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Redundant Neuromodulatory Mechanisms That Control Fear Memory
Consolidation

Abstract
The ability to reliably and powerfully store memories for frightening experiences is crucial to survival in an
ever-changing and potentially dangerous environment. Consolidation is the process by which long-term
memories are stored in the brain, and much is understood about the processes that occur within a neuron in
the hours after a learning event that stabilize learning-induced changes. However, the specific mechanisms
through which fear exacerbates those processes remains unclear. Neuromodulators are a prime object of
research to understand the consolidation of fear memory given that their release is a hallmark of the fear
response. While several neuromodulatory systems are known to facilitate consolidation, no individual system
yet appears to be essential. This dissertation explores the hypothesis that several neuromodulators work
together to ensure proper consolidation of fear memory. The research contained in this dissertation employs
pharmacologic and genetic manipulation of individual neuromodulatory receptor systems and associated
intracellular signaling pathways to determine the essential neurobiology for consolidating of Pavlovian fear
conditioning in mice. The results of this investigation reveal that β2-adrenergic, D5-dopaminergic and
M1-muscarinic receptors in the basolateral amygdala (BLA) are essential to fear conditioning in a redundant
manner, wherein two or more receptor types must be blocked in order to prevent consolidation. Furthermore,
these three receptors are observed to redundantly activate phospholipase C (PLC), which this dissertation
shows is necessary for consolidation in the BLA. Finally, evidence is provided to suggest that PLC promotes
fear memory consolidation by inhibiting a voltage-dependent potassium channel (KCNQ/M) that regulates
neuronal excitability and also appears to control consolidation. Together, this dissertation proposes that fear-
induced neuromodulatory release promotes consolidation through redundant neuromodulatory activation of
PLC, which puts the BLA in an excitable state that does not persist into the consolidation window after
emotionally neutral experiences.
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ABSTRACT 

 

REDUNDANT NEUROMODULATORY MECHANISMS THAT CONTROL FEAR 

MEMORY CONSOLIDATION 

 

Matthew Brandon Young 

Steven A. Thomas 

 

The ability to reliably and powerfully store memories for frightening experiences is crucial 

to survival in an ever-changing and potentially dangerous environment. Consolidation is 

the process by which long-term memories are stored in the brain, and much is 

understood about the processes that occur within a neuron in the hours after a learning 

event that stabilize learning-induced changes. However, the specific mechanisms 

through which fear exacerbates those processes remains unclear. Neuromodulators are 

a prime object of research to understand the consolidation of fear memory given that 

their release is a hallmark of the fear response. While several neuromodulatory systems 

are known to facilitate consolidation, no individual system yet appears to be essential. 

This dissertation explores the hypothesis that several neuromodulators work together to 

ensure proper consolidation of fear memory. The research contained in this dissertation 

employs pharmacologic and genetic manipulation of individual neuromodulatory receptor 

systems and associated intracellular signaling pathways to determine the essential 

neurobiology for consolidating of Pavlovian fear conditioning in mice. The results of this 

investigation reveal that β2-adrenergic, D5-dopaminergic and M1-muscarinic receptors in 

the basolateral amygdala (BLA) are essential to fear conditioning in a redundant 

manner, wherein two or more receptor types must be blocked in order to prevent 

consolidation. Furthermore, these three receptors are observed to redundantly activate 
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phospholipase C (PLC), which this dissertation shows is necessary for consolidation in 

the BLA. Finally, evidence is provided to suggest that PLC promotes fear memory 

consolidation by inhibiting a voltage-dependent potassium channel (KCNQ/M) that 

regulates neuronal excitability and also appears to control consolidation. Together, this 

dissertation proposes that fear-induced neuromodulatory release promotes consolidation 

through redundant neuromodulatory activation of PLC, which puts the BLA in an 

excitable state that does not persist into the consolidation window after emotionally 

neutral experiences. 
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CHAPTER 1: A GENERAL INTRODUCTION TO FEAR MEMORY 
CONSOLIDATION 

 

“We are the inheritors of a million years of striving for the unspeakable.” 

        - Terence McKenna 

From a subjective perspective, memories associated with an emotion seem to have 

privilege over others. Without having made any conscious attempt to stow those 

memories away, a ghostly sense of joy, sadness, or fear seems to make a memory more 

vivid, more persistent, more readily accessible, more real. Indeed, memory for aversive 

experiences is very well stored, not only in humans (Burke et al, 1992; Heuer and 

Reisberg, 1990), but also in insects and sea slugs (Abramson, 1986; Carew et al., 

1983), rodents and birds (Blanchard and Blanchard, 1972; Macphail, 1968), and in non-

human primates (Kalin et al., 2001). The power of a fear memory is perhaps no more 

apparent than in the case of post-traumatic stress disorder (PTSD), in which memory for 

an extremely frightening event recurrently intrudes upon an individual (McDonald and 

Calhoun, 2010). This dissertation explores the neurobiological systems that promote the 

changes in the brain necessary for the powerful storage of fear memory. 

Learning and Memory. All cognition and behaviors are merely probabilities that any 

number of neurons will successfully communicate along the given pathway that carries 

out a particular action or thought. For example, the pathway that travels from the nerves 

of a hand that feels a hot stovetop, through the spinal cord, and back into the muscles 

that quickly pull the hand away is very reliable, and results in a very reliable behavior. 

Safety and survival depend on reliable communication between every neuron in that 

pathway, and most biologically relevant pathways have been refined over countless 

generations. Yet, in a wildly complex and ever-changing world where many different 
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kinds of “stovetops” arise, responses that ensure safety and survival depend on efficient 

adaptability of cognition and behavior. Altering the strength of a pathway, or forming a 

new pathway altogether, changes the probability that a given situation will elicit a 

particular thought or behavior. Therefore, in general terms, memory formation can be 

understood as an evolutionary adaptation wherein the cognitive or behavioral response 

to a given stimulus is updated by changing the strength of neural pathways. 

In the brain, changes in the strength of neural pathways that underlie a memory 

occur at the synaptic connection between neurons in that pathway. Bliss and Lomo first 

observed that high frequency stimulation of a synapse could induce long-term increases 

in the reliability of that synapse (Bliss and Lomo, 1973) – the likelihood that stimulation 

of the presynaptic neuron will elicit a response in the postsynaptic neuron – suggesting 

that synaptic activity itself could change the dynamics of its own responsiveness and the 

fidelity of the larger neuronal pathway. The functional changes at the synapse are driven 

by physiological changes that enhance the signaling power of the presynaptic neuron 

(Rogan and LeDoux, 1995; Schroeder and Schinnick-Gallagher, 2005; Overeem et al., 

2010) and the capacity of the postsynaptic neuron to receive and transmit that signal 

(Rumpel et al., 2005; Ostroff et al., 2010). While speculation remains as to whether or 

not the in vitro observations of long-term potentiation (LTP) actually reflect what happens 

in the brain during learning, several manipulations that disrupt LTP in brain slices also 

disrupt learning and memory in vivo (Hernandez and Abel, 2008). Therefore, LTP is 

generally assumed to be a proof of the concept of synaptic plasticity induced by activity 

at the point of the synapse.  
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Fear Memory in the Brain. The fear response and the ability to form memories about 

frightening experiences both require the amygdala (Blanchard and Blanchard, 1972; 

Campeau and Davis, 1995; Goosens and Maren, 2001; LeDoux et al, 1990; Nader at al, 

2001; Slotnick, 1973). The amygdala complex consists of several distinct and 

interconnected nuclei, including the lateral nucleus, the basal nucleus, and the central 

nucleus. Multimodal sensory inputs from both the cortex and thalamus converge in the 

lateral and basal amygdala (BLA) (LeDoux et al, 1990; McDonald, 1998Romanaski and 

LeDoux, 1993; Turner and Herkenham, 1991), which then projects to the central nucleus 

for further projection to areas of the nervous system that regulate avoidance behaviors 

(LeDoux et al, 1988; Petrovich et al, 1996). The BLA also projects to brain regions 

important for processing higher order sensory information, such as the hippocampus, 

which is required for processing and remembering spatial and contextual information 

about an environment (Holland and Bouton, 1999).  

LTP has been observed in BLA neurons (Sigurdsson et al., 2007), and the ability to 

form fear memories is sensitive to manipulations targeted there (Johansen et al., 2011). 

The plastic changes in neuronal pathways occur at the synapse between 

cortical/thalamic projections activated by sensory stimuli and BLA neurons that project to 

the central amygdala (Royer et al., 1999). Therefore, while fear memory and the neural 

pathways that support it rely on many neurons and brain regions working together, the 

BLA is believed to be the site where neural pathways connecting a stimulus and the fear 

response are modified and formed (Maren et al., 2003). 

To understand learning and memory behavior, science relies on empirical methods 

of experimentation that recreate the experience of learning and memory and also permit 

their quantification. Most of the neuroanatomical structures that mediate fear in humans 

are found serving the same purpose in animals (Aggleton, 1995), and much has been 
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learned about fear memory from rodents by using simple Pavlovian conditioning. In cued 

Pavlovian fear conditioning, an animal is exposed to an auditory tone (conditioned 

stimulus; CS) that elicits very little defensive behavior. The pathway that leads from the 

neurons that sense the sound to the neurons that execute the defense response is 

weak. However, when the tone is made to co-terminate with a footshock (unconditioned 

stimulus; US), which is a biologically-relevant pathway to fear, the formerly weak 

pathway becomes more reliable. Memory for the CS-US association is assessed by re-

exposing the animal to the training tone and measuring the amount of time the mouse 

spends “freezing” – the instinctual fear response of a rodent (Blanchard and Blanchard, 

1969).  Another form of Pavlovian fear conditioning uses the training context as the CS, 

and memory for the context-shock association is assessed by re-exposing the animals to 

the training context. Contextual fear memory depends on both the amygdala and the 

hippocampus, and is often susceptible to disruptive interventions that fail to inhibit strictly 

amygdala-dependent memory (Anagnostaras et al., 2003; Murchison et al., 2004). 

Therefore, while several other fear learning paradigms are also used, this dissertation 

focuses on cued conditioning because its effect resembles the persistence and strength 

characteristic of PTSD.  

The strengthening of a weak neuronal pathway by a nearby strong pathway that 

signals at the same time is called associative or Hebbian synaptic plasticity (Hebb, 

1949). Hebbian plasticity is an appealing model for cued fear conditioning because the 

BLA connects incoming aversive information with fear-expressing neurons (Pitkanen, 

2000). In fact, individual populations of BLA neurons receive convergent auditory and 

somatosensory projections (Li et al., 1996; Romanksi et al., 1993), a relationship in 

connectivity that supports the Hebbian model of learning in fear conditioning. After fear 

conditioning to an auditory tone, subsequent auditory or electrical stimulation elicits a 
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greater signal from the thalamo-cortical neuron (Rogan and LeDoux, 1995), and 

response from the amygdalar neuron (Maren, 2000; Quirk et al., 1995; Repa et al., 

2001). Therefore, it is believed that strengthening of connections, or synapses, within the 

BLA underlie fear memory formation.  

Fear Memory Consolidation. The ability to retrieve long-term memories after learning 

requires that molecular changes to the strength of a synaptic connection in the BLA be 

stabilized or “consolidated” at the site of plasticity in the hours after initial learning 

(Goddard; 1964; Gold et al., 1974; LeDoux, 2000). Several biological and physiological 

changes occur within and at the surface of neurons at a synapse soon after learning, 

and these changes facilitate synaptic strength and the corresponding behavior 

(Johansen et al., 2011). These changes are generally associated with the initial 

acquisition and short-term phase of a memory. Subsequent, consolidation is a 

compendium of processes that promote a persisting facilitation of a synapse and 

behavior, and it is a process characteristic of neurons in brain regions where memories 

are stored. To specifically explore consolidation processes, manipulations are introduced 

immediately after learning, and the effects of those manipulations on memory are 

measured by subsequently testing the ability to remember the learned behavior when 

the manipulation is absent. Manipulations that are not reversible, such as lesions or 

congenital genetic deletion, are often interpreted as affecting only consolidation when 

short-term memory remains intact. Similar short-term vs. long-term distinctions are made 

when manipulations are introduced before the learning event. In general, initial 

consolidation is believed to take place over the course of just a few hours. Manipulations 

that affect memory when administered immediately after training become decreasingly 

effective to the point of complete ineffectiveness as the latency to administer increases 

(McGaugh, 1966).  
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The nature of the processes that drive consolidation specifically within the BLA 

escapes full comprehension due to the complexity of the BLA itself. Its heterogeneous 

composition of excitatory pyramidal neurons (McDonald, 1982; Muller et al., 2006; 

Rainnie et al., 1993) and non-pyramidal inhibitory neurons (Kempainnen and Pitkanen, 

2000; McDonald and Mascagni, 2002; Rainne et al., 2006), as well as the variety of its 

afferent and efferent connections, have given way to observations underscoring the 

potential importance of a number of state-changes during consolidation (Daoudal and 

Debanne, 2003; Ehrlich, 2011; McGaugh, 2000; LeDoux, 2000; Pelletier and Pare, 

2004). However, one thing remains certain in all sites of memory storage: consolidation 

consists of a byzantine array of molecular signaling cascades within neurons that result 

in the expression of genes and the synthesis of new proteins that promote synaptic 

growth and synaptic strength (Hernandez and Abel, 2008; Ploski et al, 2008; Ostroff et 

al, 2010; Stork and Welzl, 1999).  

While the importance of individual consolidation molecules can be debated, in 

general, molecules within these consolidation cascades include transcription factors 

(Han et al., 2007; Josselyn et al., 2001; Zhou et al., 2009), growth factors (Ou and Gean, 

2007), kinases (Goosens et al., 2000; Miller et al., 2002; Schafe et al., 1999; Schafe and 

LeDoux, 2000; Weeber et al., 2000), mRNA (Duvarci et al., 2008), and calcium 

(Dolmetsch et al., 2001; Bauer et al., 2002). Activation of these molecules during 

consolidation leads, in some manner, to the expression of genes and synthesis of 

proteins. Most neurobiological fear memory research has focused on pathways driven by 

cyclic adenosine monophosphate (cAMP) that lead to the activation of the cAMP 

response element-binding (CREB) transcription factor, because manipulating these 

molecules reliably inhibits memory consolidation and LTP (Bernabeu et al., 1997; Huang 

et al., 2000; Schafe et al., 1999). However, other signaling pathways may contribute to 
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consolidation as well (Brambilla et al., 1997). Manipulating pathways important to 

consolidation soon after initial learning regulates the strength of long-term memory: 

inhibition of consolidation pathways impairs consolidation and enhancement supports it. 

Importantly, the effects of manipulations diminish as the time between learning and 

treatment increases, indicating that consolidation is a prolonged, but finite process 

(McGaugh, 1968).      

Regulation of Consolidation Pathways. Pharmacologic and genetic technologies 

permit the manipulation of specific signaling molecules within a neuron, but, under 

natural conditions, the activity of consolidation molecules is regulated by receptors at the 

surface of a neuron that are activated by binding respective neurochemicals released by 

presynaptic neurons. Neurochemical receptors at the surface of neurons transmit activity 

from the outside of a neuron (i.e. binding a neurochemical) to the inside of a neuron by 

anchoring within and across the neuronal membrane.  

In general, there are two classes of transmembrane receptors: ionotropic and 

metabotropic. Ionotropic receptors conduct ionic currents when activated, which either 

promote or inhibit action potential firing. Small glutamate-dependent depolarizations that 

lead to an action potential promote the activation of consolidation pathways primarily by 

allowing calcium to enter the neuron through NMDA receptors (NMDA-R) and L-type 

voltage-gated calcium channels (L-VGCC) (Dolmetsch et al., 2001; Bauer et al., 2002). 

Calcium activates several molecules that are important for increasing gene expression 

and protein synthesis (Bading, 2000; West et al., 2001). Conversely, metabotropic 

receptors, including receptor tyrosine kinases and G protein-coupled receptors, do not 

conduct ionic currents. Instead, the binding of a ligand to the receptors induces changes 

in the receptor on its intracellular side, which promote molecular signaling cascades 

within a neuron. In the case of G protein-coupled receptors, the receptor’s protein 
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interacts directly and/or indirectly with intracellular consolidation pathways (Simon et al., 

1991), and can also contribute to the regulation of action potential firing by regulating the 

conductance of ionotropic receptors and other ion-conducting channels (Dascal, 2001). 

G proteins consist of an α subunit and a βγ complex, both of which can initiate signaling 

processes within a neuron when activated. Four classes of G proteins are distinguished 

by various signaling properties, and are classified as Gαs proteins that stimulate 

molecules in cAMP/CREB pathways, Gαi/o proteins that inhibit them, Gαq/11 proteins that 

affect those pathways indirectly by mobilizing calcium from intracellular stores, and 

Gα12/13 that regulate different intracellular signaling pathways (Simon et al., 1991). 

Therefore, investigation of neuromodulatory receptors that couple to Gαs proteins has 

dominated research into the mechanisms supporting the powerful consolidation of fear 

memory because of their association with cAMP/CREB pathways.  

While there are two main classes of transmembrane neurochemical receptors, a 

wide variety of neurochemicals can be released by a neuron when it fires. The 

neurotransmitters glutamate and GABA are primarily responsible for regulating neuronal 

membrane potential and electrical communication between neurons by binding to 

ionotropic receptors. Glutamate is released from excitatory neurons and initiates 

synaptic plasticity, while GABA is released from inhibitory neurons. Several different 

classes of neuromodulators tune the effects of glutamate/GABA and also regulate their 

effects on non-electrical properties of a neuron. Neuromodulators are typically released 

from specific neurons that originate from distinct loci in the brain. The overwhelming 

majority of receptors for these types of neuromodulators are G protein-coupled 

metabotropic receptors. During fear, the release of several neurochemicals increases in 

the amygdala (Acquas, 1996; Inglis and Moghaddam, 1999; Pezze and Feldon, 2004; 

Yokoyama et al., 2005), and, given the broad range of effects exacted by surface 
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neurotransmitter/neuromodulator receptors on a neuron, the powerful storage of fear 

memory is thought to be facilitated by physiological changes that occur during and after 

fear itself.   

The Neurobiology of Fear and Fear Memory. Fear consists of a number of 

neurological and physiological responses that maximize the perception and avoidance of 

threatening stimuli in an environment rich with sensory information (Ohman and Mineka, 

2001; Ohman et al, 2001). As previously mentioned, the amygdala sits at the center of a 

discrete and evolutionarily conserved fear neuroanatomy that connects sensory 

information to defensive psychological and physiological responses. In addition to the 

excitatory sensory afferents that stimulate it, several different neuromodulators are 

released in the BLA during fear in order to prepare the body for defensive behavior, and 

the mind for alertness (Aston-Jones et al., 1994, 1998; Herrero et al, 2008; Nieoullon, 

2002). Individual neurons in the BLA can receive input from several presynaptic 

neurons, which permits a wide range of modulation after a learning event. These 

neuromodulatory influences driven by fear provide a number of candidate mechanisms 

upon which to build a model for the consolidation of fear memory. 

Glutamate. Given that the amygdala becomes active in response to even unperceived 

aversive stimuli (Morris et al., 2001; Vuilleumier et al., 2002), and remains active after 

the stimulus has passed (Pelletier et al., 2005), glutamate is an attractive candidate for 

facilitating fear memory consolidation in the hours after learning.  Glutamate is the 

primary excitatory neurotransmitter, and it facilitates the firing of neuronal action 

potentials that permit communication between neurons and LTP by binding to NMDA-Rs 

and AMPA receptors (AMPA-R). In fact, elevation of the number of AMPA-Rs in post-

synaptic membranes facilitates long-term memory (Hu et al., 2007; Rumpel et al., 2005). 

In addition, glutamate binds to eight different metabotropic glutamate receptors that 
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couple to different G proteins (Ferraguti and Shigamoto, 2006). The BLA is composed 

primarily of excitatory neurons (McDonald, 1985), and it also receives extensive 

glutamatergic sensory inputs (Li et al., 1996; McDonald, 1998; Romanski and LeDoux, 

1993), which can fire well after initial aversive learning (Guzman-Ramos et al., 2012). 

However, most evidence suggests that glutamatergic signaling does not play a crucial 

role in the consolidation of cued fear memory.   

Fear induces only modest increases in BLA activity (Pare and Collins, 2000) and 

extracellular glutamate levels (Yokoyama et al., 2005), and, while increasing NMDA 

receptor activity can promote consolidation (Kalisch et al., 2009), drugs that have the 

opposite effect appear to inhibit initial acquisition and not consolidation (Rodrigues et al., 

2001; Bauer et al., 2002). In addition, much evidence suggests that the quality of 

glutamatergic signaling during consolidation, regulated by GABA, contributes more 

meaningfully than its quantity (Ehrlich et al., 2011). Therefore, while glutamatergic 

signaling is important for the initial acquisition of cued fear memory, and it may 

contribute to a very early phase of consolidation (Jerusalinsky et al., 1992), other non-

glutamatergic inputs to the BLA are likely responsible for driving the intracellular 

signaling pathways that consolidate long-term memory.  While the neurobiology of fear 

consists of many neurochemicals working together, the remainder of this document will 

focus on just three of those neuromodulators that densely innervate the BLA and have 

been well-studied there. 

Norepinephrine (NE). The release of NE from neurons that originate in the locus 

coeruleus (LC) increases in response to aversive stimuli (Abercrombie and Jacobs, 

1987; Galvez et al, 1996), and can persist well into the consolidation window after an 

emotionally arousing event (Tronel et al., 2004). Indeed, levels of NE in the amygdala 

after learning correlate with subsequent retention of the memory (McGaugh et al., 2002; 
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McIntyre et al., 2002), and pharmacologically increasing NE after learning can enhance 

long-term fear memory (Frankland et al., 2004; Hu et al., 2007; Liang et al, 1990) and 

LTP in the BLA (Tully et al., 2007).  

NE primarily targets excitatory pyramidal neurons in the BLA (Zhang et al., 2013) 

and binds to three different classes of G protein-coupled adrenergic receptors (AR) – 1-

AR, 2-AR, and β-AR. While all three classes of receptors can regulate plasticity (Marzo 

et al., 2009), the β-AR class of receptors (composed of β1-AR, 2-AR, β3-AR) has been 

the most attractive candidate for promoting fear memory consolidation, given that they 

promote the cAMP/PKA signaling cascades known to be important for LTP in the 

hippocampus (Frey et al., 1993; Gelinas and Nguyen, 2005; Hernandez and Abel, 2008; 

Huang and Kandel,1996; Huang et al., 2000). While the majority of experiments 

exploring the effects of β-AR on LTP have been performed in hippocampal slices, β1- 

and β2-AR are both widely expressed in the amygdala (Farb et al., 2010; Qu et al., 

2008), and are important for LTP there (Johnson et al., 2006). Recent studies suggest 

that 2-AR can couple to Gi/o and influence fear memory retrieval in the hippocampus, 

presumably through cAMP/PKA inhibition (Schutsky et al., 2011). However, a role for Gi/o 

signaling by 2-AR has not been explored in cued fear memory consolidation.  

Behaviorally, stimulating β-ARs in the BLA after learning facilitates the consolidation 

of several forms of fear memory. While one study failed to observe enhancing effects of 

epinephrine on fear memory consolidation (Lee et al., 2001), its use of systemic 

epinephrine precludes any effect of the compound in the brain, as epinephrine does not 

cross the blood-brain barrier. However, many other studies have observed 

consolidation-enhancing effects of adrenergic drugs that do enter the BLA in a number 

of different fear learning paradigms (Ferry and McGaugh, 1999; Frankland et al., 2004; 
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Hu et al., 2007; LaLumiere et al., 2003). In humans, administration of drugs that elevate 

NE levels after learning enhanced recall for learned information in the future (Soeter and 

Kindt, 2011; Southwick et al., 2002). Enhancements of memory by post-training β-AR 

activation extends also into non-emotional forms of memory (Roozendaal et al., 2008), 

suggesting that β-ARs drive processes fundamental to the consolidation of memory.  

While β-ARs promote the consolidation of several forms of fear memory, their role 

as requisite mediators of fear memory consolidation is less clear. Hippocampus-

dependent fear memory has some sensitivity to blockade of β-AR or NE signaling 

(Grillon et al., 2004; Ji et al., 2003), but the degree to which consolidation can be 

impaired by these manipulations is inconsistent (Schutsky et al., 2011) and may be due 

to interactions with other stress hormones (Quirarte et al., 1997). This inconsistency may 

be due in part to the resistance of strictly amygdala-dependent consolidation to the 

inhibition of β-adrenergic and noradrenergic signaling. Consolidation of cued fear 

memory in particular is unaffected by pharmacologic and genetic inhibition of individual 

β-ARs or NE altogether (Bush et al., 2010; Debiec and LeDoux, 2004; Murchison et al., 

2004; Schutsky et al., 2011). Moreover, β-AR antagonists fail to inhibit consolidation of 

fear memory in humans (Grillon et al., 2004). Therefore, while β-ARs are widely 

expressed in the BLA and can promote fear memory there, it is likely that they are 

merely a component of a larger set of neuromodulatory changes that occur in the BLA 

after an emotionally arousing event and during consolidation.  

Dopamine (DA). DA release increases in the brain as part of the physiological response 

to stress (Inglis and Moghaddam, 1999). While classically associated with reward-

learning (Wise, 2004), growing evidence suggests that populations of DA neurons fire in 

response to a salient, rather than just rewarding, stimuli, and may play a role in general 

motivational learning (Bromberg-Martin et al., 2010). DA’s role in aversive responses 
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and learning remains cloudy. For example, a single aversive stimulus may increase or 

decrease the firing of different individual populations of DA neurons (Chiodo et al., 1980; 

Mantz et al., 1989). Regardless, neuroanatomical and biological relationships between 

the mesolimbic DA system and the BLA strongly implicate a role for DA in consolidation. 

The ventral tegmental area sends dense and widespread projections to the BLA 

(Asan 1997, 1998; Muller et al., 2009; Pinard et al., 2008), and aversive stimuli induce 

prolonged increases in DA levels there that could affect processes during the 

consolidation window (Inglis and Moghaddam, 1999; Yokoyama et al., 2005). DA binds 

to both the D1 and D5 subtypes of the D1 class of G protein-coupled dopaminergic 

receptors, which are both expressed in the BLA (Mansour et al.,1991; Muly et al, 2009). 

D1 and D5 receptors couple to Gs and Gq/11 respectively, but in the BLA D1 class agonists 

initiate the phospholipase C pathway associated with Gq/11 (Sahu et al., 2009) rather than 

the adenylyl cyclase-cAMP pathway characteristic of Gs (Jin et al., 2001; Leonard et al., 

2003). Therefore, while Gs-coupled D1 receptors contribute to LTP in the hippocampus 

(Frey et al., 1990; Huang and Kandel 1995), amygdalar LTP may rely on alternative 

intracellular signaling cascades.  

Behaviorally, DA appears to contribute to fear learning primarily through the D1 

class of receptors. The firing of some DA neurons is required for some forms of fear 

learning (Fadok et al., 2009; Zweifel et al., 2011). In humans, binding to D1 receptors 

increases following emotional arousal (Takahashi et al., 2010), and pharmacological 

manipulation of D1 receptors can influence the acquisition and retrieval of fear memory 

(Guarraci et al., 1999; Lamont and Kokkinidis, 1998; Nader and LeDoux, 1999). 

However, while pharmacological elevation of DA levels in the BLA can enhance fear 

memory consolidation, blocking DA receptors does not impair consolidation (LaLumiere 

et al., 2005). Conversely, in mice congenitally lacking DA, restoring DA signaling 
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immediately after training rescues learning, suggesting that DA is required for 

consolidation (Fadok et al., 2009).  Conclusions are further clouded by the use of 

multiple training paradigms that often recruit brain regions outside of the amygdala. 

Therefore, the role of DA and DA receptors in BLA-dependent fear memory 

consolidation remains unclear.  

Acetylcholine (ACh). ACh is also released in response to stressful or frightening 

experiences (Acquas et al., 1996) and is generally important to the processes of learning 

and memory (Robinson et al., 2011). A potential role for ACh in fear memory 

consolidation is underscored by the dense cholinergic projections from the basal 

forebrain to the BLA (Carlsen et al., 1985; Kordower et al., 1989) and high levels of the 

enzymes that synthesize and catabolize ACh there (Girgis, 1980; Hellendall et al., 1986). 

ACh binds to two types of cholinergic receptor: the ionotropic nicotinic receptors and the 

metabotropic muscarinic receptors. However, nicotinic receptors in the BLA do not 

appear to influence cued fear memory consoldiation, while muscarinic receptors have a 

variety of effects on a broad scale of fear learning paradigms (Robinson et al., 2011). 

Two classes of muscarinic receptors are found in the brain: the M1 class (m1, m3, m5) 

and the M2 class (m2, m4) (Ehlert et al., 1995).  The m1 subtype (M1R) is the primary 

and most robustly expressed muscarinic receptor in the BLA (Levey, 1991; McDonald 

and Mascagni, 2010). 

The expression pattern of muscarinic receptors in the BLA underlies an important 

role in fear learning. Pharmacologically activating muscarinic receptors in the BLA 

enhances the consolidation of fear learning (Barros et al., 2002; Vazdarjanova and 

McGaugh, 1999). These effects are believed to be mediated via the M1 class of 

muscarinic receptors, which couples to Gq/11 and activates the second messenger 

phospholipase C (PLC) (Caulfield, 1993). Muscarinic activation of PLC initiates an 
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intracellular rise in calcium in the BLA (Power and Sah, 2007), generates a number of 

intracellular signaling molecules (Suh et al., 2008), and also affects a variety of ion 

channels on the surface of BLA neurons that alter their responsiveness to excitatory 

inputs (Washburn and Moises, 1992; Womble and Moises, 1993; Yajeya et al., 1999). 

While these changes in the BLA may promote consolidation, the contribution of 

muscarinic receptors does not appear to be essential, as muscarinic antagonists and 

receptor knockouts fail to impair consolidation of cued fear memory in the BLA 

(Anagnostaras et al., 2003; Fornari et al., 2000). Therefore, other neuromodulatory 

mechanisms might either contribute to the same processes induced by muscarinic 

receptors, or initiate separate processes that support consolidation.   

Other Neuromodulators. The fear/stress response induces the release of several other 

neuromodulators, including serotonin (Yokoyama et al., 2005) and stress hormones 

(Ulrich-Lai and Herman, 2009). These neuromodulators have also been observed to 

contribute to fear learning to some extent (Homberg, 2012; Roozendaal et al., 2009), 

and they must be accounted for in completely understanding the neural processes that 

control fear memory. However, given the scope of the following dissertation, these and 

other neuromodulators will not be discussed in detail.  

Motivation for this Research. This dissertation sets out to explore the neuromodulatory 

systems required to consolidate cued fear memory. As described previously, fear 

memory consolidation is understood through the lens of general consolidation principles 

that reside within (i.e. intracellular signaling cascades) and between (i.e. glutamate) 

neurons at a synapse. Yet these principles are not sufficient to explain how long-term 

memory for the association between fear and a distinct sensory stimulus – vis a vis cued 

fear conditioning – is so well stored. The key to understanding how fear memory is so 

powerfully stored is to determine the neurobiological mechanisms initiated by fear that 
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increase gene expression and protein synthesis in the BLA.  If it is well-understood that 

consolidation at a synapse relies fundamentally on neurobiological processes within 

neurons, a complete understanding of how frightening experiences enhance those 

processes is far from reach. This is no more apparent than in the low efficacy of 

pharmacological treatments for PTSD (Steckler and Risbrough, 2012), where the 

primary avenues of therapy are neuromodulatory interventions, as pharmacologically 

targeting intracellular consolidation pathways is potentially fatal.          

The value of developing a broad and reliable neuromodulatory model of fear 

memory consolidation extends beyond potential translational benefits to fundamental 

contributions to a scientific corpus for which such a model has remained elusive. The 

pursuit of a single neuromodulatory system underlying cued fear memory consolidation 

has yet to bear fruit despite research into many different candidate targets. Multiple 

individual systems have been observed to contribute to fear memory consolidation, but 

none appear to constitute it alone. Given the importance of the BLA to the 

neurophysiology of fear and fear memory, the release of several neuromodulators in the 

BLA as a characteristic of the fear response, and the observed importance of some of 

those neuromodulators to consolidation, this dissertation explores the hypothesis that 

neuromodulatory systems work in concert to constitute fear memory consolidation in the 

BLA.  

Potential relationships between neuromodulatory systems in fear memory 

consolidation have been previously explored (LaLumiere and McGaugh, 2005; 

Roozendaal et al., 2006), but those studies investigated relationships wherein multiple 

receptor systems interact with one another to alter the strength of their individual 

signaling mechanisms. Here, neuromodulatory systems are investigated as partners 

working in parallel to one another to redundantly activate intracellular consolidation 
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pathways. In such a model, blocking a single system does not prevent consolidation, but 

instead requires that two or more systems be blocked to overcome the redundant 

relationship. The pharmacological and genetic techniques used herein, combined with 

the robustness of Pavlovian fear conditioning, provide powerful resolution for 

understanding individual receptor systems, and how they might cooperate with one 

another to store fear memory.  Successfully identifying such a model will provide insight 

into how signaling pathways are upregulated such that normal fear memory is driven to 

the devastatingly persistent and powerful memories formed in individuals suffering from 

PTSD.    

Early interventions soon after a traumatic experience have been previously 

explored, but most treatments have aimed to minimize emotional responses rather than 

directly target the mechanisms responsible for the consolidation of the memory for the 

trauma (Parsons and Ressler, 2013). This dissertation is guided largely by 

pharmacological and biological principles of memory, rather than of emotion, and will 

likely contribute to understanding how memory is consolidated in general, and not only in 

the case of fear memory. Moreover, because many processes known to promote fear 

memory consolidation also facilitate the reconsolidation of a memory after it is retrieved 

(Alberini, 2005), findings in regard to consolidation will likely also contribute to 

understanding reconsolidation and reconsolidation-based treatments for PTSD.  
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PREFACE  

While the first author of the following publication is Ming Ouyang, PhD, I have included it 

in this dissertation due to the contributions that I made to the labor and design of the 

study, as well as to the writing of the manuscript. More importantly, the experiments that 

I conducted in the following study represent the commencement of my thesis work, and 

are essential to the whole of my contribution to the field of learning and memory. My 

contributions to the research conducted in this publication comprise all of Figures 1.5 

and 1.7.  
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ABSTRACT 

Memories for emotionally arousing experiences are typically vivid and persistent. The 

recurrent, intrusive memories of traumatic events in post-traumatic stress disorder 

(PTSD) are an extreme example. Stress-responsive neurotransmitters released during 

emotional arousal are proposed to enhance the consolidation of fear memory. These 

transmitters may include norepinephrine and epinephrine (NE/E) because stimulating β-

adrenergic receptors shortly after training can enhance memory consolidation. However, 

mice lacking NE/E acquire and consolidate fear memory normally. Here, we show by 

using pharmacologic and genetic manipulations in mice and rats that NE/E are not 

essential for classical fear memory consolidation because signaling by the β(2)-

adrenergic receptor is redundant with signaling by dopamine at the D(5)-dopaminergic 

receptor. The intracellular signaling that is stimulated by these receptors to promote 

consolidation uses distinct G proteins to redundantly activate phospholipase C. The 

results support recent evidence indicating that blocking β-adrenergic receptors alone 

shortly after trauma may not be sufficient to prevent PTSD. 
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INTRODUCTION 

The basolateral nuclei of the amygdala (BLA) is a brain region critical to the 

consolidation of fear memory (Pape and Pare, 2010). Changes in neuromodulatory 

signaling in the BLA during emotional arousal are believed to underlie the powerful and 

persistent consolidation of long-term fear memory. Neuromodulators such as 

norepinephrine and epinephrine (NE/E) that are released during fearful or traumatic 

events can promote memory consolidation for such experiences. For example, 

stimulating β-adrenergic receptors by infusing NE or β-adrenergic selective agonists into 

the BLA shortly after instrumental fear conditioning enhances long-term memory 

(McGaugh and Roozendaal, 2002).  

In contrast, a requirement for β-adrenergic signaling in fear memory consolidation is 

less clear. In one study, BLA infusion of β-adrenergic receptor antagonists impaired 

consolidation of instrumental fear (Gallagher et al., 1977). However, results from other 

studies suggest that β signaling is not required for consolidation of instrumental fear 

(Izquierdo and Dias, 1983; Izquierdo et al., 1992). Negative results have also been 

reported for classical fear. Infusing a β-adrenergic receptor antagonist into the BLA 

shortly before or immediately after classical fear conditioning does not impair 

consolidation (Miserendino et al., 1990; Debiec and LeDoux, 2004). Furthermore, 

instrumental and classical fear memory consolidation are normal in mice completely 

lacking NE/E (Thomas and Palmiter, 1997; Murchison et al., 2004) or harboring a 

targeted disruption of either the β1- or β2-adrenergic receptor gene (Schutsky et al., 

2011).  

A potential resolution to the observation that the adrenergic system can influence, 

but is not required for, consolidation is that there is redundancy between the adrenergic 

system and another neurotransmitter system. In redundancy, the loss of a single system 
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will have no effect on consolidation. However, interfering with two relevant but redundant 

systems simultaneously could have considerable effect. Classically, β-adrenergic 

receptors couple to Gs proteins that act to stimulate adenylyl cyclase (AC) and elevate 

intracellular levels of cAMP, a second messenger required in the BLA for fear memory 

consolidation (Schafe and LeDoux, 2000). It is through Gs and cAMP that β receptors 

are currently proposed to enhance synaptic plasticity and memory consolidation (Sara, 

2009; Tully and Bolshakov, 2010).  

For this study, we considered whether DA might serve as a stress-responsive 

system that acts in a redundant manner with NE/E in promoting consolidation. Like 

NE/E, extracellular levels of DA are elevated for minutes following fear conditioning 

(Inglis and Moghaddam, 1999; Anstrom and Woodward, 2005). Like β receptors, the D1 

class of DA receptors, consisting of the D1 and D5 receptors (D1,5), can couple to the Gs 

class of G proteins and elevate cAMP (Sibley and Monsma, 1992), providing an 

opportunity for redundant signaling between these two classes of catecholamine 

receptors. Here, we use genetic and pharmacologic approaches in mice and rats to 

demonstrate that DA and NE/E have redundant roles in the BLA for the consolidation of 

classical fear memory. Surprisingly, we found that the signaling by these 

neuromodulators that is critical for consolidation converges on the activation of 

phospholipase C.  

 

MATERIALS AND METHODS 

Animals 

Wild-type, Dbh+/−, Dbh−/−, Adrb1−/− (β1 KO), Adrb2−/− (β2 KO), and Drd1−/− (D1 KO) 

mice were on a hybrid 129/Sv × C57BL/6 background, while Drd5−/− (D5 KO) mice were 

on a C57BL/6 background (Xu et al., 1994; Thomas et al., 1995; Rohrer et al., 1996; 
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Chruscinski et al., 1999; Holmes et al., 2001). Mice were generated by mating either 

heterozygotes or homozygotes, and genotype was determined by PCR. The prenatal 

loss of Dbh−/− mice was rescued as previously described (Ouyang et al., 2004). No 

significant differences were found by gender or parental genotype so data were 

combined. Female Fischer 344 rats (Harlan) were 3–4 weeks old upon arrival. Animals 

were maintained on ad libitum food and water and a 12 h light/dark cycle, with lights on 

beginning at 7:00 A.M. Animals were housed in small, quiet rooms for at least 3 weeks 

before studies began. Mice were 3–6 months old and rats were 8–11 weeks old when 

tested. Studies were performed during the light phase, with most experiments taking 

place between 9:00 A.M. and 5:00 P.M. Studies were in accordance with NIH guidelines 

and had the approval of the Institutional Animal Care and Use Committee at the 

University of Pennsylvania.  

 

Classical fear conditioning 

Adjacent to the training room, animals were placed in pairs (mice) or singly (rats) 

into opaque plastic holding buckets (12 cm diameter) with bedding and lids for 30–60 

min before being manipulated further. Animals were given two 3 min preconditioning 

handling sessions over 2 d in the training room. Saline was injected at the end of 

handling each day. For conditioning, animals were placed in the training apparatus 

(ENV-010MC with ENV-414S, Med Associates) for 2 min, after which an 84 dB, 4.5 kHz 

tone was activated for 30 s. Two seconds before the end of the tone, a 2 s footshock 

was delivered (1 mA for mice, 1.7 mA for rats). The animal was removed from the 

apparatus and injected 30 s after shock, and then returned to its home cage. The 

apparatus was cleaned with Versa-Clean (Thermo Fisher Scientific) between subjects. 

Experiments examining enhancement of consolidation in mice were conducted 

identically except that a 0.4 mA footshock was used. Pseudoconditioning was similar to 
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conditioning except that animals received the 2 s, 1 mA footshock immediately after 

being placed in the conditioning apparatus, while activation of the 30 s tone occurred at 

the normal time 2 min later. Contextual fear was tested for 5 min in the conditioning 

apparatus in the absence of the tone. Cued fear was tested in a Plexiglas cylinder (21 

cm diameter, 24 cm tall) with green wire grid floor and vertical green and white wall 

stripes 240° around, and was cleaned with lemon-scented Ajax between subjects. After 

2 min, the training tone was turned on for 3 min. Percentage freezing was estimated by 

scoring the presence or absence of nonrespiratory movement every 5 s. Tests were 

conducted 1 d after training.  

 

Instrumental fear conditioning 

Animals were handled as described above. Training consisted of placing an animal 

in the lighted chamber of the apparatus used for classical conditioning and timing its 

latency to fully enter (except for the tail) the dark chamber. Once the animal entered the 

dark chamber, the retractable partition separating the two chambers was lowered and a 

footshock was delivered for 2 s (0.35 mA). The animal was removed from the apparatus 

and injected 15 s after shock, and then returned to its home cage. Animals that did not 

enter the dark chamber after 100 s during conditioning were excluded (<4% of mice, 

independent of genotype). Testing was identical to training except that no shock was 

delivered and the partition remained up. Latencies to enter the dark chamber were 

recorded. If an animal did not enter the dark chamber within 10 min, it was returned to its 

cage and assigned a latency of 10 min. Tests were conducted 1 d after training. 

 

Drugs 

SCH 23390 HCl, ecopipam (SCH 39166 HBr), SKF 38393 HBr, SKF 83959 HBr, 

SKF 83822 HBr, (−)-propranolol HCl, CGP 20172A HCl, ICI 118,551 HCl, procaterol 
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HCl, pertussis toxin, edelfosine (all Tocris Bioscience) and m-3M3FBS (Sigma) were 

administered intraperitoneally or infused into the BLA immediately after training. The 

phospholipase C (PLC) inhibitor U73122 could not be used in these studies because its 

delivery requires high percentage organic vehicles that disrupt memory consolidation on 

their own. Xamoterol hemifumarate (Tocris Bioscience) was administered 

intraperitoneally 60 min before testing contextual fear in Dbh−/− mice to rescue memory 

retrieval (Murchison et al., 2004). Drugs were dissolved in 0.9% saline (SKF compounds 

and procaterol also contained 0.1 mg/ml ascorbic acid, pH 7.4, Sigma). Vehicle was 

saline with or without 0.1 mg/ml ascorbic acid. Systemic injection volumes were 10 μl/g 

body weight. 

 

CNS infusion 

Two guide cannulae mounted on a base plate (C315GS system, Plastics One) were 

implanted under pentobarbital anesthesia (72.5 mg/kg) using a stereotax 

(SAS75/EM40M, Cartesian Research). The guides were placed 1.25 mm posterior to 

bregma and 3.5 mm bilateral for BLA infusions. The guide and dummy cannulae 

projected 3 mm below the base plate. Habituation of the animals to the investigator and 

the infusion procedure began a couple of days later with a 3 min handling session 

followed by 3 min of immobilization (gently holding the nape of the neck and body) that 

mimicked infusion. Five handling sessions were given, with two of them being on the 2 d 

immediately preceding training and the final one being 1 h before training. Immediately 

after training, mice were infused bilaterally using injection cannulae that extended 2.8 

mm below the tip of the guide cannulae. Infusion was 0.2 μl/side at 0.08 μl/min, with the 

injection cannulae being left in place for 30 s before the mouse was returned to its home 

cage. Because studies indicate that the effects of PTx are best evaluated 3 d after 

infusion, PTx was infused into the BLA 3 d before training (Goh and Pennefather, 1989; 
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Stratton et al., 1989). For sites adjacent to the BLA, infusions were displaced 0.75 mm 

from the BLA coordinates in the direction indicated. As a result, dorsal was in the 

posterior striatum, ventral was near the ventral piriform cortex, medial was at the 

central/medial amygdala border, lateral was in the dorsal piriform cortex, rostral was in 

the extreme anterior amygdala, and caudal was in the extreme posterior amygdala.  

 

IP3 levels 

Mice were anesthetized with CO2, killed by cervical dislocation and brains were 

rapidly removed, frozen in isopentane on dry ice and stored at −80°C. Two frozen 

coronal sections (400 μm) that contained the BLA were cut by cryostat (HM505E, 

Microm) from each mouse, and a 0.5 mm diameter punch of BLA tissue was collected 

bilaterally from each slice. The four punches per mouse were pooled and homogenized 

on ice with three 2 s pulses (5 s interval) in 125 μl of 4% perchloric acid using a Sonic 

Dismembrator 100 set on level 3 (Thermo Fisher Scientific). After 15 min on ice, 

samples were stored overnight at −80°C. The next day samples were centrifuged at 4°C 

and 2000 × g for 15 min, and the pellet was stored at −80°C for subsequent Bradford 

assay to determine total protein. Supernatants were neutralized on ice with 10 m KOH 

(to precipitate the perchloric acid) and centrifuged at 4°C and 2000 × g for 15 min. 

Supernatant (100 μl) was then used in the [3H]-IP3 radioreceptor assay (PerkinElmer) 

according to instructions. Pilot experiments indicated that IP3 levels were elevated 30 

min after systemic agonist injection, but not at 15, 22, or 35 min.  

 

Statistics 

Data were analyzed with Statistica 9.1 (StatSoft) using one- or two-way ANOVA 

with α = 0.05. The Bartlett Chi-square test was used to analyze homogeneity of 

variances. Post hoc comparisons were made using Duncan's range test. In Figures 1–9, 
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data are presented as mean ±SE. Comparisons marked as significant are to the 

reference group except where indicated.  

 

RESULTS 

Redundancy between D1/5-dopaminergic and β2-adrenergic signaling 

To determine whether signaling by DA might be redundant with that for NE/E, we 

first examined the effect of the D1,5 antagonist SCH 23390 (SCH) on memory 

consolidation when administered immediately after classical fear conditioning in wild-

type mice and mice completely lacking NE/E (Iorio et al., 1983).  Mice that lacked NE/E 

were homozygous for targeted disruption of the dopamine β-hydroxylase gene (Dbh-/-) 

(Thomas et al., 1995).  The same general treatment protocol was used for this and 

subsequent experiments (Fig. 1.1A).  One day after fear conditioning, Dbh-/- mice treated 

immediately after training with the D1,5 antagonist SCH at 10-30 µg/kg body weight 

exhibited low freezing in response to the training cue (a tone that immediately preceded 

shock) compared to Dbh-/- mice treated with vehicle or to wild-type mice treated with 

either SCH or vehicle (Fig. 1.1B). 

In a separate group of mice tested for their contextual fear of the training apparatus 

(no tone), SCH also impaired consolidation selectively in Dbh-/- mice relative to wild-type 

mice (Fig. 1.1C).  Mice lacking NE/E exhibit impaired retrieval of contextual fear one day 

after conditioning due to lack of β1 signaling (Murchison et al., 2004).  Thus, to examine 

potential effects of NE/E deficiency on consolidation, retrieval was rescued in the 

contextual fear experiment by administering the β1-selective agonist xamoterol shortly 

before testing (Hicks et al., 1987; Murchison et al., 2004).  For simplicity, subsequent 

experiments using classical fear conditioning focused on cued fear, for which retrieval is 

independent of NE/E. 
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In addition to classical fear, we examined whether consolidation of instrumental fear 

requires NE/E and/or D1,5 signaling.  Wild-type and Dbh-/- mice were treated with either 

vehicle or SCH immediately after conditioning.  Neither the absence of NE/E by itself nor 

treatment of wild-type mice with SCH impaired consolidation of instrumental fear (Fig. 

1.1D), confirming previous observations with Dbh-/- mice (Thomas and Palmiter, 1997).  

Further, and in contrast to the results for classical fear, treatment of Dbh-/- mice with 

SCH also had no effect on the consolidation of instrumental fear.  Differences in 

signaling mechanisms between instrumental and classical fear conditioning may parallel 

differences in their reliance on the amygdala (Wilensky et al., 2000). 

A potential confound of the above results for classical fear conditioning is that SCH 

is also an agonist at serotonin 5-HT2C receptors (Ramos et al., 2005).  To further 

examine a role for D1,5 receptors, we employed a less potent but more selective D1,5 

antagonist, ecopipam, that lacks serotonin receptor activity (Chipkin et al., 1988).  

Similar to SCH, ecopipam impaired cued fear memory consolidation selectively in Dbh-/- 

mice (Fig. 1.1E). 

The results to this point are consistent with two distinct potential roles for DA in 

classical fear memory consolidation.  First, DA might not normally play a role in 

consolidation, but instead might compensate for the chronic lack of NE/E in Dbh-/- mice.  

Alternatively, NE/E and DA might both contribute to consolidation, but their roles would 

be redundant.  In the latter case, stimulation of either system might facilitate 

consolidation, but only impairments in signaling by both systems would cause deficits in 

consolidation.  To evaluate these possibilities, wild-type mice were treated with SCH, the 

β-adrenergic receptor antagonist propranolol, or the combination.  Mice treated with 

SCH or propranolol alone exhibited normal cued fear memory, while mice treated with 

the combination of SCH plus propranolol exhibited impaired memory (Fig. 1.1F).  



29 
 

Further, a selective β2 antagonist (ICI 118,551 = ICI) but not a selective β1 antagonist 

(CGP 20712A) impaired consolidation when combined with SCH, while ICI alone had no 

effect (O'Donnell and Wanstall, 1980; Dooley et al., 1986).  Dose-response data 

indicated that ICI was fully effective at 30 µg/kg when it was combined with SCH (Fig. 

1.1G).  The results provide strong initial support for the idea that DA and NE/E act in a 

redundant manner to consolidate classical fear memory. 

Results from the antagonist studies suggest that β2 signaling is required for the role 

of NE/E in consolidation.  To determine whether β2 signaling is sufficient for the role of 

NE/E, Dbh-/- mice were treated with both SCH (to impair consolidation) and various 

doses of the selective β2 agonist procaterol (Waelbroeck et al., 1983).  Procaterol 

provided a dose-dependent rescue of cued fear memory consolidation, suggesting that 

β2 signaling is sufficient for mediating the role of NE/E in consolidation in the absence of 

D1,5 signaling (Fig. 1.1H).  

Redundancy also occurs in rats, is localized to the BLA, and is mediated by D5 

receptors 

Many prior studies examining the roles of catecholamines in fear memory have 

employed rats rather than mice.  To determine whether redundancy between 

catecholamines generalizes across species, rats were fear conditioned and treated with 

SCH and/or ICI.  Consistent with the results obtained from mice, only concurrent 

administration of SCH and ICI impaired cued fear memory consolidation in rats (Fig. 

1.2). 

Because the BLA is critical for fear memory consolidation, we asked whether 

redundant catecholamine signaling occurs in this brain region.  One week before 

conditioning, mice were cannulated to permit infusions into the BLA.  When SCH and/or 

ICI were infused bilaterally immediately after training, only the combination of drugs 
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impaired memory consolidation (Fig. 1.3A).  To determine whether drug infusions into 

the BLA impair consolidation by affecting adjacent brain regions instead of the BLA, the 

SCH/ICI combination was infused into each of six locations surrounding the BLA (Fig. 

1.3C).  These infusions did not impair consolidation, indicating that the BLA is the site of 

drug action (Fig. 1.3B). 

To genetically test a role for β receptors, mice with a targeted disruption of the gene 

for either the β1- or β2-adrenergic receptor were treated with SCH or vehicle.  While SCH 

 β1 knockout (KO) mice (Fig. 1.4A), SCH impaired 

consolidation in β2 KO mice (Fig. 1.4B).  As a genetic complement to non-selective β 

 β1,2 double KO mice, and no 

deficit was observed (Fig. 1.4C).  Importantly, the pharmacologic studies to this point 

were unable to distinguish between the potential roles of D1 and D5 receptors in 

consolidation due to a lack of receptor subtype selectivity of the drugs.  For this purpose, 

gene-targeted mice were employed.  While the β2 antagonist ICI had no effect on 

1 KO mice (Fig. 1.4D), ICI impaired consolidation in D5 KO mice (Fig. 

1.4E), indicating that the role of DA in consolidation is mediated by the D5 receptor. 

Agonists of β2 or D5 receptors enhance fear memory consolidation 

Given the roles for β2 and D5 receptors defined above, we asked whether activating 

these specific receptors shortly after conditioning would enhance fear memory 

consolidation in mice when trained with a lower shock intensity.  For NE/E, enhancement 

of consolidation by β receptor stimulation has not been demonstrated for classical fear, 

although this has been demonstrated for instrumental fear (McGaugh and Roozendaal, 

2002).  For DA, results from BLA infusion of a D1,5 receptor agonist prior to classical fear 

conditioning suggest that stimulation of these receptors enhances either acquisition or 

consolidation (Guarraci et al., 1999). 
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When wild-type mice were systemically injected with the β2 agonist procaterol 

immediately after conditioning, cued fear memory was significantly enhanced (Fig. 1.5A).  

When mice were injected with the D1,5 agonist SKF 38393 immediately after 

conditioning, cued fear memory was also significantly enhanced (Fig. 1.5B).  Of note, 

D1,5 receptors can activate various downstream effectors, including AC and 

phospholipase C (PLC), and certain D1,5 agonists can induce the selective activation of 

either AC or PLC (Undie et al., 1994; Jin et al., 2003).  To gain insight into the initial 

mechanism by which D1,5 receptors might enhance consolidation, effector-selective D1,5 

agonists were employed.  While an AC-selective D1,5 agonist did not significantly alter 

consolidation, a PLC-selective D1,5 agonist enhanced consolidation to an extent similar 

to that for the non-selective D1,5 agonist employed initially (Fig. 1.5B - D).  Because D1,5 

agonists do not distinguish between these two receptors, receptor KO and wild-type 

littermate control mice were utilized.  The ability of the non-selective and PLC-selective 

D1,5 agonists to enhance consolidation was absent in D5 KO mice, although the β2 

agonist procaterol remained effective (Fig. 1.5E).  Similarly, the ability of procaterol to 

enhance consolidation was absent in β2 KO mice, although a D1,5 agonist remained 

effective (Fig. 1.5F). 

β2 and D5 signaling in consolidation converge on the activation of PLC 

Given that D5 may activate PLC to enhance fear memory consolidation, we asked 

whether directly stimulating PLC activity with the agonist m-3M3FBS enhances 

consolidation (Bae et al., 2003).  In support of a role for PLC, infusion into the BLA of 

this PLC agonist also enhanced consolidation (Fig. 1.6A).  We next asked whether 

inhibiting PLC activity would impair consolidation by infusing the PLC inhibitor edelfosine 

into the BLA immediately after training (Powis et al., 1992).  Edelfosine dose-

dependently impaired consolidation (Fig. 1.6B), suggesting that activation of PLC may 
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be required for fear memory consolidation, and that this could be a site of convergence 

for D5  β2 signaling.  Infusion of edelfosine either one day before or 4 h after 

conditioning had no effect on cued fear memory, indicating that edelfosine does not 

lesion the BLA or impair expression (Fig. 1.6C).  Although prior studies support the 

possibility that D5 may signal via Gq and PLC in the amygdala (Friedman et al., 1997; 

Leonard et al., 2003; Sahu et al., 2009), the only data indicating that β2 could signal via 

PLC come from heterologous expression of β2 receptors in HEK-293 cells in 

vitro (Keiper et al., 2004). 

To determine whether D5  β2 or both receptors might signal via PLC to promote 

consolidation, we employed edelfosine in two complementary experiments.  The first 

experiment was based on the idea that PLC activity could be reduced to a point where it 

becomes rate-limiting for consolidation.  To achieve this, edelfosine was infused into the 

BLA at the highest dose (0.2 ng) that did not impair consolidation.  We then examined 

the combinatorial effects of PLC and receptor blockade.  Edelfosine at 0.2 ng was 

administered with a dose (50 ng) of either SCH or ICI that impairs consolidation when 

combined with each other but not when given alone (Fig. 1.3A).  The combination of 

edelfosine plus SCH and the combination of edelfosine plus ICI each impaired 

consolidation (Fig. 1.6B). 

The second experiment examined the ability of agonists to enhance consolidation 

when PLC was inhibited.  Edelfosine, at the smallest dose (2 ng) that impaired 

consolidation of high-shock intensity training, was infused into the BLA while 

administering a D1,5 or β2 agonist systemically immediately after training with lower shock 

intensity.  Edelfosine blocked the enhancements of consolidation induced by the D1,5 

 β2 agonist (Fig. 1.6D). 
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Results from the above two experiments suggested that D5  β2 receptors may 

both signal via PLC to promote consolidation.  To further test this possibility, inositol-

1,4,5-trisphosphate (IP3), a second messenger molecule generated by PLC activity, was 

measured in the BLA following systemic administration of a D1,5  β2 agonist.  

Significant increases in IP3 levels in the BLA were observed ex vivo with each agonist in 

wild-type mice (Fig. 1.7A).  Because this is a novel finding for β2 stimulation, β2 KO mice 

were also examined.  In these mice, a D1,5 agonist  β2 agonist caused BLA IP3 

levels to increase (Fig. 1.7B).  For D5, others have shown that the ability of D1,5 agonists 

to augment IP3 levels in various brain regions is absent in D5 KO mice (Sahu et al., 

2009). 

Finally, we asked whether learning-specific activation of PLC occurs in the BLA by 

measuring IP3 levels ex vivo following fear conditioning.  IP3 levels were elevated in the 

BLA 30 min after fear conditioning when compared to pseudoconditioning or no 

conditioning (Fig. 1.7C).  The elevation in IP3 was selective for this time point, as several 

earlier and later time points from 3 - 60 min did not show elevation (Fig. 1.7D).  Systemic 

administration of SCH or ICI immediately after conditioning had no effect on IP3 levels 30 

min after conditioning (Fig. 1.7E).  In contrast, administration of SCH and ICI combined 

significantly reduced IP3 levels relative to vehicle administration, demonstrating that 

redundancy in receptor function extends to the learning-induced production of IP3 in the 

BLA. 

β2 activation of PLC in the BLA is mediated by Gi/o 

While there is considerable evidence indicating that D5 couples to Gq to activate 

PLC, evidence for the coupling of β2 to Gq is lacking.  A study in HEK-293 cells 

suggested that by coupling to Gs, β2 receptors can sequentially activate AC, Epac, Rap2 

and PLCβ.  However, recent results from our lab suggested an alternate potential 
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mechanism for coupling β2 to PLC in the brain.  Retrieval of contextual fear memory 

requires NE, β1, Gs and AC signaling in the hippocampus (Ouyang et al., 2008).  β2 

signaling impairs retrieval by stimulating the inhibitory Gi class of G proteins, causing 

cAMP levels to decrease in the hippocampus (Schutsky et al., 2011).  Of potential 

relevance, Gi signaling can also result in the activation of PLC by releasing βγ subunits 

that are capable of stimulating PLCβ isoforms.  Therefore, we asked whether such a 

mechanism might apply to β2 signaling in the BLA for consolidation. 

Pertussis toxin (PTx) inactivates Gi/o proteins through ADP ribosylation, uncoupling 

them from their receptors.  Because it takes several days to observe optimal efficacy 

when PTx is administered in vivo, PTx was infused into the BLA three days prior to 

conditioning (Goh and Pennefather, 1989; Stratton et al., 1989).  BLA pretreatment with 

PTx had no effect on consolidation when saline was infused immediately after training, 

suggesting that Gi/o signaling is not essential for consolidation (Fig. 1.8A).  That outcome 

was expected if only one of the redundant pathways utilizes Gi/o.  Interestingly, 

pretreatment with PTx impaired consolidation when SCH was infused immediately after 

training. This outcome suggested that PTx pretreatment might be mimicking β2 

blockade. In support of this idea, pretreatment with PTx did not affect consolidation when 

ICI was infused immediately after training.  Taken together, these results suggest that β2 

but not D5 signaling in the BLA is mediated by Gi/o.  To further test this possibility, PTx 

was infused into the BLA prior to treating with receptor agonists to enhance 

consolidation.  PTx pretreatment blocked the enhancement of consolidation normally 

observed following systemic treatment with a β2 agonist, but had no effect on the ability 

of a D1,5 agonist to enhance consolidation (Fig. 1.8B). 
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DISCUSSION 

In summary, our experiments identify an important but redundant role in classical 

fear memory consolidation for adrenergic signaling by β2 receptors and dopaminergic 

signaling by D5 receptors (Fig. 1.9).   It is well recognized that there are multiple stress-

response mediators with distinct but overlapping temporal and mechanistic 

attributes (Joels and Baram, 2009).  Redundancy in systems responsible for potentially 

life-preserving processes such as long-term fear memory consolidation could be 

advantageous for survival.  While we have found that NE and DA act in a redundant 

manner to consolidate classical fear memory, it is also possible that each has additional 

unique roles during (but not essential to) consolidation that may be identified in future 

studies. 

While it has been widely hypothesized that endogenous NE/E and β-adrenergic 

signaling play critical roles in amygdala-dependent emotional memory consolidation, 

there is a paucity of evidence indicating that such signaling is uniquely required for this.  

In one study suggesting a unique role, various β receptor antagonists (including ICI) 

were infused into the BLA of rats immediately after cued fear conditioning, and 

impairment of cued fear was reported one day later (Qu et al., 2008).  However, the 

doses of antagonist used were 100-fold higher than those found to be effective for ICI 

(when combined with SCH) in the current study, and are considerably higher than what 

should be necessary for the size difference between rats and mice.  Another study 

suggested that β receptors contribute to the acquisition but not consolidation of cued 

fear memory (Bush et al., 2010).  However, it is difficult to reconcile the above 

observations with results from mouse genetic models, which do not support a unique 

role for β receptors in the acquisition, consolidation or retrieval of cued fear memory: 

neither Dbh-/-, β1 KO, β2 KO, nor β1/β2 double KO mice exhibit cued fear deficits.  
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Further, our pharmacologic data from the current study and a previous study using mice 

and rats support the genetic findings (Murchison et al., 2004). 

With respect to the role for DA, results from some studies suggest that D1,5 signaling 

might be required for fear memory acquisition or consolidation (Guarraci et al., 1999; 

Greba and Kokkinidis, 2000).  However, doses of SCH used in those studies (systemic 

or intra-BLA) were 10- to 100-fold higher than those found to be effective here, 

potentially lacking specificity for D1,5 signaling.  Relevant to this, we did not observe a 

fear conditioning deficit in D1 or D5 KO mice, confirming previous results (El-Ghundi et 

al., 1999; Holmes et al., 2001).  These and our results contrast with a recent study 

reporting a deficit in either the acquisition or consolidation of fear-potentiated startle in D1 

KO mice (Fadok et al., 2009).  In that study, conditioning utilized 30 trials reinforced by 

mild footshocks (0.2 mA for 0.5 s), while the current study examined the consolidation of 

more intense fear resulting from a single, strongly aversive footshock (1 mA for 2 s).  It is 

possible that the mechanisms underlying the consolidation of multiple weakly reinforced 

training trials are different from those for a single, strongly reinforced event. 

Given that β2 and D5 receptors can couple to Gs, and that cAMP signaling is 

required for classical fear memory consolidation (Schafe and LeDoux, 2000), it is 

interesting that neither β2 nor D5 signaling in the amygdala may increase cAMP levels.  

DA and D1,5 agonists fail to elevate cAMP in the BLA (Leonard et al., 2003), and 

stimulation of β2 receptors in hippocampal slices causes a decrease in cAMP (Schutsky 

et al., 2011).  However, our results are consistent with observations indicating that D1,5 

agonists activate PLC rather than AC in the BLA, and that activation of PLC by DA is 

greatly diminished in D5 but not D1 KO mice (Friedman et al., 1997; Leonard et al., 2003; 

Sahu et al., 2009).  Our results are also consistent with observations indicating that 
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signaling by β2 receptors in the heart and hippocampus depends predominantly on Gi/o 

rather than Gs (Rockman et al., 2002; Schutsky et al., 2011). 

Results from the current study indicate that β2 and D5 receptor signaling converge 

and become redundant by activating PLC.  Remarkably, there is little evidence that 

canonical neurotransmitter signaling pathways that activate Gq/PLC are required for fear 

memory.  Gene-targeted mice lacking expression of either metabotropic glutamate 

receptor mGluR1 or mGluR5, muscarinic acetylcholine receptor M1 or M3, serotonergic 

receptor 5-HT2a or 5-HT2c, adrenergic receptor α1d, or histaminergic receptor H1 all 

exhibit intact cued fear memory (Aiba et al., 1994; Lu et al., 1997; Tecott et al., 1998; 

Anagnostaras et al., 2003; Sadalge et al., 2003; Weisstaub et al., 2006; Dai et al., 2007; 

Poulin et al., 2010).  Pharmacologically, there is evidence for and against mGluR5 

signaling being required for cued fear memory (Nielsen et al., 1997; Rodrigues et al., 

2002; Gravius et al., 2006), although stimulating mGluR1/5 receptors can enhance fear 

memory (Rudy and Matus-Amat, 2009).  For NE/E, antagonist treatment suggests that 

β1-adrenergic signaling is not required for fear memory (Lazzaro et al., 2010).  On the 

other hand, mice with a targeted disruption of the gene for PLC-β1 exhibit greatly 

reduced contextual fear, although this could be due to a deficit in hippocampus-

dependent memory rather than BLA-dependent fear memory per se (McOmish et al., 

2008b; McOmish et al., 2008a). 

Stimulation of PLC is likely to activate Ca2+- and diacylglycerol-dependent signaling 

such as that mediated by protein kinase C (PKC) and calmodulin-dependent kinases 

(CaMKs).  Genetic and pharmacologic data support a role for these kinases in fear 

memory.  Genetic disruption of the PKCβ gene or the CaMKIV gene results in impaired 

cued and contextual fear (Weeber et al., 2000; Wei et al., 2002), and inhibitors of PKC 

infused into the BLA shortly after conditioning impairs consolidation of instrumental 
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fear (Bonini et al., 2005).  In addition to the generation of IP3, it will be valuable in future 

studies to identify the signaling events that are altered when β2 and D5 receptors are 

antagonized.  It will also be valuable to determine in what cell type(s) these receptors act 

to promote consolidation, given that the potential expression and physiological effects of 

these receptors in the BLA are broad and diverse (Ciliax et al., 2000; Qu et al., 2008; 

Farb et al., 2010). 

In humans, some studies indicate that blocking β receptors eliminates enhanced 

memory for emotionally arousing items, although other studies have not corroborated 

these findings (Cahill et al., 1994; O'Carroll et al., 1999).  If β blockers have this effect, it 

would suggest a lack of redundancy under these conditions.  This could be due to 

differences in arousal systems engaged by viewing aversive material versus 

experiencing a potentially life-threatening event, such as may occur with fear 

conditioning or events that can lead to the development of PTSD.  Results from recent 

clinical trials suggest that β blockers are of limited efficacy in the prevention of 

PTSD (Stein et al., 2007; McGhee et al., 2009; Nugent et al., 2010).  Our results suggest 

that combined D5/β2 blockade might be more efficacious. 
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FIGURE LEGENDS 

Figure 1.1.  D1/5-dopaminergic signaling is redundant with β2-adrenergic signaling for 

fear memory consolidation.  (A) General time line for fear memory experiments, 

indicating that drugs were administered immediately after conditioning and testing was 

performed the next day.  More extensive pretraining handling was performed for CNS 

infusion experiments.  For this figure, conditioning was with intense shock (1 mA).  (B - 

E) A D1/5 receptor antagonist (SCH 23390 or ecopipam) was injected intraperitoneally.  

(B) Cued fear test.  P = 0.0001 for the main effect of dose; P < 0.0001 for the main effect 

of genotype; and P = 0.0004 for the interaction of dose and genotype (6/group).  (C) 

Contextual fear test.  The β1-adrenergic receptor agonist xamoterol (3 mg/kg) was 

administered 60 min before testing contextual fear in Dbh-/- mice to rescue their 

contextual memory retrieval deficit (Murchison et al., 2004).  P = 0.027 for the main 

effect of treatment; P = 0.005 for the main effect of genotype; and P = 0.039 for the 

interaction of treatment and genotype (6/group).  (D) Cued fear test.  P = 0.0006 for the 

main effect of dose; P < 0.0001 for the main effect of genotype; and P = 0.0003 for the 

interaction of dose and genotype (5-8/group).  (E) Instrumental fear test.  Main effects 

and their interaction were not significant (7-8/group).  (F, G) Cued fear test.  The D1/5 

antagonist SCH 23390 (30 μg/kg) was administered to wild-type mice either in saline (- 

or 0) or in combination with a β-adrenergic receptor antagonist.  (F) The β antagonists 

employed were either the non-selective β blocker (-)-propranolol (β), the β1-selective 

blocker CGP 20712A (β1), or the β2-selective blocker ICI 118,551 (β2), each at 1 mg/kg.  

P = 0.0005 for the main effect of treatment (6-9/group).  (G) ICI tested at lower doses in 

combination with SCH (30 μg/kg).  P = 0.003 for the main effect of dose (6-12/group).  

(H) SCH (30 μg/kg) was administered with the β2 agonist procaterol.  P = 0.0008 for the 

main effect of dose (6/group). 
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Figure 1.2.  Redundancy for fear memory consolidation also occurs in rats.  

Experimental design was as depicted in Fig. 1A using intense shock (1.7 mA for rats).  

Rats were treated with either saline (0), SCH, ICI or the combination.  P < 0.0001 for the 

main effect of treatment (4-8/group). 

Figure 1.3.  BLA is the locus of redundant signaling in fear memory consolidation.  

Experimental design was as depicted in Fig. 1A using intense shock (1 mA for mice).  

(A) Drugs were infused bilaterally into the basolateral amygdala (BLA) of wild-type mice.  

P < 0.0001 for the main effect of treatment (5-8/group).  (B) The combination of SCH 

plus ICI (each 50 ng) was infused bilaterally into the BLA or into adjacent brain regions 

displaced 0.75 mm in the direction indicated.  P < 0.0001 for the main effect of treatment 

(5-6/group).  (C) Injection cannula tips were located within spheres marked by the circles 

on the atlas drawings (Frankland and Paxinos, 1997). 

Figure 1.4.  The role of DA in fear memory consolidation is mediated by D5 receptors.  

Experimental design was as depicted in Fig. 1A using intense shock (1 mA).  (A, B) 

Either saline (Sal) or a D1/5 antagonist (SCH, 30 μg/kg) was administered to wild-type 

(WT) and β receptor knockout (KO) mice.  For β2 mice, P = 0.016 for the main effect of 

treatment; P = 0.0044 for the main effect of genotype; and P = 0.0006 for the interaction 

of treatment and genotype (5/group).  (C) Sal was administered to WT and β1,2 double 

KO mice.  No significant difference was observed (5/group).  (D, E) Either Sal or a β2 

antagonist (ICI, 30 μg/kg) was administered to WT and DA receptor KO mice.  For D5 

mice, P = 0.004 for the main effect of treatment; P = 0.0006 for the main effect of 

genotype; and P = 0.029 for the interaction of treatment and genotype (5-8/group). 
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Figure 1.5.  Agonists of β2 or D5 receptors enhance fear memory consolidation.  

Experimental design was as depicted in Fig. 1A using moderate shock (0.4 mA).  (A) 

Various doses of the β2 agonist procaterol were injected immediately after conditioning.  

P = 0.043 for the main effect of dose (6-11/group).  (B - D) Various doses of either a 

non-selective D1/5 agonist (SKF 38393), a D1/5 agonist that selectively activates AC (SKF 

83822), or a D1/5 agonist that selectively activates PLC (SKF 83959) were tested.  P = 

0.017 and P = 0.0038 for the main effect of dose for SKF 38393 and SKF 83959, 

respectively (8-13/group).  (E, F) Procaterol (50 μg/kg) or D1/5 agonist (5 mg/kg for SKF 

38393 or 2 mg/kg for SKF 83959) was administered to β2 KO and D5 KO mice and their 

wild-type littermate controls.  (E) P = 0.0001 for the main effect of treatment; P = 0.013 

for the main effect of genotype; and P = 0.015 for the interaction of treatment and 

genotype (8-31/group).  (F) P < 0.0001 for the main effect of treatment; P = 0.0009 for 

the main effect of genotype; and P = 0.009 for the interaction of treatment and genotype 

(5-13/group). 

Figure 1.6.  PLC is a critical regulator of consolidation.  Experimental design was similar 

to that depicted in Fig. 1A using moderate or intense shock (0.4 or 1 mA).  (A) The PLC 

agonist m-3M3FBS was infused into the BLA of wild-type mice after training with 0.4 mA.  

P = 0.001 for the main effect of dose (5/group).  (B) The PLC inhibitor edelfosine alone 

or in combination with either ICI (50 ng) or SCH (50 ng) was infused into the BLA after 

training with 1 mA.  P < 0.0001 for the main effect of treatment (5-7/group).  (C) Infusion 

time is relative to conditioning.  Cued fear testing was performed one day after training.  

The main effects of treatment and of time, as well as their interaction, were not 

significant (5/group).  (D) Mice were fear conditioned using 0.4 mA.  Saline (Sal) or 

edelfosine (2 ng) was then infused into the BLA, and immediately afterward either 

vehicle, SKF 83959 (2 mg/kg) or procaterol (50 ng/kg) was injected intraperitoneally.  P 
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= 0.001 for the main effect of agonist; P < 0.0001 for the main effect of antagonist; and P 

= 0.0027 for the interaction of agonist and antagonist (5/group). 

Figure 1.7.  Redundancy between β2 and D5 signaling occurs via activation of PLC.  

Experimental design was similar to that depicted in Fig. 1A using moderate or intense 

shock (0.4 or 1 mA).  (A) Wild-type mice were injected intraperitoneally with either 

vehicle, SKF 83959 (2 mg/kg) or procaterol (50 ng/kg) and sacrificed 30 min later.  

Punches from the BLA were assayed for IP3 (pmol/mg protein).  P = 0.045 for the main 

effect of agonist (10/group).  (B 2 KO mice were treated as described in panel A.  P = 

0.044 for the main effect of agonist (9-10/group).  (C) Mice were treated as indicated and 

sacrificed 30 min later.  Shock intensity was 1 mA for the pseudo- and classical-

conditioned groups.  The classical-conditioned group exhibited significantly higher IP3 

levels in the BLA relative to the pseudo-conditioned (P = 0.033) and naïve (P = 0.016) 

groups.  P = 0.021 for the main effect of conditioning (6-10/group).  (D) Mice were 

handled as in (C) and sacrificed at the times indicated.  Main effects and their interaction 

were not significant (5-7/group).  (E) Mice were fear conditioned using 1 mA and then 

 or the 

combination of SCH and ICI, and sacrificed 30 min later.  Only combined treatment 

caused a significant reduction in conditioning-induced IP3 levels in the BLA.  P = 0.039 

for the main effect of treatment (21/group). 

Figure 1.8.  β2 activation of PLC in the BLA is mediated by Gi/o.  Experimental design 

was similar to that depicted in Fig. 1A using moderate or intense shock (0.4 or 1 mA).  

(A) Pertussis toxin (PTx, 1 ng) or Sal was infused into the BLA 3 days before training.  

Immediately after training with 1 mA, either Sal, SCH (50 ng) or ICI (50 ng) was infused 

into the BLA.  P = 0.0002 for the main effect of pretreatment; P < 0.0001 for the main 

effect of treatment; and P < 0.0001 for the interaction of pretreatment and treatment 
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(5/group).  (B) Sal or PTx (1 ng) was infused into the BLA 3 days before training.  

Immediately after training with 1 mA, either Veh, SKF 83959 (2 mg/kg) or procaterol (50 

µg/kg) was injected intraperitoneally.  P = 0.018 for the main effect of pretreatment; P = 

0.0009 for the main effect of treatment; and P = 0.014 for the interaction of pretreatment 

and treatment (5-10/group). 

Figure 1.9.  Schematic diagram of functional redundancy.  DA and NE are functionally 

redundant for fear memory consolidation in the BLA due to activation of PLC by D5-Gqα 

and β2-Gi/oβγ receptor signaling.  Whether downstream signaling activated by the second 

messengers IP3/Ca2+, diacylglycerol (DAG) or both is required is currently unclear, but 

both are likely required for activating a conventional isozyme of protein kinase C that is 

implicated in fear memory consolidation (Weeber et al., 2000).  The cell type(s) in which 

this signaling occurs has yet to be defined.  Phosphatidylinositol 4,5-bisphosphate (PIP2) 

is a substrate of PLC.  The endoplasmic reticulum (ER) stores Ca2+ for cytosolic release 

that is induced by IP3. 
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ABSTRACT 

Neuromodulators released during and after a fearful experience promote the 

consolidation of long-term memory for that experience.  Because over-consolidation may 

contribute to the recurrent and intrusive memories of post-traumatic stress disorder, 

neuromodulatory receptors provide a potential pharmacological target for prevention.  

Stimulation of muscarinic receptors promotes memory consolidation in several 

conditioning paradigms, an effect primarily associated with the M1 receptor (M1R).  

Conversely, neither inhibiting nor genetically disrupting M1R impairs the consolidation of 

cued fear memory.  Using the M1R agonist cevimeline and antagonist telenzepine, as 

well as M1R knockout mice, we show here that M1R, along with β2-adrenergic ( 2AR) 

and D5-dopaminergic (D5R) receptors, regulates the consolidation of cued fear memory 

by redundantly activating phospholipase C (PLC) in the basolateral amygdala (BLA).  

We also demonstrate that fear memory consolidation in the BLA is mediated in part by 

neuromodulatory inhibition of the M-current, which is conducted by KCNQ channels and 

is known to be inhibited by muscarinic receptors.  Manipulating the M-current by 

administering the KCNQ channel blocker XE991 or the KCNQ channel opener retigabine 

reverses the effects on consolidation caused by manipulating 2AR, D5R, M1R and PLC.  

Finally, we show that cyclic AMP and protein kinase A (cAMP/PKA) signaling relevant to 

this stage of consolidation is upstream of these neuromodulators and PLC, suggesting 

an important presynaptic role for cAMP/PKA in consolidation.  These results support the 

idea that neuromodulatory regulation of ion channel activity and neuronal excitability is a 

critical mechanism for promoting consolidation well after acquisition has occurred. 
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INTRODUCTION 

Long-term consolidation of fear memory in the basolateral amygdala (BLA) depends 

on the activity-dependent induction of intracellular signaling pathways that promote gene 

expression and protein synthesis (Johansen et al., 2011).  Regulation of these signaling 

pathways by G protein-coupled neuromodulatory receptors can affect the strength of 

fear memory consolidation, a process that may underlie the recurrent and intrusive 

memories of post-traumatic stress disorder (PTSD).  Traditionally, these effects on 

consolidation have been attributed to signaling activated by Gs proteins (Sara, 2009; 

Tully and Bolshakov, 2010; Johansen et al., 2011).  However, while consolidation of fear 

memory can be enhanced by pharmacological activation of neuromodulatory receptors 

in the BLA, it is not reliably blocked by antagonism of individual receptors. 

Recently it has been proposed that, rather than a single neuromodulatory system, a 

combination of neuromodulatory systems coupled to phospholipase C (PLC) redundantly 

mediates consolidation in the BLA (Ouyang et al., 2012).  Activation of either the Gi/o-

coupled 2-adrenergic receptor ( 2AR) or the Gq/11-coupled D5-dopaminergic receptor 

(D5R) enhances consolidation; however, both receptors must be blocked to impair 

consolidation.  Further, 2AR and D5R in the BLA redundantly activate PLC as an initial 

signaling mechanism that is necessary for consolidation. 

Based on the observation that PLC, and neuromodulatory receptors that control its 

activity, can regulate fear memory consolidation, we asked whether other Gq/11-coupled 

receptors contribute to the redundant relationship of 2AR and D5R.  In this study, we 

investigated a potential role for Gq/11 protein-coupled muscarinic receptors.  Release of 

acetylcholine (ACh) increases following the presentation of fearful stimuli (Acquas et al., 

1996), and cholinergic neurons in the basal forebrain project to the BLA (Rao et al., 

1987; Kordower et al., 1989), where muscarinic agonists initiate PLC-dependent 
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intracellular calcium release (Power and Sah, 2007), increase the excitability of 

neurons (Womble and Moises, 1992, 1993), and enhance fear memory 

consolidation (Vazdarjanova and McGaugh, 1999; Barros et al., 2002). 

Both M1- and M3-muscarinic receptors couple to Gq/11 and are expressed in the BLA; 

however, in situ hybridization suggests that the M1 receptor (M1R) is most 

abundant (Buckley et al., 1988).  Activation of M1R in the BLA enhances consolidation of 

inhibitory avoidance and contextual fear memory (Vazdarjanova and McGaugh, 1999; 

Power et al., 2003).  However, studies employing M1R-selective antagonists or M1R-

deficient mice report no impairments in cued fear memory (Fornari et al., 2000; 

Anagnostaras et al., 2003).  Given that stimulation of M1R in the BLA enhances 

consolidation without being required (Robinson et al., 2011), we hypothesized that M1R 

redundantly contributes to the consolidation of fear memory. 

Here, we use pharmacological, genetic and biochemical approaches in mice to 

demonstrate that M1R redundantly regulates the consolidation of fear memory with β2AR 

and D5R by activating PLC.  Further, we examine whether the muscarine-sensitive M-

current in the BLA is a downstream target of PLC activation that is important for fear 

memory consolidation.  Finally, we examine the relationship between the role of cyclic 

AMP and protein kinase A (cAMP/PKA) signaling in consolidation and that for the 

neuromodulatory signaling coupled to PLC. 

 

MATERIALS AND METHODS 

Animals 

Stock Chrm1−/− (M1R knockout) and wild-type (WT) mice on a C57BL/6 background 

were from the Jackson Laboratory and bred at the University of Pennsylvania (Gerber et 
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al., 2001).  All other mice were on a hybrid 129/Sv x C57BL/6 background and bred 

locally.  M1R knockout (KO) mice were generated by mating heterozygotes or 

homozygotes, and genotype was determined by PCR.  Animals were maintained on ad 

libitum food and water and a 12 h light/dark cycle, with lights on beginning at 7:00 A.M.  

Mice were 3-6 months old when tested and of either sex.  No significant differences were 

found by sex or parental genotype, so data were combined.  Studies were performed 

during the light phase, with most experiments taking place between 9:00 A.M. and 5:00 

P.M.  Studies were in accordance with NIH guidelines and had the approval of the 

Institutional Animal Care and Use Committee at the University of Pennsylvania. 

 

Classical fear conditioning 

Animals were habituated to handling and drug administration for two (systemic 

injection) or four (BLA infusion) days prior to behavioral experimentation.  On habituation 

days, animals were handled for 4 min, and either injected with vehicle (systemic 

experiments) or given a simulated infusion (infusion experiments).  Animals were then 

placed in individual plastic holding buckets (12 cm diameter) with bedding and lids for 

30–60 min.  Prior to behavioral experimentation, animals were held in the buckets for 

30–60 min.   For conditioning, animals were placed in the training apparatus (ENV-

010MC with ENV-414S, Med Associates) for 2 min, after which an 84 dB, 4.5 kHz tone 

was activated for 30 s that co-terminated with a 2 s footshock (moderate = 0.4 mA or 

strong = 1 mA).  Animals were removed from the apparatus and injected or infused 30 s 

after shock, and then returned to the home cage.  The apparatus was cleaned with 

Versa-Clean (Thermo Fisher Scientific) between subjects.  Individual subjects were 

tested for either contextual or cued fear memory, but not both, the day after training. 

Contextual fear was tested for 5 min in the conditioning apparatus in the absence of the 

tone.  Cued fear was tested in a Plexiglas cylinder (21 cm diameter, 24 cm tall) with 
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green wire grid floor and vertical green and white wall stripes 240° around that was 

cleaned with lemon-scented Ajax between subjects.  After 2 min, the training tone was 

turned on for 3 min.  Percent freezing was estimated by scoring the presence or 

absence of nonrespiratory movement every 5 s.   

 

BLA infusions 

Two guide cannulae mounted on a base plate (C315GS system, Plastics One) were 

implanted under pentobarbital anesthesia (72.5 mg/kg) using a stereotax 

(SAS75/EM40M, Cartesian Research).  The guides were placed 1.25 mm posterior to 

bregma and 3.5 mm bilateral.  The guide and dummy cannulae projected 3 mm below 

the base plate.  Habituation of the animals to the investigator and the infusion procedure 

began a couple of days later with a 4 min handling session followed by 3 min of 

immobilization (gently holding the nape of the neck and body) that mimicked infusion.  

Handling sessions were conducted on each of the 4 d preceding training and once more 

1 h before training.  Immediately after training, mice were infused bilaterally using 

injection cannulae that extended 2.8 mm below the tip of the guide cannulae.  All BLA 

infusions were 0.2 µl/BLA at 0.08 µl/min, and infusion cannulae were left in place for 30 

s after infusion. 

 

Drugs 

Cevimeline HCl, telenzepine 2HCl, SCH 23390 HCl, ICI 118,551 HCl, XE991 2HCl, 

SKF 83959 HBr, procaterol HCl (all Tocris Bioscience), retigabine 2HCl (Ryan 

Scientific), ±3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid (CPP, Abcam), Sp-8-

Br-cAMPS (Sp8, Santa Cruz Biotechnology) and myr-PKI[14-22]amide (PKI, Invitrogen) 

were administered intraperitoneally or infused into the BLA immediately after training.  

Drugs were dissolved in 0.9% saline (SKF 83959 contained 0.1 mg/ml ascorbic acid and 
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< 1% DMSO, pH 7.4, Sigma).  Vehicle was saline with or without 0.1 mg/ml ascorbic 

acid and < 1% DMSO.  Systemic injection volumes were 10 μl/g body weight. 

 

IP3 levels 

Mice were anesthetized with CO2, killed by cervical dislocation and brains were 

rapidly removed, frozen in 2-methylbutane on dry ice and stored at −80°C.  Two frozen 

coronal sections (400 μm) that contained the BLA were cut by cryostat (HM505E, 

Microm) from each mouse, and a 0.5 mm diameter punch of BLA tissue was collected 

bilaterally from each slice.  The four punches per mouse were pooled and homogenized 

on ice with three 2 s pulses (5 s interval) in 125 μl of 4% perchloric acid using a Sonic 

Dismembrator 100 set on level 3 (Thermo Fisher Scientific).  After 15 min on ice, 

samples were stored overnight at −80°C.  The next day samples were centrifuged at 4°C 

and 2000 × g for 15 min, and the pellet was stored at −80°C for subsequent Bradford 

assay to determine total protein.  Supernatants were neutralized on ice with 10 M KOH 

(to precipitate the perchloric acid) and centrifuged at 4°C and 2000 × g for 15 min.  

Supernatant (100 μl) was then used in the [3H]-IP3 radioreceptor assay (PerkinElmer) 

according to instructions. 

 

Statistics 

Data were analyzed with Statistica 9.1 (StatSoft, Tulsa, OK) using one- or two-way 

ANOVA with alpha = 0.05.  The Bartlett Chi-square test was employed to analyze 

homogeneity of variances.  Post-hoc comparisons were made using the Newman-Keuls 

test.  Data are presented as mean ± standard error.  For all figures, * indicates P < 0.05, 

^ indicates P < 0.01, and # indicates P < 0.001.  Comparisons marked as significant are 

to the reference group except where indicated. 
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RESULTS 

Activating M1R in the BLA enhances fear memory consolidation 

To determine whether signaling by M1R influences the consolidation of classical 

auditory fear conditioning, we explored whether immediate post-training administration of 

cevimeline (Cev), an M1R-selective agonist, affected freezing in response to the training 

tone the following day.  Mice were trained with a moderate shock intensity (0.4 mA) that 

elicits relatively low levels of freezing in response to the training tone.  Systemic injection 

of Cev caused a dose-dependent increase in freezing in response to the tone during 

testing (Fig. 2.1A).  These data suggest that signaling by M1R can enhance cued fear 

memory consolidation. 

Given that the BLA is a crucial site for fear memory consolidation (Pape and Pare, 

2010; Ouyang et al., 2012), we next tested whether the effects of systemically injected 

Cev could be replicated by infusing it into the BLA immediately after moderate 

conditioning.  Compared to vehicle-treated controls, mice given BLA infusions of Cev 

exhibited dose-dependent increases in freezing to the training tone during testing (Fig. 

2.1B).  These data suggest that the consolidation enhancement observed after systemic 

injection of Cev is mediated by the BLA. 

Cev potently activates M1R and, to a lesser extent, M3- and M5-muscarinic 

receptors (Heinrich et al., 2009).  To determine whether the enhancing effects of Cev on 

consolidation require M1R, we tested the effect of Cev on mice congenitally lacking M1R.  

M1R KO mice injected with Cev (1 mg/kg) immediately after moderate fear conditioning 

did not exhibit a significant increase in freezing in response to the training tone during 

testing, while WT littermates exhibited enhancements similar to those described earlier 

(Fig. 2.1C).  These data indicate that the consolidation enhancements observed in 

response to post-training administration of Cev are mediated specifically by M1R. 
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M1R redundantly modulates consolidation with D5R and 2AR 

The Gq/11 protein coupled to M1R activates PLC (Caulfield, 1993), whose activation 

by 2AR and D5R in the BLA promotes consolidation (Ouyang et al., 2012).  To 

determine whether M1R redundantly regulates fear memory consolidation with 2AR and 

D5R, we systemically administered the M1R antagonist telenzepine (Tzp) alone or in 

combination with an antagonist of 2AR or D5R (Schudt et al., 1988). 

When combined with the D1,5R antagonist SCH 23390 (SCH; 30 µg/kg) after 

conditioning with strong (1 mA) footshock, Tzp dose-dependently decreased the amount 

of freezing mice exhibited in response to the training tone during testing the next day 

(Fig. 2.2A).  The smallest maximally effective dose of Tzp, when combined with SCH, 

was 1 mg/kg.  Neither Tzp nor SCH significantly affected freezing when administered 

alone.  These data suggest that M1R and D5R redundantly contribute to signaling 

mechanisms required for fear memory consolidation.   

Given that the 2AR antagonist ICI 118,511 (ICI) also inhibits consolidation only 

when co-administered with SCH immediately after training (Ouyang et al., 2012), we 

next examined whether Tzp inhibits consolidation when combined with ICI.  Mice 

injected with a combination of Tzp (1 mg/kg) and ICI (30 µg/kg) immediately after strong 

fear conditioning exhibited significantly less freezing in response to the training tone the 

following day compared to saline- or ICI-treated controls (Fig. 2.2B).  Further, co-

administering all three antagonists (Tzp, ICI and SCH) inhibited consolidation more 

effectively than Tzp+ICI treatment.  Given these observations, it is plausible that M1R 

contributes to consolidation with 2AR and D5R by converging on a common signaling 

mechanism in the BLA. 
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To determine the effect of Tzp in the BLA, we infused Tzp either alone or in 

combination with SCH or ICI (both at 50 ng/BLA), the latter of which affect consolidation 

when delivered together but not alone (Ouyang et al., 2012).  Mice infused with Tzp into 

the BLA immediately after strong fear conditioning exhibited dose-dependent decreases 

in freezing in response to the training tone the next day, but only when Tzp was 

combined with either SCH or ICI (Fig. 2.2C).  Infusion of Tzp alone at the lowest 

maximally effective dose (1 µg/BLA) from combination treatment did not affect 

consolidation (Fig. 2.2C).  These data suggest that M1R signaling important for 

consolidation of cued fear memory occurs in the BLA. 

To confirm that M1R mediates the impairing effects of Tzp described above, we 

examined whether M1R KO mice exhibit impairments in response to post-training 

administration of 2AR or D5R antagonists.  As previously reported (Anagnostaras et al., 

2003), vehicle-treated M1R KO and WT mice exhibited comparable freezing to the 

training tone (Fig. 2.2D).  However, mice lacking M1R exhibited significantly impaired 

consolidation in response to either ICI or SCH treatment that was not observed in WT 

littermates.  These data further support the idea that M1R signals redundantly with 2AR 

and D5R to mediate cued fear memory consolidation. 

M1R redundantly activates PLC with 2AR and D5R 

Co-administration of 2AR and D5R antagonists immediately after fear conditioning 

impairs consolidation, and it also blocks PLC activation in the BLA that occurs 30 min 

after conditioning (Ouyang et al., 2012).  Given that M1R activates PLC (Caulfield, 1993) 

and also increases IP3-dependent calcium release in the BLA (Power and Sah, 2007), 

we asked whether the behaviorally relevant Tzp and Cev treatments described above 

(Fig. 2.1 and 2.2) influence PLC activity in the BLA.  PLC hydrolyzes the membrane 

phospholipid phosphatidylinositol-bisphosphate (PIP2), generating the second 
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messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG).  Thus we 

measured levels of IP3 as a means of assessing PLC activity. 

IP3 levels in the BLA increase 30 min after systemic injection of a 2AR or D5R 

agonist (Ouyang et al., 2012).  Here, we observed that systemically injecting a dose of 

Cev that enhances consolidation also increases IP3 levels in the BLA (Fig. 2.3A).  This 

observation is consistent with the hypothesis that M1R contributes to consolidation by 

activating PLC in the BLA.  To determine whether PLC activation by M1R might be 

important for its role in consolidation, we examined how the M1R antagonist Tzp affects 

IP3 levels in the BLA 30 min after strong fear conditioning (Ouyang et al., 2012).  

Immediate post-training injection of Tzp had no effect on the increase in IP3 levels at 30 

min compared to vehicle-treated controls (Fig. 2.3B).  However, IP3 levels were 

significantly decreased when Tzp treatment was combined with either SCH or ICI, the 

latter of which have no effect on IP3 levels when administered alone (Ouyang et al., 

2012).  These data suggest that M1R contributes to fear memory consolidation by 

redundantly activating PLC with 2AR and D5R. 

KCNQ potassium channels modulate fear memory consolidation in the BLA 

Agonists of muscarinic receptors increase the excitability of neurons in the BLA by 

inhibiting the M-current (Womble and Moises, 1992, 1993), which is observed in several 

brain structures important for learning (Halliwell and Adams, 1982; Shen et al., 2005; 

Santini and Porter, 2010).  The M-current is a voltage-dependent potassium current 

conducted through non-inactivating KCNQ channels that become active between resting 

membrane potential and action potential threshold (Brown and Adams, 1980).  When 

active, these channels suppress depolarization by EPSPs and promote spike 

accommodation by enhancing the afterhyperpolarization (Brown and Yu, 2000).  

Importantly, M-current conductance by KCNQ channels depends on sufficient levels of 



59 
 

PIP2, which is hydrolyzed by PLC (Suh and Hille, 2002; Suh et al., 2006; Telezhkin et al., 

2012). 

Given that activating M1R and other neuromodulatory receptors coupled to PLC 

enhances fear memory consolidation (Ouyang et al., 2012), we asked whether directly 

inhibiting the M-current with the KCNQ channel blocker XE991 would have a similar 

effect.  Systemically injecting mice with XE991 immediately after moderate fear 

conditioning caused a dose-dependent enhancement of consolidation (Fig. 2.4A).  As 

with Cev, directly infusing XE991 into the BLA enhanced consolidation (Fig. 2.4B).  

These data suggest that inhibition of the M-current in the BLA increases the strength of 

fear memory consolidation. 

Having observed that pharmacologically blocking the M-current in the BLA 

enhances consolidation, we next explored whether enhancing the M-current would 

inhibit consolidation.  To do this, we examined whether retigabine (Ret), a drug that 

maintains the open-state of KCNQ channels (Tatulian et al., 2001; Wuttke et al., 2005), 

would inhibit consolidation.  Administering Ret immediately after strong fear conditioning, 

either by systemic injection or BLA infusion, dose-dependently inhibited freezing in 

response to the training tone the following day (Fig. 2.4C and 2.4D). 

So far our experiments have addressed the roles of PLC-coupled neuromodulators 

and the M-current in cued fear memory consolidation.  However, we hypothesized that 

our findings in the BLA would apply to classically conditioned fear memory in general.  

To test this, we repeated two of our pharmacological experiments, but instead examined 

contextual fear memory one day after training.  Post-training infusion of either Tzp+ICI or 

Ret into the BLA impaired the consolidation of contextual fear memory (Fig. 2.4E), 

demonstrating that consolidation of hippocampus-dependent fear memory is also 
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sensitive to the impairing effects of dual neuromodulator blockade or augmentation of 

the M-current in the BLA. 

Regulation of consolidation by PLC and PLC-coupled neuromodulators requires 

normal KNCQ channel activity  

To test whether the effects of pharmacological manipulation of 2AR, D5R and M1R 

are mediated by downstream effects on the M-current, we examined whether the 

impairing effects of co-antagonist treatment could be reversed by co-administration of 

the M-current blocker XE991.  XE991 alone had no effect on consolidation when 

administered immediately after strong fear conditioning (Fig. 2.5A).  However, XE991 

rescued consolidation from the impairing effects of Tzp+SCH and SCH+ICI.  These data 

suggest that inhibition of the M-current is sufficient for the enhancement of consolidation 

mediated by β2AR, D5R and M1R. 

Next, we asked whether potentiating the M-current with Ret could block the 

enhancing effects of 2AR, D5R and M1R agonists on consolidation.  Ret alone had no 

effect on consolidation when administered immediately after moderate fear conditioning 

(Fig. 2.5B).  However, Ret completely blocked the enhancements of consolidation 

elicited by agonists of M1R, 2AR and D5R.  These data suggest that the ability of PLC 

activation by M1R, 2AR and D5R to promote consolidation requires inhibition of the M-

current. 

To determine whether the effects of PLC activation on consolidation in the BLA are 

indeed mediated through inhibition of the M-current, we challenged the impairing effects 

of direct PLC inhibition with M-current blockade by XE991.  As previously 

reported (Ouyang et al., 2012), infusing the PLC inhibitor edelfosine into the BLA 

immediately after strong fear conditioning impaired consolidation (Fig. 2.5C).  However, 
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co-infusion with XE991 prevented this impairment, suggesting that the lack of 

consolidation observed in response to PLC inhibition is due to a failure to close KCNQ 

channels.  Conversely, enhancement of consolidation by infusing the PLC activator m-

3M3FBS (3M3) was inhibited by co-administration of the KCNQ channel opener Ret 

(Fig. 2.5D). These data further support the notion that PLC promotes consolidation in 

large part by closing KCNQ channels and inhibiting the M-current. 

Finally, we examined whether pharmacologically manipulating KCNQ channels 

would influence a distinct mechanism relevant to consolidation: that mediated by 

glutamatergic NMDA (GluN) receptor ion channels.  Pre-training administration of 

antagonists or blockers of GluN impairs acquisition/consolidation of cued fear 

memory (Rodrigues et al., 2001; Bauer et al., 2002; Goosens and Maren, 2004).  We 

first confirmed that injection of the competitive GluN antagonist ±3-(2-carboxypiperazin-

4-yl) propyl-1-phosphonic acid (CPP; 10 mg/kg) 1 h before strong fear conditioning 

decreases freezing in response to the training tone the following day (Fig. 2.5E).  

Consistent with a critical role for activation of GluN during acquisition, the effect of CPP 

was greatly reduced when administered immediately after conditioning.  Interestingly, 

immediate post-training injection of XE991 partially rescued the impairing effect of pre-

training CPP injection, while concurrent pre-training administration of CPP+XE991 

resulted in even greater but incomplete rescue.  These results suggest that KCNQ 

channels may also contribute to some of the earliest post-acquisition events that 

promote consolidation of fear memory. 

Receptors that regulate PLC and KCNQ channels influence consolidation 

downstream of cAMP/PKA.  

Results from prior studies indicate a critical role for cAMP/PKA-dependent signaling 

in the BLA during fear memory consolidation (Schafe and LeDoux, 2000).  Given the 
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prominent role for neuromodulator-regulated PLC activity in consolidation, we explored 

the relationship between such signaling and that for cAMP/PKA.  We first examined the 

enhancement of consolidation mediated by administration of the membrane-permeable 

cAMP analog Sp-8-Br-cAMPS (Sp8).  Sp8 was infused into the BLA immediately after 

moderate fear conditioning.  As expected, Sp8 enhanced cued fear memory 

consolidation (Fig. 2.6A). Interestingly, co-administration of Tzp+ICI prevented Sp8-

induced consolidation enhancement, suggesting that cAMP signaling is upstream of 

M1R/ 2AR activation.  Given this observation, we asked whether augmenting cAMP 

signaling would rescue the consolidation impairment elicited by these receptor 

antagonists.  Sp8 and Tzp+ICI were co-administered after strong fear conditioning.  The 

consolidation impairment by Tzp+ICI was not rescued by Sp8 (Fig. 2.6B), further 

supporting the idea that an important effect of cAMP on consolidation is upstream of 

M1R/ 2AR signaling. 

Complementary to the above, we confirmed the requirement for cAMP/PKA 

signaling in consolidation by infusing the PKA inhibitor PKI immediately after strong fear 

conditioning (Fig. 2.6C).  Interestingly, co-administration of either the M1R agonist Cev, 

the PLC agonist 3M3, or the KCNQ channel blocker XE991 rescued the impairment of 

consolidation induced by PKI.  Additionally, PKI did not block the enhancement of 

consolidation induced by Cev (Fig. 2.6D).  Taken together, these data indicate that an 

important role for cAMP/PKA signaling in fear memory consolidation is upstream of 

neuromodulatory receptor activation that is coupled to PLC and the M-current. 

 

DISCUSSION 

Most research into the role of M1R in fear memory consolidation suggests that 

stimulation of M1R enhances but is not required for consolidation (Robinson et al., 2011).  
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To address this seeming inconsistency, the present study explored whether M1R 

contributes to the redundant activation of PLC by β2AR and D5R in the BLA that is 

necessary for consolidation (Ouyang et al., 2012).  We show here that an M1R-selective 

antagonist does not inhibit fear memory consolidation in the BLA unless co-administered 

with an antagonist of either β2AR or D5R.  We also demonstrate that antagonists of 2AR 

and D5R impair consolidation in M1R KO but not WT mice.  These data support the 

existence of redundant signaling by M1R, β2AR and D5R in fear memory consolidation.  

Further, we show that consolidation enhancement induced by an M1R agonist is lost in 

M1R KO mice, indicating that other Gq/11-coupled muscarinic receptors, such as M3R, are 

not sufficient for the role of muscarinic receptors in promoting consolidation (Caulfield, 

1993). 

β2AR and D5R stimulation elevates BLA IP3 and contributes to the increase in IP3 

observed 30 min after conditioning (Ouyang et al., 2012).  Here, we show that activation 

of M1R also elevates BLA IP3, and that M1R antagonism, when combined with that for 

either β2AR or D5R, inhibits conditioning-induced IP3 increases.  These observations 

suggest an important role for activation of BLA PLC by M1R during consolidation.  

Anticipated mechanisms through which PLC regulates consolidation include those 

mediated by IP3 and DAG generated via hydrolysis of PIP2.  IP3 enhances intracellular 

calcium release that, together with DAG, could drive a number of relevant signaling 

pathways, including protein kinase C (PKC) and calcium- and calmodulin-dependent 

protein kinase II (Miller et al., 2002; Bonini et al., 2005).  Indeed, activation of muscarinic 

receptors induces intracellular calcium release in BLA neurons (Power and Sah, 2007).  

However, broad electrophysiological effects of IP3R antagonists (Ozaki et al., 2002) 

preclude pharmacological characterization of behavioral roles for IP3-dependent 
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mechanisms.  Alternatively, conditional genetic approaches related to IP3 signaling 

should be insightful (Chen et al., 2012). 

In addition to the generation of IP3 and DAG, breakdown of PIP2 by PLC can affect 

the activity of a variety of ion channels (Suh and Hille, 2008; Logothetis et al., 2010).  

We examined KCNQ potassium channels here because they are inhibited by muscarinic 

agonists in the BLA (Womble and Moises, 1992, 1993), their inhibition by M1R is well-

characterized (Suh and Hille, 2002; Kosenko et al., 2012), and selective KCNQ channel 

modulators have been validated in subunit KO mice (Tzingounis and Nicoll, 2008).  Our 

experiments demonstrate that pharmacologically modulating the M-current in the BLA 

strongly affects consolidation of fear memory. 

Inhibiting the M-current increases neuronal excitability by diminishing the 

afterhyperpolarization and reducing spike accommodation (Aiken et al., 1995; Peters et 

al., 2005).  Our data and recent reports that XE991 enhances learning and 

memory (Santini and Porter, 2010; Fontan-Lozano et al., 2011) support the hypothesis 

that increased neuronal excitability following acquisition promotes consolidation (Giese 

et al., 2001).  Of special note, increased firing rates have been observed in cat BLA 

neurons 30-50 min after inhibitory avoidance conditioning (Pelletier et al., 2005), a time 

interval similar to the period over which conditioning-induced increases in BLA IP3 

occur (Ouyang et al., 2012). 

The M-current limits membrane depolarization by excitatory postsynaptic potentials 

(EPSPs), and thus reduction in the M-current could play a role in shaping EPSPs 

induced by fear conditioning (George et al., 2009; Shah et al., 2011).  Increased 

excitability induced by KCNQ blockade may also enhance activation of L-type voltage-

gated calcium channels that promote consolidation in the BLA (Bauer et al., 2002; 
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Shinnick-Gallagher et al., 2003; McKinney and Murphy, 2006).  Interestingly, enhanced 

excitability during the consolidation period that is sensitive to M-current manipulation 

also may result from internalization of GABAA receptor subunits, suggesting that 

enhanced excitability may have multiple mechanisms and be of general 

importance (Chhatwal et al., 2005; Mou et al., 2011). 

The observation that modulating BLA KCNQ channel activity can completely 

reverse the effects on consolidation of PLC manipulation suggests that consolidation 

may not require effects of IP3 and DAG on targets other than the M-current, at least 

around 30 min after conditioning.  PKC, which can be activated by elevated calcium 

secondary to IP3 and/or by DAG, may also be required for fear memory consolidation.  

When infused into the BLA, an inhibitor of the PKCα and PKCβ isozymes impairs 

consolidation of inhibitory avoidance memory (Bonini et al., 2005), and a role for BLA 

PKC in the maintenance of fear memory is likely (Serrano et al., 2008).  Among PKC 

isozymes, PKCβ but not PKCγ or PKCδ appears to be critical because only PKCβ KO 

mice exhibit deficits in cued fear memory (Abeliovich et al., 1993; Weeber et al., 2000; 

Selcher et al., 2002).  While specific roles and mechanism

have not been delineated, PKC could contribute to consolidation in parallel with PIP2 

depletion by facilitating suppression of the M-current (Hoshi et al., 2003). 

Notably, other ion channels that regulate excitability can be modulated by PLC 

activity.  Decreases in PIP2 inhibit voltage-dependent calcium channels, transient 

receptor potential channels, and inwardly rectifying potassium channels (Keselman et 

al., 2007; Suh and Hille, 2008).  In addition, PKC can regulate the activity of multiple ion 

channels (Dai et al., 2009).  Our observation that agonists of β2AR, D5R and M1R lose 

their enhancing effects on consolidation when co-administered with the KCNQ channel 

opener retigabine suggests that modulation of other ion channels is insufficient for 
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neuromodulator-enhanced consolidation. Conversely, the observation that XE991 

overcomes the impairment of consolidation by receptor antagonist treatment suggests 

that blockade of KCNQ channels is sufficient to promote neuromodulator-mediated 

consolidation.  Based on our findings, we predict that future studies will demonstrate 

suppression of the M-current in the BLA by agonists of β2AR and D5R. 

Our finding an interaction between the role of GluN and KCNQ channels in fear 

memory consolidation was unexpected.  GluN channels are thought to contribute to 

acquisition and/or the beginning of memory consolidation by promoting some of the 

earliest signaling events that result from the convergence of conditioning and reinforcing 

sensory input to the BLA (Rodrigues et al., 2001; Bauer et al., 2002; Goosens and 

Maren, 2004).  Our data are consistent with this idea.  Interestingly, pre-training and, to 

some extent, even immediate post-training blockade of KCNQ channels considerably 

reduces the impairing effect of pre-training GluN antagonism on consolidation.  As a 

potential intervening mechanism that could explain these findings, it is possible that the 

calcium influx mediated by GluN channels activates PLC, which in turn suppresses 

KCNQ channel activity that is relevant to consolidation.  Isozymes PLCδ and PLCη are 

activated by calcium rather than G protein subunits (Delmas et al., 2004; Cockcroft, 

2006), and specific roles for the coupling of GluN and PLC activity have been 

identified (Codazzi et al., 2006; Horne and Dell'Acqua, 2007).  Mechanisms for the role 

of GluN in consolidation that are in addition to the suppression of the M-current are 

expected, and are supported by the observation that XE991 incompletely reverses the 

impairing effects of GluN receptor antagonism. 

With respect to cAMP/PKA signaling in fear memory consolidation, our findings 

suggest that cAMP/PKA has an important role upstream of the neuromodulatory 

receptors that activate PLC.  It may be that a prominent role for cAMP/PKA signaling in 
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consolidation is the presynaptic regulation of neurotransmitter release within the BLA 

approximately 30 min after conditioning, when IP3 levels rise.  Indeed, cAMP/PKA 

signaling plays a critical role in presynaptically expressed LTP (Castillo et al., 2002; 

Lonart et al., 2003; Bayazitov et al., 2007; Fourcaudot et al., 2008).  Such a role may be 

at least partly responsible for the enhanced neurotransmitter release observed in vivo 

following conditioning in some paradigms (Tronel et al., 2004; Guzman-Ramos et al., 

2010, 2012).  Thus, we propose that cAMP/PKA regulates fear memory consolidation in 

part by augmenting the release of neuromodulators that activate and M1R, β2AR and 

D5R.  Our results do not exclude a postsynaptic role for cAMP/PKA signaling in 

consolidation, but do indicate that such signaling is not downstream of neuromodulator-

driven PLC activity during this phase of consolidation. 

In summary, we report a role for M1R in the consolidation of fear memory as a 

redundant contributor to requisite PLC activity in the BLA (Fig. 2.7).  We propose that 

PLC increases neuronal excitability in the BLA by suppressing KCNQ channel activity.  

Our experiments with retigabine offer the first report of an effect of this drug on learning 

and memory.  Developed as anticonvulsants, retigabine and ezogabine were recently 

approved by the FDA as antiepileptics (Orhan et al., 2012).  Our observation that 

retigabine can inhibit the consolidation of fear memory suggests that these drugs might 

have an additional application in preventing PTSD when given shortly after a traumatic 

experience. 
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FIGURE LEGENDS 

Figure 2.1.  Muscarinic stimulation promotes consolidation via M1R.  All treatments were 

given immediately after conditioning with moderate shock (0.4 mA).  Animals were 

tested for retention in a novel context the following day.   (A) The M1R agonist cevimeline 

dose-dependently increases freezing in response to the training tone [F(3,16) = 5.09, P 

= 0.012 for the main effect of dose; n = 5/group].   (B) Directly infusing cevimeline into 

the basolateral amygdala (BLA) dose-dependently enhances freezing in response to the 

training tone [F(3,16) = 8.49, P = 0.001 for the main effect of dose; n = 5/group].  (C) 

Either vehicle or cevimeline (Cev, 1 mg/kg) was administered to M1R knockout (KO) and 

wild-type (WT) littermate control mice.  Only WT mice exhibit increases in freezing in 

response to drug treatment [F(1,16) = 17.86, P = 0.0006 for the main effect of treatment; 

F(1,16) = 10.31, P = 0.0054 for the main effect of genotype; and F(1,16) = 4.83, P = 

0.043 for the interaction of treatment and genotype; n = 5/group].  *P < 0.05, ^P < 0.01. 

Figure 2.2.  M1R signals redundantly with 2AR and D5R to promote fear memory 

consolidation.  All treatments were administered immediately after conditioning with 

strong shock (1 mA).  Retention testing occurred the following day in a novel context.  

(A) Tzp dose-dependently inhibits freezing to the training tone during testing when 

combined with SCH (30 g/kg).  Neither SCH nor Tzp affect consolidation on their own 

[F(5,24) = 12.37, P < 0.0001 for the main effect of treatment; n = 5/group].  (B) ICI (30 

g/kg) impairs consolidation only when combined with Tzp.  In addition, significantly 

lower freezing is observed when all three receptor antagonists are combined [F(3,20) = 

30.82, P < 0.0001 for the main effect of dose; n = 5-8/group].  (C) Combining Tzp 

treatment with either SCH or ICI (both 50 ng) impairs fear memory consolidation when 

infused directly into the BLA [F(5,22) = 5.78, P = 0.0012 for the main effect of dose; n = 

5/group].  (D) Vehicle, ICI or SCH (both 30 g/kg) was administered to M1R KO and WT 
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littermate mice.  ICI and SCH impair consolidation only in M1R KO mice [F(2,32) = 3.96, 

P = 0.0292 for the main effect of treatment;  F(1,32) = 15.19, P = 0.005 for the main 

effect of genotype; and F(2,32) = 3.42, P = 0.045 for the interaction of treatment and 

genotype; n = 6-7/group].  *P < 0.05, ^P < 0.01, #P < 0.001. 

Figure 2.3.  M1R redundantly activates BLA phospholipase C induced by fear 

conditioning.  (A) BLA samples were taken 30 min after vehicle or cevimeline (Cev, 1 

mg/kg) injection.  Cev elevates IP3 in the BLA [t(9) = 2.27, P = 0.0496; n = 10/group].  

(B) BLA samples were taken 30 min after fear conditioning using 1 mA shock.  Tzp (1 

mg/kg) blocks conditioning-induced IP3 levels only when combined with SCH or ICI (both 

30 g/kg) [F(3,36) = 4.04, P = 0.0142 for main effect of treatment; n = 10/group].  *P < 

0.05. 

Figure 2.4.  The M-current restrains fear memory consolidation in the BLA.  All 

treatments were administered immediately after conditioning, with testing performed the 

following day.  (A,B) Mice were conditioned with 0.4 mA shock.  (A) The KCNQ channel 

blocker XE991 dose-dependently increases freezing in response to the training tone 

[F(3,30) = 4.81, P = 0.0075 for main effect of dose; n = 8-10/group].  (B) Bilateral 

infusion of XE991 into BLA dose-dependently enhances cued fear memory consolidation 

[F(3,19) = 10.37, P = 0.0003 for main effect of dose; n = 5-6/group].  (C,D) Animals were 

conditioned with 1 mA shock.  (C) The KCNQ channel opener retigabine dose-

dependently inhibits freezing in response to the training tone [F(4,25) = 3.82, P = 0.0147 

for main effect of dose; n = 6/group].  (D) Bilateral infusion of retigabine into the BLA 

dose-dependently inhibits fear memory consolidation [F(3,16) = 8.28, P = 0.0015 for 

main effect of dose; n = 5/group].  (E) Infusing Tzp+ICI (1 µg + 50 ng) or retigabine (Ret, 

1 µg) into the BLA immediately after conditioning impairs contextual fear memory the 
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following day [F(2,12) = 9.83, P = 0.003 for main effect of treatment; n = 5/group].  *P < 

0.05; ^P < 0.01; #P < 0.001. 

Figure 2.5.  Manipulating the M-current blocks the effects of neuromodulatory and GluN 

receptor manipulations on consolidation.  All treatments were administered immediately 

after conditioning, with cued fear testing performed the next day.  (A) XE991 (1 mg/kg) 

has no effect on freezing in response to the training tone when conditioned with strong 

shock (1 mA).  As expected, immediate post-training injection of Tzp+SCH or Tzp+ICI 

(both 1 mg/kg + 30 g/kg) inhibits freezing in response to the training tone, while XE991 

(1 mg/kg) blocks these inhibitory effects [F(2,24) = 11.19, P = 0.0004 for main effect of 

antagonist treatment,; F(1,24) = 27.00, P < 0.0001 for main effect of XE991 treatment; 

F(2,24) = 11.03, P = 0.0004 for interaction of antagonist treatment and XE991 treatment; 

n = 5/group].  (B) Retigabine (Ret, 4 mg/kg) has no effect on freezing in response to the 

training tone when mice are conditioned with moderate shock (0.4 mA).  Agonists of M1R 

(cevimeline = Cev, 1 mg/kg), 2AR (procaterol = Proc, 50 µg/kg) and D5R (SKF83959 = 

SKF, 2 mg/kg) enhance freezing in response to the training tone the next day, while Ret 

blocks these enhancing effects [F(3,42) = 2.89, P = 0.0468 for the main effect of agonist; 

F(1,42) = 20.54, P < 0.0001 for the main effect of Ret; and F(3,42) = 3.85, P = 0.0161 for 

the interaction between agonist and Ret; n = 6-7/group].  (C,D) All treatments were 

infused into the BLA immediately after conditioning.  (C) XE991 (XE, 1 µg) has no effect 

on freezing in response to the training tone during testing when mice are conditioned 

with 1 mA shock.  The PLC inhibitor edelfosine (Edel, 2 ng) significantly inhibits freezing 

in response to the training tone the next day, but co-administration with XE reverses that 

inhibition [F(3,16) = 12.33, P = 0.002 for main effect of treatment; n = 5/group]. (D)  Ret 

(1 µg) has no effect on freezing in response to the training tone during testing when mice 

are conditioned with 0.4 mA shock.  The PLC agonist m-3M3FBS (3M3, 0.2 ng) 
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significantly enhances freezing in response to the training tone the next day, but co-

administration with Ret reverses that enhancement [F(3,16) = 14.23, P < 0.0001 for main 

effect of treatment; n = 5/group].  (E) All subjects were injected both 60 min before and 

immediately after (+1 min) conditioning with 1 mA shock.  The GluN antagonist CPP (C, 

10 mg/kg) significantly inhibits consolidation when given before but not after training.  

XE991 (1 mg/kg) rescues CPP-induced impairment when injected with CPP before 

training and when injected immediately after training [F(4,20) = 6.76, P = 0.0013 for main 

effect of treatment; n = 5/group]. *P < 0.05; ^P < 0.01; #P < 0.001. 

Figure 2.6.  A critical aspect of cAMP/PKA signaling in fear memory consolidation is 

upstream of signaling by neuromodulators, PLC and KCNQ channels.  All compounds 

were infused directly into the BLA immediately after fear conditioning, and cued fear 

testing was performed one day later.  (A,D) Mice were conditioned with 0.4 mA shock.  

(A) The cAMP analog Sp-8-Br-cAMPS (Sp8, 0.5 µg) increases freezing in response to 

the training tone.  The impairing effect of Sp8 is mitigated by co-infusion with either 

combined M1R+β2 antagonists (Tzp+ICI, 1 µg + 50 ng), a PLC antagonist (Edel, 2 ng), or 

a KCNQ channel opener (Ret, 1 µg) [F(4,20) = 6.25, P = 0.002 for main effect of 

treatment; n = 5/group].  (B,C) Mice were conditioned with 1 mA shock.  (B) The 

µg) 

[F(2,12) = 6.26, P = 0.0138 for main effect of treatment; n = 5/group].  (C) The impairing 

effect of the protein kinase A inhibitor PKI (0.5 µg) is blocked by co-infusion with either 

an M1R agonist (Cev, 1 µg), a PLC agonist (3M3, 0.2 ng), or a KCNQ channel blocker 

(XE, 1 µg) [F(4,20) = 13.82, P < 0.0001 for main effect of treatment; n = 5/group].  (D) 

The M1

altered by co-infusion with PKI (0.5 µg) [F(2,12) = 7.02, P = 0.0096 for main effect of 

treatment; n = 5/group].  *P < 0.05; ^P < 0.01; #P < 0.001. 
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Figure 2.7.  A model for an important aspect of neuromodulatory control over fear 

memory consolidation.  At least three neuromodulatory receptors (M1, β2, D5) 

redundantly couple to PLC in the BLA to promote consolidation.  A critical downstream 

effector of PLC activity is the KCNQ channel that underlies the M-current.  Reduction in 

the M-current is hypothesized to enhance neuronal excitability and consolidation during 

a period beginning ~30 min after acquisition.  While the exact mechanism for KCNQ 

channel closure following acquisition has not been determined, it is likely to be a 

combination of PLC-mediated signaling events that include a reduction in PIP2 levels, an 

increase in intracellular calcium, and activation of PKC.  ACh = acetylcholine; CaM = 

calmodulin; DA = dopamine; DAG = diacylglycerol; ER = endoplasmic reticulum; IP3 = 

inositol 1,4,5-trisphosphate; NE = norepinephrine; PIP2 = phosphatidylinositol 4,5-

bisphosphate; PKC = protein kinase C; PLC-β = phospholipase C-β. 
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CHAPTER 4: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
 

“For small creatures such as we the vastness is bearable only through love.” 

       - Carl Sagan, “Contact” (1985) 

General Conclusions 

This dissertation set out to explore the neuromodulatory signaling pathways that are 

essential to the consolidation of fear memory in the basolateral amygdala (BLA). In 

doing so, this work revealed a novel role for phospholipase C (PLC) as a crucial 

intracellular signaling molecule in consolidation and as a target of neuromodulatory 

receptors that facilitate fear memory consolidation. In addition, a novel role for the M1 

muscarinic receptor (M1R) in fear memory consolidation was discovered, wherein M1R, 

β2-adrenergic (β2AR) and D5-dopaminergic (D5R) receptors redundantly activate PLC 

activity necessary for consolidation. The discovery of an essential role for M1R in fear 

memory consolidation as part of a redundant neuromodulatory framework gave way to 

the observation that inhibition of the muscarinic-controlled M-current contributes to the 

effects of PLC and β2AR/D5R on fear memory consolidation. Together, these 

observations provide an expanded and novel model for how the release of 

neuromodulators induced by a frightening experience drives the powerful consolidation 

of fear memory in the BLA. In this model, neuromodulators released during fear increase 

the excitability of neurons in the BLA by activating PLC and inhibiting KCNQ/M-current 

(KCNQ/M) channels, which likely increases neuronal firing and activity-dependent 

consolidation processes within those neurons. In other words, fear exacerbates 

consolidation by putting the BLA in an excitable state that would otherwise not persist 

into the consolidation window after an experience. 
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β2AR, D5R and M1R control fear memory by redundantly activating PLC.  

M1R had previously been shown to be both unnecessary for the consolidation of 

cued fear memory but also facilitative of it when activated exogenously (Vazdarjanova 

and McGaugh, 1999; Anagnostoras et al., 2003). Here, the contradictory nature of M1R’s 

contribution to fear memory consolidation in the BLA is resolved by its redundant 

relationship with β2AR and D5R as activators of PLC. Naturally, this begs the question of 

whether redundant signaling between β2AR/D5R/M1R also includes other 

neuromodulatory receptors that activate PLC, such as the α1-adrenergic receptor, 5-

HT2A serotonergic receptor, and group I metabotropic glutamate receptors (mGluR). 

Among these, 5-HT2A may be the best candidate for inclusion in the redundancy model, 

as α1-adrenergic receptors inhibit consolidation in the BLA (Lazzaro et al., 2010), and 

mGluRs are believed to facilitate acquisition, but not consolidation (Rodrigues et al., 

2002). Serotonin levels increase in the BLA after a stressful experience (Kawahara et 

al., 1993; Yokoyama et al., 2005), and 5-HT2A is expressed on pyramidal neurons there 

(McDonald and Mascagni, 2007). Interestingly, as reported for β2AR, D5R and M1R 

(Chapter 2; Chapter 3) post-training administration of a 5-HT2A agonist enhances fear 

memory, while 5-HT2A-deficient mice do not exhibit any impairments (Weisstaub et al., 

2006; Zhang et al., 2013), and 5-HT2A receptors are known to increase neuronal 

excitability by diminishing potassium conductance in the BLA (Yamamoto et al., 2007; 

Villalobos et al., 2011).    

Previous to the work described here, a potential contribution of PLC to memory 

consolidation, fear memory or otherwise, had seldom been explored (Buckley and 

Caldwell, 2004; Weeber and Caldwell, 2004; Baker et al., 2008). This is surprising given 

that Gq/11- coupled receptors such as 5-HT2A and M1R have been observed to play some 

role in fear memory consolidation (Vazdarjanova and McGaugh, 1999; Zhang et al., 
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2013). While the behavioral effects of PLC manipulations described here clearly 

implicate PLC as an important contributor to consolidation, the dynamics of IP3 levels 

increasing so distinctly 30 minutes after fear conditioning and then quickly dissipating is 

peculiar. Moreover, if NMDA receptors (NMDA-R) also activates PLC, as some studies 

have shown (Horne et al., 2007) and as described here in the relationship between 

NMDA-R antagonism and KCNQ/M channel blockade (Chapter 3), one might expect to 

see a rapid elevation in IP3 as well. One way to assess the importance of PLC at other 

time-points would be to administer a PLC antagonist after 30-40 minutes post-training, 

when IP3 elevations appear to be absent. It is currently unclear whether subsequent IP3 

spikes indicative of PLC activity important for consolidation occur after the last post-

training time point that was measured (60 min), which delayed PLC antagonism would 

still prevent. Therefore, experiments administering delayed PLC antagonist treatment go 

hand in hand with additional experiments assessing IP3 levels beyond 60 minutes after 

conditioning.  

Redundant activation of PLC by β2AR, D5R and M1R controls fear memory 

consolidation by interacting with KCNQ/M channels.  

The work described here not only identifies PLC activity as a requisite for fear 

memory consolidation in the BLA and as a point of convergence for neuromodulatory 

facilitation of consolidation, but it also potentially explains one manner in which PLC 

affects consolidation. Here, evidence suggests that PLC controls consolidation through 

its inhibitory effect on KCNQ/M channels. Inhibition of IKM increases the excitability of 

pyramidal neurons by decreasing afterhyperpolarization (AHP; Womble and Moises, 

1993; Gu et al., 2005) and promoting afterdepolarization (ADP; Yue and Yaari, 2004; 

Vervaeke et al., 2006; Chen and Yaari, 2008), which together increase firing by inhibiting 

spike frequency accommodation. However, a number of ion channels other than 
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KCNQ/M contribute to AHP and ADP, and several of these are known to be regulated by 

PIP2 hydrolysis, β2AR, D5R and M1R.  

 The effects of PLC and of the neuromodulatory receptors described here are 

known to influence the activity of a number of ion channels other than KCNQ/M. In 

recent years, the effects of PIP2 on the activity of a variety of ion channels has generated 

much interest (Suh and Hille, 2008). While M1R is the hallmark modulator of KCNQ/M 

channels and IKM, it also is known to regulate the small-conductance calcium activated 

potassium current (Power and Sah, 2008) and a voltage-independent potassium leak 

current (Womble and Moises, 1992). Dopamine and adrenergic agonists have both been 

observed to increase the excitability of pyramidal neurons in the BLA (Kroner et al., 

2005; Yamamoto et al., 2007; Abraham et al., 2008), however, it is unclear whether their 

effects are mediated strictly by IKM. Future electrophysiological experiments in the BLA 

with agonists of β2AR/D5R/M1R should shed light on whether those neuromodulatory 

receptors indeed exert their effects on consolidation through inhibition of IKM and/or other 

ion channels. However, the observation described here that blockade of IKM masks the 

effects of β2AR/D5R/M1R and PLC agonists suggests that any effects of those agonists 

on other ion channels is not sufficient to alter consolidation.  

The idea that multiple neuromodulatory receptors converge on PLC to promote, 

among other potential effects, increased excitability of BLA neurons obviously requires 

that all neuromodulatory receptors involved are expressed on the same neurons and 

within close proximity to one another and to KCNQ channels. While β2AR, D5R and M1R 

have all been observed on excitatory pyramidal neurons in the BLA (Muly et al., 2009; 

Farb et al., 2010; Muller et al., 2013), co-expression of all three receptors on the same 

neurons within the same space is difficult to assess. Interestingly, in BLA neurons 

agonists of β-adrenergic and muscarinic receptors potentiate one another’s effect on 
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neuronal excitability (Power and Sah, 2008), suggesting that they co-localize on neurons 

in the BLA. The particular model described here could be studied electrophysiologically 

by determining whether agonists of β2 AR/D5R/M1R exert similar effects in the same BLA 

neuron.   

As an alternative mechanism to receptor clustering at the synaptic locus of plasticity 

in the BLA, the combined effects of β2AR/D5R/M1R on KCNQ/M channel inhibition could 

be mediated by more widespread effects of the receptors throughout a neuron. Inhibition 

of KCNQ/M channels has been observed to promote global neuronal depolarization and 

back-propagating action potentials that enhance LTP independent of NMDA-R opening 

by presynaptic stimulation (Tsubokawa et al., 1997; Petrovic et al., 2012). In this case, 

neuromodulatory receptors could exert their effect on excitability and consolidation 

through more diffuse expression patterns across a neuron, rather than requiring receptor 

clustering at dendritic spines. This explanation is supported by the observation that 

XE991 partially rescues consolidation from impairments induced by NMDA-R blockade 

(Chapter 3), and also that KCNQ/M channels are primarily expressed near the neuronal 

soma (Cooper et al., 2001; Chung et al., 2006; Hu et al., 2007), where β2AR, D5R and 

M1R have all been observed in BLA neurons (Muly et al., 2009; Farb et al., 2010; Muller 

et al., 2013). Furthermore, in the BLA, calcium release from intracellular stores induced 

by a muscarinic agonist occurs only in the neuronal soma and proximal dendrites (Power 

and Sah, 2007), and not in distal dendrites.   

As the issue of localizing the neuromodulatory receptors and KCNQ/M channels 

important for controlling consolidation, it is unclear precisely how KCNQ/M channels 

promote consolidation within the complex circuitry of the BLA. KCNQ/M channels have 

been observed to exert effects on plasticity both presynaptically and postsynaptically 

(Vervaeke et al., 2006; Petrovic et al., 2012). Moreover, pharmacological modulators of 
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KCNQ/M channels can regulate the release of neurotransmitters from presynaptic 

neurons (Martire et al., 2004; Jensen et al., 2011). Therefore, it is feasible that KCNQ/M 

channels mediate their effects on consolidation in the BLA by enhancing the release of 

neurotransmitters and neuromodulators from presynaptic terminals, which would 

subsequently promote intracellular consolidation pathways in postsynaptic neurons. 

While increased presynaptic release could contribute to consolidation, several previous 

studies suggest that muscarinic receptors and KCNQ/M channels directly modulate the 

excitability of postsynaptic pyramidal neurons there (Washburn and Moises, 1992; 

Womble and Moises, 1992; Power and Sah, 2008). Although, given that M1R has been 

observed on presynaptic terminals, the effects of neuromodulators on KCNQ/M channels 

may be widespread within the BLA. 

The PLC-KCNQ/M pathway regulates consolidation downstream of cAMP/PKA. 

One of the most surprising observations described here is that of the relationship 

between the PLC-KCNQ/M and cAMP-PKA signaling pathways. The cAMP-PKA 

pathway has traditionally been the primary second messenger pathway associated with 

driving the protein synthesis and gene expression believed to be required for 

consolidation (Hernandez and Abel, 2008). While certain forms of LTP depend on 

cAMP/PKA in postsynaptic neurons and others do not (Duffy and Nguyen, 2003), no 

definitive evidence supports a requisite postsynaptic role for cAMP/PKA in consolidation. 

Indeed, LTP is more reliably blocked when cAMP-PKA is inhibited in both presynaptic 

and postsynaptic neurons (Blitzer et al., 1995), and presynaptic cAMP-PKA is known to 

be important for the release of neurotransmitters (Fourcadot et al., 2008). Assuming a 

postsynaptic role for both KCNQ/M and cAMP/PKA, consolidation impairments induced 

by pharmacological IKM enhancement should have been overcome by postsynaptic 

elevations of cAMP activity that promote the activation of important intracellular 
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consolidation pathways, which they were not.  In the context of these findings, our 

observation that modulators of PLC and of KCNQ/M channels could mask the effects of 

cAMP/PKA modulators further supports the importance of presynaptic cAMP/PKA to 

consolidation in the BLA. This of course presumes that KCNQ/M channels exert their 

effects on consolidation directly through postsynaptic BLA neurons, which, as mentioned 

previously, could be better supported by further electrophysiological studies.  

Inhibition of IKM promotes learning and memory. 

The observation that inhibiting IKM promotes the consolidation of fear memory 

contributes to a surprisingly small volume of literature reporting effects of 

pharmacological KCNQ/M channel modulators on memory formation. A handful of 

studies have revealed an enhancing effect of pre-training KCNQ/M channel blockers (i.e. 

XE991 or linopiridine) on hippocampus-dependent memory (Fontana et al., 1994; 

Fontan-Lozano et al., 2011) and of the extinction fear conditioning in the infralimbic 

cortex (Santini and Porter, 2010). On the other hand, no studies have explored the 

effects of KCNQ/M channel openers, such as retigabine, on animal models of learning 

and memory. Therefore, the findings described here present several new avenues of 

research. 

Given that consolidation consists of several general principles, and that a number of 

these carry over to the reconsolidation of memory, modulators of KCNQ/M channels 

may be discovered to have effects on learning and memory beyond just the 

consolidation of fear memory. While different in several ways, the consolidation and 

reconsolidation of fear memory share several requisite molecular underpinnings 

(Alberini, 2005), and PLC or IKM may have similar effects on reconsolidation as they have 

on consolidation. Additionally, given the observations that PLC and KCNQ/M channels 

can influence synaptic plasticity in vitro (Horne et al., 2007; Petrovic et al., 2012), it is 
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possible that PLC and IKM regulate memory consolidation in general, and affect memory 

formation independent of the site of plasticity.    

Potential therapeutic implications for KCNQ/M channel openers. 

The study of fear memory most closely translates clinically to understanding how 

the recurrent and intrusive memories characteristic of post-traumatic stress disorder 

(PTSD) develop and persist. The observation here that systemic administration of 

retigabine reliably inhibits the consolidation of ordinarily powerful fear memory provides 

a potential early response treatment for individuals who have suffered severe trauma. 

Interestingly, retigabine (also known as ezogabine) is currently approved by the FDA as 

an anti-convulsant for the prevention of mal petit seizures (Orhan, 2012). In this 

therapeutic setting, retigabine is administered daily, which has recently been reported by 

the FDA to have some negative side effects when taken for extended periods of time. 

This would not appear to present a problem if used as a preventative early response 

treatment.  

Some support for the use of anti-convulsants to treat PTSD has grown in the clinical 

community due to some effectiveness of a variety of compounds in clinical studies. 

However, many of these studies were performed with very low numbers of subjects 

(Berlin, 2007). Additionally, further research exploring the effects of KCNQ/M modulators 

on fear memory reconsolidation could provide some support for the use of retigabine in 

reconsolidation-based re-exposure therapies (Bentz et al., 2010). Conversely, some 

research suggests that XE991 can enhance the efficacy of fear memory extinction 

training, which further supports the idea of using KCNQ/M channel modulators as a 

clinical treatment for PTSD (Santini and Porter, 2010). 
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