,

evalND(g,∆,%x) is undefined if %x is not bound in ∆. These kinds of errors are ruled out by the

static well-formedness constraints imposed by the LLVM IR (Section 6.2).

In other cases, we have chosen to use partiality in the operational semantics to model certain

failure modes for which the LLVM specification says that the behavior of the program is undefined.

These include: (1) attempting to free memory via a pointer not returned from malloc or that has

already been deallocated, (2) allocating a negative amount of memory, (3) calling load or store on

a pointer with bad alignment or a deallocated address, (4) trying to call a non-function pointer, or

(5) trying to execute the unreachable command. We model these events by stuck states because

they correspond to fatal errors that will occur in any reasonable realization of the LLVM IR by

translation to a target platform. Each of these errors is precisely characterized by a predicate over

the machine state (e.g., BadFree(config,S)), and the “allowed” stuck states are defined to be the

disjunction of these predicates:

Stuck(config,S) = BadFree(config,S)

∨ BadLoad(config,S)

∨ . . .

∨ Unreachable(config,S)

To see that the well-formedness properties of the static semantics rule out all but these known

error configurations, we prove the usual preservation and progress theorems for the LLVMND se-

mantics.

Theorem 18 (Preservation for LLVMND). If (config, S) is well formed and config ` S� S′, then

(config, S′) is well formed.

Here, well-formedness includes the static scoping, typing properties, and SSA invariants from

Section 6.2 for the LLVM code, but also requires that the local mappings ∆ present in all frames of

the call stack must be inhabited—each binding contains at least one value v—and that each defined

variable that dominates the current continuation is in ∆’s domain.

That defined variables dominate their uses in the current continuation follows Lemma 11 with

considering the context of the full LLVM IR. To show that the ∆ bindings are inhabited after the step,

we prove that (1) non-undef values V are singletons; (2) undefined values from constants typundef

59

contain all possible values of first class types typ; (3) undefined values from loading uninitialized

memory or incompatible physical data contain at least paddings indicating errors; (4) evaluation of

non-deterministic values by evalbopND returns non-empty sets of values given non-empty inputs.

Theorem 19 (Progress for LLVMND). If the pair (config, S) is well formed, then either S has

terminated successfully or Stuck(config,S) or there exists S’ such that config ` S� S′.

This theorem holds because in a well-formed machine state, evalND always returns a non-empty

value set V; moreover jump targets and internal functions are always present.

6.4.4 Deterministic refinements

Although the LLVMND semantics is useful for reasoning about the validity of LLVM program

transformations, Vellvm provides a LLVMD, a deterministic, small-step refinement, along with two

large-step operational semantics LLVM∗DFn and LLVM∗DB.

These different deterministic semantics are useful for several reasons: (1) they provide the basis

for testing LLVM programs with a concrete implementation of memory (see the discussion about

Vellvm’s extracted interpreter in the next Section), (2) proving that LLVMD is an instance of the

LLVMND and relating the small-step rules to the large-step ones provides validation of all of the

semantics (i.e., we found bugs in Vellvm by formalizing multiple semantics and trying to prove

that they are related), and (3) the small- and large-step semantics have different applications when

reasoning about LLVM program transformations.

Unlike LLVMND, the frames for these semantics map identifiers to single values, not sets,

and the operational rules call deterministic variants of the nondeterministic counterparts (e.g., eval

instead of evalND). To resolve the nondeterminism from undef and faulty memory operations, these

semantics fix a concrete interpretation as follows:

• undef is treated as a zeroinitializer

• Reading uninitialized memory returns zeroinitializer

These choices yield unrealistic behaviors compared to what one might expect from running

a LLVM program against a C-style runtime system, but the cases where this semantics differs

correspond to unsafe programs. There are still many programs, namely those compiled to LLVM

60

from type-safe languages, whose behaviors under this semantics should agree with their realizations

on target platforms. Despite these differences from LLVMND, LLVMD also has the preservation and

progress properties.

Big-step semantics Vellvm also provides big-step operational semantics LLVM∗DFn, which evalu-

ates a function call as one large step, and LLVM∗DB, which evaluates each sub-block—i.e., the code

between two function calls—as one large step. Big-step semantics are useful because compiler

optimizations often transform multiple instructions or blocks within a function in one pass. Such

transformations do not preserve the small-step semantics, making it hard to create simulations that

establish correctness properties.

As a simple application of the large-step semantics, consider trying to prove the correctness of a

transformation that re-orders program statements that do not depend on one another. For example,

the following two programs result in the same states if we consider their execution as one big-step,

although their intermediate states do not match in terms of the small-step semantics.

(a) %x = add i32 %a, %b (b) %y = load i32* %p

%y = load i32* %p %x = add i32 %a, %b

The proof of this claim in Vellvm uses the LLVM∗DB rules to hide the details about the intermedi-

ate states. To handle memory effects, we use a simulation relation that uses symbolic evaluation [52]

to define the equivalence of two memory states. The memory contents are defined abstractly in terms

of the program operations by recording the sequence of writes. Using this technique, we defined

a simple translation validator to check whether the semantics of two programs are equivalent with

respect to such re-orderings execution. For each pair of functions, the validator ensures that their

control-flow graphs match, and that all corresponding sub-blocks are equivalent in terms of their

symbolic evaluation. This approach is similar to the translation validation used in prior work for

verifying instruction scheduling optimizations [68].

Although this is a simple application of Vellvm’s large-step semantics, proving correctness of

other program transformations such as dead expression elimination and constant propagation follow

a similar pattern—the difference is that, rather than checking that two memories are syntactically

equivalent according to the symbolic evaluation, we must check them with respect to a more se-

mantic notion of equivalence [52].

61

Relationships among the semantics Figure 6.5 illustrates how these various operational seman-

tics relate to one another. Vellvm provides proofs that LLVM∗DB simulates LLVM∗DFn and that

LLVM∗DFn simulates LLVMD. In these proofs, simulation is taken to mean that the machine states

are syntactically identical at corresponding points during evaluation. For example, the state at a

function call of a program running on the LLVM∗DFn semantics matches the corresponding state at

the function call reached in LLVMD. Note that in the deterministic setting, one-direction simulation

implies bisimulation [42]. Moreover, LLVMD is a refinement instance of the nondeterministic

LLVMND semantics.

These relations are useful because the large-step semantics induce different proof styles than the

small-step semantics: in particular, the induction principles obtained from the large step semantics

allow one to gloss over insignificant details of the small step semantics.

Omitted details The operational semantics supports external function calls by assuming that their

behavior is specified by axioms; the implementation applies these axioms to transition program

states upon calling external functions.

6.5 Extracting an Interpreter

To test Vellvm’s operational semantics for the LLVM IR, we used Coq’s code extraction facilities

to obtain an interpreter for executing the LLVM distribution’s regression test suite. Extracting such

an interpreter is one of the main motivations for developing a deterministic semantics, because the

evaluation under the nondeterministic semantics cannot be directly compared against actual runs of

LLVM IR programs.

Unfortunately, the small-step deterministic semantics LLVMD is defined relationally in the

logical fragment of Coq, which is convenient for proofs, but can not be used to extract code.

Therefore, Vellvm provides yet another operational semantics, LLVMInterp, which is a deterministic

functional interpreter implemented in the computational fragment of Coq. LLVMInterp is proved to

be bisimilar to LLVMD, so we can port results between the two semantics.

Although one could run this extracted interpreter directly, doing so is not efficient. First, integers

with arbitrary bit-width are inductively defined in Coq. This yields easy proof principles, but does

not give an efficient runtime representation; floating point operations are defined axiomatically.

62

To remedy these problems, at extraction we realize Vellvm’s integer and floating point values by

efficient C++ libraries that are a standard part of the LLVM distribution. Second, the memory model

implementation of Vellvm maintains memory blocks and their associated metadata as functional

lists, and it converts between byte-list and value representations at each memory access. Using

the extracted data-structures directly incurs tremendous performance overhead, so we replaced the

memory operations of the memory model with native implementations from the C standard library.

A value v in local mappings δ is boxed, and it is represented by a reference to memory that stores

its content.

Our implementation faithfully runs 134 out of the 145 tests from the LLVM regression suite that

lli, the LLVM distribution interpreter, can run. The missing tests cover instructions (like variable

arguments) that are not implemented in Vellvm.

Although replacing the Coq data-structures by native ones weakens the absolute correctness

guarantees one would expect from an extracted interpreter, this exercise is still valuable. In the

course of carrying out this experiment, we found one severe bug in the semantics: the br instruction

inadvertently swapped the true and false branches.

63

Chapter 7

Verified SoftBound

To demonstrate the effectiveness of Vellvm, our first application of Vellvm is a verified instance

of SoftBound [50, 51], a previously proposed program transformation that hardens C programs

against spatial memory safety violations (e.g., buffer overflows, array indexing errors, and pointer

arithmetic errors). SoftBound works by first compiling C programs into the LLVM IR and then

instrumenting the program with instructions that propagate and check per-pointer metadata. Soft-

Bound maintains base and bound metadata with each pointer, shadowing loads and stores of pointer

with parallel loads and stores of their associated metadata. This instrumentation ensures that each

pointer dereferenced is within bounds and aborts the program otherwise.

The original SoftBound paper includes a mechanized proof that validates the correctness of

this idea, but it is not complete. In particular, the proof is based on a subset of a C-like language

with only straight-line commands and non-aggregate types, in contrast a SoftBound implementation

needs to consider all of the LLVM IR shown in Figure 6.1 and Figure 6.2, the memory model, and

the full operational semantics of the LLVM IR. Also the original proof ensures the correctness only

with respect to a specification that the SoftBound instrumentation must implement, but it does not

prove the correctness of the instrumentation pass itself. Moreover, the specification requires that

every temporary must contain metadata, not just pointer temporaries.

Using Vellvm to verify SoftBound This chapter describes how we use Vellvm to formally verify

the correctness of the SoftBound instrumentation pass with respect to the LLVM semantics, demon-

strating that the promised spatial memory safety property is achieved. Moreover, Vellvm allows us

64

to extract a verified OCaml implementation of the transformation from Coq. The end result is a

compiler pass that is formally verified to transform a program in the LLVM IR into a program aug-

mented with sufficient checking code such that it will dynamically detect and prevent all spatial

memory safety violations.

SoftBound is a good test case for the Vellvm framework. It is a non-trivial translation pass

that nevertheless only inserts code, thereby making it easier to prove correct. SoftBound’s intended

use is to prevent security vulnerabilities, so bugs in its implementation can potentially have severe

consequences. Also, the existing SoftBound implementation already uses the LLVM.

Modifications to SoftBound since the original paper As described in the original paper, Soft-

Bound modifies function signatures to pass metadata associated with the pointer parameters or

returned pointers. To improve the robustness of the tool, we transitioned to an implementation that

instead passes all pointer metadata on a shadow stack [50]. This has two primary advantages. The

first is that this design simplifies the implementation while simultaneously better supporting indi-

rect function calls (via function pointers) and more robustly handling improperly declared function

prototypes. The second is that it also simplifies the proofs.

7.1 Formalizing SoftBound for the LLVM IR

The SoftBound correctness proof has the following high-level structure:

1. We define a nonstandard operational semantics SBspec for the LLVM IR. This semantics

“builds in” the safety properties that should be enforced by a correct implementation of Soft-

Bound. It uses meta-level datastructures to implement the metadata and meta-level functions

to define the semantics of the bounds checks.

2. We prove that an LLVM program P, when run on the SBspec semantics, has no spatial safety

violations.

3. We define a translation pass SBtrans(−) that instruments the LLVM code to propagate meta-

data.

4. We prove that if SBtrans(P) = bP′c then P’, when run on the LLVMD, simulates P running

on SBspec.

65

N
on

de
te

rm
in

is
tic

ru
le

s: ev
al

N
D
(g
,∆

,v
al
)
=
bV
c

v
∈

V
c 0

=
(i

d
=

m
al

lo
ct

yp
va

la
lig

n)
m

al
lo

c(
M
,t

yp
,v
,a

lig
n)

=
bM
′ ,

bl
kc

µ′
=

µ{
id
←

[b
lk
.0
,b

lk
.(

si
ze

o
ft

yp
×

v)
)}

m
od

,g
,θ
`

M
,M

M
,(
(fi

d,
l,
(c

0,
c)
,t

m
n,

∆
,µ
,α

),
Σ̂
)
�

M
′ ,

M
M
,(
(fi

d,
l,

c,
tm

n,
∆
{i

d
←
{b

lk
.0
}}

,µ
′ ,

α
),

Σ̂
)

S
B

M
A

L
L

O
C

ev
al

N
D
(g
,∆

,v
al
)
=
bV
c

v
∈

V
c 0

=
(i

d
=

lo
ad

(t
yp
∗)

va
la

lig
n)

fin
db

ou
nd

s(
g,

µ,
va

l)
=
bm

dc
ch

ec
kb

ou
nd

s(
ty

p,
v,

m
d)

lo
ad

(M
,t

yp
,v
,a

lig
n)

=
bv
′ c

if
is

Pt
rT

yp
ty

p
th

en
µ′
=

µ{
id
←

fin
db

ou
nd

s(
M

M
,v
)}

el
se

µ′
=

µ

m
od

,g
,θ
`

M
,M

M
,(
(fi

d,
l,
(c

0,
c)
,t

m
n,

∆
,µ
,α

),
Σ̂
)
�

M
,M

M
,(
(fi

d,
l,

c,
tm

n,
∆
{i

d
←
{|

v′
|}
},

µ′
,α

),
Σ̂
)

S
B

L
O

A
D

ev
al

N
D
(g
,∆

,v
al

1)
=
bV

1c
v 1
∈

V
1

ev
al

N
D
(g
,∆

,v
al

2)
=
bV

2c
v 2
∈

V
2

c 0
=
(s

to
re

ty
p

va
l 1

va
l 2

al
ig

n)
fin

db
ou

nd
s(

g,
µ,

va
l 2
)
=
bm

dc
ch

ec
kb

ou
nd

s(
ty

p,
v 2
,m

d)
st

or
e(

M
,t

yp
,v

1,
v 2
,a

lig
n)

=
bM
′ c

if
is

Pt
rT

yp
ty

p
th

en
M

M
′ =

M
M
{v

2
←

m
d}

el
se

M
M
′ =

M
M

m
od

,g
,θ
`

M
,M

M
,(
(fi

d,
l,
(c

0,
c)
,t

m
n,

∆
,µ
,α

),
Σ̂
)
�

M
′ ,

M
M
′ ,
((

fid
,l
,c
,t

m
n,

∆
,µ
,α

),
Σ̂
)

S
B

S
T

O
R

E

D
et

er
m

in
is

tic
co

nfi
gu

ra
tio

ns
:

Fr
am

es
σ̂

::
=

fid
,l
,c
,t

m
n,

δ
,µ
,α

C
al

ls
ta

ck
sσ̂

::
=

[]
|

σ̂
,σ̂

Pr
og

ra
m

st
at

es
ŝ

::
=

M
,M

M
,σ̂

Fi
gu

re
7.

1:
SB

sp
ec

:T
he

sp
ec

ifi
ca

tio
n

se
m

an
tic

s
fo

rS
of

tB
ou

nd
.D

iff
er

en
ce

s
fr

om
th

e
L

LV
M

N
D

ru
le

s
ar

e
hi

gh
lig

ht
ed

.

66

The SoftBound specification Figure 7.1 gives the program configurations and representative

rules for the SBspec semantics. SBspec behaves the same as the standard semantics except that

it creates, propagates, and checks metadata of pointers in the appropriate instructions.

A program state Ŝ is an extension of the standard program state S for maintaining metadata

md, which is a pair defining the start and end address for a pointers: µ in each function frame Σ̂

maps temporaries of pointer type to their metadata; MM is the shadow heap that stores metadata

for pointers in memory. Note that although the specification is nondeterministic, the metadata is

deterministic. Therefore, a pointer loaded from uninitialized memory space can be undef, but it

cannot have arbitrary md (which might not be valid).

Metadata md : : = [v1,v2) Memory metadata MM : : = blk.o f s 7→ md

Frames Σ̂ : : = fid, l, c, tmn, ∆, µ, α Call stacks Σ̂ : : = [] | Σ̂, Σ̂

Local metadata µ : : = id 7→ md Program states Ŝ : : = M, MM, Σ̂

SBspec is correct if a program P must either abort on detecting a spatial memory violation with

respect to the SBspec, or preserve the LLVM semantics of the original program P; and, moreover,

P is not stuck by any spatial memory violation in the SBspec (i.e., SBspec must catch all spatial

violations).

Definition 6 (Spatial safety). Accessing a memory location at the offset ofs of a block blk is spatially

safe if blk is less than the next fresh block N, and ofs is within the bounds of blk:

blk < N∧ (B(blk) = bsizec → 0≤ ofs < size)

The legal stuck states of SoftBound—StuckSB(config, Ŝ) include all legal stuck states of

LLVMND (recall Section 6.4.3) except the states that violate spatial safety. The case when B does

not map blk to some size indicates that blk is not valid, and pointers into the blk are dangling—this

indicates a temporal safety error that is not prevented by SoftBound and therefore it is included in

the set of legal stuck states.

Because the program states of a program in the LLVMND semantics are identical to the cor-

responding parts in the SBspec, it is easy to relate them: let Ŝ ⊇◦ S mean that common parts of

the SoftBound state Ŝ and S are identical. Because memory instructions in the SBspec may abort

without accessing memory, the first part of correctness is by a straightforward simulation relation

between states of the two semantics.

67

Theorem 20 (SBspec simulates LLVMND). If the state Ŝ⊇◦ S, and config` Ŝ� Ŝ′, then there exists

a state S′, such that config ` S� S′, and Ŝ′ ⊇◦ S′.

The second part of the correctness is proved by the following preservation and progress theo-

rems.

Theorem 21 (Preservation for SBspec).

If (config, Ŝ) is well formed, and config ` Ŝ� Ŝ′, then (config, Ŝ′) is well formed.

Here, SBspec well-formedness strengthens the invariants for LLVMND by requiring that if any id

defined in ∆ is of pointer type, then µ contains its metadata and a spatial safety invariant: all bounds

in µs of function frames and MM must be memory ranges within which all memory addresses are

spatially safe.

The interesting part is proving that the spatial safety invariant is preserved. It holds initially,

because a program’s initial frame stack is empty, and we assume that MM is also empty. The other

cases depend on the rules in Figure 7.1.

The rule SB MALLOC, which allocates the number v of elements with typ at a memory block

blk, updates the metadata of id with the start address that is the beginning of blk, and the end address

that is at the offset blk.(sizeo f typ × v) in the same block. LLVM’s memory model ensures that the

range of memory is valid.

The rule SB LOAD reads from a pointer val with runtime data v, finds the md of the pointer,

and ensures that v is within the md via checkbounds. If the val is an identifier, findbounds

simply returns the identifier’s metadata from µ, which must be a spatial safe memory range. If

val is a constant of pointer type, findbounds returns bounds as the following. For global pointers,

findbounds returns bounds derived from their types because globals must be allocated before a

program starts. For pointers converted from some constant integers by inttoptr, it conservatively

returns the bounds [null,null) to indicate a potentially invalid memory range. For a pointer cnst1

derived from an other constant pointer cnst2 by bitcase or getelementptr, findbounds returns the

same bound of cnst2 for cnst1. Note that {|v′|} denotes conversion from a deterministic value to a

nondeterministic value.

If the load reads a pointer-typed value v from memory, the rule finds its metadata in MM and

updates the local metadata mapping µ. If MM does not contain any metadata indexed by v, that

68

Globals Allocated

M’

p1

v2

p3
v4

b1 e1

b3 e3

p1’

v2’
p3’

v4’

b1’
e1’

b3’
e3’

(Δ, μ) Δ’≈○

≈○

(MM,
M)

Memory simulation Frame simulation

mi

Where Vi ≈○ Vi’

Figure 7.2: Simulation relations of the SoftBound pass

means the pointer being loaded was not stored with valid bounds, so findbounds returns [null,null)

to ensure the spatial safety invariant. Similarly, the rule SB STORE checks whether the address to be

stored to is in bounds and, if storing a pointer, updates MM accordingly. SoftBound disallows

dereferencing a pointer that was converted from an integer, even if that integer was originally

obtained from a valid pointer. Following the same design choice, findbounds returns [null,null)

for pointers cast from integers. checkbounds fails when a program accesses such pointers.

Theorem 22 (Progress for SBspec). If Ŝ1 is well-formed, then either Ŝ1 is a final state, or Ŝ1 is a

legal stuck state, or there exists a Ŝ2 such that config ` Ŝ1� Ŝ2.

This theorem holds because all the bounds in a well-formed SBspec state give memory ranges

that are spatially safe, if checkbounds succeeds, the memory access must be spatially safe.

The correctness of the SoftBound instrumentation Given SBspec, we designed an instrumen-

tation pass in Coq. For each function of an original program, the pass implements µ by generating

two fresh temporaries for every temporary of pointer type to record its bounds. For manipulating

metadata stored in MM, the pass axiomatizes a set of interfaces that manage a disjoint metadata

space with specifications for their behaviors.

Figure 7.2 pictorially shows the simulation relations '◦ between an original program P in the

semantics of SBspec and its transformed program P′ in the LLVM semantics. First, because P′ needs

additional memory space to store metadata, we need a mapping mi that maps each allocated memory

69

block in M to a memory block in M′ without overlap, but allows M′ to have additional blocks for

metadata, as shown in dashed boxes. Note that we assume the two programs initialize globals

identically. Second, basic values are related in terms of the mapping between blocks: pointers are

related if they refer to corresponding memory locations; other basic values are related if they are

same. Two values are related if they are of the same length and the corresponding basic values are

related.

Using the value simulations, '◦ defines a simulation for memory and stack frames. Given two

related memory locations blk.ofs and blk′.ofs′, their contents in M and M′ must be related; if MM

maps blk.ofs to the bound [v1,v2), then the additional metadata space in M′ must store v′1 and v′2

that relate to v1 and v2 for the location blk′.ofs′. For each pair of corresponding frames in the two

stacks, ∆ and ∆′ must store related values for the same temporary; if µ maps a temporary id to the

bound [v1,v2), then ∆′ must store the related bound in the fresh temporaries for the id.

Theorem 23. Given a state ŝ1 of P with configuration config and a state s′1 of P′ with configuration

config′, if ŝ1 '◦ s′1, and config ` ŝ1 −→ ŝ2, then there exists a state s′2, such that config′ ` s′1 −→∗ s′2,

ŝ2 '◦ s′2.

Here, config ` ŝ1 −→ ŝ2 is a deterministic SBspec that, as in Section 6.4, is an instance of the

non-deterministic SBspec.

The correctness of SoftBound

Theorem 24 (SoftBound is correct). Let SBtrans(P) = bP′c denote that the SoftBound pass instru-

ments a well-formed program P to be P′. A SoftBound instrumented program P′ either aborts on

detecting spatial memory violations or preserves the LLVM semantics of the original program P. P′

is not stuck by any spatial memory violation.

7.2 Extracted Verified Implementation of SoftBound

The above formalism not only shows that the SoftBound transformation enforces the promised

safety properties, but the Vellvm framework allows us to extract a translator directly from the Coq

code, resulting in a verified implementation of the SoftBound transformation. The extracted imple-

mentation uses the same underlying shadowspace implementation and wrapped external functions

70

0%

50%

100%

150%

200%

250%

ru
n
ti

m
e

o
v
er

h
ea

d

Extracted

C++ SOFTBOUND

bh
biso

rt mst tsp go
comp art

equake
ammp

gzip lbm
lib

q.
mean

Figure 7.3: Execution time overhead of the extracted and the C++ version of SoftBound

as the non-extracted SoftBound transformation written in C++. The only aspect not handled by the

extracted transformation is initializing the metadata for pointers in the global segment that are non-

NULL initialized (i.e., they point to another variable in the global segment). Without initialization,

valid programs can be incorrectly rejected as erroneous. Thus, we reuse the code from the C++

implementation of the SoftBound to properly initialize these variables.

Effectiveness To measure the effectiveness of the extracted implementation of SoftBound versus

the C++ implementation, we tested both implementations on the same programs. To test whether

the implementations detect spatial memory safety violations, we used 1809 test cases from the

NIST Juliet test suite of C/C++ codes [53]. We chose the test cases which exercised the buffer

overflows on both the heap and stack. Both implementations of SoftBound correctly detected all the

buffer overflows without any false violations. We also confirmed that both implementations properly

detected the buffer overflow in the go SPEC95 benchmark. Finally, the extracted implementation is

robust enough to successfully transform and execute (without false violations) several applications

selected from the SPEC95, SPEC2000, and SPEC2006 suites (around 110K lines of C code in total).

Performance overheads Unlike the C++ implementation of SoftBound that removes some ob-

viously redundant checks, the extracted implementation of SoftBound performs no SoftBound-

specific optimizations. In both cases, the same suite of standard LLVM optimizations are applied

post-transformation to optimize the code to reduce the overhead of the instrumentation. To deter-

71

mine the performance impact on the resulting program, Figure ?? reports the execution time over-

heads (lower is better) of extracted SoftBound (leftmost bar of each benchmark) and the C++ imple-

mentation (rightmost bar of each benchmark) for various benchmarks from SPEC95, SPEC2000 and

SPEC2006. Because of the check elimination optimization performed by the C++ implementation,

the code is slightly faster, but overall the extracted implementation provides similar performance.

Bugs found in the original SoftBound implementation In the course of formalizing the Soft-

Bound transformation, we discovered two implementation bugs in the original C++ implementation

of SoftBound. First, when one of the incoming values of a φ node with pointer type is an undef,

undef was propagated as its base and bound. Subsequent compiler transformations may instantiate

the undefined base and bound with defined values that allow the checkbounds to succeed, which

would lead to memory violation. Second, the base and bound of constant pointer (typ∗)null was set

to be (typ∗)null and (typ∗)null+ sizeof (typ), allowing dereferences of null or pointers pointing to

an offset from null. Either of these bugs could have resulted in faulty checking and thus expose the

program to the spatial violations that SoftBound was designed to prevent. These bugs underscore

the importance of a formally verified and extracted implementation to avoid such bugs.

72

Chapter 8

Verified SSA Construction for LLVM

Chapter 5 described the proof techniques we have developed for verifying SSA-based program

transformations in the context of Vminus. This chapter demonstrates that these proof techniques

can be used for practical compiler optimizations in Vellvm: verifying the most performance-critical

optimization pass in LLVM’s compilation strategy—the mem2reg pass.

8.1 The mem2reg Optimization Pass

LLVM provides a large suite of optimization passes, including aggressive dead code elimination

(ADCE), global value numbering (GVN), partial redundancy elimination (PRE), and sparse condi-

tional constant propagation (SCCP) among others. Figure 2.3 shows the tool chain of the LLVM

compiler. Each transformation pass consumes and produces code in this SSA form, and they typi-

cally have the flavor of the code transformations described above in Chapter 5.

A critical piece of LLVM’s compilation strategy is the mem2reg pass, which takes code that is

“trivially” in SSA form and converts it into a minimal, pruned SSA program [62]. This strategy

simplifies LLVM’s many front ends by moving work in to mem2reg. An SSA form is “minimal”

if each φ is placed only at the dominance frontier of the definitions of the φ node’s incoming

variables [28]. A minimal SSA form is “pruned” if it contains only live φ nodes [62]. This pass

enables many subsequent optimizations (and, in particular, backend optimizations such as register

allocation) to work effectively.

73

Backends
LLVM SSA

with φ-nodes

ADCE, GVN,

PRE, SCCP, ...

Frontends

w/o SSA

construction

LLVM SSA

w/o φ-nodes mem2reg

Figure 8.1: The tool chain of the LLVM compiler

Figure 8.2 demonstrates the importance of the mem2reg pass for LLVM’s generated code per-

formance. In our experiments, running only the mem2reg pass yields a 81% speedup (on aver-

age) compared to LLVM without any optimizations; doing the full suite of -O1 level optimizations

(which includes mem2reg) yields a speedup of 102%, which means that mem2reg alone captures all

but %12 of the benefit of the -O1 level optimizations. Comparison with -O3 optimizations yields

similar results. These observations make mem2reg an obvious target for our verification efforts.

The “trivial” SSA form is generated directly by compiler front ends, and it uses the alloca

instruction to allocate stack space for every source-program local variable and temporary needed.

In this form, an LLVM SSA variable is used either only locally to access those stack slots, in

which case the variable is never live across two basic blocks, or it is a reference to the stack slot,

whose lifetime corresponds to the source-level variable’s scope. These constraints mean that no

φ instructions are needed—it is extremely straightforward for a front end to generate code in this

form.

As an example, consider this C program (which is a running example through this chapter):

int i = 0;

while (i<=100) i++;

return i;

The “trivial” SSA form that might be produced by the frontend of a compiler is shown in the

left-most column of Figure 8.4 and Figure 8.5. The r0 := allocaint instruction on the first line

allocates space for the source variable i, and r0 is a reference from which local load and store

instructions access i’s contents.

The mem2reg pass converts promotable uses of stack-allocated variables to SSA temporaries.

74

0%

50%

100%

150%

200%

250%

sp
ee

d
u
p
 o

v
er

 L
L

V
M

-O
0

LLVM-mem2reg LLVM-O1

LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr mesa art

ammp
equake

bzip2
libquantum lbm milc sjeng

Geo. mean

Figure 8.2: Normalized execution time improvement of the LLVM’s mem2reg, LLVM’s O1, and
LLVM’s O3 optimizations over the LLVM baseline with optimizations disabled. For comparison,
GCC-O3’s speedup over the same baseline is also shown.

Definition 7 (Promotable allocations). An allocation r is promotable in f , written promotable(f ,r),

if r := alloca typ is in the entry block of f , and r does not escape (r is not stored into memory;

∀insn ∈ f , insnusesr =⇒ insn is a store or load).

An alloca’ed variable like r0 is considered to be promotable if it is created in the entry block

of function f and it doesn’t escape—i.e., its value is never written to memory or passed as an

argument to a function call. The mem2reg pass identifies promotable stack allocations and then

replaces them by temporary variables in SSA form. It does this by placing φ nodes, substituting each

variable defined by a load with the previous value stored into the stack slot, and then eliminating

the memory operations (which are now dead). The right-most column of Figure 8.5 shows the

resulting pruned SSA program for this example. The mem2reg algorithm can also be viewed as a

restricted version of a transformation that considers a general register promotion problem by using

sophisticated alias analysis and partial redundant elimination of loads and stores to make more

locations promotable [44].

Algorithm 8.3 shows the algorithm that the LLVM mem2reg pass uses, and Figure 8.4 gives

an example of the algorithm. The code on the left most of Figure 8.4 is the output of a front-

end that compiles mutable variables of the non-SSA form to stack allocations, and is in the SSA

form trivially. The first step of the mem2reg algorithm is to find all stack allocations (stored at

Allocas) that can be promoted to temporaries by the function FINDPROMOTABLEALLOCAS that

simply checks if the front-end follows the contract with LLVM—only the allocations in the entry

block (returned by ENTRYOF) are candidates; stack allocations for mutable variables can only be

used by store and load, and not written into memory. For example, r0 is promotable. Note that

promoting such allocations to temporaries is definitely safe for programs that do not have undefined

75

function RENAME(f , l, Vmap)
blφctmnc= f [l]
for all φ ∈ φ do

if φ is placed for an r ∈ A then
Vmap[r] = GETID(φ)

end if
end for
for all c ∈ c do

if c = r′ := load(typ∗)r and r ∈ A then
REPLACEALLUSES(f , r′, Vmap[r])
REMOVE(f , c)

else if c = store typval r and r ∈ A then
Vmap[r] = val
REMOVE(f , c)

end if
end for
for all successor l′ of l do
bl′ φ′ c′ tmn′c= f [l′]
for all φ′ ∈ φ

′ do
if φ′ is placed for promotion then

SUBSTITUTION(f , Vmap, φ′, l)
end if

end for
end for
for all child l′ of l do

RENAME(f , l′, Vmap)
end for

end function

A← /0

function ISPROMOTABLE(f , r)
if r is only used by store and load in f , and

r is not written into memory then
return true

else
return f alse

end if
end function

function FINDPROMOTABLEALLOCAS(f)
for all r := alloca typ ∈ ENTRYOF(f) do

if ISPROMOTABLE(f , r) then
A← A ∪{r}

end if
end for

end function

function MEM2REG(f)
FINDPROMOTABLEALLOCAS(f)
PHINODESPLACEMENT(f)
RENAME(f , ENTRYOF(f), INITVMAP())
for all r ∈ A and r is not used do

REMOVE(f , r)
end for

end function

Figure 8.3: The algorithm of mem2reg

behaviors, such as out-of-bound accessing, using dangling pointers, reading from uninitialized

memory locations, etc.; on the other hand, the transformation is also correct for programs that

violate these assumptions, because they can be of any behavior.

After finding all promotable allocations, the mem2reg algorithm applies the variant of the stan-

dard SSA construction. It first inserts minimal number of φ nodes by PHINODESPLACEMENT.

The φ-node placement algorithm avoids computing dominance frontiers explictly by using a data-

structure called DJ-graphs [62], so is very fast in practice. We omitted its detail in the presentation.

The second code in Figure 8.4 is the code after φ nodes placement. In this case, the algorithm only

needs to place r6 = phi [r0, l1][r0, l3] at the beginning of block l2. Note that after the replacement, the

code is not well-formed because r6 is expected to be of type int, while all its coming values are of

76

B
ef

or
e
m
e
m
2
r
e
g

φ
no

de
s

pl
ac

em
en

t
R

en
am

ed
l 1

R
en

am
ed

l 1
l 2

an
d

l 3
A

ft
er
m
e
m
2
r
e
g

l 1
:r

0
:=

al
lo

ca
in

t
st

or
ei

nt
0

r 0
br

l 2
l 2

: r 1
:=

lo
ad

(i
nt
∗)

r 0
r 2

:=
r 1
≤

10
0

br
r 2

l 3
l 4

l 3
:r

3
:=

lo
ad

(i
nt
∗)

r 0
r 4

:=
r 3

+
1

st
or

ei
nt

r 4
r 0

br
l 2

l 4
:r

5
:=

lo
ad

(i
nt
∗)

r 0
re

ti
nt

r 5

l 1
:r

0
:=

al
lo

ca
in

t
st

or
ei

nt
0

r 0
br

l 2
l 2

:r
6
=

ph
i[

r 0
,l

1]
[r

0,
l 3
]

r 1
:=

lo
ad

(i
nt
∗)

r 0
r 2

:=
r 1
≤

10
0

br
r 2

l 3
l 4

l 3
:r

3
:=

lo
ad

(i
nt
∗)

r 0
r 4

:=
r 3

+
1

st
or

ei
nt

r 4
r 0

br
l 2

l 4
:r

5
:=

lo
ad

(i
nt
∗)

r 0
re

ti
nt

r 5

l 1
:r

0
:=

al
lo

ca
in

t

br
l 2

l 2
:r

6
=

ph
i[

0,
l 1
][

r 0
,l

3]
r 1

:=
lo

ad
(i

nt
∗)

r 0
r 2

:=
r 1
≤

10
0

br
r 2

l 3
l 4

l 3
:r

3
:=

lo
ad

(i
nt
∗)

r 0
r 4

:=
r 3

+
1

st
or

ei
nt

r 4
r 0

br
l 2

l 4
:r

5
:=

lo
ad

(i
nt
∗)

r 0
re

ti
nt

r 5

l 1
:r

0
:=

al
lo

ca
in

t

br
l 2

l 2
:r

6
=

ph
i[

0,
l 1
][

r 4
,l

3]

r 2
:=

r 6
≤

10
0

br
r 2

l 3
l 4

l 3
: r 4

:=
r 6

+
1

br
l 2

l 4
:r

5
:=

lo
ad

(i
nt
∗)

r 4
re

ti
nt

r 5

l 1
: br

l 2
l 2

:r
6
=

ph
i[

0,
l 1
][

r 4
,l

3]

r 2
:=

r 6
≤

10
0

br
r 2

l 3
l 4

l 3
: r 4

:=
r 6

+
1

br
l 2

l 4
: re

ti
nt

r 4

Fi
gu

re
8.

4:
T

he
SS

A
co

ns
tr

uc
tio

n
by

th
e
m
e
m
2
r
e
g

pa
ss

77

type int∗. The later pass RENAME will incrementally recover the well-formedness, and eventually

makes the final program simulates the behavior of the original program.

The RENAME follows the structure of the classic renaming algorithm [8], but also does redun-

dant memory operation eliminations, and constant propagation in the mean while. The algorithm

follows dominator tree rooted by the entry block—not the flow graph, and also maintains a map

V map in which for each promotable variable r, V map[r] is the its most recently value with respect

to the dominator tree of the function f . Initially, INITVMAP sets the most recently value to be

the default value that alloca assigns for allocated memory; the depth-first-recursion starts from the

entry block.

At each visited block lφctmn, the algorithm first checks if there is any φ placed for a promotable

temporary r. If so, the algorithm takes the temporary defined by the φ as the most recent value for

r in the map V map. Then, for each command c, if c is a load from a promotable temporary r to

r′, then the algorithm replaces all the uses of r′ by the most recent value of r stored in V map, then

remove the c; if c is a store to a promotable temporary r with a value val, then the algorithm sets

val to be the most recent value for r, then removes the c; otherwise, the algorithm does nothing. At

the end, it examines all the successors (in term of the control-flow graph) of l to see if there are any

φ nodes whose operands need to be properly renamed, and then recursively renames all children

blocks (in term of the dominator tree) of l.

After the renaming of block l1, the store store int0r0 in block l1 was removed; because at the

end of block l1 the recent value of r1 is 0 that is from the removed store, in the φ of l2 that is the

successor of l1, the algorithm replaced the r0 corresponding to l1 by 0. The next code in Figure 8.4

shows the depth-first-search-based renaming up to one leaf of the dominator tree when all the blocks

l1, l2 and l3 were renamed. Note that the algorithm does not change the incoming value of the φ

node in block l2 when RENAME visited l2, but changed the r0 of the incoming block l3 to be r4

when RENAME visited the end of the block l3 whose successor is l2. The other observation is that

although the code is well-formed, it does not preserve the meaning of its original program because

the value of r5 is read from the uninitialized location r0, while in the original program r5 should be

100 at the return of the program.

After renaming, the last step of the mem2reg pass is checking if there is any promotable tempo-

raries r which is not used at all, and, therefore, can be safely removed. As shown in the right most

code of Figure 8.4, renaming the block l4 removed the load in block l4, and then the l0 is not used

78

any more, and was removed. At this point, the code is not only well-formed, but also preserves the

semantics of the original code by returning the same final result 100.

Proving that mem2reg is correct is nontrivial because it makes significant, non-local changes to

the use of memory locations and temporary variables. Furthermore, the specific mem2reg algorithm

used by LLVM is not directly amenable to the proof techniques developed in Chapter 5—it was not

designed with verification in mind, so it produces intermediate stages that break the SSA invariants

or do not preserve semantics. The next section therefore describes an alternate algorithm that is

more suitable to formalization.

8.2 The vmem2reg Algorithm

This section presents vmem2reg, an SSA algorithm that is structured to lead to a clean formalism

and yet still produce programs with effectiveness similar to the LLVM mem2reg pass. To demon-

strate the main ideas of vmem2reg, this section describes an algorithm that uses straightforward

micro-pass pipelining. Section 8.5 presents a smarter way to “fuse” the micro passes, thereby re-

ducing compilation time. Proving pipeline fusion correct is (by design) independent of the proofs

for the vmem2reg algorithm shown in the section.

At a high level, vmem2reg (whose code is shown in Figure 8.7) traverses all functions of the

program, applying the transformation vmem2reg_fn to each. Figure 8.6 depicts the main loop,

which is an extension of Aycock and Horspool’s SSA construction algorithm [12]. vmem2reg_fn

first iteratively promotes each promotable alloca by adding φ nodes at the beginning of every

block. After processing all promotable allocas, vmem2reg_fn removes redundant φ nodes, and

eventually will produce a program almost in pruned SSA form,1 in a manner similar to previous

algorithms [62].

The transformation that vmem2reg_fn applies to each function is a composition of a series of

micro transformations (LAS, LAA, SAS, DSE, and DAE, shown in Figure 8.6). Each of these

transformations preserves the well-formedness and semantics of its input program; moreover, these

transformations are relatively small and local, and can therefore be reasoned about more easily.

1Technically, fully pruned SSA requires a more aggressive dead-φ-elimination pass that we omit for the sake of
simplicity. Section 8.4 shows that this omission has negligible impact on performance.

79

B
ef

or
e
v
m
e
m
2
r
e
g

M
ax

im
al

φ
no

de
s

pl
ac

em
en

t
A

ft
er

L
A

S/
L

A
A

/S
A

S
A

ft
er

D
SE

/D
A

E
A

ft
er

φ
no

de
s

el
im

in
at

io
n

l 1
:r

0
:=

al
lo

ca
in

t
st

or
ei

nt
0

r 0

br
l 2

l 2
: r 1

:=
lo

ad
(i

nt
∗)

r 0
r 2

:=
r 1
≤

10
0

br
r 2

l 3
l 4

l 3
: r 3

:=
lo

ad
(i

nt
∗)

r 0
r 4

:=
r 3

+
1

st
or

ei
nt

r 4
r 0

br
l 2

l 4
: r 5

:=
lo

ad
(i

nt
∗)

r 0
re

ti
nt

r 5

l 1
:r

0
:=

al
lo

ca
in

t
st

or
ei

nt
0

r 0
r 7

:=
lo

ad
(i

nt
∗)

r 0
br

l 2
l 2

:r
6
=

ph
i[

r 7
,l

1]
[r

9,
l 3
]

st
or

ei
nt

r 6
r 0

r 1
:=

lo
ad

(i
nt
∗)

r 0
r 2

:=
r 1
≤

10
0

r 8
:=

lo
ad

(i
nt
∗)

r 0
br

r 2
l 3

l 4
l 3

:r
10

=
ph

i[
r 8
,l

2]
st

or
ei

nt
r 1

0
r 0

r 3
:=

lo
ad

(i
nt
∗)

r 0
r 4

:=
r 3

+
1

st
or

ei
nt

r 4
r 0

r 9
:=

lo
ad

(i
nt
∗)

r 0
br

l 2
l 4

:r
11

=
ph

i[
r 8
,l

2]
st

or
ei

nt
r 1

1
r 0

r 5
:=

lo
ad

(i
nt
∗)

r 0
re

ti
nt

r 5

l 1
:r

0
:=

al
lo

ca
in

t
st

or
ei

nt
0

r 0

br
l 2

l 2
:r

6
=

ph
i[

0,
l 1
][

r 9
,l

3]
st

or
ei

nt
r 6

r 0

r 2
:=

r 6
≤

10
0

br
r 2

l 3
l 4

l 3
:r

10
=

ph
i[

r 6
,l

2]

r 4
:=

r 1
0
+

1
st

or
ei

nt
r 4

r 0

br
l 2

l 4
:r

11
=

ph
i[

r 6
,l

2]
st

or
ei

nt
r 1

1
r 0

re
ti

nt
r 1

1

l 1
: br

l 2
l 2

:r
6
=

ph
i[

0,
l 1
][

r 4
,l

3]

r 2
:=

r 6
≤

10
0

br
r 2

l 3
l 4

l 3
:r

10
=

ph
i[

r 6
,l

2]

r 4
:=

r 1
0
+

1

br
l 2

l 4
:r

11
=

ph
i[

r 6
,l

2]

re
ti

nt
r 1

1

l 1
: br

l 2
l 2

:r
6
=

ph
i[

0,
l 1
][

r 4
,l

3]

r 2
:=

r 6
≤

10
0

br
r 2

l 3
l 4

l 3
: r 4

:=
r 6

+
1

br
l 2

l 4
: re

ti
nt

r 6

Fi
gu

re
8.

5:
T

he
SS

A
co

ns
tr

uc
tio

n
by

th
e
v
m
e
m
2
r
e
g

pa
ss

80

promote alloca

 eliminate store/load

LAA
φ-nodes

placement
DAEDSE

 eliminate:

 - AH φ-nodes

 - D φ-nodes

LAS

SAS

find

promotable

alloca

find

st/ld pair

Figure 8.6: Basic structure of vmem2reg_fn

At each iteration of alloca promotion, vmem2reg_fn finds a promotable allocation r. Then φ-

nodes_placement (code shown in Figure 8.7) adds φ nodes for r at the beginning of every block.

To preserve both well-formedness and the original program’s semantics, φ-nodes_placement also

adds additional loads and stores around each inserted φ node. At the end of every block that

has successors, φ-nodes_placement introduces a load from r, and stores the result in a fresh

temporary; at the beginning of every block that has predecessor, φ-nodes_placement first inserts

a fresh φ node whose incoming value from a predecessor l is the value of the additional load we

added at the end of l, then inserts a store to r with the value of the inserted φ node.

The second column in Figure 8.5 shows the result of running the φ-node placement pass starting

from the example program in its trivial SSA form. It is not difficult to check that this code is in

SSA form. Moreover, the output program also preserves the meaning of the original program. For

example, at the end of block l1, the program loads the value stored at r0 into r7. After jumping to

block l2, the value of r7 is stored into the location r0, which should contain the same values as r7.

Therefore, the additional store does not change the status of memory. Although the output program

contains more temporaries than the original program, these temporaries are used only to connect

inserted loads and stores, and so they do not interfere with the original temporaries.

To remove the additional loads and stores introduced by the φ-node placement pass and even-

tually promote allocas to registers, vmem2reg_fn next applies a series of micro program transfor-

mations until no more optimizations can be applied.

First, vmem2reg_fn iteratively does the following transformations (implemented by

eliminate_stld shown in Figure 8.7):

81

let vmem2reg prog =

map (function f → vmem2reg_fn f
| prod → prod) prog

let rec eliminate_stld f r =

match find_stld_pair f r with

| LAS (pc2, val2, r1)→ eliminate_stld (f{val2/r1}− r1) r
| LAA r1 → eliminate_stld (f{0/r1}− r1) r
| SAS (pc1, pc2)→ eliminate_stld (f −pc1) r
| NONE→ f
end

let φ-nodes_placement f r =

let define typfid(arg){b} = f in

let (ldnms, phinms) = gen_fresh_names b in

define typfid(arg){(map
(function lφctmn→
let r := alloca typ ∈ f in

let (φ
′
, c1) = match predecessors_of f l with

| []→ (φ, c)

| lj
j → let rj

j = map (find ldnms) lj
j
in

let r′ = find phinms l in

(r′ = phi typ [rj, lj]
j
::φ, store typr′ r::c)

end in

let c′ = match successors_of f l with

| []→ c1
| _→ let r′ = find ldnms l in c1 ++ [r′ := load(typ∗)r]
end in

lφ
′ c′ tmn) b)}

Figure 8.7: The algorithm of vmem2reg

1. LAS (r1, pc2, val2) “Load After Store”: r1 is loaded from r after a store of val2 to r at program

counter pc2, and there are no other stores of r in any path (on the control-flow graph) from

pc2 to r1. In this case, all uses of r2 can be replaced by val2, and the load can be removed.

2. LAA r1 “Load After Alloca”: As above, but the load is from an uninitialized memory location

at r. r1 can be replaced by LLVM’s default memory value, and the load can be removed.

3. SAS (pc1, pc2): The store at program counter pc2 is a store after the store at program counter

pc1. If both of them access r, and there is no load of r in any path (on the control-flow graph)

from pc1 to pc2, then the store at pc1 can be removed.

82

At each iteration step of eliminate_stld, the algorithm uses the function find_stld_pair

to identify each of the above cases. Because the φ-node placement pass only adds a store and a load

as the first and the last commands at each block respectively, find_stld_pair only needs to search

for the above cases within blocks. This simplifies both the implementation and proofs. Moreover,

eliminate_stld must terminate because each of its transformations removes one command. The

third column in Figure 8.5 shows the code after eliminate_stld.

Next, the algorithm uses DSE (Dead Store Elimination) and DAE (Dead Alloca Elimination) to

remove the remaining unnecessary stores and allocas.

1. DSE “Dead Store Elimination”: The store of r at program counter pc1 is dead—there is no

load of r, so the store at pc1 can be removed.

2. DAE “Dead Alloca Elimination”: The allocation of r is dead—there is no use of r, so the

alloca can be removed.

The fourth column in Figure 8.5 shows the code after DSE and DAE.

Finally, vmem2reg_fn eliminates unnecessary and dead φ nodes [12]:

1. AH φ-nodes [12]: if any φ is of the form r = phi typ [valj, lj]
j

where all valj are either equal

to r or val, then all uses of r can be replaced by val, and the φ can be removed. Aycock and

Horspool [12] proved that when there is no such φ node in a reducible program, the program

is of the minimal SSA form.

2. D φ-nodes: if there is no any use of the φ node. Removing D φ-nodes produces programs in

nearly pruned SSA form.

The right-most column in Figure 8.5 shows the final output of the algorithm.

8.3 Correctness of vmem2reg

We prove the correctness of vmem2reg using the techniques developed in Chapter 5. At a high level,

the correctness of vmem2reg is the composition of the correctness of each micro transformation

of vmem2reg shown in Figure 8.7. Given a well-formed input program, each shaded box must

produce a well-formed program that preserves the semantics of the input program. Moreover, the

83

micro transformations except DAE and φ-nodes elimination must preserve the promotable predicate

(Definition 7), because the correctness of subsequent transformations relies on fact that promotable

allocations aren’t aliased.

Formally, let prog{ f ′/ f} be the substitution of f by f ′ in prog, and let L f M be a micro transfor-

mation of f applied by vmem2reg. L M must satisfy:

1. Preserving promotable: when L M is not DAE or φ-nodes elimination, if promotable(f ,r),

then promotable(L f M,r).

2. Preserving well-formedness: if promotable(f ,r) when L M is φ-nodes placement, and ` prog,

then ` prog{L f M/ f}.

3. Program refinement: if promotable(f ,r) when L M is not φ-nodes elimination, and ` prog,

then prog⊇ prog{L f M/ f}.

8.3.1 Preserving promotability

At the beginning of each iteration for promoting allocas, the algorithm indeed finds promotable

allocations.

Lemma 25. If prog ` f , and vmem2reg_fn finds a promotable allocation r in f , then

promotable(f ,r).

We next show that φ-nodes placement preserves promotable:

Lemma 26. If promotable(f ,r),

then promotable(φ–nodes placement f r,r).

Proof (sketch): The φ-nodes placement pass only inserts instructions. Therefore, if r is in the entry

block of the original function, r is still in the entry block of the transformed one. Moreover, in the

transformed function, the instructions copied from the original function use r in the same way, the

inserted stores only write fresh definitions into memory, and the φ-nodes only use fresh definitions.

Therefore, r is still promotable after φ-nodes placement.

Each of the other micro transformations is composed of one or two more basic transformations:

variable substitution, denoted by f{val/r}, and instruction removal, denoted by filtercheck f where

84

filter removes an instruction insn from f if check insn = false. For example, f{val2/r1}− r1 (LAS)

is a substitution followed by a removal in which check insn = false iff insn defines r1; DSE of

a promotable alloca r is a removal in which check insn = false iff insn is a store to r. We first

establish that substitution and removal preserve promotable.

Lemma 27. Suppose promotable(f ,r),

1. If ¬(val1 usesr), then promotable(f{val1/r1},r).

2. If check insn = false⇒ insn does not define r, then promotable(filtercheck f ,r).

We can show that the other micro transformations preserve promotable by checking the pre-

conditions of Lemma 27.

Lemma 28. Suppose promotable(f ,r), r is still promotable after LAS, LAA, SAS or DSE.

The substituted value of LAS is written to memory by a store in f , which cannot use r because r

is promotable in f . The substituted value of LAA is a constant that cannot use r trivially. Moreover,

LAS, LAA, SAS and DSE remove only loads or stores.

8.3.2 Preserving well-formedness

It is sufficient to check the following conditions to show that a function-level transformation pre-

serves well-formedness:

Lemma 29. Suppose

1. L f M and f have the same signature.

2. if prog ` f , then prog{L f M/ f} ` L f M.

If ` prog, then ` prog{L f M/ f}.

It is easy to see that all transformations vmem2reg applies satisfy the first condition. We first

prove that φ-nodes placement preserves the second condition:

Lemma 30. If promotable(f ,r), prog` f and let f ′ be φ–nodes placement f r, then prog{ f ′/ f} `

f ′.

85

Proof (sketch): Because φ-nodes placement only inserts fresh definitions, and does not change

control-flow graphs, dominance relations are preserved, and all the instructions from the original

program are still well-formed after the transformation.

To show the well-formedness of the inserted instructions, we need to check that they satisfy the

use/def properties of SSA. The inserted instructions only use r or fresh definitions introduced by

the pass. The well-formedness of f ensures that 1) because r is defined at the entry block, it must

dominate the end of all blocks, and the beginning of all non-entry block; 2) the entry block has not

predecessors. Therefore, the definition of r must strictly dominate all its uses in the inserted load’s

and store’s. The fresh variable used by each inserted store is well-formed because its definition is

by an inserted φ-node in the same block of the store, and must strictly dominate its use in the store.

The incoming variables used by each φ-node is well-formed because they are all defined at the end

of the corresponding incoming blocks.

Similarly, to reason about other transformations, we first establish that substitution and removal

preserve well-formedness.

Lemma 31. Suppose prog ` f ,

1. If f ` val1� r2, f ′ = f{val1/r2}, then prog{ f ′/ f} ` f ′.

2. If check insn= false⇒ f does not use insn, and let f ′ be filtercheck f , then prog{ f ′/ f} ` f ′.

Here, f ` val1� r2 if f ` r1� r2 when val1 usesr1. Note that the first part of Lemma 31 is an

extension of Lemma 15 that only allows substitution on commands. In vmem2reg, LAS and φ-nodes

elimination may transform φ-nodes.

LAS, LAA and φ-nodes elimination remove instructions after substitution. The following auxil-

iary lemma shows that the substituted definition is removable after substitution:

Lemma 32. If f ` val1� r2, then f{val1/r2} does not use r2.

This lemma holds because val1 cannot use r2 by Lemma 7.

Lemma 33. LAS, LAA, SAS, DSE, DAE and φ-nodes elimination preserve well-formedness.

Proof (sketch): Most of the proofs follow Lemma 31 and Lemma 32. The interesting case is

showing that if a φ-node in f is of the form r = phi typ [valj, lj]
j

where all valj are either equal to r

or val′ (which is an AH φ-node [12]), then f ` val′� r.

86

It is trivial if val′ is a constant. Suppose val′usesr′, r and r′ are defined in l and l′ respectively.

We first have that r = phi typ [rj, l]
j

is not well-formed. Suppose such a φ-node is well-formed.

The well-formedness of the φ-node ensures that the definition of rj dominates the end of all l’s

predecessors. Therefore, l strictly dominates itself. This is a contradiction by Lemma 7.

By the above result, r′ cannot be r, and l′ cannot be l. Suppose ¬ f ` r′� r. There must exist

a simple path (which has no cycles) from the entry to l that bypasses l′. The simple path must visit

one of l’s predecessors. The predecessor can be neither the one for r because the path is simple, nor

the one for r′ because the path bypasses l′. This is a contradiction.

8.3.3 Program refinement

The proofs of program refinement use the simulation diagrams in Chapter 2 and different instantia-

tions of the GWF FR rule we developed in Chapter 5, where instead of just a function f and frame

σ, we now have a configuration config that also includes the program memory.

config,P ` S , S ∈ config.prog∧Pconfig(S|sdom)

Let σ|sdom be (σ. f , σ.pc, (σ.δ)|(sdom(σ. f)(σ.pc)), σ.α). S|sdom is (S.M,S.σ|sdom). S ∈ prog ensures

that all f and pc in each frame of S are defined in prog.

Promotability As we discussed above, the micro transformations (except φ-nodes elimination)

rely on the promotable property. We start by establishing the invariants related to promotability,

namely that promotable allocations aren’t aliased. This proof is itself an application of GWF FR.

The promotable property ensures that a promotable alloca of a function does not escape—the

function can access the data stored at the allocation, but cannot pass the address of the allocation to

other contexts. Therefore, in the program, the promotable alloca and all other pointers (in memory,

local temporaries and temporaries on the stack) must not alias. Formally, given a promotable

87

l1: r0 := alloca int
 store int 0 r0

 br l2

 store int r6 r0

 r1 := load (int*) r0

 r7 := load (int*) r0

 ...

l1: r0 := alloca int

 store int 0 r0

 r1 := load (int*) r0

 ...

l2:

 Before φ-nodes placements After φ-nodes placements

 br l2

 r6 = phi [r7, l1] [r9, l3]l2:

Figure 8.8: The simulation relation for the correctness of φ-node placement

allocation r with type typ∗ in f , we define Pnoalias(f ,r, typ):

λconfig.λS.

∀σ1++σ :: σ2 = S.σ. f = σ. f ∧ JrKσ.δ = bblkc=⇒

∃v.load(S.M, typ,blk) = bvc

∧ ∀blk′.∀typ′.¬load(S.M, typ′,blk′) = bblkc

∧ ∀r′ 6= r =⇒¬Jr′Kσ.δ = bblkc

∧ ∀σ′ ∈ σ1.∀r′.¬Jr′Kσ′.δ = bblkc

The last clause ensures that the alloca and the variables in the callees reachable from f do no alias.

In CompCert, the translation from C#minor to Cminor uses properties (in non-SSA form) similar

to Pnoalias(f ,r, typ) to allocate local variables on stack.

Lemma 34 (Promotable alloca is not aliased). At any reachable program state S, we have that

config,Pnoalias(f ,r, typ) ` S holds.

The invariant holds initially. At all reachable states, the invariant holds because a promotable

allocation cannot be copied to other temporaries, stored to memory, passed into a function, or

returned. Therefore, in a well-defined program no external code can get its location by accessing

other temporaries and memory locations. Importantly, the memory model ensures that from a

consistent initial memory state, all memory blocks in temporaries and memory are allocated—it

is impossible to forge a fresh pointer from an integer.

φ-node placement Figure 8.8 pictorially shows an example (which is the code fragment from

Figure 8.5) of the simulation relation ∼ for proving that the φ-node placement preserves semantics.

88

It follows left “option” simulation, because φ-node placement only inserts instructions. We use the

number of unexecuted instructions in the current block as the measure function.

The dashed lines indicate where the two program counters must be synchronized. Although the

pass defines new variables and stores (shaded in Figure 8.8), the variables are only passed to the

new φ nodes, or stored into the promotable allocation; additional stores only update the promotable

allocation with the same value. Therefore, by Lemma 34, ∼ requires that two programs have the

same memory states and the original temporaries match.

Lemma 35.

If f ′ = φ–nodes placement f r, and promotable(f ,r), and ` prog, then prog⊇ prog{ f ′/ f}.

The interesting case is to show that∼ implies a correspondence between stuck states. Lemma 34

ensures that the promotable allocation cannot be dereferenced by operations on other pointers.

Therefore, the inserted memory accesses are always safe.

LAS/LAA We present the proofs for the correctness of LAS. The proofs for the correctness of LAA

is similar. In the code after φ-node placement of Figure 8.5, r7 := load(int∗)r0 is an LAS of

store int0r0. We observe that at any program counter pc between the store and load, the value

stored at r0 must be 0 because alive(pc1,pc2) holds—the store defined at pc1 is not overwritten by

other writes until pc.

To formalize the observation, consider a promotable r with type typ∗ in f . Suppose

find_stld_pair f r = LAS (pc2, val2, r1). Consider the invariant Plas(f ,r, typ,pc2,val2):

λconfig.λS.∀σ ∈ S.σ.

(f = σ. f ∧ Jval2Kσ.δ = bv2c∧ JrKσ.δ = bblkc∧

alive(pc2,σ.pc)) =⇒ load(S.M, typ,blk) = bv2c

Using Lemma 34, we have that:

Lemma 36. If promotable(f ,r), then alive(pc2,r1) and config,Plas(f ,r, typ,pc2,val2) ` S holds

at any reachable state S.

Let two programs relate to each other if they have the same program states. Lemma 36 estab-

lishes that the substitution in LAS is correct. The following lemma shows that removal of unused

instructions preserves semantics in general.

89

Globals Allocated

v1 v2 v3 v4

Memory simulation Frame simulation

v1 v2 v3 v4

v1' v3' v4'

Promotable

Allocation

DSE

DAE

r1 r2 r3 r4

~ ~ ~

= = = =

Figure 8.9: The simulation relation for DSE and DAE

Lemma 37. If check insn = false ⇒ f does not use insn, and ` prog, then prog ⊇

prog{filtercheck f/ f}.

Lemma 32 shows that the precondition of Lemma 37 holds after the substitution in LAS. Finally,

we have that:

Lemma 38. LAS preserves semantics.

SAS/DSE/DAE Here we discuss only the simulation relations used by the proofs. SAS removes a

store to a promotable allocation overwritten by a following memory write. We consider a memory

simulation that is the identity when the program counter is outside the SAS pair, but ignores the

promotable alloca when the program counter is between the pair. Due to Lemma 34 and the fact

that there is no load between a SAS pair, no temporaries or other memory locations can observe the

value stored at the promotable alloca between the pair.

Figure 8.9 pictorially shows the simulation relations between the program states before and

after DSE or DAE. Shaded memory blocks contain uninitialized values. The program states on the

top are before DSE, where r2 is a temporary that holds the promotable stack allocation and is not

used by any loads. After DSE, the memory values for the promotable allocation may not match

the original program’s corresponding block. However, values in temporaries and all other memory

90

locations must be unchanged (by Lemma 34). Note that unmatched memory states only occur after

the promotable allocation; before the allocation, the two memory states should be the same.

The bottom part of Figure 8.9 illustrates the relations between programs before and after DAE.

After DAE, the correspondence between memory blocks of the two programs is not bijective, due

to the removal of the promotable alloca. However, there must exist a mapping ∼ from the output

program’s memory blocks to the original program’s memory blocks. The simulation requires that

all values stored in memory and temporaries (except the promotable allocation) are equal modulo

the mapping ∼.

φ-nodes elimination Consider r = phi typ [valj, lj]
j

(an AH φ-node) where all the valj’s are either

equal to r or some val′. Lemma 33 showed that f ` val′� r. Intuitively, at any pc that both val′ and

r strictly dominate, the values of val′ and r must be the same. Consider the invariant Pah(f ,r,val′):

λconfig.λS.∀σ ∈ S.σ.

f = σ. f ∧ JrKσ.δ = bv1c∧ Jval′Kσ.δ = bv2c=⇒ v1 = v2

Lemma 39. config,Pah(f ,r,val′) ` S holds for any reachable program state S.

Lemma 39 establishes that the substitution in φ-nodes elimination is correct by using the identity

relation. Lemma 32 and Lemma 37 show that removing dead φ-nodes is correct.

8.3.4 The correctness of vmem2reg

Our main result, fully verified in Coq, is the composition of the correctness proofs for all the micro

program transformations:

Theorem 40 (vmem2reg is correct). If f ′ = vmem2reg f and ` prog, then ` prog{ f ′/ f} and

prog⊇ prog{ f ′/ f}.

8.4 Extraction and Performance Evaluation

This section shows that (1) an implementation of vmem2reg extracted directly from the Coq code

can successfully transform actual programs and (2) vmem2reg is almost as effective at optimizing

code as LLVM’s existing unverified implementation in C++.

91

0%

50%

100%

150%

200%

sp
ee

d
u
p
 o

v
er

 L
L

V
M

-O
0

Extracted vmem2reg LLVM’s mem2reg

go
compress ijpeg gzip vpr mesa art

ammp
equake

bzip2
libquantum lbm milc sjeng

Geo. mean

Figure 8.10: Execution speedup over LLVM -O0 for both the extracted vmem2reg and the original
mem2reg.

Extracted vmem2reg and experimental methodology We used the Coq extraction mechanism

to obtain a certified implementation of the vmem2reg optimization directly from the Coq sources

(which are 838 lines to specify the algorithm). mem2reg is the first optimization pass applied by

LLVM2, so we tested the efficacy of the extracted implementation on LLVM IR bitcode gener-

ated directly from C source code using the clang compiler. At this stage, the LLVM bitcode is

unoptimized and in “trivial” SSA form (as was discussed earlier). To prevent the impact of this op-

timization pass from being masked by subsequent optimizations, we apply either LLVM’s mem2reg

or the extracted vmem2reg to the unoptimized LLVM bitcode and then immediately invoke the

back-end code generator. We evaluate the performance of the resultant code on a 2.66 GHz Intel

Core 2 processor running benchmarks selected from the SPEC CPU benchmark suite that consist

of over 336k lines of C source code in total.

Figure 8.10 reports the execution time speedups (larger is better) over a LLVM’s-O0 compilation

baseline for various benchmarks. The left bar of each group shows the speedup of the extracted

vmem2reg, which provides an average speedup of 77% over the baseline. The right bar of each

group is the benefit provided by LLVM’s mem2reg, which provides 81% on average; vmem2reg

captures much of the benefit of the LLVM’s mem2reg.

Comparing vmem2reg and mem2reg The vmem2reg pass differs from LLVM’s mem2reg in a few

ways. First, mem2reg promotes allocas used by LLVM’s intrinsics, while vmem2reg conservatively

considers such allocas to potentially escape, and so does not promote them. We determined that

such intrinsics (used by LLVM to annotate the liveness of variable definitions) lead to almost all

the difference in performance in the equake benchmark. Second, although vmem2reg deletes most

2All results reported are for LLVM version 3.0.

92

0

1

10

100

1000

10000

co
m

pi
la

tio
n

ov
er

he
ad

 o
ve

r
m

em
2r

eg Imperative vmem2reg-O2 Extracted vmem2reg

Extracted vmem2reg-O1 Extracted vmem2reg-O2

go
compress ijpeg gzip vpr

mesa art
ammp

equake
bzip2

parser
twolf bzip2 mcf

hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Figure 8.11: Compilation overhead over LLVM’s original mem2reg.

unused φ-nodes, it does not aggressively remove them and, therefore, does not generate fully pruned

SSA as mem2reg does. However, our results show that this does not impose a significant difference

in performance.

8.5 Optimized vmem2reg

The algorithm of vmem2reg is designed with verification in mind, but it is not efficient in practice:

Figure 8.11 shows that on average vmem2reg is 329 times slower than mem2reg in terms of compile-

time. Such an inefficient design is aimed at streamlining the presentation of the proof techniques

we developed for SSA, such that our research can focus on the crucial part of the problem—

understanding how the proofs should go. This section shows how to design an efficient algorithm

based on vmem2reg, and verify its correctness by extending the proofs for vmem2reg.

The costs of vmem2reg include (1) the pessimistic φ-node insertion algorithm, which introduces

unnecessary φ nodes that lead to more inserted loads and stores to remove; and (2) the pipelined

strategy that requires much more passes than necessary. Given a CFG with N nodes and I instruc-

tions and a promotable alloca, vmem2reg, in the worst case, first inserts N φ nodes and N “Load

After Store” or “Load After Alloca” pairs, then takes N passes to promote the loads and stores, and

finally takes at most N passes to remove AH φ-nodes. Therefore, the complexity of vmem2reg is

O(N ∗ I).

To address the compilation overhead, we implemented two improved algorithms: vmem2reg-O1

and vmem2reg-O2 in terms of the difficulty for reasoning about their correctness. Section 8.5.1

shows vmem2reg-O1 that composes the pipelined elimination passes into a single pass. Sec-

93

promote alloca

 eliminate store/load

 via block lists

φ-nodes

placement
DAEDSE

 eliminate:

 - AH φ-nodes

 - D φ-nodes

find

promotable

alloca

lookup compose
substitute

delete

Figure 8.12: Basic structure of vmem2reg-O1

tion 8.5.3 shows vmem2reg-O2 that improves vmem2reg-O1 by placing the minimal number of

φ nodes at domination frontier, and does not need the AH φ-node elimination pass. Note that

vmem2reg-O1 is verified in Coq, and vmem2reg-O2 is not fully verified in Coq.

8.5.1 O1 Level—Pipeline fusion

Figure 8.12 gives the structure of vmem2reg-O1, which takes one pass to collect all LAS/LAA pairs

and then uses one more pass to remove them. Figure 8.13 presents the composed elimination

algorithm (eliminate_stld). We denote each micro elimination by actions ac.

Actions ac : : = r 7→ val Lists of Actions AC : : = /0 | ac,AC

Here, r 7→ val denotes LAS (r, pc, val) or LAA r with the default memory value val. Note that unlike

vmem2reg the optimized version does not consider SAS because (1) the later DSE removes all dead

stores in one pass (2) vmem2reg-O2 (in Section 8.5.3) needs to traverse all subtrees to find SAS,

which does not lead to a simple algorithm.

To find all initial elimination pairs AC, eliminate_stld traverses the list of blocks of

a function, finds elimination pairs for each block (by find_stld_pairs_block), and then

concatenates them. At each block, we use stld_state to keep track of the search state (by

find_stld_pairs_cmd): STLD_INIT is the initial state; STLD_AL typ records the element type

of the memory value stored at the latest promotable allocation; STLD_ST val records the the value

stored by the latest store to the promotable allocation. When find_stld_pairs_cmd meets a

load, it generates an action in terms of the current state.

Consider the following code in Figure 8.14 with entry l1. The algorithm finds a list of actions:

r4 7→ r3,r5 7→ r4,r2 7→ r1,r3 7→ r2,r6 7→ r3, /0, which forms a tree because SSA ensures acyclicity of

94

let find_stld_pair_cmd r acc c: stld_state * Action list =

let (st, AC) = acc in

match c with

| r0 := alloca typ→ if r = r0 then (STLD_AL typ, AC) else acc

| store typval1 r2 → if val1 usesr0 then (STLD_ST val1, AC) else acc

| r0 := load(typ∗)r1 →
if r = r1 then

match st with

| STLD_ST val → (st, (r0 7→ val,AC))
| STLD_AL typ→ (st, (r0 7→ undef typ,AC))
| _→ acc

end

else acc

| _→ acc

end

let find_stld_pairs_block r acc b: stld_state * Action list =

let (_ _ c _) = b in

fold_left (find_stld_pair_cmd r) c acc

let eliminate_stld r f =

let fheader{b} = f in

let AC = flat_map (rev (snd (find_stld_pairs_block r (STLD_INIT, /0)))) b in

AC(f)

Figure 8.13: eliminate stld of vmem2reg-O1

def/use chains. However, we cannot simply take a pass that, for each r 7→ val, replaces all uses of

r by val, and then deletes the definition of r, because the later actions may depend on the former

ones—for example, after applying r4 7→ r3, the action r5 7→ r4 should update to r5 7→ r3; and the

later actions can also affect the former ones—the action r3 7→ r2 will change the first action to be

r4 7→ r2.

To address the problem, we first define the basic operations for actions:

AC[r] = bvalc when r 7→ val ∈ AC AC{val} = val′ when AC[val] = bval′c

AC[val] = · otherwise = val otherwise

AC{val/r} , /0{val/r} = /0

(r0 7→ val0,AC){val/r} = r0 7→ val0{val/r},AC{val/r}

AC(val) , /0(val) = val

(r0 7→ val0,AC)(val) = AC(val{val0/r0})

95

l 2
:·
·· st
or

ei
nt

r 3
r 0

r 4
:=

lo
ad

(i
nt
∗)

r 0
st

or
ei

nt
r 4

r 0
r 5

:=
lo

ad
(i

nt
∗)

r 0
re

ti
nt

r 5
l 1

:r
0

:=
al

lo
ca

in
t

··
·

st
or

ei
nt

r 1
r 0

r 2
:=

lo
ad

(i
nt
∗)

r 0
st

or
ei

nt
r 2

r 0
r 3

:=
lo

ad
(i

nt
∗)

r 0
··
·

br
r 7

l 2
l 3

l 3
:·
·· st
or

ei
nt

r 3
r 0

r 6
:=

lo
ad

(i
nt
∗)

r 0
re

ti
nt

r 6

r 3 r 6
r 3r 2

r 6
r 3r 1

r 6
r 2

r 3r 1

r 6
r 2

r 4 r 5

r 1

r 3
r 2

r 4
r 6

r 5
s
te

p
 1

s
te

p
 2

s
te

p
 3

s
te

p
 4

s
te

p
 5

r 1

r 3
r 2

r 4
r 6

r 5

r 1 r 3
r 2

r 4

r 6

r 5

r 1 r 3r 2

r 4
r 6

r 5
A

C
A

C
A

C

A
C

C
a

lc
u

la
ti
o

n
 o

f

Fi
gu

re
8.

14
:T

he
op

er
at

io
ns

fo
re

lim
in

at
io

n
ac

tio
ns

96

promote alloca

 eliminate store/load

 via dominator trees
Minimal

φ-nodes

placement
DAEDSE

find

promotable

alloca

lookup compose
substitute

delete

Figure 8.15: Basic structure of vmem2reg-O2

where AC[val] finds the value mapped from val; AC{val} returns AC[val] if val is mapped to some

value, otherwise returns val; AC{val/r} substitutes r in all substitutees of AC by val; AC(val)

applies AC to val. Given the basic operations, we define

−→
AC ,

−→
/0 = /0

←−
AC ,

←−
/0 = /0

−−−−−−−−−→
(r 7→ val,AC) = r 7→ val,

−−−−−−−−→
(AC{val/r})

←−−−−−−−−−
(r 7→ val,AC) = r 7→ AC(val),

←−
AC

←→
AC ,

←−−→
AC AC , /̃0 = /0

(r 7→ val,AC) = r 7→ AC{val},(AC){AC{val}/r}

Here,
−→
AC applies all the former substitutions to the later actions;

←−
AC applies all the later substitu-

tions to the former actions;
←→
AC composes

−→
AC and

←−
AC, actually equals to the actions that vmem2reg

finds in the pipelined transformation. Figure 8.14 gives the calculation of
←→
AC whose result is a flat-

tened tree with height one. The complexity of
−→
AC and

←−
AC are O((log(N) ∗N2) where the log(N)

is from the absence of efficient, purely functional hash tables. Applying actions to a function costs

O(log(N)∗ I). Note that in practice I is much larger than N.

In fact, we can compute
←→
AC with a faster algorithm AC that processes the initial actions from

right to left, and has the invariant that the trees of its intermediate forest are flattened. Figure 8.14

gives the calculation of AC. The complexity of AC is O((log(N)∗N2), which is the half of
←→
AC’s.

Figure 8.11 shows that on average vmem2reg-O1 is 22 times slower than mem2reg in terms of

compile-time. The next section shows the correctness of vmem2reg-O1.

97

8.5.2 The Correctness of vmem2reg-O1

This section shows the correctness of vmem2reg-O1 (which are fully verified in Coq). The follow-

ing diagram shows the proof structure for the correctness of vmem2reg-O1.

prog0 ⊇ prog1 = prog0{ac0(f0)/ f0} ⊇ prog2 = prog1{ac1(f1)/ f1} ⊇ ·· · ⊇ progn = progn−1{acn−1(fn−1)/ fn−1}

= ?

prog0 ⊇? prog′ = prog0{
←→
AC(f0)/ f0}

= ?

prog0 ⊇? prog′′ = prog0{AC(f0)/ f0}

Suppose that we optimize the function f0 in a program prog0. Let aci be the elimination action

applied in the i-th step of vmem2reg, fi be the function after the i-th step from f0, and progi be the

function after the i-th step from prog0. By composing Theorem 40, we can prove that progn refines

prog0:

Theorem 41 (Composition of vmem2reg). If ` prog0, then ` progn and prog0 ⊇ progn.

To show that vmem2reg-O1 is correct, we only need to show that prog0{AC(f0)/ f0} equals to

progn. To simplify reasoning, we prove that both of them equal to prog0{
←→
AC(f0)/ f0}.

The equivalence of prog0{
←→
AC(f0)/ f0} and progn

Theorem 42. If prog ` f0, then prog0{
←→
AC(f0)/ f0}= progn. 3

The equivalence of prog0{AC(f0)/ f0} and prog0{
←→
AC(f0)/ f0}

Figure 8.14 gives the following observations: (1) the SSA form ensures that the original AC is

acyclic, and forms a tree; (2)
←→
AC and AC computed from an acyclic AC form the same “flattened”

tree. To formalize the observations, we first define the following functions and predicates:

1. Paths ρ: connected definitions. For example, < r3,r2,r1,r0 > denotes

r0→ r1→ r2→ r3

2. (r,val) ∈ ρ: an edge from r to val is in a path ρ.

3. < r,ρ >: extend the path ρ at head with r.

4. < ρ,val >: extend the path ρ at tail with val.
3Here, we omit the proofs. See our Coq development.

98

5. ρ;ρ′: connect two paths ρ and ρ′.

6. (r,val) ∈ AC: AC maps r to val.

7. ρ⊆ AC: ∀r, if (r,val) ∈ ρ, then (r,val) ∈ AC.

8. AC ` val1
ρ

−→∗ val2: a path < val2,ρ > from val1 to val2 defined in terms of AC—

< val2,ρ >⊆ AC.

9. AC ` val1
ρ

(∗ val2: AC ` val1
ρ

−→∗ val2 and val2 is a root of AC—AC[val2] = ·. We also

define an algorithm for finding roots:

AC ⇑ r : (AC1;r 7→ r1,AC2) ⇑ r = (AC1;AC2) ⇑ r1

= r

10. AC⇒ AC′: ∀r val, if AC ` r
ρ

−→∗ val, then ∃ρ′, AC′ ` r
ρ′

−→∗ val.

11. AC =]AC′: ∀r val, if AC ` r
ρ

(∗ val, then ∃ρ′, AC′ ` r
ρ′

(∗ val.

12. AC[=]AC′: AC =]AC′ and AC′ =]AC.

13. ¬@AC: ∀ρ⊆ AC, ρ is acyclic.

14. ⇑ AC: if AC = AC1;r 7→ val,AC2, then r /∈ codom(AC2).

15. uniqAC: the domain of AC is unique.

16. 2AC: ∀(r1,r2) ∈ AC,¬∃val.(r2,val) ∈ AC.

AC is well-formed

Lemma 43. If prog ` f , f header{b} = f , and AC = flat map (rev (snd (find stld pairs block r

(STLD INIT, /0)))) b, then uniqAC and ¬@AC.

The equivalence of AC and
−→
AC

We first prove the facts about substituting codomains of AC—AC{val/r}, which are useful for

reasoning about
−→
AC.

Lemma 44. If (r,val) ∈ AC and ¬val usesr′, then (r,val) ∈ AC{val′/r′}.

99

Lemma 45. If AC ` r
ρ

−→∗ val and r′ /∈ rl < val,ρ >, then AC{val′/r′} ` r
ρ

−→∗ val (Here, rl

denotes removelast.)

Proof (sketch): Because r′ /∈ rl < val,ρ >, all targets of the edges in < val,ρ > do not use r′. By

Lemma 44, we prove that AC{val′/r′} has the same path from r to val.

Lemma 46. If (r′,val′) /∈ AC and (r′,val′) ∈ AC{val/r}, then (r′,r) ∈ AC and val = val′.

Lemma 47. If (r′,r) ∈ AC, then (r′,val) ∈ AC{val/r}.

Lemma 48. If uniqAC, ¬@AC and (r,val) ∈ AC, then AC =]AC{val/r}.

Proof (sketch): Consider AC ` r0

ρ

(∗ val0. If r /∈ rl < val0,ρ >, Lemma 45 concludes. If

r ∈ rl < val0,ρ >, by uniqAC, ¬@AC and that val0 is a root, we can partition < val0,ρ > as

below:

r0

ρ1

−→∗ r′→ r→ val
ρ2

(∗ val0

Here, r /∈ rl < r′,ρ1 > and r /∈< val0,ρ2 >.

Consider the path ρ′:

r0

ρ1

−→∗ r′→ val
ρ2

(∗ val0

By Lemma 47, (r′,val) ∈ AC{val/r}. By Lemma 45, AC{val/r} ` r0

ρ1

−→∗ r′ and AC{val/r} `

val
ρ2

−→∗ val0. This concludes the proofs.

Lemma 49. If uniqAC and (r,val) ∈ AC, then AC{val/r}⇒ AC.

Proof (sketch): Consider AC{val/r} ` r0

ρ′

−→∗ val0. We can partition ρ′ as below:

r0

ρ0

−→∗ r′0→ val′0
ρ1

−→∗ r′1→ val′1 · · ·r′n→ val′n
ρn

−→∗ val0

Here, (r′i,val′i) /∈ AC, and < r′i,ρi >⊆ AC when i < n, and < val0,ρn >⊆ AC.

We construct the path ρ:

r0

ρ0

−→∗ r′0→ r→ val
ρ1

−→∗ r′1→ r→ val · · ·r′n→ r→ val
ρn

−→∗ val0

Lemma 46 shows that (r′i,r) ∈ AC and val′i = val. Therefore, AC ` r0

ρ

−→∗ val0.

By Lemma 48 and Lemma 49, we have that:

100

Lemma 50. If uniqAC, ¬@AC and (r,val) ∈ AC, then AC{val/r}[=]AC.

By Lemma 49, we have that:

Lemma 51. If uniqAC, (r,val) ∈ AC, and ¬@AC, then ¬@AC{val/r}.

Lemma 52. If ¬val usesr, then r /∈ codom(AC{val/r}).

Lemma 53. If uniqAC, then uniq(AC{val/r}).

We also need the following properties about weakening:

Lemma 54. If AC1⇒ AC2, then AC;AC1⇒ AC;AC2.

Proof. By induction of AC. Consider the inductive case AC = r0 7→ val0,AC′. Consider AC;AC1 `

r
ρ

−→∗ val. Partition < r,ρ > into

r
ρ0

−→∗ r0→ val0
ρ1

−→∗ r0→ val0 · · ·r0→ val0
ρn

−→∗ val

where (r0,val0) /∈< r,ρ0 > and (r0,val0) /∈< val0,ρi > where i > 0.

Consider each AC;AC1 ` vali
ρi

−→∗ val′i . Because (r0,val0) /∈< vali,ρi > and IH, AC′;AC2 `

vali
ρ′i
−→∗ val′i . So, AC;AC2 ` vali

ρ′i
−→∗ val′i . The proof concludes by ρ′ :

r
ρ′0
−→∗ r0→ val0

ρ′1
−→∗ r0→ val0 · · ·r0→ val0

ρ′n
−→∗ val

Lemma 55. If AC1 =]AC2, uniq(AC;AC1) and domAC1 = domAC2, then AC;AC1 =]AC;AC2.

Proof. By induction of AC. Consider the inductive case AC = r0 7→ val0,AC′. Consider AC;AC1 `

r
ρ

(∗ val. Partition < r,ρ > into

r
ρ0

−→∗ r0→ val0
ρ1

−→∗ r0→ val0 · · ·r0→ val0
ρn

(∗ val

where (r0,val0) /∈< r,ρ0 > and (r0,val0) /∈< val0,ρi > where i > 0.

Consider each AC;AC1 ` vali
ρi

−→∗ val′i . Because (r0,val0) /∈< vali,ρi >, AC′;AC1 ` vali
ρi

−→∗

val′i . By uniq(AC;AC1), AC′;AC1 ` vali
ρi

(∗ val′i . By IH, AC′;AC2 ` vali
ρ′i
(∗ val′i . So, AC;AC2 `

vali
ρ′i
−→∗ val′i .

101

Because val0 is the root of AC;AC1 and domAC1 = domAC2, val0 must also be the root of

AC;AC2.

The proof concludes by ρ′:

r
ρ′0
−→∗ r0→ val0

ρ′1
−→∗ r0→ val0 · · ·r0→ val0

ρ′n
(∗ val

By Lemma 55, we have:

Lemma 56. If AC1[=]AC2, uniq(AC;AC1), uniq(AC;AC2) and domAC1 = domAC2, then

AC;AC1[=]AC;AC2.

By Lemma 54, we have:

Lemma 57. If AC2⇒ AC1, then ¬@AC;AC1 ⇒ ¬@AC;AC2.

With the above properties, we prove that AC and
−→
AC are equivalent.

Lemma 58. If uniqAC and ¬@AC, then
−→
AC[=]AC.

Proof. By induction on the length of AC. The base case is trivial. Consider the case AC = r 7→

val,AC′. We have
−→
AC = r 7→ val,

−−−−−−−−−→
(AC′{val/r}). By Lemma 50, AC[=]r 7→ val{val/r},AC′{val/r}.

Because of ¬@AC, val{val/r}= val. We conclude by IH and Lemma 56.

The equivalence of AC and
←−
AC

Lemma 59.

1. If ¬@AC, r ∈ dom(AC)∨ r ∈ codom(AC) and AC ⇑ r = val, then AC ` r
ρ

(∗ val.

2. If uniqAC, ¬@AC and AC ` r
ρ

(∗ val, then AC ⇑ r = val.

Lemma 60.

1. AC[r] = bcnstc iff
−→
AC[r] = bcnstc.

2. AC[r] = · iff −→AC[r] = ·.

Lemma 61. If uniqAC and ¬@AC, then
−→
AC⇒ AC and ¬@

−→
AC.

102

By Lemma 58, Lemma 60, Lemma 59 and Lemma 61,

Theorem 62. If uniqAC and ¬@AC, then AC ⇑ r =
−→
AC ⇑ r.

Lemma 63. If r /∈ dom(AC) and r /∈ codom(AC), then r /∈ codom(
−→
AC).

All elements in
−→
AC are sorted in terms of AC—⇑ −→AC.

Lemma 64. If uniqAC and ¬@AC, then ⇑ −→AC.

Proof (sketch): By induction on the length of AC. Consider the case AC = r 7→ val,AC′ and
−→
AC = r 7→ val,

−−−−−−−−−→
(AC′{val/r}). By Lemma 51 and Lemma 53, ¬@AC′{val/r} and uniqAC′{val/r}.

Let
−→
AC = AC1;r1 7→ val1,AC2. If (r1,val1) ∈ AC′{val/r}, the proof is by IH—⇑ AC′{val/r}.

Otherwise, if r1 = r and val1 = val, the proof is by Lemma 52 and Lemma 63.

Lemma 65. If uniq(AC1;r1 7→ r2,AC2), then (AC1;r1 7→ r2,AC2)(r1) = AC2(r2).

Lemma 66. If uniq(AC1;r1 7→ r2,AC2) and ⇑ (AC1;r1 7→ r2,AC2), then (AC1;AC2) ⇑ r2 = AC2 ⇑

r2.

Lemma 67. If uniqAC and ⇑ AC, then AC(r) = AC ⇑ r.

Proof (sketch): By induction on the length of AC. It is trivial if AC does not map r. Consider the

case AC = AC1;r 7→ r′,AC2.

AC ⇑ r = (AC1;AC2) ⇑ r′ definition

= AC2 ⇑ r′ By Lemma 66

= AC2(r′) By IH

= AC(r′) By Lemma 65

Theorem 68. If uniqAC and ⇑ AC, then
←−
AC[r] = AC ⇑ r.

Proof (sketch): It is trivial if AC does not map r. Consider the case AC = AC1;r 7→ r′,AC2.
←−
AC[r] = AC′1;r 7→ (

←−−
AC2(r′)),

←−−
AC2[r] definition

=
←−−
AC2(r′) definition

= AC2 ⇑ r′ By Lemma 67

= (AC1;AC2) ⇑ r′ By Lemma 66

= AC ⇑ r definition

103

The equivalence of AC and
←→
AC

Theorem 69. If uniqAC and ¬@AC, then
←→
AC[r] = AC ⇑ r.

Proof (sketch):

AC ⇑ r =
−→
AC ⇑ r By Theorem 62

=
←→
AC[r] By Theorem 68 and Lemma 64

The equivalence of AC and AC

Lemma 70. If uniq(AC1;AC) and ¬@(AC1;AC), then ¬@(AC1;AC) and 2AC.

Proof (sketch): To streamline the presentation, we show the proofs separately in the following. We

first show ¬@(AC1;AC).

1. By induction of AC. Consider the case AC = r 7→ val,AC′. By IH, ¬@(AC1;r 7→ val,AC′).

By Lemma 49 and Lemma 57, ¬@(AC1;r 7→ val{val/r},(AC′){val/r}). By ¬@(AC1;AC),

val{val/r}= val, so ¬@(AC1;r 7→ val,(AC′){val/r}).

It is trivial if val is a constant. Suppose val = r′. If (AC′){r′} = r′, it is trivial. If

(AC′){r′}= val′, then (r′,val′) ∈ AC′. By acyclicity, ¬val′usesr. By Lemma 44, (r′,val′) ∈

AC′{r′/r}. By Lemma 49 and Lemma 57, ¬@(AC1;r 7→ r′{val′/r′},(AC′){r′/r}{val′/r′}).

Because 2AC′ (by IH), (AC′){r′/r}{val′/r′} = (AC′){val′/r}. Therefore, ¬@(AC1;r 7→

val′,(AC′){val′/r}).

2. Proving 2AC is equivalent to prove that if ¬@AC and AC[r] = bvalc, then AC[val] = ·.

By induction on AC. Consider the case AC = r 7→ r′,AC′, and AC = r 7→ val′,(AC′){val′/r}

where val′ = (AC′){r′} and (r′,val′) ∈ AC′. By the first part of the proof, ¬@AC.

Suppose AC[r1] = br2c. Case r1 = r and r2 = val′. By acyclicity, ¬val′usesr. By IH,

AC[r2] = ·.

Case r1 6= r. AC[r1] = (AC′){val′/r}[r1] = br2c. Therefore, AC′[r1] = br′2c where r2 =

r′2{val′/r}. By IH, AC′[r′2] = ·, so (AC′){val′/r}[r′2] = ·.

If r′2 6= r, then r2 = r′2 and it is trivial. If r′2 = r, then r2 = val′ and the proof is by IH.

104

Lemma 71. If ¬@AC, then AC[=]AC.

Proof (sketch): By induction on AC. Consider the case AC = r 7→ r′,AC′. Let val′ = (AC′){r′}.

By Lemma 70, ¬@(r 7→ r′,AC′). So, (r,val′) ∈ (AC′){r′/r}.

AC = r 7→ val′,AC′{val′/r}

= r 7→ r′{val′/r′},AC′{r′/r}{val′/r′}

= (r 7→ r′,AC′{r′/r}){val′/r′}

[=] (r 7→ r′,AC′{r′/r}) By Lemma 50

= (r 7→ r′,AC′){r′/r} By acyclicity

[=] (r 7→ r′,AC′) By Lemma 50

[=] (r 7→ r′,AC′) By Lemma 56 and IH

By Lemma 71, Lemma 70 and Lemma 59,

Theorem 72. If uniqAC and ¬@AC, then AC[r] = AC ⇑ r.

The equivalence of AC and
←→
AC

By Theorem 72 and Theorem 69,

Theorem 73. If uniqAC and ¬@AC, then AC[r] =
←→
AC[r].

The correctness of vmem2reg-O1
By Theorem 41, Theorem 73, Lemma 43 and Theorem 42,

Theorem 74 (vmem2reg-O1 is correct). If f ′ = vmem2reg-O1 f and ` prog, then ` prog{ f ′/ f}

and prog⊇ prog{ f ′/ f}.

8.5.3 O2 Level—Minimal φ-nodes Placement

vmem2reg-O1 addresses one kind of compile-time cost by “fusing” micro passes. To address the

other cost—the number of φ-nodes, we implemented vmem2reg-O2 based on vmem2reg-O1, which

is shown in Figure 8.15.

105

let find_stld_pairs_dtree r (acc:stld_state * Action list) (dt:DTree)

: stld_state * Action list =

match dt with

| DT_node b dts→ find_stld_pairs_dtrees r (find_stld_pairs_block r acc b) dts

end

with find_stld_pairs_dtrees r (acc:stld_state * Action list) (dts:DTrees)

: stld_state * Action list =

match dts with

| DT_nil→ acc

| DT_cons dt dts’→
let (_, AC) = find_stld_pairs_dtree r acc dt in

find_stld_pairs_dtrees r (fst acc, AC) dts’

end

let eliminate_stld r f =

let dt = construct_dtree f in

let AC = rev (snd (find_stld_pairs_dtree r (STLD_INIT, /0) dt)) in

AC(f)

Figure 8.16: eliminate stld of vmem2reg-O2

vmem2reg-O2 places the minimal number of φ-nodes by the dominance-frontier algorithm im-

plemented in Section 3.5. Our experiments show that on average, the algorithm only introduces 1/8

of the φ-nodes of the pessimistic one and does not need the additional AH φ-node elimination pass.

vmem2reg-O2 does not insert φ-nodes at every block, so LAS/LAA pairs may appear across

blocks. To find them, Figure 8.16 extends the algorithm in Figure 8.13 by depth-first-searching

functions’ dominator trees (which are computed by the algorithm in Section 3.4).

Although vmem2reg-O2 has the same complexity as vmem2reg-O1, Figure 8.11 shows that on

average vmem2reg-O2 is 5.9 times slower than mem2reg in terms of compile-time. To study the

overhead cause by the purely functional programming, we also implemented the C++ version of

vmem2reg-O2. Because it uses constant-time hashtables and does alias-based substitution, the C++

version’s complexity is O(I). In practice, Figure 8.11 shows that its compile-time is 0.63 time of

mem2reg’s because we use a slightly more efficient dominance-frontier calculation [24] and do not

allow intrinsics to use promotable allocations.

The correctness of vmem2reg-O2 is composed of two parts. The first part needs to general-

ize the proofs of vmem2reg that assume that LAS/LAA pairs must be in the same block to allow

LAS/LAA pairs in terms of arbitrary domination relations. The second part can reuse the proofs of

106

Record IDFstate := mkIDFst {

IDFwrk : list l;
IDFphi : AVLMap.t unit

}.

Definition IDFstep D DF (st : IDFstate) : AVLMap.t unit + IDFstate :=

let ’(W, Φ) := st in

match W with

| nil => inl Φ

| l0::W ′ => inr (W ′∪ (DF [l0]−D−Φ), Φ∪DF [l0])
end.

Definition IDF D DF :=

PrimIter.iterate _ _ (IDFstep D DF) (D, /0).

Figure 8.17: The algorithm of inserting φ-nodes

vmem2reg-O1 for reasoning about composing micro transformations. The next section shows the

correctness of vmem2reg-O2 (which have not fully been verified in Coq).

8.5.4 The Correctness of vmem2reg-O2

This section shows the correctness of vmem2reg-O2. Note that the proofs are not fully verified in

Coq yet). We first study the algorithms used in vmem2reg-O2 that are omitted by the main part of

the dissertation.

Lemma 75. The dominance frontier computation algorithm in Section 3.5 is correct: the set of

blocks the algorithm calculates for a block l0 equals to l0’s dominance frontier.

Proof. This is equivalent to show that l1 is l0’s dominance frontier iff l1 has a predecessor l2, l0

dominates l2, and l1’s immediate dominator l4 strictly dominates l0. The “if” part is straight-forward.

We present the “only-if” part.

Suppose l2 is l1’s predecessor, l0 dominates l2 and does not strictly dominates l1. Because

dominance relations form a tree, the tree path to l1 and the tree path to l2 must have the same prefix.

Suppose the path of l2 joins l1’s at l3 that strictly dominates l1’s immediate dominator l4. Then,

there must exist a path ρ to l2 that does not go through l4. Otherwise, l4 must strictly dominate l2,

and the tree paths of l1 and l2 must join at l4. However, ρ also reaches l1. This is contradictory to

that l4 strictly dominates l1. Therefore, l4 must be in the same prefix of the two tree paths.

107

l0 cannot dominate l4. Otherwise l0 strictly dominate both l1 and l2. Therefore, l0 must be in the

set of blocks calculated by the algorithm.

Figure 8.17 shows the algorithm that calculates where to insert φ-node [8]: given a promotable

location, all the dominance frontiers of the definitions at the location need φ-nodes. The definitions

of a promotable location include alloca’s of the location, store’s to the location and inserted φ-nodes

for the location. Therefore, the algorithm needs to iteratively insert φ-nodes until all the inserted

φ-nodes also satisfy the above requirement.

The algorithm is implemented by a primitive recursion (PrimIter.iterate) based on a work-

list. IDFstate defines calculation states of each recursion step: IDFwrk is the worklist that records

blocks to process; IDFphi is the blocks that need to insert φ-nodes. Initially, the worklist includes

blocks all with original definitions (which are denoted by D, and only contain alloca’s and store’s)

of a promotable locations. IDFstep, given D and dominance frontiers DF , implements each re-

cursion step. If the current worklist is empty, IDFstep returns the inserted φ-nodes, and stops the

entire recursion. Otherwise, IDFstep picks a block from the worklist, adds the dominance frontiers

that do not have the original and inserted definitions to the worklist, and inserts φ-nodes for the

dominance frontiers.

Lemma 76. IDF (in Figure 8.17) terminates.

Proof. Consider the following measure function:

M(W,Φ) = |W |+N ∗ (N−|Φ|)

Here, || computes the size of a set; N is the number of blocks in the function IDF computes. It is

sufficient to show that

1. M(W,Φ)≥ 0.

2. If IDF D DF (W,Φ) = inr(W ′,Φ′), then M(W,Φ)> M(W ′,Φ′).

The first fact is true because the number of inserted φ-nodes cannot be greater than the number of

all blocks.

Suppose W = l0 :: W ′′, W ′ =W ′′∪ (DF [l0]−D−Φ) and Φ′ = Φ∪DF [l0].

M(W ′,Φ′)−M(W,Φ) = N ∗ (|Φ|− |Φ′|)+ |W ′|− |W |

= N ∗ (|Φ|− |Φ∪DF [l0]|)+ |W ′′∪ (DF [l0]−D−Φ|−1−|W ′′|

108

Consider two cases. The first case is when DF [l0] 6⊂Φ.

M(W ′,Φ′)−M(W,Φ) ≤ N ∗ (|Φ|− (|Φ|+1))+ |W ′′∪Φ|−1−|W ′′|

≤ N ∗ (|Φ|− (|Φ|+1))+ |W ′′|+ |Φ|−1−|W ′′|

= −N + |Φ|−1

< 0

The second case is when DF [l0]⊂Φ.

M(W ′,Φ′)−M(W,Φ) = N ∗ (|Φ|− |Φ|)+ |W ′′|−1−|W ′′|

< 0

Lemma 77. IDF is correct: if IDF D DF (D, /0) = inlΦ, then ∀l0 ∈ D∪Φ, DF [l0]⊂ D∪Φ.

Proof. In general, consider the following invariant:

INV DDF (W,Φ) = ∀l0 ∈ D∪Φ, l0 ∈W ∨DF [l0]⊂ D∪Φ

It is sufficient to show that

If IDF D DF (W,Φ) = inr(W ′,Φ′) and INV DDF (W,Φ), then INV DDF (W ′,Φ′).

It is trivial if W is empty. Consider W = l1 :: W ′′, W ′ = W ′′ ∪ (DF [l1]−D−Φ) and Φ′ =

Φ∪DF [l1]. Suppose l0 ∈ D∪Φ′.

1. l0 ∈ D∪Φ: By assumption, l0 ∈W ∨DF [l0]⊆ D∪Φ.

a) l0 ∈W = l1 :: W ′′:

i. l0 = l1: DF [l1]⊆Φ∪DF [l1] = Φ′ ⊆ D∪Φ′

ii. l0 ∈W ′′: l0 ∈W ′ =W ′′∪ (DF [l1]−D−Φ)

b) DF [l0]⊆ D∪Φ: DF [l0]⊆ D∪ (Φ∪DF [l1]) = D∪Φ′:

2. l0 ∈ DF [l1]∧ l0 /∈ D∪Φ: l0 ∈ (DF [l1]−D−Φ)⊆W ′ =W ′′∪ (DF [l1]−D−Φ).

By Lemma 75 and the proofs in [28], we have that

109

Lemma 78. Given the dominance frontier calculated by the algorithm in Section 3.5, IDF and

the iterated path-convergence criterion [8] specify exactly the same set of nodes at which to put

φ-nodes.

By Lemma 75 and Lemma 77, we prove that

Lemma 79. After the φ-node insertion of vmem2reg-O2, given a load to r1 from a promotable

location,

1. If there exists a store with value val2 to the promotable location at program counter pc2 and

the store is the closest one that dominates the load, we have LAS (r1, pc2, val2): in other

words, there are no other store’s to the location between the load and the store.

2. Otherwise, we have LAA r1: in other words, there are no other store’s to the location between

the load and the alloca.

Proof. We present the proofs of the first fact. Suppose between pc2 and r1 there exists a simple

path ρ that goes through another store to the location. Consider the closest store at pc3 to r1 on

ρ. Because pc2 is the closest store that dominates r1, there must exist a path ρ′ from pc2 to r1

that bypasses pc3, and ρ and ρ′ join between pc3 and r1. In terms of the iterated path-convergence

criterion and Lemma 78, a φ-node and a corresponding store must be inserted at the joint point.

Therefore, pc3 is not the closest store to r1 on ρ.

Finally, by Lemma 79, we need the following extended lemma for reasoning about

vmem2reg-O2.

Lemma 80. LAS/LAA are correct with respect to arbitrary domination relations (Section 8.3 re-

quires that domination relations must be in the same block).

110

Chapter 9

The Coq Development

This chapter summarizes our Coq development.

9.1 Definitions

Table 9.1 shows the size of our development. Note that the size of the formalism of vmem2reg-O1

does not include the development of vmem2reg. Vellvm encodes the abstract syntax from Chapter 6

in an entirely straightforward way using Coq’s inductive datatypes (generated in a preprocessing

step via the Ott [60] tool). The implementation uses Penn’s Metatheory library [13], which was

originally designed for the locally nameless representation, to represent identifiers of the LLVM,

and to reason about their freshness.

The Coq representation deviates from the full LLVM language in only a few (mostly minor)

ways. In particular, the Coq representation requires that some type annotations be in normal form

(e.g., the type annotation on load must be a pointer; named types must be sorted in terms of their

dependency), which simplifies type checking at the IR level. The Vellvm tool that imports LLVM

bitcode into Coq provides such normalization, which simply expands definitions to reach the normal

form.

Vellvm’s type system is also represented via Ott [60], and refers to the imperative LLVM

verification pass that checks the well-formedness of LLVM bitcode. The current type system is

formalized by predicates that are not extractable. We leave the extraction as our future work, i.e., a

verified LLVM type checker.

111

Definition Metatheory Total

Coq

Core

Syntax 652 6,443 7,095
Computing dominators 1,658 14,437 16,095
Type system 1,225 6,308 7,533
Memory model (extension) 1,045 7,844 8,889
Operational semantics 1,960 6,443 8,403
Interpreter 228 279 507
Total 5,110 27,317 32,427

App.

SoftBound 762 17,420 18,182
Translation validators 127 9,768 9,895
vmem2reg 2,358 52,138 54,496
vmem2reg-O1 665 10,318 10,983
Total 3,912 89,644 92,556

Vminus 806 21,541 22,347
Total 9,828 138,502 148,330

Total

OCaml
Parser & Printer 2,031
LLVM bindings (extension) 6,369

Table 9.1: Size of the development (approx. lines of code)

Vellvm’s memory model implementation extends CompCert’s with 8,889 lines of code to sup-

port integers with arbitrary precision, padding, and an experimental treatment of casts that has not

yet needed for any of our proofs. On top of this extended memory model, all of the operational

semantics and their metatheory have been proved in Coq.

9.2 Proofs

Checking the entire Vellvm implementation using coqc in a single processor takes about 105 min-

utes on a 1.73 GHz Intel Core i7 processor with 4 GB RAM. We expect that this codebase could be

significantly reduced in size by refactoring the proof structure and making it more modular.

Our formalism uses two logical axioms: functional extensionality and proof irrelevance [1]. We

also use axioms to specify the specification of external functions and intrinsics, and the behavior

of program initialization. The verification of mem2reg relies on about a dozen axioms, almost all

of which define either the initial state of the machine (i.e., where in memory functions and globals

are stored) or the behavior of external function calls. One axiom asserts that memory alignment

112

is a power of two, which is not necessary for LLVM programs in general, but is true of almost all

real-world platforms.

9.3 OCaml Bindings and Coq Extraction

The LLVM distribution includes primitive OCaml bindings that are sufficient to generate LLVM IR

code (“bitcode” in LLVM jargon) from OCaml. To convert between the LLVM bitcode represen-

tation and the extracted OCaml representation, we implemented a library consisting of about 8,400

lines of OCaml-LLVM bindings. This library also supports pretty-printing of the abstract syntax

tree of the LLVM IR; this code was also useful in the extracted interpreter.

113

Chapter 10

Related Work

Verified compilers Compiler verification has a considerable history; see the bibliography of

Leroy [42] for a comprehensive overview. Vellvm is closest in spirit to CompCert [42], which

was the first fully-verified compiler to generate compact and efficient assembly code for a large

fragment of the C language. CompCert also uses Coq. It formalizes the operational semantics

of CompCert C, several intermediate languages used in the compilation, and assembly languages

including PowerPC, ARM and x86. The latest version of CompCert also provides an executable

reference interpreter for the semantics of CompCert C. Based on the formalized semantics, the

CompCert project fully proves that all compiler phases produce programs that preserve the seman-

tics of the original program. Optimization passes include local value numbering, constant propaga-

tion, coalescing graph coloring register allocation [18], and other back-end transformations. It uses

translation validators for certifying advanced compiler optimizations, such as instruction schedul-

ing [68], lazy code motion [69], and software pipelining [70]. The XCERT project [64, 66] extends

the CompCert compiler by a generic translation validator based on SMT solvers.

Other research has also used Coq for compiler verification tasks, including much recent work

on compiling functional source languages to assembly [15, 21, 22].

Formalization for computing dominators The CompCertSSA project [14] improves the Comp-

Cert compiler by creating a verified SSA-based middle-end and a GVN optimization pass. They also

formalize the AC algorithm to validate SSA construction and GVN passes, and prove the soundness

of AC. We implement both AC and CHK—an extension of AC in a generic way, and prove they

114

are both sound and complete. We also provide the corresponding dominator tree constructions, and

evaluate performance.

There are also informal formalizations for computing dominators. Georgiadis and Tarjan [30]

propose an almost linear-time algorithm that validates if a tree is a dominator tree of a CFG.

Although the algorithm is fast, it is nearly as complicated as the LT algorithm, and it requires

a substantial amount of graph theory. Ramalingam [4] proposes another dominator tree validation

algorithm by reducing validating dominator trees to validating loop structures. However, in practice,

most of modern loop identification algorithms used in LLVM and GCC are based on dominance

analysis to find loop headers and bodies.

Formalization for SSA and SSA-based optimizations Verifying the correctness of compiler

transformations is an active research area with a sizable amount of literature. We focus on the work

relevant to SSA-based optimizations.

CompCertSSA verified a translation validator for an SSA construction algorithm that takes

imperative variables to variables in a pruned SSA form. In contrast, our work fully verifies the SSA

construction pass vmem2reg for LLVM directly. A bug in the CompCertSSA compiler will cause the

validator to abort the compilation, whereas verifying the compiler rules out such a possibility. More

pragmatically, translation validation is harder to apply in the context of LLVM, because the compiler

infrastructure was not created with validation in mind. For example, the CompCertSSA translations

maintain a close mapping between source and target variable names so that simulation can be

checked by simple erasure; this is not feasible in the LLVM framework. The CompCertSSA project

reports performance measurements of only small benchmarks totaling about 6k lines, whereas we

have tested our pass on 336k lines, including larger programs.

Unsurprisingly, the CompCertSSA and Vellvm proofs share some similarities. For example,

CompCertSSA’s GVN proof uses an invariant similar to the one in our Theorem 13 and Lemma 17.

However, the LLVM’s strategy of promoting allocas means that our proofs need a combination of

both SSA and aliasing properties to prove correctness. Moreover, our proof technique of pipelining

“micro” transformations is novel, and it should be broadly applicable.

To fully prove GVN, we would need additional properties about congruence-based term equiv-

alence. Although this fits naturally into our framework, Figure 8.2 shows that the combination of

115

GVN with all other optimizations (except mem2reg) does not provide significant speedup—the full

suite of -O2 and -O3 level optimizations only yields a 11% speedup (on average).

The validation algorithm of CompCertSSA is proven to be complete to certificate the classic

SSA construction [28] (which computes dominators by the Lengauer-Tarjan algorithm [40]). Al-

though vmem2reg is based on the Aycock-Horspool algorithm [12], Section 8.5 shows that the

correctness of the classic algorithm is independent to the proofs for vmem2reg, and that the perfor-

mance of the optimized vmem2reg is compatible with the classic algorithm.

Mansky et al. designed an Isabelle/HOL framework that uses control-flow graph rewrites to

transform programs and uses temporal logic and model-checking to specify and prove the correct-

ness of program transformations [45]. They verified an SSA construction algorithm in the frame-

work. Other researchers have formalized specific SSA-based optimizations by using SSA forms

with different styles of semantics: an informal semantics that describes the intuitive idea of the SSA

form [28]; an operational semantics based on a matrix representation of φ nodes [72]; a data-flow

semantics based term graphs using the Isabelle/HOL proof assistant [19]. Matsuno et al. defined a

type system equivalent to the SSA form and proved that dead code elimination and common subex-

pression elimination preserve types [47]. There are also conversions between the programs in SSA

form and functional programs [9, 34].

Validating LLVM optimizations The CoVac project [74] develops a methodology that adapts

existing program analysis techniques to the setting of translation validation, and it reports on a

prototype tool that applies their methodology to verification of the LLVM compiler. The LLVM-

MD project [67] validates LLVM optimizations by symbolic evaluation. The Peggy tool performs

translation validation for the LLVM compiler using a technique called equality saturation [63].

These applications are not fully certified.

Mechanized language semantics There is a large literature on formalizing language semantics

and reasoning about the correctness of language implementations. Prominent examples include:

Foundational Proof Carrying Code [10], Foundational Typed Assembly Language [26], Standard

ML [27, 65], and (a substantial subset of) Java [37].

116

Other mechanization efforts The verified software tool-chain project [11] assures that the

machine-checked proofs claimed at the top of the tool-chain hold in the machine language program.

Typed assembly languages [20] provide a platform for proving back-end optimizations. Similarly,

The Verisoft project [6] also attempts to mathematically prove the correct functionality of systems

in automotive engineering and security technology. ARMor [78] guarantees control flow integrity

for application code running on embedded processors. The Rhodium project [41] uses a domain

specific language to express optimizations via local rewrite rules and provides a soundness checker

for optimizations

117

Chapter 11

Conclusions and Future Work

This dissertation presents Vellvm in which we fully mechanized the semantics of LLVM and the

proof techniques for reasoning about the properties of the SSA form and the correctness of trans-

formations in LLVM using the Coq proof assistant. To demonstrate the effectiveness of Vellvm,

we verified SoftBound—a program transformation that hardens C programs against spatial memory

safety violations (e.g., buffer overflows, array indexing errors, and pointer arithmetic errors) and the

most performance-critical optimization pass in LLVM’s compilation strategy—the mem2reg pass.

We have showed that the formal models of SSA-based compiler intermediate representations can

be used to verify low-level program transformations, thereby enabling the construction of high-

assurance compiler passes.

This dissertation focused on formalizing and reasoning about general-purpose intermediate rep-

resentation and the SSA form. In the following we show some of future research directions for

developing compilers effectively.

Memory-aware optimizations Like mem2reg, most of the SSA-based passes in LLVM transform

code are based on not only SSA invariants but also on aliasing information that is crucial for

compilers to produce output with higher performance: in the absence of alias analysis, the global

value numbering (GVN) and loop invariant code motion (LICM) passes in LLVM can get only

insignificant speed-up [39].

The GVN of LLVM optimizes both pure instructions and instructions with memory-effects

(such as loads, stores, and calls), and is the most performance-critical -O2 optimizations in LLVM.

118

-2

0

2

4

6

8

10

S
p

e
e
d

u
p

 O
v

e
r

O
1

Effectiveness of GVN opt1+GVN

opt2

opt2-GVN

Figure 11.1: The effectiveness of GVN

Figure 11.1 experimentally shows the effectiveness of GVN in the LLVM’s -O2 level optimizations.

In our experiments, doing the full suite of -O1 level optimizations with GVN yields a speedup of

3.3% (on average) compared to only -O1 level optimizations of LLVM; doing the full suite of -O2

level optimizations (which includes GVN) yields a speedup of 3.5%; doing the full suite of -O2 level

optimizations without GVN yields a speedup of 0.3%. Therefore, GVN is another good application

for verification. Figure 11.2 experimentally shows that the alias analysis in LLVM has a significant

impact on performance of GVN-optimized code. In our experiments, doing the full suite of -O1

level optimizations with GVN yields a speedup of 4.3% (on average) compared to only -O1 level

optimizations of LLVM; doing the full suite of -O1 level optimizations with GVN that does not use

the alias analysis pass yields a speedup of 0.5%.

Given the performance impact of aliasing information, the correctness of alias analysis serves

as a formal foundation for the memory-aware optimizations. Because LLVM does not represent

memory in SSA, we need new metatheory for reasoning about memory aliasing. Based on the

verified alias analysis, we can verify GVN by using the micro code transformations and pipeline

fusion described in the dissertation.

Loop analysis and transformations Transformations for loops form the other kind of intra-

procedural optimizations in LLVM, which all depend on the loops analysis that identifies natural

loops in a CFG. Because the code in loops executes more frequently than other code, optimizing

loops is crucial for improving performance.

In the loop optimizations in LLVM, LICM (which performs loop invariant code motion, at-

tempting to remove as much code from the body of a loop as possible) is a good candidate to verify.

119

-2

0

2

4

6

8

10

Sp
e

e
d

u
p

 o
e

ve
r

O
1

Effectiveness of Alias Analysis opt1+GVN

opt1+GVN w/o aa

Figure 11.2: The effectiveness of Alias Analysis

First, LICM does not arbitrarily transform CFGs like what other loop optimizations (loop-deletion,

loop-unrolling, loop-unswitch, loop-rotation, etc.) do. Therefore, we can be focused on the correct-

ness of the loops analysis. Second, moving memory operations out of loop can potentially lead

to relatively large speedup [32, 39]. Third, the recent work [46] shows that the LLVM’s LICM is

a problematic pass in terms of the sequentially consistent memory model because it speculatively

hosts or sinks stores out of loops, which potentially causes additional data races in the transformed

program. Formalizing the LICM in the sequential setting may lead to a straight-forward extension

for studying the LICM in the sequential consistent memory model. Fourth, although the CompCert

project verified lazy code motion [69], it only hoists instructions in the absence of alias information

and SSA. Therefore, formalizing the LLVM LICM could lead to more interesting results.

Efficiency versus verifiability Industrial-strength compilers should not only be correct, but also

be efficient in compile-time. Therefore, most of the main-stream production compilers are imple-

mented in imperative languages, and use imperative data structures and sophisticated algorithms.

On the other hand, Coq is a pure functional language that does not follow the imperative design

pattern. For example, in-place update of data structures (which are frequently used for transforming

programs imperatively) and hashtables are not allowed. Moreover, imperative algorithms used by

practical compilers complicate reasoning about termination and invariant preservation. The verifi-

cation of mem2reg illustrates the trade-off we made for achieving both efficiency and verifiability.

There is still much design space to explore. First, we can design verifiable functional data

structures and algorithms. Designing efficient functional algorithms has a long history and many

results [23, 29, 56]. The challenge is how to adopt the results in Coq that only allows recursions

120

proven to terminate, and in which a good formalization pattern can dramatically reduce proof costs.

Second, we may add selective imperative features to Coq, which should enable common imperative

design, and also work with the existent features in Coq, such as dependent types, polymorphism,

module systems and etc. Moreover, we need to check termination more carefully, because recursion

can be encoded by using reference types.

121

Bibliography

[1] Axioms in Coq. http://coq.inria.fr/V8.1/faq.html#htoc36.

[2] The GNU Compiler Collection. http://gcc/gnu.org.

[3] MathWorks. http://www.mathworks.com.

[4] On loops, dominators, and dominance frontiers. ACM Trans. Program. Lang. Syst., 24(5):455–

490, Sept. 2002.

[5] LLVM Developers Mailing List, 2011. http://lists.cs.uiuc.edu/pipermail/

llvmdev/2011-May/040387.html.

[6] E. Alkassar and M. A. Hillebrand. Formal Functional Verification of Device Drivers. In

VSTTE ’08: Proceedings of the 2nd International Conference on Verified Software: Theories,

Tools, Experiments, 2008.

[7] F. E. Allen and J. Cocke. Graph Theoretic Constructs For Program Control Flow Analysis.

Technical report, IBM T.J. Watson Research Center, 1972.

[8] A. W. Appel. Modern Compiler Implementation in C: Basic Techniques. Cambridge Univer-

sity Press, New York, NY, USA, 1997.

[9] A. W. Appel. SSA is Functional Programming. SIGPLAN Not., 33(4):17–20, April 1998.

[10] A. W. Appel. Foundational Proof-Carrying Code. In LICS ’01: Proceedings of the 16th

Annual IEEE Symposium on Logic in Computer Science, 2001.

[11] A. W. Appel. Verified software toolchain. In ESOP ’11: Proceedings of the 20th European

Conference on Programming Languages and Systems, 2011.

122

http://coq.inria.fr/V8.1/faq.html#htoc36
http://gcc/gnu.org
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-May/040387.html
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-May/040387.html

[12] J. Aycock and N. Horspool. Simple Generation of Static Single Assignment Form. In Compiler

Construction (CC), 2000.

[13] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering formal

metatheory. In POPL ’08: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, 2008.

[14] G. Barthe, D. Demange, and D. Pichardie. A formally verified SSA-based middle-end -

Static Single Assignment meets CompCert. In ESOP ’12: Proceedings of the 21th European

Conference on Programming Languages and Systems, 2012.

[15] N. Benton and N. Tabareau. Compiling Functional Types to Relational Specifications for Low

Level Imperative Code. In TLDI ’09: Proceedings of the 4th International Workshop on Types

in Language design and Implementation, 2009.

[16] L. Beringer, P. Brisk, F. Chow, D. Das, A. Ertl, S. Hack, U. Ramakrishna, F. Rastello, J. Singer,

, V. Sreedhar, et al. Static Single Assignment Book. 2012. Working draft available at http:

//ssabook.gforge.inria.fr/latest/book.pdf.

[17] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Coq’Art:

The Calculus of Inductive Constructions, 2004.

[18] S. Blazy, B. Robillard, and A. W. Appel. Formal Verification of Coalescing Graph-Coloring

Register Allocation. In ESOP ’10: Proceedings of the 19th European Conference on Pro-

gramming Languages and Systems, 2010.

[19] J. O. Blech, S. Glesner, J. Leitner, and S. Mülling. Optimizing Code Generation from SSA

Form: A Comparison Between Two Formal Correctness Proofs in Isabelle/HOL. Electron.

Notes Theor. Comput. Sci., 141(2):33–51, 2005.

[20] J. Chen, D. Wu, A. W. Appel, and H. Fang. A Provably Sound TAL for Back-end Optimization.

In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language

Design and Implementation, 2003.

123

http://ssabook.gforge.inria.fr/latest/book.pdf
http://ssabook.gforge.inria.fr/latest/book.pdf

[21] A. Chlipala. A Certified Type-preserving Compiler from Lambda Calculus to Assembly Lan-

guage. In PLDI ’07: Proceedings of the ACM SIGPLAN 2007 Conference on Programming

Language Design and Implementation, 2007.

[22] A. Chlipala. A Verified Compiler for an Impure Functional Language. In POPL ’10: Proceed-

ings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, 2010.

[23] S. Conchon, J.-C. Filliâtre, and J. Signoles. Designing a Generic Graph Library using ML

Functors. In Trends in Functional Programming (TFP’07), New York City, USA, Apr. 2007.

[24] K. D. Cooper, T. J. Harvey, and K. Kennedy. A Simple, Fast Dominance Algorithm. Available

online at www.cs.rice.edu/~keith/Embed/dom.pdf, 2000.

[25] The Coq Development Team. The Coq Proof Assistant Reference Manual (Version 8.3pl1),

2011.

[26] K. Crary. Toward a Foundational Typed Assembly Language. In POPL ’03: Proceedings

of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

2003.

[27] K. Crary and R. Harper. Mechanized Definition of Standard ML (alpha release), 2009. http:

//www.cs.cmu.edu/~crary/papers/2009/mldef-alpha.tar.gz.

[28] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing

static single assignment form and the control dependence graph. ACM Trans. Program. Lang.

Syst., 13:451–490, 1991.

[29] M. Erwig. Inductive graphs and functional graph algorithms. J. Funct. Program., 11(5):467–

492, Sept. 2001.

[30] L. Georgiadis and R. E. Tarjan. Dominator tree verification and vertex-disjoint paths. In SODA

’05: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, 2005.

[31] L. Georgiadis, R. F. Werneck, R. E. Tarjan, and D. I. August. Finding dominators in practice.

In Proceedings of the 12th Annual European Symposium on Algorithms, 2004.

124

www.cs.rice.edu/~keith/Embed/dom.pdf
http://www.cs.cmu.edu/~crary/papers/2009/mldef-alpha.tar.gz
http://www.cs.cmu.edu/~crary/papers/2009/mldef-alpha.tar.gz

[32] R. Ghiya and L. J. Hendren. Putting Pointer Analysis to Work. In POPL ’98: Proceedings

of the 25th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

1998.

[33] J. B. Kam and J. D. Ullman. Global Data Flow Analysis and Iterative Algorithms. Journal of

the ACM, 23(1):158–171, Jan. 1976.

[34] R. A. Kelsey. A Correspondence between Continuation Passing Style and Static Single As-

signment Form. In IR ’95: Papers from the 1995 ACM SIGPLAN workshop on Intermediate

representations, 1995.

[35] G. A. Kildall. A unified approach to global program optimization. In POPL ’73: Proceed-

ings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, 1973.

[36] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-

gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal Verifi-

cation of an OS Kernel. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd Symposium on

Operating Systems Principles, 2009.

[37] G. Klein, T. Nipkow, and T. U. München. A Machine-checked Model for a Java-like Language,

Virtual Machine and Compiler. ACM Trans. Program. Lang. Syst., 28:619–695, 2006.

[38] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analy-

sis & Transformation. In CGO ’04: Proceedings of the International Symposium on Code

Generation and Optimization: Feedback-directed and Runtime Optimization, 2004.

[39] C. A. Lattner. Macroscopic Data Structure Analysis and Optimization. PhD thesis, Cham-

paign, IL, USA, 2005.

[40] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM

Trans. Program. Lang. Syst., 1:121–141, 1979.

[41] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated soundness proofs for dataflow

analyses and transformations via local rules. In POPL ’05: Proceedings of the 32nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2005.

125

[42] X. Leroy. A Formally Verified Compiler Back-end. Journal of Automated Reasoning,

43(4):363–446, 2009.

[43] The LLVM Development Team. The LLVM Reference Manual (Version 2.6), 2010.

http://llvm.org/releases/2.6/docs/LangRef.html.

[44] R. Lo, F. Chow, R. Kennedy, S.-M. Liu, and P. Tu. Register promotion by sparse partial

redundancy elimination of loads and stores. In PLDI ’98: Proceedings of the ACM SIGPLAN

1998 Conference on Programming Language Design and Implementation, 1998.

[45] W. Mansky and E. L. Gunter. A Framework for Formal Verification of Compiler Optimiza-

tions. In ITP ’10: Interactive Theorem Proving 2010, 2010.

[46] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy. A Case for an SC-

Preserving Compiler. SIGPLAN Not., 46:199–210, June 2011.

[47] Y. Matsuno and A. Ohori. A Type System Equivalent to Static Single Assignment. In PPDP

’06: Proceedings of the 8th International ACM SIGPLAN Symposium on Principles and Prac-

tice of Declarative Programming, 2006.

[48] V. S. Menon, N. Glew, B. R. Murphy, A. McCreight, T. Shpeisman, A.-R. Adl-Tabatabai, and

L. Petersen. A Verifiable SSA Program Representation for Aggressive Compiler Optimization.

In POPL ’06: Proceedings of the 33th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, 2006.

[49] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1997.

[50] S. Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety for C Programs. PhD

thesis, Philadelphia, PA, USA, 2012.

[51] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. SoftBound: Highly Compatible

and Complete Spatial Memory Safety for C. In PLDI ’09: Proceedings of the ACM SIGPLAN

2009 Conference on Programming Language Design and Implementation, 2009.

126

[52] G. C. Necula. Translation validation for an optimizing compiler. In PLDI ’00: Proceedings of

the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation,

2000.

[53] NIST. NIST Juliet Test Suite for C/C++, 2010.

http://samate.nist.gov/SRD/testCases/suites/Juliet-2010-12.c.cpp.zip.

[54] M. Nita and D. Grossman. Automatic Transformation of Bit-level C Code to Support Multiple

Equivalent Data Layouts. In CC’08: Proceedings of the 17th International Conference on

Compiler Construction, 2008.

[55] M. Nita, D. Grossman, and C. Chambers. A Theory of Platform-dependent Low-level Soft-

ware. In POPL ’08: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, 2008.

[56] C. Okasaki. Purely Functional Data Structures. Cambridge University Press, June 1999.

[57] M. Paleczny, C. Vick, and C. Click. The Java HotSpot(TM) Server Compiler. In Proceedings

of the 2001 Symposium on Java(TM) Virtual Machine Research and Technology Symposium -

Volume 1, JVM’01, Berkeley, CA, USA, 2001. USENIX Association.

[58] R. V. Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot - a Java Bytecode

Optimization Framework. In Proceedings of the 1999 conference of the Centre for Advanced

Studies on Collaborative research, CASCON ’99. IBM Press, 1999.

[59] D. Schouten, X. Tian, A. Bik, and M. Girkar. Inside the Intel compiler. Linux J., 2003, Feb.

2003.

[60] P. Sewell, F. Zappa Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strniša. Ott:

Effective Tool Support for the Working Semanticist. J. Funct. Program., 20(1):71–122, 2010.

[61] J. Souyris, V. Wiels, D. Delmas, and H. Delseny. Formal Verification of Avionics Software

Products. In FM ’09: Proceedings of the 2nd World Congress on Formal Methods, volume

5850, Berlin, Heidelberg, 2009. Springer-Verlag.

127

[62] V. C. Sreedhar and G. R. Gao. A Linear Time Algorithm for Placing φ-nodes. In POPL ’95:

Proceedings of the 22nd ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, 1995.

[63] M. Stepp, R. Tate, and S. Lerner. Equality-Based Translation Validator for LLVM. In CAV

’11: Proceedings of the 23rd International Conference on Computer Aided Verification, 2011.

[64] Z. T. Sudipta Kundu and S. Lerner. Proving Optimizations Correct Using Parameterized

Program Equivalence. In PLDI ’09: Proceedings of the ACM SIGPLAN 2009 Conference

on Programming Language Design and Implementation, 2009.

[65] D. Syme. Reasoning with the Formal Definition of Standard ML in HOL. In Sixth Interna-

tional Workshop on Higher Order Logic Theorem Proving and its Applications, 1993.

[66] Z. Tatlock and S. Lerner. Bringing Extensibility to Verified Compilers. In PLDI ’10: Pro-

ceedings of the ACM SIGPLAN 2010 Conference on Programming Language Design and

Implementation, 2010.

[67] J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating Value-graph Translation Validation for

LLVM. In PLDI ’11: Proceedings of the ACM SIGPLAN 2011 Conference on Programming

Language Design and Implementation, 2011.

[68] J.-B. Tristan and X. Leroy. Formal Verification of Translation Validators: a Case Study on

Instruction Scheduling Optimizations. In POPL ’08: Proceedings of the 35th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2008.

[69] J.-B. Tristan and X. Leroy. Verified Validation of Lazy Code Motion. In PLDI ’09: Pro-

ceedings of the ACM SIGPLAN 2009 Conference on Programming Language Design and

Implementation, 2009.

[70] J. B. Tristan and X. Leroy. A Simple, Verified Validator for Software Pipelining. In POPL

’10: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, 2010.

[71] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1995.

128

[72] B. Yakobowski. Étude sémantique d’un langage intermédiaire de type Static Single Assign-

ment. Rapport de dea (Master’s thesis), ENS Cachan and INRIA Rocquencourt, Sept. 2004.

[73] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in C compilers. In

PLDI ’11: Proceedings of the ACM SIGPLAN 2011 Conference on Programming Language

Design and Implementation, 2011.

[74] A. Zaks and A. Pnueli. Program Analysis for Compiler Validation. In PASTE ’08: Proceedings

of the 8th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, 2008.

[75] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the LLVM Interme-

diate Representation for Verified Program Transformations. In POPL ’12: Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

2012.

[76] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formal verification of SSA-based

optimizations for LLVM. In PLDI ’13: Proceedings of the ACM SIGPLAN 2012 Conference

on Programming Language Design and Implementation, 2013.

[77] J. Zhao and S. Zdancewic. Mechanized Verification of Computing Dominators for Formalizing

Compilers. In CPP ’12: The Second International Conference on Certified Programs and

Proofs, 2012.

[78] L. Zhao, G. Li, B. De Sutter, and J. Regehr. ARMor: Fully Verified Software Fault Isolation. In

EMSOFT ’11: Proceedings of the 9th ACM International Conference on Embedded Software,

2011.

129

	University of Pennsylvania
	ScholarlyCommons
	1-1-2013

	Formalizing the SSA-based Compiler for Verified Advanced Program Transformations
	Jianzhou Zhao
	Recommended Citation

	Formalizing the SSA-based Compiler for Verified Advanced Program Transformations
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Subject Categories

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Program Refinement
	Static Single Assignment
	LLVM
	The Simple SSA Language—Vminus

	Mechanized Verification of Computing Dominators
	The Specification of Computing Dominators
	Dominance
	Specification
	Instantiations

	The Allen-Cocke Algorithm
	DFS: PO-numbering
	Kildall's algorithm
	The AC algorithm

	Extension: the Cooper-Harvey-Kennedy Algorithm
	Correctness

	Constructing Dominator Trees
	Dominance Frontier
	Performance Evaluation

	The Semantics of Vminus
	Dynamic Semantics
	Dominance Analysis
	Static Semantics

	Proof Techniques for SSA
	Safety of Vminus
	Generalizing Safety to Other SSA Invariants
	The Correctness of SSA-based Transformations

	The formalism of the LLVM IR
	The Syntax
	The Static Semantics
	A Memory Model for the LLVM IR
	Rationale
	LLVM memory commands
	The byte-oriented representation
	The LLVM flattened values and memory accesses

	Operational Semantics
	Nondeterminism in the LLVM operational semantics
	Nondeterministic operational semantics of the SSA form
	Partiality, preservation, and progress
	Deterministic refinements

	Extracting an Interpreter

	Verified SoftBound
	Formalizing SoftBound for the LLVM IR
	Extracted Verified Implementation of SoftBound

	Verified SSA Construction for LLVM
	The mem2reg Optimization Pass
	The vmem2reg Algorithm
	Correctness of vmem2reg
	Preserving promotability
	Preserving well-formedness
	Program refinement
	The correctness of vmem2reg

	Extraction and Performance Evaluation
	Optimized vmem2reg
	O1 Level—Pipeline fusion
	The Correctness of vmem2reg-O1
	O2 Level—Minimal -nodes Placement
	The Correctness of vmem2reg-O2

	The Coq Development
	Definitions
	Proofs
	OCaml Bindings and Coq Extraction

	Related Work
	Conclusions and Future Work
	Bibliography

