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ABSTRACT

ARITHMETIC CONSTRUCTIONS OF BINARY SELF-DUAL CODES

Ying Zhang

Ted Chinburg

The goal of this thesis is to explore the interplay between binary self-dual codes

and the étale cohomology of arithmetic schemes. Three constructions of binary

self-dual codes with arithmetic origins are proposed and compared: Construction

Q, Construction G and the Equivariant Construction. In this thesis, we prove that

up to equivalence, all binary self-dual codes of length at least 4 can be obtained in

Construction Q. This inspires a purely combinatorial, non-recursive construction of

binary self-dual codes, about which some interesting statistical questions are asked.

Concrete examples of each of the three constructions are provided. The search for

binary self-dual codes also leads to inspections of the cohomology “ring” structure

of the étale sheaf µ2 on an arithmetic scheme where 2 is invertible. We study this

ring structure of an elliptic curve over a p-adic local field, using a technique that is

developed in the Equivariant Construction.
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Chapter 1

Introduction

The goal of this thesis is to explore the interplay between binary self-dual codes

and the étale cohomology of arithmetic schemes. In chapter 2, we will recall some

definitions and general facts about codes. A construction of binary self-dual codes

is introduced in chapter 3 using the arithmetic of the rational number field Q

(which we call Construction Q). Construction Q shows that up to equivalence, all

binary self-dual codes have a simple description (not necessarily unique) using a

boxed matrix, see table 3.1. Starting from chapter 4, the focus of the thesis will

be on arithmetic questions inspired by the search for binary self-dual codes. Two

more constructions of binary codes are introduced and compared, which we call

Construction G and the Equivariant Construction.

From the historic point of view, the study of the interplay between discrete

structures and cohomology theory has been very fruitful. As is well known, in 1982
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M. Freedman showed that for each unimodular symmetric bilinear form over Z,

there is a simply-connected compact 4-manifold M whose intersection form

H2(M,Z)×H2(M,Z)→ Z

realizes this bilinear form [Fre82]. In fact, this bilinear form “almost determines”

the homeomorphism type of the manifold M and puts restriction on the existence

of smooth structures on it [GS99].

For an involution τ on a closed manifold, it is widely known the cohomology of

the fixed loci is related to the cohomology of the manifold. In a series of recent pa-

pers by Puppe [Pup95], [Pup01], Kreck and Puppe [KP08], this relation is explored

to construct binary self-dual codes when τ has isolated fixed points. For convenience

of the reader, part of their work is reviewed in appendix A. In particular, we review

two constructions of theirs: the Topological Equivariant Construction and Poincaré

Duality Construction. It is these constructions that inspired our constructions over

arithmetic schemes.

As a matter of fact, our Construction Q and Construction G are analogues to

their Poincaré Duality Construction. The Equivariant Construction and the Topo-

logical Equivariant Construction can also be developed in a common framework.

This is not surprising since the classical motivation of étale cohomology is to seek

a “topological” treatment of schemes.

Nevertheless, we draw the readers’ attention to some subtle differences between

the topological and arithmetic sides of the story. For an involution τ on a closed
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manifold with isolated fixed points, the Topological Equivariant Construction and

Pioncaré Duality Construction give rise to the same binary self-dual codes, see

Proposition A.0.12. In the arithmetic situation, the Equivariant Construction and

Construction G do not necessarily produce the same codes, as is shown in Example

5.5.4. The arithmetic situation is different because when τ fixes closed points on

an arithmetic scheme, a closed point has cohomological dimension higher than zero

when the residue field is not separably closed. So a closed point on a scheme is

analogous to a high dimension topological object rather than a topological point.

There is another technical difference in the Equivariant Construction: while many

theorems about the Topological Equivariant Construction are stated and proved

using the homotopy type of CW complexes, we avoid the machinery of étale homo-

topy theory in this thesis. Instead, we use the modified equivaiant étale cohomology

by B. Morin [Mor08] as a technical tool. This tool helps us build up the necessary

results for the arithmetic Equivariant Construction, which in addition answers in

Example 5.5.4 a question 4.2.6 raised in Construction G.

Finally, as this thesis is the first attempt to explore the interplay between binary

self-dual codes and the étale cohomology space of an arithmetic scheme, we also

consider it meaningful to raise interesting questions in this field. In particular, the

reader is invited to look at Question 3.4.2, Question 3.4.4 and Question 4.1.6.

3



Chapter 2

Coding Theory Background

2.1 General Codes

In this section we will collect some terminologies in coding theory. The main purpose

is to set up notations which will be used in later parts of the thesis. For a more

complete introduction to the subject, the reader is referred to standard texts like

[CS99, Chapter 3][PH98][Ple98].

Let F be a finite set called the alphabet. An element in the set Fn is called a

word of length n. A code C of length n is a subset of Fn. If F has an additive

group structure, then C is called additive if it is an additive subgroup of Fn. If F

has a commutative ring structure, then C is called linear if it is additive and closed

under scalar-multiplication by elements in F. In this situation, Fn also has a natural

ring structure defined by component-wise multiplication. But C is in general not
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required to be a non-unital sub-ring. In this thesis we will only consider linear codes

over a field F.

Let C be a linear code contained in an n-dimensional vector space W/F. We will

assume W is equipped with a chosen basis E under which we can write W = Fn.

In the existing literature in coding theory, an n-dimension vector space W is often

explicitly given as Fn, with an assumed basis which becomes the canonical basis in

Fn. However, in our later constructions of codes from abstract cohomology spaces,

a “canonical” basis is usually not obvious in W . In some cases, the existence of a

desirable basis is even in question, see Example 4.2.5.

Under the canonical basis in Fn, consider a word u = (u1, · · · , un). The Ham-

ming weight of u is the number of nonzero components ui, denoted by wt(u). Given

a code C, we can count the total number of words of each possible weight and store

these counts in a vector, called the weight distribution vector of C.

For an n-dimensional F vector space W , 〈 , 〉: W ×W → F is a non-degenerate

symmetric bilinear form if it satisfies the following conditions:

• 〈x, y〉 = 〈y, x〉.

• For a, b ∈ F, 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉.

• If 〈x, y〉 = 0 for all y ∈ W , then x = 0,

Given a non-degenerate bilinear form 〈, 〉, for a code C ⊂ W , we can define its
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dual code

C⊥ := {x ∈ W |∀y ∈ C, 〈x, y〉 = 0}

If C⊥ ⊆ C, C is called self-orthogonal. When C⊥ = C, C is called self-orthogonal

of maximal dimension.

Example 2.1.1 (Main Example). Under a basis E in an n-dimensional space W/F,

define the product of two words x = (x1, · · · , xn), y = (y1, · · · , yn) by

〈x, y〉 =
n∑
i=1

xiyi (2.1.1)

This product is a non-degenerate symmetric bilinear form. For a bilinear form

〈, 〉, if there is a basis E under which the form is defined as in Equation 2.1.1, then

〈, 〉 is called a Euclidean inner product. The basis E is called a Euclidean basis. 4

In the main part of the thesis, we will only focus on the case when F = F2 =

{0, 1} is the field of two elements.

2.2 Binary Self-dual Codes

Consider an m dimension vector space W over F2 with a basis E. We can define the

Euclidean inner product under this basis. If C is an n dimensional self-orthogonal

code of maximal dimension, then m = 2n is even. In addition, if we specify E as an

ordered basis {ei}mi=1, the triple (W,E, V ) is called a binary self-dual code of length

m.
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For a code word over F2, the Hamming weight of the word is just the number

of ones in the word. A word that is self-orthogonal has even weight. In addition, if

the Hamming weight of each word in a binary self-dual code C is a multiple of 4,

we will say C is a Type II code, or a doubly even code. If not, C is called a Type I

code or a singly even code.x If W has a Type II code contained in it, the dimension

of W is necessarily a multiple of 8 [RS98].

Given two codes (W,V,E), (W ′, V ′, E ′), consider the canonical isomorphism

between two ordered sets φ : E → E ′ where φ(ei) = e′i. φ can be extended to an

F2-linear isomorphism W → W ′. If φ(V ) = V ′, then (W,V,E) is considered to

be isomorphic to the code (W ′, V ′, E ′). Without loss of generality, we can assume

W = W ′. Apply a permutation s to the ordered set E. If under the canonical

isomorphism φ : E → s(E), V is mapped to itself, then s is said to be an element in

the automorphism group of the code (W,E, V ). The automorphism group of a code

is a subgroup of the full symmetric group Sm. In general, if there is permutation

s such that (W, s(E), V ) is isomorphic to (W,E ′, V ′), then (W,E, V ) is said to be

equivalent to (W,E ′, V ′). The automorphism groups of two equivalent codes are

conjugate to each other as subgroups in Sm. Also, equivalent codes have the same

weight distribution. In this thesis, we will mostly consider binary self-dual codes

up to equivalence relation.

Consider an invertible linear transformation A on the vector space W . If

〈Ax, y〉 = 〈x,Aty〉 = 〈x, y〉 for all x, y ∈ W , A is said to be an element in the

7



orthogonal group O(m) associated to the non-degenerate bilinear form 〈, 〉. Under

a basis E, A is represented by a matrix in GLm×m(F2).

Fixing E, a generator matrix is a matrix whose row vectors span V for a code.

Thus a generator matrix is an n×2n matrix of rank n. Up to equivalence, every self-

dual code has a generator matrix of the form [In, Pn] where In is the n× n identity

matrix, and Pn ∈ O(n) is an orthogonal matrix with respect to the Euclidean inner

product under the basis {ei}2n
i=n+1. Let O(2n) act on W by left multiplication.

By the embedding O(n) ↪→ O(2n) in the lower right corner, the action of O(2n)

is transitive on the set of self-orthogonal spaces V of maximal dimension. This

explains why in the definition of equivalence relation we only consider a permutation

on E rather than an arbitrary orthogonal change of basis: had we chosen the latter,

the definition of equivalence relation would not be interesting.

Remark 2.2.1. A useful fact is that for the Euclidean inner product, O(n) coincides

with Sn if and only if n ≤ 3. Indeed, when n ≤ 3 this fact is obvious. An example

for an element in O(4)rS4 can be obtained from the length 8 binary self-dual code

A8, which has a generator matrix (I4, P ) where P is:

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1


♦
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Denote by T2n the set of all distinct (up to isomorphism) binary self-dual codes

of length 2n. There is a simple counting formula [RS98]

|T2n| = Πn−1
i=1 (2i + 1)

Here we used | · | to denote the cardinality of a finite set.

When m is divisible by 8, the total number of Type II codes is

2Πn−2
i=1 (2i + 1)

Let S2n acts on a binary self-dual code C, its orbit has all the codes equivalent

to it, which breaks into several isomorphism types. Denote the set of distinct codes

in this orbit by CE. |CE| = |S2n|
|Aut(C)| . Thus we have:

|T2n| =
∑

Inequivalent C

|S2n|
|Aut(C)|

(2.2.1)

We will define

pC :=
|CE|
|T2n|

(2.2.2)

as the density of the equivalence class CE in T2n.

One can also write

∑
Inequivalent C

1

|Aut(C)|
=
|T2n|
(2n)!

(2.2.3)

Equation 2.2.3 is often called the mass formula in the literature.

When k is any constant smaller than 1
2
, by Stirling’s formula Tn

(2n)!
grows faster

than ekn
2

for large n. Thus the number of inequivalent codes grows exponentially

9



fast in n. The problem of classifying inequivalent codes of a given length is com-

putationally costly. For the interested reader, there are now on-line databases of

equivalence classes of binary self-dual codes. For example, M. Harada and A. Mune-

masa summarized on their website a complete list of binary self-dual codes of length

up to 40 [HM07].

The following result of [OP92] is interesting. Denote the set of codes that have

a non-trivial automorphism group by B2n, then

Proposition 2.2.2 (Rigidity).

lim
n→∞

|B2n|
|T2n|

= 0

Therefore when n gets big, most codes have density dC = (2n)!
|T2n| .

Remark 2.2.3. Some caution is required in interpreting this statement. Based on

Proposition 2.2.2 alone, it does not qualify to say that “most equivalence classes”

have a trivial automorphism group, since codes with bigger automorphism groups

could conceivably break into more equivalence classes. ♦

2.3 Extremal Codes

Coding theory has many interesting connections with other branches of mathe-

matics, including combinatorial design, lattice theory and invariant theory [CS99,

Chapter 3][PH98][Ple98]. Codes are also widely used for error-correction purposes

in telecommunication. Some of the best error-correction codes are binary self-dual
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codes. For error-correction purposes, the most relevant property is the weight distri-

bution of the code. In particular, the non-zero minimal weight is important, which

is an even integer. For a code C of length 2n, denote its nonzero minimal weight

by d2n. There are two interesting questions:

Question 2.3.1. Fixing the length 2n, what is the largest d2n?

Fixing length 2n, we will call a code with the largest minimal weight an ex-

tremal code. In general, when 56 ≤ 2n ≤ 110, not all the extremal codes are

known [DGH97] (for some lengths, even the d2n are conjectural). Other than the

extremal codes, the existence of codes with other prescribed weight enumerators are

also conjectured. Therefore, interesting construction methods for binary self-dual

codes are sought for in the literature. Existing techniques include some brilliant

combinatorial designs which give some special codes; “gluing” constructions using

codes of smaller length; a systematic study of “descendants” of codes of smaller

length. A systematic survey of all these construction methods is outside the scope

of this thesis, the reader is referred to the references listed above and also [BHM12]

[BB12]. We point out that based on our Construction Q, we propose a “probabilis-

tic” method of generating binary self-dual codes, which is a non-recursive way to

generate a comprehensive list of codes, see section 3.4.

Question 2.3.2. What is lim sup m→∞
dm
m

?

For this question we quote the following result for a lower bound:

Proposition 2.3.3. [RS98, section 10] There is an infinite sequence of binary self-

11



dual codes Ci where the ratio di
mi

is bounded below by an absolute constant.
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Chapter 3

Construction Q

In this chapter we provide a construction of binary self-dual codes using arithmetic

information over the rational number field Q. We construct all equivalence classes

of binary self-dual codes of length at least 4 in Theorem 3.3.1. The proof relies on

finding a special presentation of the generator matrix for a code up to equivalence,

called a boxed matrix, see Table 3.1. This construction can be considered as an

arithmetic counterpart of Theorem A.0.11 in [KP08].

Notation: we will use pi for a positive prime number or a prime ideal in Z

when there is no danger of confusion. vpi is the normalized p-adic valuation of Q

associated to pi. An equivalence class of valuations on a field is also called a place

of the field.

13



3.1 S-Integers

LetK be a number field, S be a finite set of places ofK including all the archimedean

places. The ring of S-integers OK,S is defined as follows:

OK,S = {a ∈ K|∀p 6∈ S, vp(a) ≥ 0}

The unit group in OK,S is denoted O∗K,S. When S only has archimedean places,

OK,S = OK . Naturally S1 ⊆ S2 implies OK,S1 ⊆ OK,S2 and O∗K,S1
⊆ O∗K,S2

.

Denote the multiplicative group of roots of unity in K by µK ; the set of fi-

nite places in S by Sf . If K has r1 embeddings into the field of real numbers, r2

embeddings into the complex numbers, then [Mil13, Chapter 5]

rankZ(O∗K,S/µK) = r1 + r2 − 1 + |Sf | (3.1.1)

3.2 Hilbert Symbols

Let k be any field. For a, b ∈ k∗, we can define the multiplicative Hilbert symbol

(a, b) with values in ±1 in the following way, [Ser73, Chapter III]:

• (a, b) = 1 if the quadratic form z2− ax2− by2 = 0 is isotropic; in other words,

there is a non-zero solution (x, y, z) ∈ k3;

• (a, b) = −1 otherwise.

The Hilbert symbol satisfies the following properties:

14



• (a, b) = (b, a), (a, c2) = 1.

• (a,−a) = 1, (a, 1− a) = 1.

• (aa′, b) = (a, b)(a′, b).

An equivalent way to characterize the Hilbert symbol is that (a, b) = 1 if and

only if a belongs to the group Nm(k(
√
b)) in k∗, i.e. it is a norm in the quadratic

extension k(
√
b)/k. It is easy to see that the Hilbert symbol is a map

k∗/(k∗)2 × k∗/(k∗)2 → ±1

Remark 3.2.1. For notation convenience we will write k∗/2 for k∗/(k∗)2. If the

multiplicative groups k∗/2 and {±1} are interpreted additively, the Hilbert symbol

is a symmetric bilinear form over F2. Furthermore, it is a non-degenerate bilinear

form, i.e. if a ∈ k∗ is a norm in every quadratic extension of k, then a ∈ (k∗)2. This

follows easily from class field theory (or more directly from Kummer theory). ♦

In this thesis, we will only consider the Hilbert symbols over a local field Kp

of characteristic different from 2. In addition, if the residue characteristic of Kp is

different from 2, the Hilbert symbol has a simple description. In this case, K∗p/2
∼=

Z/2× Z/2, which is spanned by a uniformizer in the valuation p and a non-square

unit u. Under the basis {p, pu}, the Gram-matrix of the Hilbert symbol is: (p, p) (p, pu)

(pu, p) (pu, pu)
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Denote the residue field of Kp by Fp. When |Fp| ≡ 3 mod 4, the Gram matrix

is the identity matrix I2. The Hilbert pairing is a Euclidean inner product.

When |Fp| ≡ 1 mod 4, the Gram matrix is0 1

1 0


Such a matrix is called alternate in [Alb38]. (Over a field of characteristic

different from 2, a quadratic form associated to a non-degenerate symmetric bilinear

form with an alternate Gram matrix is usually called hyperbolic. Over a field of

characteristic 2, the correspondence between bilinear forms and quadratic forms

is more complicated.) Over a field of characteristic 2, if ∀x ∈ W 〈x, x〉 = 0, we

will follow Albert and call such a bilinear form alternate. [Alb38] classified non-

degenerate symmetric bilinear forms over a field of characteristic 2:

Theorem 3.2.2 (Albert). Over a field of characteristic 2,

• Any two alternate forms are equivalent, i.e. they differ by a change of basis.

• If a form is not an alternate form, then there is a change of basis such that

the Gram-matrix is the identity matrix In.

In particular, any non-degenerate symmetric bilinear form over an odd dimen-

sion vector space is Euclidean under a suitable basis. For example, Q∗2/2 ∼= F3
2

has odd dimension. If we choose the basis {−2,−10,−5} (considered as rational

numbers embedded in Q2) then the Gram-matrix for the Hilbert symbol is I3. By

remark 2.2.1, this basis is also unique up to permutations.
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For the purpose of constructing binary self-dual codes, only fields where the

Hilbert symbol induces a Euclidean form are considered. Based on Theorem 3.2.2,

when k∗/2 is finite dimensional over F2, we look for elements x ∈ k∗ such that

(x, x) = (x,−1) = −1. This is true if and only if x is not a norm in k(
√
−1)/k. By

going over all elements x ∈ k∗, we have the following observation:

Corollary 3.2.3. The Hilbert symbol is Euclidean if and only if k(
√
−1)/k is a

non-trivial extension, i.e. −1 is a non-square in k∗.

3.3 The Construction

Let S be a finite set of places of Q consisting of the infinite place ∞ (i.e. the

archimedean place), the place determined by the prime 2, and the places determined

by a finite set of positive primes p1, . . . , pn−2 which are congruent to 3 mod 4. We

may also consider 2 as pn−1, ∞ as pn (Qpn = R), thus we always have n ≥ 2.

As discussed in Section 3.2, for each place vp ∈ S, the Hilbert symbol on Qp is

Euclidean.

For notational convenience, denote the multiplicative group Q∗p/2 as an additive

vector space Wp/F2. Denote by 〈, 〉vp the bilinear form induced by the Hilbert

pairing on Wp. The direct sum W := ⊕vp∈SWp is equipped with a non-degenerate

symmetric pairing 〈, 〉 : W ×W → F2,

〈, 〉 =
∑
vp∈S

〈, 〉vp (3.3.1)
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A Euclidean basis E of W is provided by the union of the bases for each Wp,

namely when p is odd, Wp has a basis {pu, p}; W2 has basis {−2,−10,−5}; WR has

basis {−1}. Their union basis E will be used throughout the construction.

Consider the diagonal embedding Φ: Z∗S/2→ ⊕vpi∈SQ
∗
pi
/2 =: W . From equation

3.1.1, Z∗S/2 has rank n. The following theorem characterizes its image:

Theorem 3.3.1. (a) The diagonal embedding Φ is injective.

(b) (W,E,Φ(Z∗S)) is a binary self-dual code.

(c) Up to equivalence, all binary self-dual codes (of length at least 4) can be ob-

tained in this way.

Proof. Part (a) of the theorem follows from part (b). (b) follows from Theorem

4.1.3 which works in a more general situation. However, since everything about

Construction Q is so concrete, part (b) can also be seen from Table 3.1. We explain

the table as follows:

Z∗S is the subgroup of Q∗ generated by {−1, 2, p1, . . . , pn−2}. When p is odd,

a rational integer l which is prime to p is a non-square in Q∗p if and only if l is a

non-square mod p. When l is a non-square in Q∗p, the corresponding image in Wp

is (1, 1). When l is a square in Q∗p, the corresponding image is (0, 0).

The image of Φ(Z∗S) in W is the matrix indicated in Table 3.1. In this table

there are three entries under W2 because Q∗2/2 is a three dimensional vector space

over F2, the order of the basis {−2,−10,−5} matters. The entries for a given row
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in the matrix are the diagonal images from a global S-unit, which are listed to the

left of the matrix.

Table 3.1: A boxed code

HH
HHH

HHH
HHHH

S-units

places Wp1 Wp2 · · · W2 WR

{−p1, p1} {−p2, p2} · · · {−2,−10,−5} {−1}

p1 01 00/11 00/11 1 0

p2 11/00 01 1 0

...
...

. . .
...

...

2 11/00 01 1 0

−1 11 11 · · · 11 1 1

We will view the n× 2n binary matrix M in Table 3.1 as an n×n block matrix

M̃ , where each block is a pair of elements (a2i, a2i+1). Properties of this matrix M̃

is summarized as follows:

(1) The bottom row of M̃ has all entries equal to (11).

(2) All entries of the last column of M̃ equal the (10) pair except for the (11) in

the final row.

(3) The diagonal elements of M̃ are all (01) except for the final diagonal entry,

which is equal to (11).

(4) All other pairs in M̃ are either (00) or (11), which we will call identical pairs.
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We say that a block matrix having properties (1) - (4) is half-boxed. We will say

that M̃ is boxed if the following is also true:

(5) For all (n− 1) ≥ i > j ≥ 1, bij + bji = (11).

By definition, a boxed matrix has rank n and its rows are orthogonal to each

other in the Euclidean pairing. Thus it is a generator matrix for a binary self-dual

code.

The fact that the image of Φ(Z∗S/2) in W is a boxed matrix is a straight for-

ward observation. In particular, property 5 follows from Gauss’s law of quadratic

reciprocity. Thus part (b) in Theorem 3.3.1 is proved.

There is also a partial converse to the above statement,

Lemma 3.3.2. If M̃ ′ is half-boxed, and its row vectors are orthogonal to each other,

then condition (5) is automatically satisfied, i.e. M̃ ′ is boxed.

Proof. Taking the product of the i-th row and the j-th row in a half-boxed matrix

(i, j < n, i 6= j) , the products of identical pairs are 0 in F2. Thus if the two rows

are orthogonal, we have bij · (01) + bji · (01) + (10) · (10) = 0, thus bij + bji = (11).

Now we proceed to prove part (c) of Theorem 3.3.1.

We begin by saying the word of all-ones (denoted 1̄) belongs to every binary

self-dual code C, since 1̄ is orthogonal to all vectors of even weight. Suppose now

that M is the generator matrix of a self-dual code C of length 2n and that the
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last row of M is 1̄. Observe that elementary row operations on M correspond to

a change of basis for the code C. Column permutations send C to an equivalent

code. We will show by induction on n that after applying a sequence of elementary

row operations and column permutations to M , one can make the associated block

matrix M̃ into half-boxed form. We will in fact show that this can be done without

ever adding another row to the final row 1̄ of M . This will prove the theorem, since

the above operations lead to codes equivalent to C by definition.

For n = 2 our claim is obvious. Now suppose n > 2, M is the generator matrix

for a self-dual code C of length 2n and that the last row of M is 1̄. As the rows of

M have full rank, the top row is neither all-zeros 0̄ nor 1̄. Therefore the columns

of M can be permuted so that the pair on the upper-left corner of M̃ is (01). M̃

has the following form:

Table 3.2: Block form of M̃

01 u

w M ′

In the above table w is a column block-vector of length n − 1, u is a row block-

vector with the same number of pairs, and M ′ ∈ Mat(n−1)×(2n−2). By adding the

top row of M̃ to the j-th row if necessary, where 2 ≤ j < n, we can assume that

w consists only of identical pairs. Under this hypothesis, it is easy to check that

M ′ represents a generator matrix of a self-dual code of length 2n− 2 with 1̄ in the
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bottom row. By the induction hypothesis, M ′ can be turned into half-boxed form

by applying column permutations and row operations while keeping the bottom

row. These same operations can be applied to the augmented matrix M , leading to

a matrix whose lower right corner M ′ is in half-boxed form; the column block-vector

w consists of identical pairs; the bottom row of M̃ remains 1̄.

Now we need to modify the top row u. Note that all diagonal entries of M̃ ′ are

all of the form (01) except in the bottom row, and all other pairs in M̃ ′ are identical

pairs except in the last column. Therefore the top row of M̃ can be added to by the

2rd through (n− 1)th row in such a way that all pairs of u become identical pairs

except possibly for the last pair. During these operations, only identical pairs have

been added to the upper-left corner of M , thus it is either 01 or 10. As the weight

of this first row is even, the last pair in u should also be either 01 or 10. Adding

the bottom row to the top row if necessary, the last pair in u is 10. Finally, if the

upper-left corner of M is 10, it can be turned into 01 by permuting the first two

columns of M . The block matrix M̃ is now in half-boxed form. Moreover, it is in

fact boxed by Lemma 3.3.2.

To complete the proof of (c), we only need to show that every boxed matrix M̃

can be realized by the Hilbert code associated to some set S = {2,∞, p1, . . . , pn−2}.

To specify the odd pi we begin by requiring their classes in Q∗2/2 × R∗/2 as in

the last two block columns of M̃ . This can be done with pi congruent to 3 mod

4. We now choose the pi sequentially be requiring their residue classes mod pj for
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1 ≤ j < i ≤ n− 2 according to the entry bij in M̃ . After this we have specified the

lower triangular part of a boxed matrix. By Gauss’s quadratic reciprocity, the image

of these S-integers actually give a boxed matrix M̃ under our basis for the Hilbert

symbols. Moreover, by the equidistribution of prime numbers in congruence classes,

each self-dual code can be realized by this construction with an infinite number of

distinct sets of places S.

Example 3.3.3. When S = {∞, 2, 3, 7}, one gets the Hamming code A8.

When

S = {∞, 2, 7, 19, 31, 131, 179, 367, 883, 1223, 1307, 39079}

one gets the Golay code G24. 4

3.4 A Random Generation Algorithm

The analysis of the previous section hints at an algorithm to generate all equivalence

classes of binary self-dual codes of any fixed length 2n. Namely, one can assign

identical pairs bij in a block matrix M̃ for 1 ≤ i < j ≤ n − 1. Then M̃ can be

completed to a boxed matrix which gives a binary self-dual code. Since the pairs

bij for 1 ≤ i < j ≤ n− 1 can be either (11) or (00) freely at will, the algorithm can

either exhaust all the 2
n2−n

2 possibilities, or it can decide bij by a coin tossing. The

advantages of both algorithms are that they are not recursive on n.

The hard work remains, of course, to count the weight distribution of the codes
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generated; or to determine if two codes generated in this way are equivalent or not.

Due to the exponential complexity in these two bottle-necks, we are more interested

in the random algorithm than the exhaustive one. In fact, the random algorithm

can quickly generate non-trivial (i.e. not a direct sum of codes of smaller length),

and theoretically every binary self-dual codes of length 2n.

As toy examples, we generated all binary self-dual codes of length less than 26

by implementing the random algorithm in MATLAB. For simplicity, we count the

weight distribution of each outcome and compare it with the known table.

Remark 3.4.1. In view of the connection between self-dual codes and unimodular

lattices as stated in [KKM91], our algorithm also gives a quick way to construct a

large class of unimodular lattices. ♦

Interesting questions arise in the random generation algorithm. Suppose we

assign the identical pairs bij by independently tossing a coin, what is the probability

of generating a certain equivalence class of codes? Suppose we assign the pair to be

(11) when the coin tossing produces a head. The probability of producing a head

by the coin is θ. When θ = 1
2

and n is small, experiments show that this probability

is very close to the true densities pC of the equivalence classes in T2n defined in

Equation 2.2.2.

In fact, denote the set of binary self-dual codes that have a boxed generator

matrix by D2n. We can define the “boxed density” p̃C of an codes equivalent to C
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by

p̃C =
|CE ∩D2n|
|D2n|

Table 3.3 compares pC and p̃C for codes of length 8, 10, 12 where we adopt

notations for some codes of small length from [Ple72]

Table 3.3: Comparison of densities in length 8, 10, 12

A8 C4
2 A8 ⊕ C2 C5

2 B12 A8 ⊕ C2
2 C6

2

pC 22.2% 77.8% 58.9% 41.1% 27.5% 58.8% 13.7%

p̃C 25% 75% 62.5% 37.5% 29.7% 58.6% 11.7%

When the code length grows slight bigger, say 2n = 18 and 20, then to calculate

p̃C would require a non-trivial amount of work. Therefore, for each length, we run

a Monte-Carlo simulation by letting MATLAB randomly generate 10000 codes and

count the frequencies that each equivalence class shows up:

Table 3.4: Comparison of densities in length 18

H18 F16 ⊕ C2 I18 D14 ⊕ C2
2 B12 ⊕ C3

2 A8 ⊕ C5
2 · · ·

pC 47.30% 26.60% 12.16% 8.69% 3.55% 0.76% · · ·

p̃C 48.97% 26.18% 11.71% 8.45% 3.18% 0.64% · · ·

In Table 3.4 and 3.5, we did not complete the list when pC and p̃C gets small.

It can already be seen from the three tables that the proximity of pC and p̃C does
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Table 3.5: Comparison of densities in length 20

R20 M20 H18 ⊕ C2 S20 F16 ⊕ C2
2 I18 ⊕ C2

pC 35.03% 23.65% 17.52% 9.85% 4.93% 4.50%

p̃C 36.19% 23.91% 17.02% 10.12% 4.66% 3.59%

L20 D14 ⊕ C3
2 K20 B12 ⊕ C4

2 · · ·

pC 2.14% 1.07% 0.66% 0.33% · · ·

p̃C 2.34% 1.08% 0.57% 0.29% · · ·

not seem a coincidence. Based on Proposition 2.2.2, most codes have pC equals to

(2n)!
|T2n| , we ask the following question:

Question 3.4.2. When n→∞, what is the behavior of p̃C for most codes of length

2n?

In the above we have only considered random generation of codes based on a

fair coin tossing, when experiments show that p̃C is quite close to pC . However, we

can also use a biased coin with probability θ for a head, and denote the probability

for a code C in the algorithm by p̃θ,C . An easy observation is that given a boxed

matrix M , one may modify the first n − 1 rows by adding the bottom row 1̄ to

them. Thus we have a simple observation:

Proposition 3.4.3.

∀C, p̃θ,C = p̃1−θ,C

Other than Proposition 3.4.3, the general behavior of p̃θ,C is completely open.
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For example, one may ask does θ = d2n
2n

give a higher probability of producing

extremal codes than θ = 1
2
? In general, we propose the following question:

Question 3.4.4. Is there a function θ(n), such that for codes of length 2n, using a

biased coin with probability θ(n) for a head will most likely to produce extremal

codes?

We leave both question 3.4.2 and 3.4.4 for future explorations.
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Chapter 4

Construction G

In Chapter 4 and 5 we shift gears and mainly consider questions of an arithmetic

nature that arise in the search for binary self-dual codes. The construction in this

chapter uses duality theorems in étale cohomology over some arithmetic schemes.

It is named Construction G where G stands for the word geometry.

In section 4.1, we will restate the Hilbert symbol pairing in Construction Q for

a general global field in the cohomological language, and give it a new proof in

Proposition 4.1.3 using Artin-Verdier duality. Compared with section 4.2, this is

the “relative dimension zero” case. Towards the end of this section, an interesting

question is asked in Question 4.1.6, relating the statistical behavior of codes in the

construction to the quadratic residues of S-units in the field. In Example 4.1.7, by

choosing fibers over different primes in a curve over Z, Construction G is related to

the random generation algorithm in Section 3.4.
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In section 4.2, an arithmetic duality theorem will be reviewed over an arithmetic

scheme of positive relative dimension over the ring of integers of a totally imaginary

number field. In our construction for a triple (W,E, V ) of a binary self-dual code,

W will be the middle dimension cohomology space of an arithmetic scheme; V will

be a half-dimensional subspace inside W which is self-orthogonal with respect to a

non-degenerate bilinear pairing coming from the Yoneda-pairing on the cohomology

space. In general, whether the Yoneda-pairing on W is a Euclidean pairing is an

interesting question, which we discuss in Example 4.2.5 and also come back to in

Example 5.6.5.

4.1 Arithmetic Duality of Global Fields

For a scheme X, we will denote the category of sheaves of abelian groups on the

small étale site Xet by Sh(X). When R ∈ Sh(X) is also a sheaf of rings, the

sheaf of R-modules is denoted Sh(X,R). We will mostly be interested in the case

when R is the constant sheaf Z/2. When K is a field, it is well known that there

is a canonical equivalence of categories between Sh(SpecK) and the category of

discrete Gal(K) modules with a continuous Galois action [Sha72, Proposition 71].

Under this equivalence, étale cohomology groups H∗et(SpecK,F) correspond to the

Galois cohomology groups H∗(K,Mod(F)), where Mod(F) is the Gal(K) module

associated to F . In this thesis we will abuse these two notations and simple put

H∗(K,F). In general, all H∗(X,F) stands for H∗et(X,F) unless otherwise stated.
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Let K be a global field of characteristic different from 2. When v is a place

of K, the completion of K at v is denoted Kv. When v is real Kv = R, we will

consider the Tate (modified) cohomology groups Ĥ∗(Z/2,Mod(F)) [Ser62]. When

v is complex this cohomology space is 0. When v is a finite place, there is the local

Tate duality:

Theorem 4.1.1 (Tate). Suppose Kv is a non-archimedean local field of character-

istic different from 2. Given a locally constant constructible sheaf F ∈ Sh(Kv,Z/2),

define its dual sheaf by FD := Hom(F , µ2).

H i(Kv,F)×H2−i(Kv,FD)→ H2(Kv, µ2) = Z/2 (4.1.1)

is a perfect pairing of F2 vector spaces.

We refer to [Mil06, Chapter II] for the definition of a constructible sheaf. When

K is a number field, let OK be the ring of integers of K and let X = Spec(OK).

When K is a global function field, let X be a smooth projective curve with function

field K. U ⊂ X is an open subscheme. S = S∞ t Sf is a set of places of K,

where Sf consists of the places determined by the primes in the complement of U ,

S∞ contains all of the infinite places of K. For F ∈ Sh(X), denote H∗c (U,F|U)

the cohomology groups with compact support, where we follow the convention in

[Mil06, section II.2] and cite the following long exact sequence:

· · ·Hr
c (U,F|U)→ Hr(U,F|U)→

∑
v∈S

Hr(Kv,FKv)→ Hr+1
c (U,F|U) · · · (4.1.2)
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There is a global counterpart of the local Tate duality, called the Artin-Verdier

duality [Mil06, section II.3]. When Sf contains all places with residue characteristic

2, 2 is invertible on U . Under this condition, Artin-Verdier duality for Sh(U,Z/2)

says:

Theorem 4.1.2 (Artin-Verdier). For a locally constant constructible sheaf F ∈

Sh(U,Z/2),

Hr
et(U,F)×H3−r

c (U,FD)→ H3
c (U, µ2) ∼= Z/2 (4.1.3)

is a perfect pairing of F2 vector spaces.

The local Tate duality and Artin-Verdier duality are analogous to the Poincaré

duality on a topological manifold. When 2 is invertible on U , all the Tate twist µ⊗i2

for i ≥ 0 and their duals can be canonically identified with µ2. We have our first

proposition in Construction G:

Proposition 4.1.3. The image of the restriction homomorphism

Φ: H1
et(U, µ2)→ ⊕v∈SH1

et(Kv, µ2)

is its own orthogonal complement with respect to the non-degenerate bilinear product

(
⊕v∈SH1

et(Kv, µ2)
)
×
(
⊕v∈SH1

et(Kv, µ2)
)
→ ⊕v∈SH2

et(Kv, µ2)

δ2−→H3
c (U, µ2) ∼= F2 (4.1.4)

which is the Yoneda-pairing composed with the boundary map in Equation 4.1.2. In

4.1.4, δ2 amounts to taking summations.
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Proof. For a finite place v, by the local Tate duality 4.1.1

H1(Kv, µ2)×H1(Kv, µ2)→ H2(Kv, µ2) (4.1.5)

is a non-degenerate bilinear pairing. For a real v, this is also true. The fact that

δ2 in Equation 4.1.4 amounts to taking summations is proved in [Mil06, II.2]. It

is straightforward to see that the direct sum of the non-degenerate bilinear prod-

uct structures on each space H1(Kv, µ2) gives a non-degenerate bilinear product

structure on ⊕v∈SH1(Kv, µ2), as in Equation 3.3.1.

Now we prove that the image of

Φ: H1(U, µ2)→ ⊕v∈SH1(Kv, µ2)

is its own orthogonal complement with respect to the product in 4.1.4. This is

a pretty standard exercise in linear algebra. For ease of notation, denote A =

H1(U, µ2), B = ⊕v∈SH1(Kv, µ2) and C = H2
c (U, µ2). The pairing in Equation 4.1.4

identifies the linear dual B̌ = HomF2(B,F2) with B. The perfect pairing A×C → F2

in 4.1.2 identifies Ǎ with C. From 4.1.2 for r = 1 we have an exact sequence

A
Φ−→B Ψ−→C (4.1.6)

Here the above pairings identify the map Ψ : B̌ → B → C = Ǎ with the dual Φ̌

of Φ. Hence

dim(coker(Φ)) = dim(ker(Φ̌)) = dim(ker(Ψ)) = dim(image(Φ))

where the last equality follows from Equation 4.1.6. Thus dim(image(Φ)) = 1
2
dim(B).

So if we can show image(Φ) ⊆ image(Φ)⊥, the inclusion is actually an equality since
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the product 4.1.4 on B is non-degenerate. We have the commutative diagram:

A× A ∪−−−→ H2(U, µ2)yΦ×Φ

y
B ×B ∪−−−→ ⊕v∈SH2(Kv, µ2)

(4.1.7)

Since the composition of the maps

H2(U, µ2)→ ⊕v∈SH2(Kv, µ2)
δ2−→H3

c (U, µ2)

is 0 by the exactness of the sequence, we have proved image(Φ) ⊆ image(Φ)⊥.

Remark 4.1.4. For a triple (W,V,E) to be a binary self-dual code, we need that the

non-degenerate bilinear product on W is Euclidean, where E is a Euclidean basis.

Apply Galois cohomology to the Kummer sequence

0→ µ2 → Gm
×2−→Gm → 0 (4.1.8)

By Hilbert’s Satz 90 H1(K,Gm) = 0, therefore it is shown H1(Kv, µ2) = K∗v/2. The

pairing 4.1.5 is just the Hilbert symbol pairing [Ser62, Chapter XIV]. By Corollary

3.2.3 Wv := H1(Kv, µ2) is Euclidean if and only −1 6∈ (K∗v )2. For a finite extension

Kv/Q2, dimF2K
∗
v/2 = 2 + [Kv : Q2] by the structure theorem of local fields [Neu99,

Proposition 5.7, Chap II]. Combined with Corollary 3.2.3 and the discussion in

Section 3.2, when Wv is Euclidean, it shows Ev is unique up to permutations if and

only if the residue characteristic of v is different from 2 or Kv = Q2. After choosing

a basis Ev for each Wv, we always take E = tv∈SEv.

By Albert’s Theorem 3.2.2, when some subspaces Wv are alternate and some

other (nonempty) subspaces Wv′ are Euclidean, the total space W is still Euclidean.
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However, there will be no natural way to choose a Euclidean basis E in W up to

permutations unless dimF2W ≤ 3. By Section 2.2, the combinatorial properties of

a binary self-dual code depends on the choice of E up to permutations. Thus unless

there is a natural way to pick a basis E, a binary self-dual code (W,V,E) is not

well-defined. ♦

Example 4.1.5. Suppose K is a number field and X = Spec(OK). Taking cohomol-

ogy of the Kummer sequence 4.1.8, it produces

0→ O∗K,S/2→ H1(U, µ2)→ Pic(U)[2]→ 0

where Pic(U)[2] denotes the two torsion elements in the abelian group Pic(U).

When Pic(U) is odd, O∗K,S/2 = H1(U, µ2). The image of Φ in Proposition 4.1.3 is

the diagonal image O∗K,S/2→ ⊕v∈SK∗v/2 as in Construction Q. We will show that

Φ is injective under our assumption that S contains all the infinite places and finite

places v|2.

By 3.1.1 h1(U, µ2) = dimF2O∗K,S/2 = |S|.

When v|2, h1(Kv, µ2) = 2 + [Kv : Q2]. When v - 2 ∈ Sf , h1(Kv, µ2) = 2. When

v is real, h1(Kv, µ2) = 1. When v is complex it is trivial. Therefore

∑
v∈S

h1(Kv, µ2) =
∑
v|2

(2 + [Kv : Q2]) + (
∑

v-2,v∈Sf

2) + r1 = 2r2 + r1 + 2|Sf |+ r1 = 2|S|

(4.1.9)

where r1 is the number of real places, r2 the number of complex places. By Propo-

sition 4.1.3, 1
2
dimF2W = dimF2 image(Φ) = h1(U, µ2), thus Φ is injective.
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When Pic(U)[2] 6= 0 the two-torsion elements in the Picard group are also

involved in the construction. However this is related to the odd Picard number

case. Suppose U ′ ⊂ U is a smaller open subscheme, the map Φ factors through

H1(U,Z/2)→ H1(U ′,Z/2)→ ⊕v∈SH1(Kv, µ2)

whence we can take a small enough U ′ such that such that Pic(U ′) is odd.

In general, the diagonal image Φ : O∗K,S → ⊕v∈SK∗v/2 has more complicated

patterns than a boxed-matrix as in table 3.1. From the above discussion, if for

all v|2 Kv = Q2, a binary self-dual code (W,V,E) is well defined. However, when

[K : Q] > 0 it is usually hard to give a combinatorial description of image(Φ),

besides the fact that it is a binary self-dual code. This is related to the problem

of giving an elementary description of a “quadratic reciprocity law” for v|2 in K,

see [Lem00] for an overview. Characterizing the image of Φ also concerns the

behavior of quadratic residues of the S-units in K. It would be interesting to see

how a viewpoint from the binary self-dual code structure can help us probe these

problems. For example, one can ask the following question:

Question 4.1.6. Consider the set of number fields K where 2 splits completely. Fix

the number of embeddings r1, r2 of K and let the discriminant disc(K) grow by

magnitude. If Sf contains only v|2, the length of the code is fixed to be 4r1 + 6r2

by Equation 4.1.9. What is the frequency that a certain equivalence of codes of this

length is generated? How is this frequency related to the density p̃θ in section 3.4?

We leave this question for further research. 4
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Example 4.1.7 (Local-Global Codes). Consider the global function field Fq(T ), where

q = pn ≡ 3 mod 4, T is a transcendental parameter. X = P1
Fq

. Let S =

{ 1
T
, g1(T ), · · · , gn−1(T )} where each gi(T ) is a monic irreducible polynomial in Fq[T ].

The image of Φ is given by the global S-units 〈−1, g1(T ), · · · , gn−1(T )〉 in W =

⊕v∈SK∗v/(K∗v )2. Suppose each gi(T ) has odd degree, then the Hilbert symbol pair-

ing W ×W → F2 has a natural choice of Euclidean basis. It is not hard to see that

the diagonal image of Φ is also described by a boxed-matrix in table 3.1.

When Fq = Fp is a prime field, X can be considered to be the fiber over SpecFp

in P1
Z. Consider some horizontal divisors defined by linear integral polynomials

gi(T ) = T − ai on P1
Z, where ai ∈ Z. The pull-back of these horizontal divisors on

X are rational points defined by gi(T ) mod p. When |p| > max1≤i≤n−12|ai|, gi(T )

mod p will give distinct rational points on X. In the boxed-matrix description

of the resulting code, the pair bij is determined by the Legendre symbol (
ai−aj
p

).

By Gauss’s quadratic reciprocity, the Legendre symbol is also determined by the

congruence conditions of p mod the prime factors in (ai − aj). For simplicity,

assume for all sets of indices {i, j}, there is an odd prime number fij and n, such

that fnij|(ai − aj), fn+1
ij - (ai − aj), and fij - (ai′ − aj′) when {i, j} 6= {i′, j′}. Now

let the prime number p grow by magnitude in the congruence class of 3 mod 4. By

the equidistribution of the prime number p in the congruence classes mod the fij’s,

the Legendre symbol (
ai−aj
p

) is 1 or −1 exactly half of the time. Therefore, when

we take X to be the fiber over different prime p ≡ 3 mod 4 in P1
Z, the pull-back
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divisors S generate binary self-dual codes like the random algorithm in section 3.4

using a fair coin! 4

4.2 Duality of Arithmetic Schemes

In this section, we will continue the construction from the previous section and gen-

eralize Proposition 4.1.3 to certain arithmetic schemes of positive relative dimension

over X, where X, K, S and U have the same meaning from the previous section.

Recall that K is a global field of characteristic different from 2 and 2 is invertible on

U . Let π : Y → X be an integral, projective scheme over X of relative dimension

d > 0. Suppose Y is smooth over an open subscheme U ⊆ X and its generic fiber

YK is geometrically irreducible. First we recall the following generalization of the

local Tate duality [Sai89]:

Proposition 4.2.1. Kv is a non-archimedean local field of characteristic different

from 2. Given a locally constant constructible sheaf F ∈ Sh(YKv ,Z/2),

H i(YKv ,F)×H2d+2−i(YKv ,FD)→ H2d+2(YKv , µ2) = Z/2 (4.2.1)

is a perfect pairing of F2 vector spaces.

When v is a complex place, the Tate cohomology groups Ĥ i(C,M) = 0 for any

module M and i ∈ Z. Therefore for a complex variety π : Z → C and F ∈ Sh(Z),

Ĥ i(Z,F) = Ĥ i(C, Rπ∗F) = 0. Proposition 4.2.1 is trivially satisfied.

There is a generalization of Artin-Verdier duality [Mil06]:
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Proposition 4.2.2. Given a locally constant constructible sheaf F ∈ Sh(Y,Z/2),

Hr
et(YU ,F)×H3+2d−r

c (YU ,F∨)→ H3+2d
c (YU , µ2) ∼= Z/2 (4.2.2)

is a perfect pairing of F2 vector spaces.

Using Proposition 4.2.1 and 4.2.2, the following is a corollary of Proposition

4.1.3:

Corollary 4.2.3. When K is a totally imaginary number field or a global function

field of characteristic different from 2, the image of the restriction homomorphism

Φ: Hd+1
et (YU , µ2)→ ⊕v∈SHd+1

et (YKv , µ2)

is its own orthogonal complement with respect to the non-degenerate bilinear product

(
⊕v∈SHd+1

et (YKv , µ2)
)
×
(
⊕v∈SHd+1

et (YKv , µ2)
)
→ ⊕v∈SH2d+2

et (YKv , µ2)

δ2d+3−→H3+2d
c (YU , µ2) ∼= F2 (4.2.3)

which is the Yoneda-pairing composed with taking summations.

Remark 4.2.4. The reason we do not consider the case when K has a real embedding

is that although Proposition 4.2.2 remains valid, Proposition 4.2.1 is in general not

true for a real local field, see [Cox79]. ♦

When d = 1, V is the diagonal image Φ : H2(YU , µ2) →
∑

v∈S H
2(YKv , µ2). By

the Kummer sequence, H2(Y, µ2) can be computed by

0→ Pic(Y )/2→ H2(Y, µ2)→ Br(Y )[2]→ 0
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where Br(Y ) := H2(Y,Gm) is the cohomological Brauer group. An explicit descrip-

tion of the map Φ would be very interesting, which we leave for further study.

In general, it is not an easy problem to determine if the Yoneda-pairing

〈, 〉 : Hd+1(YKv , µ2)×Hd+1(YKv , µ2)→ H2d+1(YKv , µ2) (4.2.4)

used in Corollary 4.2.3 is Euclidean or alternate, as is illustrated in the following

example.

Example 4.2.5. Consider the case YKv = P 1
Kv

. The Hochschild-Serre spectral se-

quence is often used to calculate H∗(P 1
Kv
, µ2):

H i(Kv, H
j(P 1

Kv
, µ2))⇒ H i+j(P 1

Kv
, µ2) (4.2.5)

where Kv denotes an algebraic closure of Kv. This spectral sequence is multiplica-

tive, in the sense that there is a pairing on the E2 page:

Ep1,q1
2 ∪ Ep2,q2

2 → Ep1+p2,q1+q2
2

which when passing to E∞ is compatible with the cup product structure onH∗(P 1
Kv
, µ2).

It is easy to see that the spectral sequence 4.2.5 degenerates on the E2 page. De-

note E2,0
2 = {0, y} ↪→ H2(P 1

Kv
, µ2) = {0, x, y, x + y} =: Wv. E

0,2
2 can be naturally

identified with the quotient {0, x̄} of Wv modulo the subspace {0, y}.

Since the pairing 〈, 〉 on Wv is non-degenerate, the fact that y ∪ y ∈ E4,0
2 = 0

implies 〈x, y〉 = 1 is non-trivial. Thus on the quotient space E0,2
2 ,

〈x̄, x̄〉 = 0 = 〈x, x〉 mod 〈x, y〉
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The multiplicative structure on E2 of 4.2.5 alone does not suffice to determine if 4.2.4

is Euclidean or alternate. In Example 5.6.5, we will prove the following theorem

using techniques from an equivariant étale cohomology theory.

Theorem 4.2.6. The cup product pairing 4.2.4 is alternate when YKv = P 1
Kv

or EKv ,

where EKv is an elliptic curve with good reduction over a local field Kv with residue

characteristic different from 2.

4
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Chapter 5

The Equivariant Construction

Ever since the 1950s, equivariant cohomology has been a powerful tool in the study

of group actions on spaces. Borel defined an equivariant cohomology for the action

of a compact group G on a topological space [Bor60]. In [Gro57], Grothendieck

defined an equivariant sheaf cohomology for the action of a discrete group. For a

finite group, the Borel construction can be generalized to actions on sheaves and it

coincides with Grothendieck’s equivariant sheaf cohomology [Sti79]. In this chap-

ter, we will transplant certain statements for a finite group action on a finite CW

complex to an action on equivariant étale sheaves over a scheme. For an application

to the construction of binary self-dual codes, we will mainly be concerned with the

case G = Z/2.

In Section 5.1, we will follow [AP93, Chapter I] and review the set-up of a

construction for Grothendieck’s equivariant cohomology. When G = Z/2, we will
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use a minimal Hirsch-Brown model for an equivariant G-complex. In section 5.2, we

will specialize to consider equivariant étale sheaves over a scheme, and recall Morin’s

construction of a modified equivariant étale cohomology. In section 5.3, we prove

a “Smith-type inequality” 5.3.1 using Theorem 5.3.3 from [Mor08]. We will call it

the maximal case when 5.3.1 is an equality. In the maximal case for a Z/2 action

on a scheme Y where 2 is invertible, cohomological duality statements on Y can

be utilized to construct binary self-orthogonal spaces, following [Pup01]. In section

5.5 we compare the Equivariant Construction and Construction G in the previous

chapter. In Example 5.5.4, the reader will find that while the two constructions

give the same underlying vector spaces for a code, their product structures are not

necessarily the same. In the final section 5.6, we provide some more discussions

on the maximum condition 5.3.8. In particular, in Example 5.6.5 the maximum

condition is met, and the deformation trick can be used to prove Theorem 4.2.6.

5.1 Cohomology of a G-Complex

Let G be a finite group and k be a field. C∗ is a bounded below cochain complex

of k[G]-modules, we will call C∗ a δgk[G]-Mod, where δ : Ci → Ci+1 is the G-

equivariant differential. Similarly, we will call a bounded above chain complex of

k[G]-modules a ∂gk[G]-Mod. Recall the following construction of the hyper-derived

functor Ext∗k[G](k, C
∗) [Ben98, 2.7]: take a free resolution E∗ of the trivial G-module
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k,

· · · Ei → Ei−1 · · · → E1 → E0 → k → 0

Define βnG(C∗) := Πi+j=nHomk[G](Ei, Cj). Equivalently, define the dual com-

plex E∗ as E i := Homk[G](Ei, k[G]), since C∗ is bounded from below, βnG(C∗) ∼=

⊕i+j=nCj ⊗k[G] E i. Then Extnk[G](k, C
∗) := Hn(β∗G(C∗)). We will follow [AP93] and

call this group H∗G(C∗). Recall [Ben98, 3.2], the cup product

H i
G(C∗)⊗Hj

G(S∗)→ H i+1
G (C∗ ⊗ S∗)

is associative and graded-commutative. When there is an associative, graded-

commutative δgk[G]-Mod morphism C∗⊗C∗ → C∗, H∗G(C∗) is a graded-commutative

algebra over H∗G(k). For our purpose, we will only consider the case when G = Z/2

and k is a field of characteristic 2. Thus it is not necessary to distinguish between

left and right G-actions and the ± sign doesn’t matter. Following [AP93, Chapter

I], we will pick a particular (minimal) resolution E∗ such that for any δgk[G]-Mod

C∗, β∗G(C∗) is already a right graded β∗G(k)-module on the cochain level.

Denote G = Z/2 = {1, g}. Take E∗ = k[G] ⊗ W ∗, where each graded piece

W n is freely generated by {wn} as a k-module. The G-equivariant differential δ is

defined by δwn := (1 − g)wn+1. Under this E∗, βnG(k) is generated as a k-module

by wn ⊗k[G] 1 ∈ En ⊗ k. The differential on βnG(k) is trivial, and β∗G(k) ∼= H∗(G, k)

as δgk-Mod. β∗G(k) obtains a commutative ring structure from H∗G(k), which is

isomorphic to k[t], deg(t) = 1.
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Consider the δgk-Mod β∗G(C∗) = C∗ ⊗k[G] E∗. Since tensor product is commu-

tative for graded k-modules,

C∗ ⊗k[G] E∗ ∼= C∗ ⊗k[G] (k[G]⊗W ∗) ∼= (C∗ ⊗k[G] k[G])⊗k W ∗ ∼= C∗ ⊗k W ∗

Under this isomorphism, C∗ ⊗W ∗ obtains a differential δ̃ from β∗G(C∗).

Lemma 5.1.1. [AP93, Proposition 1.3.4] The cochain complex β∗G(C∗) is a free

graded right k[t]-module isomorphic to C∗⊗ k[t], and the differential δ̃ on C∗⊗ k[t]

is right k[t]-linear.

Remark 5.1.2. Multiplication of k[t] on the left of C∗ ⊗ k[t] is associative only up

to cochain homotopy, loc. cit. ♦

We will call a graded k[t]-module with a k[t]-linear differential a δgk[t]-Mod.

Explicitly, the differential δ̃ on C∗ ⊗ k[t] is given by

δ̃(c⊗ 1) = δ(c)⊗ 1 + c(1− g)⊗ t (5.1.1)

In particular, δ̃ is not the usual differential of the tensor product of two δgk-Mod C∗

and k[t], a phenomenon which was already observed in [Bro59]. In general, given a

δgk-Mod (C, δ), a δgk[t]-Mod (C ⊗ k[t], δ̃) is called a deformation of (C, δ) if

δ̃(c⊗ 1) =
∑
i

bi ⊗ ti

where b0 = δ(c). We denote (C ⊗ k[t], δ̃) by C∗⊗̃k[t] to emphasis the deformation.

Since k is a field, all exact sequences of k-modules split (non-canonically), by

[AP93, B.1.8], a δgk-Mod is homotopic to the trivial complex if it has trivial coho-

44



mology group. Therefore a δgk-Mod C∗ is homotopic to H∗(C∗) with trivial differ-

ential. By [AP93, B.2.4], C∗⊗̃k[t] is homotopic to H∗(C∗)⊗̃k[t], which is called the

minimal Hirsch-Brown model for β∗G(C∗).

For applications in the next section, we also consider the localization at t of a

δgk[t]-Mod M∗. As usual, given a graded k[t]-module M∗ = ⊕n∈ZMn, the degree n

piece of its localization at the homogeneous ideal (t) is given by ⊕j∈ZMn−j⊗ tj. We

extend the differential k[t, 1
t
]-linearly, and denote this localization by M∗⊗k[t]k[t, 1

t
].

5.2 Equivariant Etale Sheaves

In this section we will recall some facts about the category of equivariant étale

sheaves on the étale site of a locally noetherian scheme Xet, denoted Sh(X,G). In

this section, G is a finite group acting on X, and F is a sheaf on Xet.

Definition 5.2.1. A G-linearization of F is a family of morphisms ϕσ, : σ∗F → F

indexed by σ ∈ G that satisfy the following conditions:

• ϕ1 = Id.

• ϕτσ = ϕτ ◦ τ∗(ϕσ).

A G-linearized sheaf F is called an equivariant G-sheaf, F ∈ Sh(X,G). A

morphism of G-sheaves α : F → L on Xet is a morphism of sheaves that commutes

with the linearizations on F and L. In other words, if we define the action of G on
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HomSh(X)(F ,L) by

σ(α) := ϕL,σ ◦ σ∗(α) ◦ ϕ−1
F ,σ

Then HomSh(X,G)(F ,L) is the invariant subgroup under this action. ♦

Sh(X,G) is an abelian category with enough injectives. When F is an injective

object in Sh(X,G), it is also injective in Sh(X) [Mor08] and the group of global

sections F(X) is an injective Z[G]-Mod [Gro57, Lemma 4.3.1].

We can apply the construction in the previous section to define equivariant

étale cohomology groups of equivariant sheaves. Given a sheaf of k-modules F ∈

Sh(X,G) where k is a field, take an injective resolution I∗ in Sh(X,G) and apply

the global section functor. This gives a complex of k[G]-modules I∗(X):

I0(X)→ I1(X)→ I2(X) · · ·

Define a δgk-Mod β∗G(F) where βnG(F) := ⊕i+j=nHomk[G](Ei, Ij(X)).

Definition 5.2.2. The equivariant sheaf cohomology is defined as H∗G(X,F) :=

H∗(β∗G(F)). ♦

Remark 5.2.3. A standard spectral sequence argument shows that H∗G(X,F) defined

in this way is equal to Grothendieck’s equivariant cohomology groups H∗(X,G,F),

which are derived functors of F(X)G [Wei94, 5.8]. ♦

In [Mor08] a modified equivariant étale cohomology is introduced. Consider a

complete resolution J∗ of the trivial G module k,
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Definition 5.2.4. Define β̂∗G(F) := Homk[G](J∗, I∗(X)) where

β̂nG(F) := ⊕i+j=nHomk[G](Ji, Ij(X)). Define Ĥ∗G(X,F) := H∗(β̂∗G(F)). ♦

When G = Z/2, we can choose a (minimal) complete resolution J ∗ by splicing

together a (minimal) resolution E∗ and its dual. Under this J ∗, the following is a

corollary of Lemma 5.1.1:

Corollary 5.2.5. As a δgk[t, 1
t
]-Mod, β̂∗G(F) ∼= β∗G(X,F)⊗k[t] k[t, 1

t
] ∼= C∗⊗̃k[t, 1

t
].

By definition, it is obvious that β̂i+1
G (F) ∼= β̂iG(F) ⊗k[t, 1

t
] t and Ĥ i+1

G (X,F) ∼=

Ĥ i
G(X,F)⊗k[t, 1

t
] t. In particular, Ĥ∗G(X,F) is a free k[t, 1

t
] module.

H∗G(X,−) satisfies the usual properties as a derived functor, and there is a

spectral sequence converging to it:

Hp(G,Hq(X,F))⇒ Hp+q
G (X,F) (5.2.1)

On the other hand, it is also proved in [Mor08] that Ĥ∗G(X,−) satisfies some

nice properties. For example, a short exact sequence of G-sheaves

0→ F1 → F2 → F3 → 0

leads to a long exact sequence in Ĥ∗G(X,−). There is also a functorial spectral

sequences converging to Ĥ∗G(X,−), whose E2 page is given by

Ĥp(G,Hq(X,F))⇒ Ĥp+q
G (X,F) (5.2.2)

where Ĥ∗(G,−) means the Tate cohomology groups.
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5.3 The Localization Theorem

In algebraic topology, the classical Localization theorem relates the equivariant co-

homology of a manifold to that of its fixed loci [AP93, Theorem 3.1.6]. In the arith-

metic context of étale cohomology, similar results have been obtained in [Mor08],

which we now briefly recall.

Let X be a connected, locally Noetherian scheme. A finite group G action on

X is called admissible if X is covered by a collection of affine opens which are

invariant under G, and that every orbit of G is contained in such an affine open.

Under this condition, the quotient scheme X/G can be defined. When the G-

action is free, the quotient map π : X → X/G =: W is an étale G-cover. For

F ∈ Sh(X,G), one can define the equivariant push-forward πG∗ (F): for an étale

open V on Wet, π
G
∗ F(V ) := F(X×W V )G. π∗ and πG∗ are quasi-inverses of categories

between Sh(X,G) and Sh(W ). We say F ∈ Sh(X,G) is adapted if ∃n, ∀V on Wet,

Hq(V, πG∗ F) = 0 when q ≥ n+ 1.

Remark 5.3.1. When the G action on X is free, H∗G(X,F) ∼= H∗(X/G, πG∗ F). When

the action of G on X is trivial, H∗G(X,F) ∼= H∗(X,F)⊗H∗(G,F). ♦

When the G-action on X is not free, denote by Z ⊂ X the closed sub-scheme

where the inertia group is non-trivial. In other words, Z is the ramification loci

in the cover X → X/G =: W . X ′ is the open complement of Z in X. An étale

neighborhood of Z in X is an étale affine-morphism φ : U → X such that U×ZX →

Z is an isomorphism.
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Suppose φ : U → X is an étale neighborhood of Z, where φ is a G-equivariant

map and φ−1(Z) intersects with each connected component of U non-empty, then

U is called a G-étale neighborhood of Z in X. The system of G-étale neighborhoods

is cofinal in the system of étale neighborhoods of Z ⊂ X. Z̃ is the projective limit

of the G-étale neighborhoods of Z in X. Denote by i the embedding i : Z → X

and ĩ the canonical map ĩ : Z̃ → X. i factors through ĩ.

Remark 5.3.2. Suppose Z is contained in an open affine scheme SpecA, where Z

is defined by an ideal I. If (Ã, Ĩ) is the Henselization of the pair (A, I), then

Z̃ = Spec Ã. ♦

The following Theorem 5.3.3 and Corollary 5.3.5 are localization theorems in the

scheme-theoretic setting:

Theorem 5.3.3. [Mor08, Theorem 3.10] A finite group G acts admissibly on a

locally Noetherian scheme X. F ∈ Sh(X,G) and suppose that F|X′ is adapted.

Then there is an isomorphism

Ĥ∗G(X,F) ∼= Ĥ∗G(Z̃, ĩ∗F)

When Z is affine and F is torsion, there is an isomorphism [Hub93]:

Lemma 5.3.4. Suppose F is an abelian torsion sheaf on the affine scheme Z̃,

i : Z → Z̃ is the inclusion,

∀n, Hn(Z̃,F) = Hn(Z, i∗F)
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By the functorial spectral sequence 5.2.1 and 5.2.2, when G acts on Z̃, there is

an isomorphism of equivariant cohomology groups:

∀n, Hn
G(Z̃,F) = Hn

G(Z, i∗F), Ĥn
G(Z̃,F) = Ĥn

G(Z, i∗F)

Corollary 5.3.5. [Mor08, Corollary 3.11] When Z is affine and F is torsion:

Ĥ∗G(X,F) ∼= Ĥ∗G(Z, i∗F)

In the following, we will abuse notation and write F or F|Z for i∗F on Z, and

similarly for ĩ∗F on Z̃. Using the localization theorem, one can prove a Smith-type

inequality 5.3.1 on the étale site of schemes when G = Z/2. (The case G = Z/p

for an odd prime p can also be treated with similar techniques.) Given a field k,

we write k1 := k[t]/(t− 1) = k[t, 1
t
]/(t− 1). k0 := k[t]/(t). For a graded k[t]-Mod,

− ⊗k[t] k1 is an exact functor from graded k[t]-Mod to k-Mod. When k = F2, we

will still write k0 and k1 to avoid overloading the notations.

Proposition 5.3.6. Suppose G = Z/2, under the hypothesis in Corollary 5.3.5,

∞∑
i=0

hm+i(Z,F) ≤
∞∑
i=0

hm+i(X,F) (5.3.1)

for any m, where hi := dimkH
i.

Proof. For the proof of this proposition we will use the minimal Hirsch-Brown model

for β∗G(F),

β∗G(F) ∼= H∗(X,F)⊗̃k[t] (5.3.2)
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There are also minimal Hirsch-Brown models for the other complexes

β∗G(F|Z) ∼= H∗(Z,F)⊗ k[t] (5.3.3)

β̂∗G(F) ∼= H∗(X,F)⊗̃k[t,
1

t
] (5.3.4)

β̂∗G(F|Z) ∼= H∗(Z,F)⊗ k[t,
1

t
] (5.3.5)

Since the action of G on Z is trivial, the complex 5.3.3 has trivial differentials. Thus

H∗G(Z,F) = H∗(Z,F)⊗ k[t].

Define a filtration:

Fm(β∗G(F)) := ⊕mi=0H
i(X,F)⊗̃k[t] (5.3.6)

Fm(β∗G(F|Z)) := ⊕mi=0H
i(Z,F)⊗ k[t]

The inclusion morphism i : Z → X induces a graded morphism in equivariant

cohomology

i] :
∑
p+q=n

Hp(X,F)⊗̃tq →
∑
p+q=n

Hp(Z, i∗F)⊗ tq

Induction on n shows that the morphism i] respects the filtration:

∀m, i] : Fm(β∗G(F|Z))→ Fm(β∗G(F)), which then fits into the following diagram

0→ Fm−1(β∗G(F)) −−−→ β∗G(F) −−−→ β∗G(F)/Fm−1 → 0

i]

y i]

y ī]

y
0→ Fm−1(β∗G(FZ)) −−−→ β∗G(F|Z) −−−→ β∗G(F|Z)/Fm−1 → 0

(5.3.7)

After localizing at ⊗k[t]k1 and taking cohomology, the middle map i]⊗k[t]k1 becomes

an isomorphism by Corollary 5.3.5. Since the differentials on H∗(Z, i∗F) ⊗ k[t] is

trivial, the map ī] ⊗k[t] k1 is surjective on the cochain level as well. Since

∞∑
i=m

hi(X,F) = dimk(β
∗
G(F)/Fm−1)⊗k[t] k1
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∞∑
i=m

hi(Z,F) = dimk(β
∗
G(F|Z)/Fm−1)⊗k[t] k1

one gets the desired inequality in Equation 5.3.1.

Remark 5.3.7. Proposition 5.3.6 can be compared with the result in [Sym04], which

uses Bredon’s equivariant cohomology of a local system. ♦

Proposition 5.3.8. [AP93, Proposition 1.3.14] The following two conditions are

equivalent:

(a) The differential δ in the minimal Hirsch-Brown model 5.3.2 of β∗G(F) vanishes;

(b)
∞∑
i=0

hi(Z,F) =
∞∑
i=0

hi(X,F) (5.3.8)

Proof. (a)⇒ (b) is obvious.

(b)⇒ (a) : Factor δ into a surjection followed by an injection: H∗(X,F)⊗̃k[t]→

M → H∗(X,F)⊗̃k[t]. M is a sub-module of the free k[t]-Mod β∗G(F), therefore M is

also a free k[t]-Mod. When equality is reached in (b), the differential in β∗G(F)⊗k[t]k1

is trivial. Thus M ⊗k[t] k1 = 0, which implies M = 0 since ⊗k[t]k1 is exact and M

is free.

Based on Proposition 5.3.8, when equality is reached in 5.3.8, the differential on

both of the minimal Hirsch-Brown models β∗G(F) ( 5.3.2 ) and β∗G(F|Z) ( 5.3.3 )

are trivial. We will later refer to this condition as the maximum condition. Under
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the maximum condition, H∗G(X,F) ∼= β∗G(F) as δgk[t]-Mod. The map i] induces a

map between two free k[t]-Mod which is an isomorphism after tensoring with k1,

which implies that i] is injective.

5.4 The Equivariant Construction

Now consider a situation that is comparable to Chapter 4. Suppose Y is a regular

projective variety over a finite field SpecFq of odd characteristic. Suppose the group

G = Z/2 acts on Y . The constant sheaf F = µ2 ∈ Sh(Y,G) is adapted on Y [Mor08,

3.12]. Since µ⊗n2
∼= Z/2 on Y , by ignoring the Tate twists H∗(Y, µ2) is a Pioncaré

algebra [Ras95, 1.12], which is an algebra that satisfies the following requirements:

Definition 5.4.1. An orientation on a k-algebra A is a non-trivial k-linear map:

OA : A→ k

A is called a Poincaré algebra if the multiplication in A followed by the orienta-

tion A× A→ A
OA−→k induces a k-linear isomorphism A

∼=−→Homk(A, k).

• Suppose A = ⊕ni=0Ai is a graded algebra. If OA(Ai) = 0 when i < n, then

A
∼=−→Homk(A, k) implies that ∀i, Ai

∼=−→Homk(A
n−i, k). (A,OA) is called a

graded Poincaré algebra of formal dimension n.

• A is called a filtered algebra of formal length n+ 1 if there is a filtration

0 ⊂ F−1A ⊂ F0A ⊂ · · · ⊂ FnA = A
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which is compatible with the product FiA×FjA ⊂ Fi+jA.

If OA(Fn−1A) = 0, then A
∼=−→Homk(A, k) implies that ∀i, FiA

∼=−→

Homk(A/Fn−i−1A, k). (A,OA) is called a filtered Poincaré algebra.

♦

Given a graded algebra A, there is an associated filtered algebra A, where

FmA := ⊕mi=0Ai. Conversely, given a filtered algebra A, there is an associated

graded algebra A := gr(A), where Am := Am/Am−1.

Proposition 5.4.2. [AP93, Proposition 5.1.3] A is a filtered Poincaré algebra if A

is a graded Poincaré algebra, and vice versa.

We will apply Proposition 5.4.2 when H∗(Y, µ2) is a graded Poincaré algebra.

Recall when the maximum condition is reached in 5.3.8, we have an isomorphism

of F2 vector spaces:

H∗(Y, µ2) ∼= (H∗(Y, µ2)⊗̃F2[t])⊗F2[t] k1 (5.4.1)

where the multiplication in the algebra structure on the R.H.S is “deformed” from

that on the L.H.S. Recall the R.H.S. has a natural filtration Fm defined in the proof

of Proposition 5.3.8. We have a straightforward observation:

Lemma 5.4.3. H∗(Y, µ2) ∼= gr((H∗(Y, µ2)⊗̃F2[t])⊗F2[t] k1) as a graded algebra.

In corollary 5.3.5, i] ⊗F2[t] k1 induces a map of filtered algebras which is an

isomorphism of F2 vector spaces.

(H∗(Y, µ2)⊗̃F2[t])⊗F2[t] k1

i]⊗F2[t]k1−→∼= (H∗(Z, µ2)⊗ F2[t])⊗F2[t] k1 (5.4.2)
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Remark 5.4.4. We will denote the original filtration on β∗G(Z, µ2) by F̃ , i.e.

F̃m(β∗G(Z, µ2)) =
m∑
i=0

H i(Z, µ2)⊗ k[t] (5.4.3)

Since the differential is trivial, this filtration passes to the cohomology

F̃m(H∗G(Z, µ2)) =
m∑
i=0

H i(Z, µ2)⊗ k[t]

Applying the functor ⊗F2[t]k1 to Equation 5.4.3, which commutes with taking

cohomology, one gets F̃ on H∗G(Z, µ2)⊗F2[t] k1.

On the other hand, one can also translate the filtered algebra structure from

the L.H.S. of Equation 5.4.2 to the R.H.S. by the vector space isomorphism. To

distinguish the situation, we will denote the new filtered algebra structure on

H∗G(Z, µ2)⊗F2[t] k1 by F , which is in general different from F̃ defined above. ♦

Since the G-action on Z is trivial, the algebra structure on H∗G(Z, µ2)⊗F2[t] k1 =

(H∗(Z, µ2)⊗ F2[t])⊗F2[t] k1 and H∗(Z, µ2) are the same. One gets a filtration F on

H∗(Z, µ2) by a chain of isomorphisms

H∗(Y, µ2)
gr←− (H∗(Y, µ2)⊗̃F2[t])⊗F2[t] k1

∼= (H∗(Z, µ2)⊗ F2[t])⊗F2[t] k1
∼= H∗(Z, µ2)

Remark 5.4.5. Suppose the algebra structure of H∗(Y, µ2) is not known, but one

knows the image of the filtration Fm(H∗(Y, µ2)⊗̃F2[t]k1) → H∗(Z, µ2) and the al-

gebra structure of H∗(Z, µ2) (which is often easier to calculate since Z has lower

dimension) one can recover the algebra structure of H∗(Y, µ2) by considering the

associated graded algebra. We call this the deformation trick. It is used in Example

5.6.5. ♦
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Definition 5.4.6. When H∗(Y, µ2) is a graded Poincaé algebra of dimension 2d+

1, the image FdH∗(Z, µ2) becomes its own orthogonal complement in the filtered

algebra structure. When the induced bilinear product:

H∗(Z, µ2)×H∗(Z, µ2)→ H∗(Z, µ2)/F2d
∼= F2

is a Euclidean form, FdH∗(Z, µ2) is a self-dual code. This is the third approach to

the construction of binary self-dual codes, the Equivariant Construction. ♦

Remark 5.4.7. A difference in the applicability between Construction G and the

Equivariant Construction should be pointed out here. In the Equivaraint construc-

tion, it is necessary that H∗(Y, µ2) is a graded Poincaré algebra, for example when

Y is regular and projective over Fq.

On the other hand, in Construction G, it is not necessary for H∗(Y, µ2) to be

dual to itself. The only duality statement required there is that H∗(Y, µ2) is dual to

H∗c (Y, µ2). For example, Construction G works when a regular, relative projective

variety Y is supported on an open subscheme of the ring of integers of a totally

imaginary number field. ♦

Example 5.4.8. Suppose Y is a hyper-elliptic curve defined by y2 = f(x) over a

finite field Fq. Suppose f(x) has degree 2g + 1, and f(x) = Πm
i=1fi(x) breaks

into m irreducible factors over Fq. Consider the double cover π : Y → P1
Fq

. The

Galois group of this cover acts on Y as an involution τ . There are m + 1 closed

points which ramify in this cover: each fi(x) gives a closed point Zi of degree
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di = deg(fi); and there is the point at infinity ∞. Denote their union by Z.∑∞
j=0 h

j(Z, µ2) =
∑m+1

i=1

∑1
j=0 h

j(Zi, µ2) = 2(m+ 1).

Now we will compute
∑∞

i=0 h
i(Y, µ2):

• h0(Y, µ2) = 1.

• By the Kummer sequence:

0→ F∗q/2→ H1(Y, µ2)→ Pic0(Y )[2]→ 0

Thus h1(Y, µ2) = 1 + dimF2 Pic
0(Y )[2].

Geometrically, Pic0(YFq
)[2] is generated as a group by the ramification points

of YFq
/P1

Fq
. Therefore Pic0(Y )[2] is generated by the divisors (Zi)−di(∞) for

0 ≤ i ≤ m, subject to the relation
∑m

i=0(Zi) − (2g + 1)(∞) = 0 in Pic0(Y ).

Hence

dimF2Pic
0(Y )[2] = m− 1

By Artin-Verdier duality for YFq ,

∞∑
i=0

hi(Y, µ2) =
4∑
i=0

hi(Y, µ2) = 2(m− 1 + 1 + 1) =
∞∑
i=0

hi(Z, µ2)

Therefore the maximum condition in 5.3.8 is reached.

The isomorphism H∗τ (Y, µ2) ⊗F2[t] k1
∼= H∗(Z, µ2) gives H∗(Z, µ2) a filtered

Poincaré algebra structure of length 4. The orientation in H∗(Z, µ2) is defined

by taking the quotient over F2. The question that whether the bilinear product

H∗(Z, µ2)×H∗(Z, µ2)→ H∗(Z, µ2)/F2
∼= F2
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is a Euclidean or an alternate form depends on Y . When the form is Euclidean,

then upon fixing a basis, the image F1(H∗(Y, µ2)⊗F2[t] k1)→ H∗(Z, µ2) is a binary

self-dual code. However, in example 5.5.4 we will see an example when this form is

alternate. 4

5.5 Comparison with Construction G

In this section, we will compare the Equivariant Construction in section 5.4 with

Construction G in chapter 4 when Y is a smooth projective curve over a finite

field Fp. The reader is referred to Proposition A.0.12 for an analogous comparison

result in the topological situation. The comparison in the arithmetic situation is

more complicated, due to the fact that a closed point on YFp has cohomological

dimension one rather than zero.

Let Z be a reduced closed sub-scheme of Y . U is the open complement of Z.

Denote by Z̃ the projective limit of the étale neighborhood of Z in Y ; denote by Ũ

the open complement of Z in Z̃.

Proposition 5.5.1. There is a Mayer-Vietoris sequence:

· · ·H i−1(Ũ ,F)→ H i(Y,F)→ H i(U,F)⊕H i(Z̃,F)→ H i(Ũ ,F) · · · (5.5.1)

Proof. By the long exact sequence [Mil80, proposition III.1.25]:

· · · → H i
Z(Y,F)→ H i(Y,F)→ H i(U,F)→ H i+1

Z (Y,F) · · · (5.5.2)
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Replace Y by Z̃, one gets

· · · → H i
Z(Z̃,F)→ H i(Z̃,F)→ H i(Ũ ,F)→ H i+1

Z (Z̃,F) · · · (5.5.3)

Now we will relate Equation 5.5.2 with Equation 5.5.3. Suppose Y ′ is an étale

neighborhood of Z, i.e. Y ′ ×Y Z ∼= Z. There is an excision Theorem [Mil80,

Proposition III.1.27]:

H i
Z(Y,F) ∼= H i

Z(Y ′,F)

The system of étale neighborhoods of Z ⊂ Y is a naturally filtered projective

system. Since étale cohomology commutes with taking filtered projective limit of

schemes, [Mil80, III Lemma 1.16]:

H i
Z(Y,F) ∼= lim−→

Y ′

H i
Z(Y ′,F) ∼= H i

Z(lim←−Y
′,F) = H i

Z(Z̃,F)

Piecing together Equation 5.5.2 and Equation 5.5.3, one gets the Mayer-Vietoris

sequence in Equation 5.5.1.

Remark 5.5.2. Compared with the topological Mayer-Vietoris sequence, the intu-

ition behind Proposition 5.5.1 is that Z̃ is viewed as a “tubular neighborhood” of

Z ⊂ Y ; Ũ is viewed as the “intersection” of Z̃ ∩ U ; U ∪ Z̃ “covers” Y . ♦

Corollary 5.5.3. By the functorial spectral sequence in Equation 5.2.1, one gets

an equivariant Mayer-Vietoris sequence:

· · ·H i−1
G (Ũ ,F)→ H i

G(Y,F)→ H i
G(U,F)⊕H i

G(Z̃,F)→ H i
G(Ũ ,F) · · ·
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Example 5.5.4. In the situation of example 5.4.8, F1(H∗(Y, µ2)⊗F2[t]k1)→ H∗(Z, µ2)

is its own orthogonal complement, according to the equivariant construction. The

function field of Y is K. Z = tm+1
i=1 is the ramification loci in the double cover

π : Y → P1
Fq

. Each closed point Zi corresponds to a ramified place pi of K.

Zi = SpecFpi where Fpi is the residue field of the valuation at pi. Z̃i = SpecOaK,pi

where OaK,pi means the algebraic elements in OK,pi , i.e. the Henselization of OK at

pi. As far as étale cohomology is concerned, one can safely replace OaK,pi by OK,pi .

Z̃ = tm+1
i=1 SpecOK,pi . Denote the open complement of Z ⊂ Z̃ by Ũ .

Ũ = tm+1
i=1 SpecKpi .

Denote the branch loci in P1
Fq

by Z ′; the open complement of Z ′ ⊂ P1
Fq

by A.

As reduced schemes Z ′ = Z. Denote the open complement of Z ′ ⊂ Z̃ ′ by U ′. Then

U ′ = tm+1
i=1 Spec(Fq(x))pi , where pi is the restriction of the place pi on the subfield

Fq(x) ⊂ K. In Construction G, the image of H1(A, µ2) → H1(U ′, µ2) is its own

orthogonal complement.

Recall a binary self-dual code is a triple: (W,E, V ). We will compare the Equiv-

ariant Construction and Construction G in two steps. First we will compare the

vector spaces (W,V ) from the two constructions; Second we will compare whether

the product structures on W from the two constructions are the same.

Comparison of vector spaces:

This argument is similar to Proposition A.0.12. By corollary 5.5.3, there is an
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equivariant Mayer-Vietoris sequence:

· · · → Hj
τ (Y, µ2)→ Hj(A, µ2)⊕Hj

τ (Z̃, µ2)→ Hj
τ (Ũ , µ2)→ Hj+1

τ (Y, µ2)→ · · ·

(5.5.4)

We will show that ∀i, the map H1
τ (Z̃i, µ2)→ H1

τ (Ũi, µ2) is an isomorphism.

By Lemma 5.3.4, Hj(Z̃i, µ2) = Hj(Zi, µ2), therefore τ reaches the maximum

condition on Z̃i:
∑∞

j=0 h
j(Z̃i, µ2) =

∑∞
j=0 h

j(Zi, µ2). Thus

H∗τ (Z̃i, µ2) = H∗(Zi, µ2)⊗ F2[t], in particular h1
τ (Z̃i, µ2) = 2.

On the other hand, H1
τ (Ũ , µ2) ∼= H1(U ′, µ2). Dimension calculation says that the

spectral sequences in equation 5.2.1 for both H1
τ (Z̃i, µ2) and H1

τ (Ũi, µ2) degenerate

on the E2 page. We can compare the sequences:

0→ H1(Z/2, H0(OK,pi , µ2)) −−−→ H1
τ (OK,pi , µ2) −−−→ H0(Z/2, H1(OK,pi , µ2))→ 0yd1 yd2 yd3

0→ H1(Z/2, H0(Kpi , µ2)) −−−→ H1
τ (Kpi , µ2) −−−→ H0(Z/2, H1(Kpi , µ2))→ 0

(5.5.5)

It is easy to see that d1 is an isomorphism.

On the other hand, H1(Kpi , µ2) ∼= K∗pi/2 is generated as a group by {pi, ui},

where pi is a uniformizer and ui is a non-square unit. However, since Kpi/(Fq(t))pi

is a ramified extension, Z/2 acts non-trivially on the uniformizer pi.

Thus H0(Z/2, H1(Kpi , µ2)) is represented by {ui}, which is the isomorphic image

of d3(H0(Z/2, H1(OK,pi , µ2))).

By the five lemma, d2 is an isomorphism as well. This proves H1
τ (Z̃i, µ2) →

H1
τ (Ũi, µ2).
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Therefore in Equation 5.5.4, the image of H1
τ (Y, µ2) → H1

τ (Z̃, µ2) is isomor-

phic to the image from H1(A, µ2) → H1
τ (Ũ , µ2). By the maximum condition

H∗τ (Y, µ2) = β∗τ (Y, µ2), H∗τ (Z̃, µ2) = β∗τ (Z̃, µ2) are free k[t]-modules, thus the image

of H1
τ (Y, µ2)→ H1

τ (Z̃, µ2) is isomorphic to H1
τ (Z̃, µ2)⊗F2[t] k1 = F̃1(H∗τ (Z̃, µ2)⊗F2[t]

k1) = H∗(Z, µ2). On the other hand, H1
τ (Ũ , µ2)⊗F2[t] k1 = H1(U ′, µ2) in Construc-

tion G. Thus the Equivariant Construction and Construction G have the same W

and V .

Comparison of the product structure:

In this section we explore whether the Equivariant Construction and Construc-

tion G use the same bilinear product structure on W .

In Construction G, H1(U ′, µ2) = ⊕m+1
i=1 H

1(Kpi , µ2). If ∀i, |Fpi | ≡ 3 mod 4, then

there is a Euclidean basis for each H1(Kpi , µ2) which is unique up to permutations,

see section 3.2.

In the Equivariant Construction, for simplicity we will only consider the case

when Y is an elliptic curve defined by an equation y2 = f(x). The degree three

polynomial f(x) will break into m factors over Fq, where m = 1, 2 or 3. We

will calculate the filtration F in H∗(Z, µ2) for each value of m. In all three cases,

we will see the non-degenerate bilinear product on H∗(Z, µ2) is an alternate form.

Thus this product is different from that in Construction G. This situation is in

marked difference from Proposition A.0.12, where different constructions (i.e. the

Topological Equivariant Construction and Construction PD) give the same product
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structure.

We are interested in calculating the map:

P : Fm(H∗τ (Y, µ2)⊗F2[t] k1)→ H∗(Z, µ2) (5.5.6)

We will first consider the L.H.S. of Equation 5.5.6. H∗(Y, µ2) can be calcu-

lated by the Hochschild-Serre spectral sequence H i(Fq, Hj(YFq
, µ2)), which con-

verges on the E2 page. H i(Fq, Hj(YFq
, µ2)) = 0 unless 0 ≤ i ≤ 1, 0 ≤ j ≤ 2. Each

Hj(YFq
, µ2) is a Gal(Fq) module, and the Galois action commutes with the action

of τ . Thus Fm(H∗τ (YFq
, µ2)⊗F2[t] k1) is also a Gal(Fq) module, and it is isomorphic

to ⊕mi=1H
i(YFq

, µ2) as a Gal(Fq) module.

Lemma 5.5.5. The sequence H i(Fq,Fj(H∗τ (YFq
, µ2) ⊗F2[t] k1)), i + j = m converges

to Fm(H∗τ (Y, µ2)⊗F2[t] k1) in increasing order of i.

Proof. Fm(H∗τ (Y, µ2) ⊗F2[t] k1) ∼= Fm((H∗(Y, µ2)⊗̃F2[t]) ⊗F2[t] k1) is approximated

by the spectral sequence (H i(Fq, Hj(YFq
, µ2))⊗̃F2[t])⊗F2[t] k1 where i+ j ≤ m.

The action of τ on (YFq
, µ2) commutes with the Frobenius action of Gal(Fq).

We have an algebra isomorphism:

(H i(Fq, Hj(YFq
, µ2))⊗̃F2[t])⊗F2[t] k1

∼= H i(Fq, Hj(YFq
, µ2)⊗̃F2[t]⊗F2[t] k1) (5.5.7)

This proves the claim. 4

Now we consider the R.H.S. of Equation 5.5.6. Z = tm+1
r=1 Zr is a union of m+ 1

closed points. Each closed point Zr corresponds to a map πr : SpecFqr → SpecFq.
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Zr,Fq
further breaks into some geometric points over Fq. Altogether ZFq

= t4
r=1ptr

has four geometric points. Write H0(ZFq
, µ2) = ⊕4

r=1H
0(ptr, µ2) with basis er =

H0(ptr, µ2). As a Gal(Fq) module, H0(Zr,Fq
, µ2) ∼= πr,∗µ2. Thus by the Leray

spectral sequence Hj(Fq, H0(Zr,Fq
, µ2)) = Hj(Fqr , µ2).

On each closed point Zi = SpecFqi , denote H0(Fqi , µ2) = ai, H
1(Fqi , µ2) = bi.

When i 6= j, H∗(Fqi , µ2) ∪H∗(Fqj , µ2) = 0.

Lemma 5.5.6. As a Gal(Fq) module, F0(H∗τ (YFq
, µ2) ⊗F2[t] k1) maps to {

∑4
i=1 ei}

in Equation A.0.2; F1(H∗τ (YFq
, µ2) ⊗F2[t] k1) maps to the vector space generated by

{e1 + e2, e1 + e3}+ F0; F2(H∗τ (YFq
, µ2)⊗F2[t] k1) maps to {e1}+ F1.

Remark 5.5.7. Lemma 5.5.6 shows, as a Gal(Fq) module,

H∗(ZFq
, µ2) ∼= F2(H∗τ (YFq

, µ2)⊗F2[t] k1) ∼= H∗(YFq
, µ2) ∼= Z/2⊕ Z/2⊕H1(YFq

, µ2).

On the other hand, if one ignores the Gal(Fq) structure, it is easily seen from

Lemma 5.5.6 that the cup-product H1×H1 → H2 ∼= F2 is alternate on a topological

torus, which is well-known. ♦

The map of Galois modules in Lemma 5.5.6 induces maps

H i(Fq,Fj(H∗τ (YFq
, µ2)⊗F2[t] k1))→ H i(Fq, H0(ZFq

, µ2)) (5.5.8)

which are used to compute the map in Equation 5.5.6 by Lemma 5.5.5.

In our calculation, we will encounter three kinds of Gal(Fq) modules N : N = µ2,

H1(YFq
, µ2) and πr,∗µ2. Suppose Gal(Fqr/Fq) = Z/r, the inflation map

H i(Z/(2r), N)
∼=−→H i(Fq, N) is an isomorphism when i ≤ 1. We will use the cyclic

64



group Z/(2r) to do some explicit computations P : H i(Z/(2r), N)→ H i(Z/(2r), N ′)

for various modules N and N ′ in equation 5.5.8.

Case (1), when m = 3:

Z is a union of four closed points over Fq. dimF2Pic(Y )[2] = 2. The Gal(Fq)

action is trivial. In the following, we will use the shorthand notation P (H i(Fj)) for

the image of P : H i(Fq,Fj(H∗τ (YFq
, µ2)⊗F2[t] k1))→ H i(Z, µ2).

• P (H0(F0)) = {
∑4

r=1 ar}.

• P (H1(F0)) = {
∑4

r=1 br}.

• P (H0(F1)) = {a1 + a2, a1 + a3}+ P (H0(F0)).

• Using P (H1(F0)×H0(F1)) ⊂ P (H1(F1)), it is easy to see

P (H1(F1)) = {b1 + b2, b1 + b3}+ P (H1(F0)).

• P (H0(F2)) = {a1}+ P (H0(F1)).

• P (H1(F2)) = {b1}+ P (H1(F1)).

Remark 5.5.8. In the algebra ⊕m+1
r=1 H

∗(Fqr , µ2), anything multiplied by br is either 0

or br itself. Thus if the bilinear product induced by the filtration is non-degenerate,

(for example, when it is a Poincaré algebra) br 6∈ F2. Therefore the fact that

P (H1(F2)) = b1 + P (H1(F1)) can be seen more directly. ♦

Case (2), when m = 1: Z is a union of two closed points over Fq. Z1 is the

rational point at ∞, Z2 is a closed point of degree three. dimF2Pic(Y )[2] = 0.
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• P (H0(F0)) = {a1 + a2}.

• P (H1(F0)) = {b1 + b2}.

• Since H i(Fq, H1(YFq
, µ2)) = 0, P (H i(F1)) = P (H i(F0)).

• P (H0(F2)) = {a1}+ P (H0(F1)).

• P (H1(F2)) = {b1}+ P (H1(F1)).

Case (3), when m = 2:

Z is a union of three closed points over Fq: Z1 is the rational point at ∞, Z2 is

another rational point, Z3 is a closed point of degree two. dimF2Pic(Y )[2] = 1.

• P (H0(F0)) = {a1 + a2 + a3}.

• P (H1(F0)) = {b1 + b2}.

• P (H0(F1)) = {a3}+ P (H0(F0)).

• P (H1(F1)) = {b1 + b3}+ P (H1(F0)).

• P (H0(F2)) = {a1}+ P (H0(F1)).

• P (H1(F2)) = {b1}+ P (H1(F1)).

It is easily seen that in all the above three cases, the product structures on

H∗(Z, µ2) are alternate. 4
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Remark 5.5.9. Suppose Y is P 1
Fq

double covering itself with two ramification points,

say the point 0 and ∞. It is straightforward to check that the maximum condition

in 5.3.8 is also met. The calculation for the ring structure of H∗(P 1
K , µ2) is the same

as the above Condition (2) in a verbatim way. ♦

5.6 The Smith Type Inequality

In this section we illustrate with two more examples when the maximum condition

in the Equivariant Construction is met.

Remark 5.6.1. In this thesis, we will not compute examples for an involution σ on

a high dimension variety over C. We simply remark that when σ is “geometric”,

i.e. σ acts trivially on the constants C, then the Smith type inequality 5.3.1 gives

a restriction on the topological type of the ramification loci and the intersection

behavior among its connected components. ♦

Example 5.6.2. Suppose X = SpecOK is the ring of integers of an imaginary

quadratic number field. Denote by Sf the set of finite ramified places in K/Q.

Suppose |Sf | = n.

• h0(X,µ2) = 1.

• Suppose dimZ/2Pic(OK)[2] = r. By the Kummer sequence, h1(X,µ2) = 1+r.

• Since H2(X,Gm) = 0, by the Kummer sequence h2(X,µ2) = r. (Since 2 is

not invertible on OK , µ2 is not isomorphic to Z/2 on OK . Thus H∗(X,µ2) is
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not a graded Poincaré algebra in the sense of Definition 5.4.1.)

• h3(X,µ2) = 1.

For each finite place p ∈ Sf ,
∑1

j=0 h
j(Fp, µ2) = 2, thus

∑
pi∈Sf

(
1∑
j=0

hj(Fpi , µ2)) = 2n

The inequality 5.3.1 says r ≥ n− 3
2
. Since r is an integer, r ≥ n− 1. On the other

hand, it is a classical result of genus theory that r = n−1. Although the maximum

condition is not met in this example, the lower bound on Pic(OK)[2] predicted by

5.3.1 is optimal. 4

Remark 5.6.3. If a number field K has a real embedding,
∑∞

i=0 h
i(OK , µ2) = ∞,

see [Mil06, Chapter 2]. The inequality 5.3.1 is trivially satisfied. ♦

Example 5.6.4. For a second example, consider a hyper-elliptic curve defined by

an affine equation y2 = f(x) over a local field K with odd residue characteristic.

Suppose f(x) has good reduction over K, in other words, all of its coefficients

have valuation 0 in K. f(x) has degree 2g + 1, and f(x) = Πm
i=1fi(x) breaks

into m irreducible factors over K. Consider the double cover π : Y → P1
K . The

Galois group of this cover acts on Y as an involution τ . There are m + 1 closed

points which ramify in this cover: each fi(x) gives a closed point Zi of degree

di = deg(fi); and there is the point at infinity ∞. Denote their union by Z.∑∞
j=0 h

j(Z, µ2) =
∑m+1

i=1

∑2
j=0 h

j(Zi, µ2) = 4(m+ 1).

On the other hand, hj(Y, µ2) can be calculated by the spectral sequence
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H i(K,Hj(YK , µ2)) which is concentrated at 0 ≤ i ≤ 2, 0 ≤ j ≤ 2. The only

nontrivial Gal(K) module in this spectral sequence is H1(YK , µ2). Call it M . For

similar reason as in Example 5.4.8, h0(K,M) = dimZ/2Pic(Y )[2] = m− 1.

• h0(Y, µ2) = 1.

• h1(Y, µ2) ≤ h1(K,µ2) + (m− 1) = m+ 1.

• h2(Y, µ2) ≤ 2+h1(K,M). By assumption, the coefficients of f(x) have trivial

valuation in K. The Gal(K) action on M factors through the unramified

quotient Gal(Kun/K) = Ẑ. In other words, the subgroup Gal(K/Kun) =: H

acts trivially on M . There is a short exact sequence

0→ H1(Ẑ,MH)→ H1(K,M)→ H0(Ẑ, H1(H,M))→ 0

By Galois duality over a finite field,

H1(Ẑ,MH) = H1(Ẑ,M) ∼= H0(Ẑ, Hom(M,Gm))

Since M is an elementary abelian 2-group, Hom(M,Gm) = Hom(M,µ2) ∼= M

as a Ẑ module. Thus h1(Ẑ,M) = h0(Ẑ,M) = m− 1.

H1(H,M) = Hom(H,M) = Hom(Hab/2,M) = Hom(Z/2,M) ∼= M as a Ẑ

module. Therefore h0(Ẑ, H1(H,M)) = m− 1.

To sum up, h1(K,M) = 2m− 2, h2(Y, µ2) ≤ 2m.

• By Artin-Verdier duality, h3(Y, µ2) = h1(Y, µ2), h4(Y, µ2) = h0(Y, µ2),

hi(Y, µ2) = 0 for i ≥ 5.
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Summing up the above discussion, 4(m+1) ≤
∑∞

i=0 h
i(Y, µ2) ≤ 4m+4, therefore

it is an equality. The spectral sequence H i(K,Hj(YK , µ2)) degenerates on the E2

page, and the maximum condition is reached in 5.3.8. 4

Example 5.6.5. Following the above example, when the maximum condition is met,

it is possible to use the deformation trick to calculate the ring structure of H∗(Y, µ2).

We will carry out a detailed computation when Y is an elliptic curve defined by a

cubic equation y2 = f(x) as in the above example.

In the deformation trick, the image of the map P in equation 5.5.6 will be

calculated. Z = tm+1
r=1 Zr is a union of m+ 1 closed points, where m = 1, 2, 3. Each

closed point Zr corresponds to a map πr : SpecKr → SpecK. Zr,K further breaks

into some geometric points over K. Altogether ZK = t4
r=1ptr has four geometric

points. Write H0(ZK , µ2) = ⊕4
r=1H

0(ptr, µ2) with basis er = H0(ptr, µ2). As a

Gal(K) module, H0(Zr,K , µ2) ∼= πr,∗µ2. Thus Hj(K,H0(Zr,K , µ2)) = Hj(Kr, µ2).

For each Kr, denote H0(Kr, µ2) = {ar}, H1(Kr, µ2) ∼= K∗r /2 is generated by

{pr, ur} as a group, where pr is a uniformizer for the valuation in Kr, and ur is a

non-square unit. For notational convenience denote ur by br, pr by cr as classes in

H1(Kr, µ2). H2(Kr, µ2) = {dr}.

ar is an identity element in H∗(Kr, µ2), brcr = dr, b
2
r = 0.

c2
r = dr if |Fr| ≡ 3 mod 4; c2

r = 0 if |Fr| ≡ 1 mod 4.

Similar to the second half of example 5.5.4, there is

Lemma 5.6.6. The sequence H i(K,Fj(H∗τ (YK , µ2) ⊗F2[t] k1)), i + j = m abuts to
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Fm(H∗τ (Y, µ2)⊗F2[t] k1) in increasing order of i.

Assume the curve Y has good reduction, and that all elements of PicY [2] are

lifts of elements of PicYFp [2], the Gal(K) action on H∗(YK , µ2) factors through

Gal(Kun/K). Lemma 5.5.6 still holds as a map of Gal(K) modules. This map

induces

H i(K,Fj(H∗τ (YK , µ2)⊗F2[t] k1))→ H i(K,H0(ZK , µ2)) (5.6.1)

which is used to compute the map P in Equation 5.5.6 by Lemma 5.6.6.

In the following calculation, we will encounter three kinds of Gal(K) modules

N = µ2, H1(YK , µ2) and πr,∗µ2. The canonical map

H i(Gal(Kr(
√
ur,
√
pr)/K), N) = H i(Z/(2r)× Z/2, N)

∼=−→H i(K,N)

where i ≤ 1. We will use these abelian group to do some explicit computations

P : H i(Z/(2r) × Z/2, N) → H i(Z/(2r) × Z/2, N ′) when i ≤ 1 in equation 5.6.1.

For i = 2 we will use the functorality of P as a map of rings: if b, c are classes in

H1, b ∪ c is a class in H2, thenP (b ∪ c) = P (b) ∪ P (c).

Case (1), when m = 3:

Z is a union of four closed points over K. dimF2Pic(Y )[2] = 2. The Gal(K)

action is trivial. In the following, we will use the shorthand notation P (H i(Fj)) for

P (H i(K,Fj(H∗τ (YK , µ2)⊗F2[t] k1))).

• P (H0(F0)) = {
∑4

r=1 ar}.

• P (H1(F0)) = {
∑4

r=1 br,
∑4

r=1 cr}.
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• Since P (H1(F0))× P (H1(F0)) ⊂ P (H2(F0)), P (H2(F0)) = {
∑4

r=1 dr}

• P (H0(F1)) = {a1 + a2, a1 + a3}+ P (H0(F0)).

• Using P (H1(F0)×H0(F1)) ⊂ P (H1(F1)), P (H1(F1)) = {b1 + b2, b1 + b3, c1 +

c2, c1 + c3}+ P (H1(F0)).

• P (H2(F1)) = {d1 + d2, d1 + d3}+ P (H2(F0)).

• P (H0(F2)) = {a1}+ P (H0(F1)).

• P (H1(F2)) = {b1, c1}+ P (H1(F1)).

• P (H2(F2)) = {d1}+ P (H2(F1)).

Remark 5.6.7. In the algebra ⊕m+1
r=1 H

∗(Kr, µ2), anything multiplied by dr is either 0

or dr itself. Thus if the bilinear product induced by the filtration is non-degenerate,

dr 6∈ F3. Therefore the fact that P (H2(F2)) = d1 + P (H2(F1)) can be seen more

directly. ♦

Case (2), when m = 1: Z is a union of two closed points over K. Z1 is the

rational point at ∞, Z2 is a closed point of degree three. dimF2Pic(Y )[2] = 0.

• P (H0(F0)) = {a1 + a2}.

• P (H1(F0)) = {b1 + b2}.

• Since H i(K,H1(YK , µ2)) = 0, P (H i(F1)) = P (H i(F0)).

• P (H0(F2)) = {a1}+ P (H0(F1)).
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• P (H1(F2)) = {b1}+ P (H1(F1)).

Case (3), when m = 2:

Z is a union of three closed points over K: Z1 is the rational point at ∞, Z2 is

another rational point, Z3 is a closed point of degree two, thus c2
3 = 0 in H2(K3, µ2).

dimF2Pic(Y )[2] = 1.

• P (H0(F0)) = {a1 + a2 + a3}.

• P (H1(F0)) = {b1 + b2, c1 + c2 + c3}.

• Since P (H1(F0))× P (H1(F0)) ⊂ P (H2(F0)), P (H2(F0)) = {d1 + d2}

• P (H0(F1)) = {a3}+ P (H0(F0)).

• P (H1(F1)) = {b1 + b3, c3}+ P (H1(F0)).

• P (H2(F1))/P (H2(F0)) needs to pair non-trivially with P (H0(F1))/P (H0(F0)),

thus P (H2(F1)) = {d1 + d3}+ P (H2(F0)).

• P (H0(F2)) = {a1}+ P (H0(F1)).

• P (H1(F2)) = {b1, c1}+ P (H1(F1)).

• P (H2(F2)) = {d1}+ P (H2(F1)).

Based on the above calculation, the ‘deformation trick’ says that the product

H2(Y, µ2)×H2(Y, µ2)→ H4(Y, µ2) = Z/2 is alternate. 4
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Remark 5.6.8. When Y is P 1
K double covering itself with two ramification points,

say the point 0 and ∞, it is straightforward to check that the maximum condition

in 5.3.8 is also met. The calculation for the ring structure of H∗(P 1
K , µ2) is the same

as the above Condition (2) in a verbatim way. Thus we have answered Question

4.2.6 in full. ♦
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Appendix A

Topological constructions of

binary self-dual codes

In Append A we review two constructions of binary self-dual codes coming from

topology, which were introduced in [Pup95][Pup01] and [KP08].

Consider an involution τ on a closed (i.e. compact and no boundary) manifold X

of dimension 2r+1 with m isolated fixed points, {pti}mi=1. k is a field of characteristic

2. By [AP93, Corollary 1.3.8]:

Lemma A.0.9.

• There is a Smith type inequality:

m ≤
2r+1∑
i=0

hi(X, k) (A.0.1)

• m is an even integer.
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When equality is reached in Equation A.0.1, τ is called an involution with “max-

imum” number of fixed points. Under this condition, by Proposition 5.3.8, the

equivariant complex β∗τ (X, k) has a minimal Hirsch-Brown model H∗(X, k)⊗̃k[t]

with trivial differential. Thus H∗τ (X, k) ∼= β∗τ (X, k). There is an isomorphism

H∗(X, k)
gr←− (H∗(X, k)⊗̃k[t])⊗k[t] k1

∼= (⊕mi=1H
∗(pti, k)⊗ k[t])⊗k[t] k1

∼= ⊕mi=1H
∗(pti, k) = k⊕m (A.0.2)

Since H∗(X, k) is a Poincaré algebra of dimension 2r + 1, by proposition 5.4.2

k⊕m gets the structure of a filtered Pioncaré algebra:

F−1 = 0 ⊂ F0 ⊂ · · · F2r+1 = k⊕m

In particular, there is a non-degenerate pairing k⊕m×k⊕m → k⊕m → k which is

the composition of the cup-product in ⊕mi=1H
∗(pti, k) followed taking quotient over

F2r. The cup-product in ⊕mi=1H
∗(pti, k) is just the component-wise multiplication

in k⊕m. Since h2r+1(X, k) = 1. When k = F2, F2r can be specified by the following

lemma:

Lemma A.0.10. Under the component-wise multiplication on Fm2 , there is a unique

subspace F2r making the bilinear product a non-degenerate form. Moreover, this

form is Euclidean, and the canonical basis {ei}mi=1 is a Euclidean basis.

Proof. Write the canonical basis in Fm2 as {ei}mi=1. Since the product of ei with

any elements in Fm2 is either 0 or itself, therefore ei 6∈ F2r, otherwise the bilinear

76



product is degenerate on ei. Since 〈ei + ej, ei〉 = (ei + ej)ei = ei mod F2r = 1,

〈ei + ej, ej〉 = 1, thus 〈ei + ej, ei + ej〉 = 0 which implies ei + ej ∈ F2r. Any word

of even weight belongs to F2r. The product on Fm2 is the standard Euclidean form

where {ei}mi=1 is a basis.

By Lemma A.0.10, the triple (Fm2 , {ei}mi=1,Fr) is a self-dual code. This is the

Topological Equivariant Construction of self-dual codes.

A related topological construction, which uses Poincaré duality on a compact

manifold with boundary, is sketched in the following. We will call it the Poincaré

Duality Construction :

Consider an involution τ on a closed (i.e. compact and no boundary) manifold

X of dimension 2r + 1 with m isolated fixed points, where m is not necessarily

maximum. Take out an open ball Di around each fixed point pti, τ |Xrtmi=1Di
is free.

Denote the quotient manifold by W := τ |Xrtmi=1Di
. W is a manifold with boundary,

where ∂W = tmi=1 RP
2r. From the long exact sequence of the pair (W,∂W ),

· · ·Hr(W,∂W, k)→ Hr(W,k)→ Hr(∂W, k)→ Hr+1(W,∂W, k) · · ·

using Poincaré duality, the image of the middle dimension cohomology Hr(W,k)→

Hr(∂W, k) is its own orthogonal-complement with respect to the non-degenerate

pairing

Hr(∂W, k)×Hr(∂W, k)→ H2r(∂W, k)→ H2r+1(W,∂W, k) (A.0.3)
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Since ∂W = tmi=1RP 2r, there is a canonical basis

Hj(∂W, k) ∼= ⊕mi=1H
j(RP 2r, k) ∼= k⊕m

for 0 ≤ j ≤ 2r. Under this basis, the product Hr ×Hr → H2r is the component-

wise multiplication k⊕m × k⊕m → k⊕m. On the other hand, it is a geometric

fact that H2r(∂W, k) = k⊕m
δ−→k = H2r+1(W,∂W, k) corresponds to taking sums

of the coordinates. Finally, the bilinear form in Equation A.0.3 is a Euclidean

form, where the canonical basis is a Euclidean basis. When k = F2 the image

Hr(W,k)→ Hr(∂W, k) is a binary self-dual code.

The universality of the Poincaré Duality Construction is shown by the following

result [KP08, Proposition 3.1], which was proved using oriented cobordism theory.

This shows that there are a lot of involutions on 3-manifolds:

Theorem A.0.11. Every binary self-dual code can be obtained from an involution

on an orientable 3-manifold.

In the topological situation, when τ has the maximum number of fixed points,

the Equivariant Construction and Construction PD are compatible with each other,

which was proved in [KP08]:

Consider the pair (X r tmi=1Di,tmi=1Di). Up to homotopy, we can say their

intersection is a union of 2r-dimension spheres tmi=1S
2r
i . When a finite group G

acts freely on a manifold Y , H∗G(Y, k) = H∗(Y/G, k). We have the equivariant
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Mayer-Vietoris sequence:

· · ·⊕mi=1H
j(RP 2r

i , k)→ Hj
τ (X, k)→ Hj(W,k)⊕⊕mi=1H

j
τ (Di, k)→ ⊕mi=1H

j(RP 2r
i , k)

(A.0.4)

Let’s look at the short exact sequence

Hj
τ (X, k)→ Hj(W,k)⊕⊕mi=1H

j
τ (Di, k)→ ⊕mi=1H

j(RP 2r
i , k)

By the maximumity condition, H∗τ (X, k) ∼= β∗τ (X, k), H∗τ (Di, k) ∼= β∗τ (Di, k). Apply

the exact functor ⊗k[t]k1 to this exact sequence, we get:

Fj(H∗τ (X, k)⊗k[t] k1)→ Hj(W,k)⊕⊕mi=1Fj(H∗τ (Di, k)⊗k[t] k1)→ ⊕mi=1H
j(RP 2r

i , k)

(A.0.5)

For dimension reason, ∀j ≥ 0,

Fj(H∗τ (Di, k)⊗k[t] k1) = H∗τ (Di, k)⊗k[t] k1

By the localization theorem, H∗τ (Di, k)⊗k[t] k1
∼= H∗τ (pti, k)⊗k[t] k1. Also

H∗τ (pti, k)⊗k[t] k1
∼= Hj(RP 2r

i , k) ∼= k

Combing these identifications, one can show

Proposition A.0.12. In Equation A.0.5, the image of Fj(H∗τ (Di, k) ⊗k[t] k1) →

⊕mi=1H
∗
τ (pti, k)⊗k[t]k1 is the same as the Hj(W,k)→ ⊕mi=1H

j(RP 2r
i , k). As a result,

when j = r, the Equivariant Construction and the Poincaré Duality Construction

PD give the same code.
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