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A Bayesian Approach for Predicting Building Cooling and Heating
Consumption and Applications in Fault Detection

Abstract
Making a prediction typically involves dealing with uncertainties. The application of uncertainty analysis to
buildings and HVAC (heating, ventilation and air conditioning) systems, however, remains limited. Most
existing studies concentrate on the parameter uncertainty and parametric variability in building simulations
for the design stage, and rely on Monte Carlo experiments to quantify this uncertainty. This dissertation aims
to develop a rapid and direct method that is capable of quantifying uncertainty when predicting building
cooling and heating consumption in the operation stage, while simultaneously capturing all sources of
uncertainty and applying these to actual system operations. Gaussian Process regression, a Bayesian modeling
method, is proposed for this purpose. The primary advantage of Gaussian Process regression is that it directly
outputs a probability distribution that explicitly expresses prediction uncertainty. The predictive distribution
covers uncertainty sources arising not only from parameter uncertainty and parametric variability, but also
from modeling inadequacy and residual variability. By assuming a Gaussian input distribution and using
Gaussian kernels, Gaussian Process regression takes parameter uncertainty and parametric variability into
consideration without using the Monte Carlo method. This dissertation makes three main contributions.
First, based on the observations from commissioning projects for approximately twenty campus buildings,
some of the important uncertainties and typical problems in variable air volume system (VAV) operations are
identified. Second, Gaussian Process regression is used to predict building cooling and heating consumption
and to evaluate the impact of parametric variability of system control related variables. Third, a method for
automated fault detection that uses Gaussian Process regression to model baselines is developed. By using the
uncertainty outputs from the Gaussian Process regression together with Bayes classifiers and probabilistic
graphical models, the proposed method can detect whether system performance is normal or faulty at the
system component level or the whole building level with a high degree of accuracy.
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ABSTRACT  

A BAYESIAN APPROACH FOR PREDICTING BUILDING COOLING AND 

HEATING CONSUMPTION AND APPLICATIONS IN FAULT DETECTION  

 

Bin Yan 

Ali M. Malkawi 

 

Making a prediction typically involves dealing with uncertainties. The application of 

uncertainty analysis to buildings and HVAC (heating, ventilation and air conditioning) 

systems, however, remains limited. Most existing studies concentrate on the parameter 

uncertainty and parametric variability in building simulations for the design stage, and 

rely on Monte Carlo experiments to quantify this uncertainty. This dissertation aims to 

develop a rapid and direct method that is capable of quantifying uncertainty when 

predicting building cooling and heating consumption in the operation stage, while 

simultaneously capturing all sources of uncertainty and applying these to actual system 

operations. Gaussian Process regression, a Bayesian modeling method, is proposed for 

this purpose. The primary advantage of Gaussian Process regression is that it directly 
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outputs a probability distribution that explicitly expresses prediction uncertainty. The 

predictive distribution covers uncertainty sources arising not only from parameter 

uncertainty and parametric variability, but also from modeling inadequacy and residual 

variability. By assuming a Gaussian input distribution and using Gaussian kernels, 

Gaussian Process regression takes parameter uncertainty and parametric variability into 

consideration without using the Monte Carlo method. This thesis makes three main 

contributions. First, based on the observations from commissioning projects for 

approximately twenty campus buildings, some of the important uncertainties and typical 

problems in variable air volume system (VAV) operations are identified. Second, 

Gaussian Process regression is used to predict building cooling and heating consumption 

and to evaluate the impact of parametric variability of variables related to system control. 

Third, a method for automated fault detection that uses Gaussian Process regression to 

model baselines is developed. By using the uncertainty outputs from the Gaussian 

Process regression together with Bayes classifiers and probabilistic graphical models, the 

proposed method can detect whether system performance is normal or faulty at the 

system component level or the whole building level with a high degree of accuracy. 
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Chapter 1    

Introduction 

 

Making a prediction typically involves dealing with uncertainties. Uncertainty and 

sensitivity analysis have been applied extensively in science and engineering. Their 

application to buildings and HVAC (heating, ventilation and air conditioning) systems, 

however, remains limited. When predicting building energy consumption for existing 

buildings, the output is usually determined by point estimation alone. 

 

Although many studies have applied uncertainty analysis to the design stage of buildings 

and systems, the operation stage often remains overlooked. While the uncertainty in 

building energy consumption predictions during the operation stage shares many 

common elements with predictions during the design stage, an additional source of 

uncertainty for the operation stage must be considered. This additional source of 
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uncertainty arises from the fact that actual system operations differ from their operation 

under ideal conditions. Such discrepancies and their impact have not been fully 

recognized or addressed in existing studies. Apart from considering the discrepancy 

between actual and idealized system operations, a modeling method that can quantify 

prediction uncertainty in a direct and rapid manner will significantly improve current 

uncertainty analysis. Therefore, the main purpose of this research is to develop a method 

that is capable of quantifying uncertainty when predicting building cooling and heating 

consumption in the operation stage directly and rapidly, while capturing all sources of 

uncertainty and applying these to actual system operations. 

 

In this dissertation, Gaussian Process regression, a Bayesian modeling method, is 

proposed as a means of predicting building energy consumption in the operation stage.  

Instead of relying on the Monte Carlo method and point estimation, Gaussian Process 

regression directly outputs a probability distribution, a form that explicitly expresses 

prediction uncertainty. The primary advantage of Gaussian Process regression is its 

ability to quantify uncertainty. In terms of prediction accuracy, Gaussian Process 

regression is as good as, if not better than, other conventional modeling methods 

(Rasmussen, 1996).  

 

Compared with current uncertainty analysis methods, Gaussian Process regression has 

several additional advantages. First, Gaussian Process regression can make predictions 

based on historical data without requiring the construction of a complex physics-based 
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model.  This statistical approach relies on data alone. Therefore, unlike a physics-based 

model, it does not require the configuration of numerous physical parameters. In system 

operations, given recent advances in building automation systems, comprehensive 

historical data of system performance are readily available. Second, the predictive 

distribution of Gaussian Process regression captures various uncertainties that arise from 

the modeling process. In this dissertation, uncertainty in the modeling process includes 

model inadequacy, residual variability, observation error and interpolation uncertainty 

(details relating to uncertainty in the modeling process will be introduced in Chapter 2). 

Uncertainty in the modeling process is seldom quantified. Methods used in most studies 

restrict themselves to parameter uncertainty and parametric variability, whereas Gaussian 

Process regression can account for uncertainty in the modeling process. Third, Gaussian 

Process regression provides a more efficient means of quantifying parameter uncertainty 

or parametric variability. By assuming a Gaussian input distribution and using Gaussian 

kernels, Gaussian Process regression takes into account parameter uncertainty and 

parametric variability without using the Monte Carlo method, which is generally 

considered to be the standard in existing uncertainty analyses. The use of Gaussian 

Process regression rather than the Monte Carlo method therefore saves time and requires 

fewer data samples.  

 

This dissertation makes three main contributions. First, it addresses important 

uncertainties and typical problems in variable air volume system operations that have 

been identified in building commissioning projects. Second, Gaussian Process regression 
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is used to predict building cooling and heating consumption because it is a model that 

takes various sources of uncertainty into account. Third, a method for automated fault 

detection, in which Gaussian Process regression is used to model baselines, is developed.  

 

Figure 1-1 describes the process of research development. Gaussian Process regression is 

used to predict building energy consumption. The output of Gaussian Process regression 

is a predictive distribution, which can be used to evaluate the impact of variables related 

to system controls and to predict baselines in fault detection. Actual measurements of 

related variables on system control from building commissioning projects are used to 

evaluate their impact on energy consumption. Typical faults identified from building 

commissioning projects are used to verify the proposed fault detection method in 

conjunction with machine learning techniques, including Bayes classifiers and 

probabilistic graphical models. 
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Figure 1-1 Process of research development 

 

In this dissertation, Chapter 2 provides the background for this research by discussing the 

existing research of uncertainty analysis and its applications in buildings and systems, the 

scope of this work, its main applications, and simulation tools used in the case studies.. 

Chapter 3 identifies the uncertainties in HVAC system operations based on observed 

data. The observed data includes historical data from building automation systems, on-

site measurements from commissioning projects, and sub-metered cooling and heating 

consumption of individual buildings. The source of uncertainty described in Chapter 3 

concerns the deviation of actual system performance from its operation under ideal 

conditions. In addition to identifying the discrepancies between simulations and real 

systems, this approach explains why it is necessary to consider uncertainty in energy 

consumption predictions. Chapter 4 introduces the theoretical aspects of Gaussian 

Process regression and discusses possible extensions of the proposed model. In Chapter 

Predictions w. 
uncertainty

Evaluate impact of system 
control related variables

Predict baseline 
in fault detection 

Bayes Classifier & 
Probabilistic Graphical Model

Gaussian Process 
Regression

Fault Detection

Building 
Commissioning

Typical faults identified 
from project

Actual Measurements 
from the project



  6 

5, the basic form of Gaussian Process regression is used to predict building cooling and 

heating consumption. A case study of predicting energy use with uncertain AHU supply 

air temperature is presented to show how Gaussian Process regression can accelerate 

uncertainty analysis for parametric variability. Chapter 6 explores the applications of the 

proposed Bayesian approach in fault detection. Apart from Gaussian Process regression, 

the proposed Bayesian approach also uses two other machine learning techniques: Bayes 

classifiers and probabilistic graphical models. Chapter 7 includes a brief discussion of the 

advantages and limitations of the proposed method and suggests topics for future 

research. 
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Chapter 2   

Background 

 

This chapter presents a detailed discussion of the background for this dissertation. The 

scope of this dissertation and its significance in terms of energy consumption are 

discussed. Then, the purpose and potential applications for this type of research are 

explained. Next, the choice of modeling methods and simulation tools used in this 

dissertation are discussed. The chapter concludes with a discussion of the limitations of 

the existing researches in this field. 

2.1   Building Energy Consumption and HVAC System Type 

This research concentrates on a specific type of thermal distribution system, the variable 

air volume (VAV) system. VAV systems are widely used in large-scale commercial 
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buildings, especially in the United States. The following statistics show the percentage of 

commercial building energy use as a measure of total U.S. primary energy use, the 

percentage of HVAC energy use as a measure of total energy use of commercial 

buildings, and the breakdown of thermal distribution system types in commercial 

buildings. These statistics demonstrate the importance of this research field from the 

perspective of energy consumption. 

 

Figure 2-1 shows the actual and projected U.S. primary energy use by end-use sector 

from 2011 to 2040. Buildings (commercial and residential) consume more than 40% of 

the total primary energy in the United States. Commercial buildings account for 19% of 

total primary energy use. The energy use of commercial buildings is predicted to increase 

by 3.1 quadrillion Btu from 2011 to 2040. In 2040, commercial buildings will account for 

20% of total energy use (EIA, 2012).  
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Figure 2-1 Actual and projected U.S. primary energy use by end-use sector1 

 

HVAC energy consumption, including space heating, space cooling and ventilation, 

accounts for 43% of the energy use in commercial buildings (EIA, 2012), as shown in 

Figure 2-2. In some large office buildings, this portion can exceed 50%. 

                                                 
1 Source: EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case 
Tables, Table A2, p. 3-5  
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Figure 2-2 U.S. Commercial energy end-use splits 2 

 

Figure 2-3 shows the percentage of conditioned (both heated and cooled) floor area by 

different system type in U.S. commercial buildings, including education, health care, 

office and public buildings (Westphalen & Koszalinski, 1999). Packaged air-conditioning 

systems and individual air-conditioners are usually used for small-scale commercial 

buildings. Central thermal distribution systems predominate in large-scale commercial 

buildings. There are three types of central thermal distribution systems. These include 

variable air volume (VAV) systems, constant air volume (CAV) systems, and fan coil 

unit (FCU) systems. FCU and VAV/CAV are distinguished by the media they employ to 

transport cooling and heating. FCU uses water while VAV/CAV uses air. The all-air 

system is the predominant system type found in large commercial buildings in the United 

                                                 
2 “Other” includes service station equipment, ATMs, telecommunications equipment, medical 
equipment, pumps, emergency electric generators, combined heat and power in commercial 
buildings, and manufacturing performed in commercial buildings. 

Lighting 
14% 

Space Heating 
27% 

Space 
Cooling 

10% 
Ventilation 

6% 

Refrigeration 
4% 

Water Heating 
7% 

Electronics 
3% 

Computers 
2% 

Cooking 
2% 

Other & Adjust 
25% 



  11 

States. Air handling units (AHU) process air centrally and distribute processed air to 

terminal VAV and/or CAV boxes. VAV boxes are more common because they are more 

energy efficient by varying air volume. Radiators are sometimes installed in perimeter 

zones along with VAV/CAV boxes. Although this dissertation focuses on central VAV 

systems, some of it is also applicable to CAV systems.  

 

 

Figure 2-3 Percentage of various thermal distribution system types by conditioned floor area in 
U.S. commercial buildings 

2.2   Building Commissioning and Fault Detection 

That faults and deficiencies in control systems are among the most important barriers to 

energy-efficient buildings (PECI, 2003). Sophisticated technologies such as direct digital 

control have been introduced into HVAC systems as a promising means of achieving 

energy saving measures in buildings. However, they also increase the complexity of the 

systems and lead to a higher probability of deviation between system performance and 
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design intent. As a result, few systems perform as intended. Actual system performance 

in real buildings may differ from desired performance because of flaws in operations and 

maintenance. The most frequently occurring problems in HVAC systems include faulty 

economizer operation, malfunctioning sensors, malfunctioning valves, dampers, or other 

actuators, faulty or improper ventilation control strategies, and improper set-point settings 

(PECI, 2003). 

 

A growing awareness of the inefficiencies in HVAC systems has expanded the use of 

commissioning in new and existing buildings. Commissioning can be defined as the 

process of ensuring that systems are designed, installed, functionally tested, and capable 

of being operated and maintained according to the owner’s operational needs (DOE, 

1998). A study by Xiao and Wang (2009) summarizes the history of building 

commissioning. The development of commissioning can be traced back to the 1950s, 

when building commissioning was introduced in Europe. In the 1970s, the growth of 

environmental consciousness, and more importantly, the energy crisis, led to manual 

testing, and the adjusting and balancing of systems after installation and before operation 

in the United States. About two decades ago, the American Society of Heating, 

Refrigerating, and Air-Conditioning (ASHRAE) and other institutions in the United 

States began to provide codes and guidelines for commissioning. Since the beginning of 

the 21st century, building commissioning has been widely used as an energy conservation 

method all over the world. 
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The role of commissioning in assuring efficient and effective system performance is 

significant from the perspective of energy conservation. The potential savings resulting 

from building commissioning and system control optimization in commercial buildings 

were estimated to be 5-30% of their total energy use (Hunt & Sullivan, 2002). The 

payback time of commissioning in existing buildings can vary from one month to five 

years (Mills et al., 2005). Building commissioning usually involves conducting on-site 

measurements, analyzing the performance data from the monitoring system, observing 

the actual performance and comparing that with what it is expected to be (Claridge, 

1998). Its main purpose is to detect inefficiencies and optimize the system. System 

measurements and sub-metered data are therefore crucial to building energy diagnosis. 

Faults in system operations may reoccur after commissioning. In order to achieve energy 

savings and maintain high-level energy efficiency, lifecycle building commissioning may 

be necessary. Currently, commissioning requires intensive labor, time and cost, which 

makes it impractical to conduct commissioning throughout the building lifecycle, 

especially given the increasing scale and complexity of modern buildings.  

 

Commissioning methods that can reduce labor, time and cost are highly desirable. 

Automated commissioning is considered to be a necessary and feasible solution. Building 

automation systems (BAS) are now standard in most modern buildings and can control 

and monitor system performance. This makes it possible to automate the commissioning 

process throughout the building lifecycle. Consequently, there has been a recent growth 

of interest in research and development (R&D) to automate building commissioning. 
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However, the commissioning of HVAC systems is still far from being completely 

automated. It is believed that wireless communication, automated diagnostics, and 

advanced control would lead to completely automated commissioning in 10 to 20 years 

(Brambley & Katipamula, 2004). Automating building commissioning throughout a 

building lifecycle requires research on many levels. No single tool can accomplish all the 

tasks that would be required, including information management, functional testing, and 

performance monitoring, and fault detection and diagnostics (Xiao & Wang, 2009). 

 

Information management includes tracking and recording all the information necessary 

for commissioning in addition to any changes to HVAC systems in the building lifecycle. 

Automatic information management is to a large extent crucial for commissioning to be 

effective and efficient (Xiao & Wang, 2009). Building lifecycle information systems and 

data models have been developed in order to maintain the accuracy, conformity and 

consistency of the information necessary for commissioning (Stum, 2000; Luskay, 2003; 

Forester, 2003). However, additional efforts are necessary in order to integrate these data 

management tools with emerging automated fault detection and diagnostic tools (PECI, 

2003).  

 

Functional performance testing is achieved by creating false operating conditions and 

manipulating set-points. By observing test responses and comparing these with design 

intent, engineers can detect deficiencies in system operations (Xiao & Wang, 2009). 

Functional testing, when employed as an active commissioning method, is a relatively 



  15 

new commissioning method. Functional testing can also be used to generate data to build 

models required for automated fault detection tools. 

 

Performance monitoring plays an important role in automated commissioning in the 

building lifecycle. Trend analysis from data acquired from performance monitoring 

systems, a simple technique used in conventional commissioning, can also be useful in 

automated commissioning. In addition, continuous building performance measurements, 

supporting information processing, and data visualization technologies have been 

developed over the past two decades (Piette et al., 2001).  

 

Fault detection and diagnostics (FDD) aims to discover faults and sub-optimal system 

operations. Research on fault detection and diagnosis began after the benefits of lifecycle 

commissioning became widely recognized (Xiao & Wang, 2009). The two most 

commonly used FDD models are the rule-based method and the model-based method.   

The rule-based method uses expert knowledge or first principles to derive a set of if-then-

else rules to draw conclusions about whether faults exist in the systems (Katipamula & 

Brambley, 2005). Kaldorf and Gruber (2002) describe an expert system for the FDD of 

building systems. House et al. (2001) and Brunton et al. (2012) use the rule-based method 

to detect faults in AHUs. Significant drawbacks of the rule-based method include that it 

is difficult to determine a complete set of rules, and difficult to ensure that all rules are 

always applicable, especially in complex systems (Katipamula& Brambley, 2005). For 

complex systems, more complicated model-based methods are often used in fault 
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detection, as shown in Figure 2-4 (Liddament, 1999). Outputs of real processes and 

predictions from baseline models are compared. Any deviations greater than a threshold 

tend to indicate abnormalities in system performance. O’Neill et al. (2011) develop a 

whole building energy diagnostics system using EnergyPlus simulations as baseline 

models. Wang et al. (2011) present a model-based online fault detection method for the 

AHUs of office buildings. Yang et al. (2011) use a model-based fault detection method to 

detect faults in the supply air temperature sensors of AHUs. 

 

Figure 2-4 Model-based FDD Method 

 

Current research in this field continues to explore the development of more robust 

automated FFD tools that can be integrated into BAS systems. Many sub-tasks must be 

accomplished before fully automated commissioning becomes a reality (Diamond, 2004). 

One of the primary sub-tasks involves improving baseline predictions. Capturing 

uncertainty in baseline predictions would help enhance the robustness of the model-based 

FDD method. Accordingly, the proposed Bayesian approach provides a solution for 

improving baseline predictions. The ultimate goal of the research presented in this 

dissertation is to improve the performance of automated fault detection by incorporating 

prediction uncertainty. 
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2.3   Modeling Methods and Simulation Programs 

Various building energy use modeling methods have been applied to existing buildings in 

order to understand building energy performance and improve energy efficiency. For 

example, simplified models based on heat balance equations and detailed simulations, 

such as EnergyPlus, DeST and DOE-2, can optimize operating strategies (Liu & 

Claridge, 1998; Yan et al., 2009). Temperature-based regression and Neural Networks 

have been widely used to determine retrofit savings (Kissock et al., 1998; Cohen & 

Krarti, 1995). These models can be categorized into two groups: physics-based and data-

driven. In physics-based models, the functional form of relations between variables and 

the values of parameters are known. They can be derived through our knowledge of the 

physical principles of the system or through experiments. Physics-based models can be 

considered white box models. Once a model has been developed, historical data is not 

required in order to make new predictions. In practice, metered data is used to calibrate 

the input values of a model. In data-driven models, both the functional form of relations 

between variables and the values of parameters in those functions are learned through 

optimization algorithms based on historical data. Neural Networks and temperature-based 

regression models are data-driven models. Such models can be considered black box 

models.  

 

Even experienced engineers might take days to build a credible building energy model by 

using simulation tools such as EnergyPlus. Such models require many inputs, including 



  18 

the dimensions of buildings, their density and schedule of occupants, lighting and 

equipment, and HVAC system parameters. Although a model can be calibrated until its 

outputs closely match the measured data, this does not mean that the simulation model 

and its predictions are an accurate or complete reflection of the actual system operations. 

Due to the lack of information for the inputs in most cases, many inputs are impossible to 

measure accurately, and their configuration therefore remains merely an estimate (Haves 

et al., 2001). Moreover, simulation models assume that systems are operating under ideal 

conditions. Most existing models do not incorporate imperfect and faulty mechanical 

operations into their calculations.  

 

When historical data is available and sufficient, it is easier and more accurate to make 

predictions through data-driven models. The time, effort and experience required to 

develop a data-driven model result in a more affordable engineering project. Historical 

data based models can make accurate predictions and can be applied to detect changes in 

energy consumption patterns. They can also verify energy savings of retrofit projects. 

Their primary limitation is that a data-driven model is only applicable to the specific 

building or system from which the data came. The model cannot be generalized to other 

buildings without additional training data (Yan et al., 2011). The proposed Bayesian 

approach in this dissertation employs data-driven models. Since the proposed approach 

aims to be applied to the operation stage, data can be acquired from building automation 

systems, making it feasible to build credible models based on historical data.  
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Due to a lack of measured data with the desired features for the development and 

validation of the proposed fault detection method, synthetic data is used in this 

dissertation. Building energy performance simulation programs can be used to generate 

synthetic data. Computer experiments have been designed to mimic actual system 

operations. The two most comprehensive tools to simulate building energy consumption 

are EnergyPlus and TRNSYS (TRaNsient SYstem Simulation Program), because they 

have the largest number of modules for pre-configured systems and discrete HVAC 

components and features of typical HVAC systems and user-configurable HVAC systems 

(Crawley et al., 2008). In this dissertation, EnergyPlus is used to generate synthetic data 

to verify the proposed method. EnergyPlus is a well-recognized simulation program that 

provides a strong integration of building modeling and system simulation.  

2.4   Existing Research on Uncertainty Analysis 

2.4.1   Uncertainty Sources 

Uncertainty can enter mathematical models in various contexts. There are many ways to 

classify sources of uncertainty. Kennedy and O’Hagan (2001) proposed a framework for 

Bayesian calibration of computer models, in which they categorize uncertainty sources 

into the following groups: 

• Parameter uncertainty: which results from inputs of mathematical models whose 

exact values are unknown. 
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• Model inadequacy: which is defined as the difference between the true mean value of 

the real world process and the model output at the true values of the inputs. “Mean 

value” is used in the definition because the real process may itself exhibit random 

variability. “True values of inputs” refers to the assumption that there is no parameter 

uncertainty. Intuitively, model inadequacy is caused by the fact that models are only 

approximations of reality and because there will always be some discrepancy when 

they are compared to the underlying true physical process. 

• Residual variability: which concerns variations in the process. The real process may 

not always take the same values even if certain conditions remain the same, whereas a 

model will always produce the same outputs when given the same inputs. There are 

two explanations for this discrepancy. First, the real process itself may be inherently 

stochastic. Second, unrecognized conditions exist in the current model. If additional 

conditions can be specified within the model, it might be possible to reduce or 

eliminate this type of variation.   

• Parametric variability: which results from the variability of model inputs when some 

of the conditions in the inputs are not controlled or specified. In some cases, it is 

advantageous to leave some of the inputs unspecified to permit them to vary 

according to a joint distribution, so that the additional uncertainty introduced by 

parametric variability can be analyzed. 

• Observation error: which results from measurement error and may also contribute to 

residual errors. 
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For data-driven models, interpolation uncertainty is a major source of uncertainty.  

Interpolation uncertainty is caused by a lack in data samples. Interpolation or 

extrapolation is used to make predictions for those input settings that do not have 

simulation data or experimental measurements. Interpolation uncertainty could be 

considered one form of model inadequacy. Since Gaussian Process regression is a data-

driven modeling method, interpolation uncertainty is an important source of uncertainty 

in Gaussian Process modeling.  

 

There will be no attempt to redefine the principle of uncertainty classification in this 

dissertation research because Kennedy and O’Hagan’s (2001) definition is widely 

recognized and cited in the field. In this dissertation, the term “uncertainty in the 

modeling process” is used to include model inadequacy, residual variability, observation 

error, and interpolation uncertainty.  

 

2.4.2   Analysis Methods 

Most existing studies on uncertainty concentrate on parameter uncertainty and parametric 

variability. The purpose of these studies is to determine how uncertainties in the output of 

a mathematical model can be apportioned to different contributions of uncertainties in the 
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model inputs. Such uncertainty studies usually include three steps, as illustrated in Figure 

2-5.  

 

Figure 2-5 Process of uncertainty analysis using Monte Carlo Experiments  

 

The first step is the assessment of uncertainty in input parameters or variables. Each input 

parameter or variable must be assigned a plausible range and distribution. If the analysis 

is primarily of an exploratory nature, then rather crude distribution assumptions may be 

adequate. However, if precise uncertainty results are desired, then distributions of input 

features must be specified with care, and dependencies or correlations among input 

variables must be considered. 

 

The second step is the propagation of uncertainty. A sample must be generated from the 

ranges and distributions specified for inputs. Monte Carlo simulations are a widely used 
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propagation technique for uncertainty analysis (Hamby, 1995; Helton, 1993; Kleijnen, 

1997; Lomas & Eppel, 1992; Morris, 2006; Saltelli, 1990). Popular sampling techniques 

include random sampling, importance sampling, and Latin hypercube sampling. Multiple 

model evaluations are performed with probabilistically selected model inputs. The output 

distribution of these evaluations is used as the basis for further uncertainty analysis. 

 

The third step is sensitivity analysis. The purpose of sensitivity analysis is to determine 

the importance of parameters and variables in terms of their relative contribution to the 

output uncertainty. Regression-based techniques are typically used to explore the 

mapping from input to output. It helps pinpoint the parameters that deserve primary focus 

in modeling.  

 

The procedures described above are conceptually simple, widely used, and easy to 

explain. This approach has several advantages. First, the full range of each input variable 

is sampled and subsequently used as model inputs. Therefore, the full stratification over 

the range of each input variable facilitates the identification of nonlinearities, thresholds 

and discontinuities. Next, uncertainty results are obtained without the use of a surrogate 

model. Moreover, extensive modifications to the original model are not necessary and a 

variety of regression-based techniques are applicable for further sensitivity analysis. 

However, there is also a serious drawback to using this approach. If the model is 

computationally expensive to evaluate and if many model evaluations are required, the 

cost of the required calculations may be prohibitive. In most cases, these procedures are 
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only applicable to computer models and not to real processes because the propagation of 

uncertainty is difficult to realize in real processes. It is often too expensive to repeat 

experiments and sometimes even impossible to collect data for certain input settings. 

 

The Bayesian approach proposed in this dissertation uses Gaussian Process regression to 

build a surrogate model based on either simulated data or measured data. As such, it can 

be applied to both computer models and real processes. Furthermore, for parametric 

variability in uncertainty analysis, the time cost can be reduced in the uncertainty 

propagation step because significantly fewer model evaluations or experiments are 

required. Moreover, Gaussian Process regression can account for additional types of 

uncertainty in the modeling process aside from parametric variability. 

 

2.4.3   Applications in Buildings and HVAC Systems 

Uncertainty analysis provides additional information for decision-making. Knowledge 

gained from an uncertainty analysis may completely change the decisions being made. A 

study by de Wit (2004) employs Bayesian decision theory to determine whether a 

mechanical cooling system should be installed in a four-story office building in the 

Netherlands.  Two conflicting objectives were at stake in this decision-making process: 

first, the builders wanted to maximize the future occupants’ satisfaction with the thermal 

aspects of the indoor climate, and second, they wanted to minimize investment cost. In 
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the absence of uncertainty, two different decision-makers with different preferences will 

make the same decision. However, when uncertainty is present, the same two decision-

makers are presented with different choices, which demonstrates the importance of 

uncertainty analysis in decision-making. 

 

Uncertainty analysis can affect system sizing. System sizing determines the initial cost of 

the system and also affects the operating performance through the partial load behavior of 

system components. System sizing depends on peak load calculations. In most cases, 

decisions are made based on point estimations of a worst-case scenario, which often 

results in grossly oversized systems. A 2010 study by Domínguez-Muñoz et al. uses 

uncertain inputs of envelopes, internal load and infiltration to calculate a distribution of 

peak cooling loads. The resulting probability distribution covers the whole range of 

possible peak loads. The capacity of the HVAC equipment is determined based on this 

probability distribution instead of on the results from point estimation. This study 

demonstrates how it is possible for decision-makers to find a solution that strikes a 

balance between thermal comfort levels on one hand and the initial and operation costs 

on the other. 

 

A recent paper published by Heo et al. (2012) takes uncertainty into account when 

evaluating energy savings of energy conservation measure (ECM) candidates. This 

research inputs uncertain factors into a simplified energy model and uses Monte Carlo 

experiments to evaluate retrofit energy savings.  
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Existing studies on this topic have three main limitations. First, the uncertainty in the 

modeling process is rarely quantified in the predictions. The uncertainty sources included 

in the predictive distributions are limited to parameter uncertainty and parametric 

variability. For the analysis of parameter uncertainty and parametric variability, only 

envelope related parameters are investigated. Second, Monte Carlo experiments are used 

in most uncertainty studies, which is potentially computationally expensive. Third, the 

existing research tends to analyze simulation results instead of system measurements. 

Therefore, this dissertation aims to develop a method capable of quantifying uncertainty 

when predicting building energy consumption in a direct and rapid manner. The proposed 

method is simultaneously able to capture parameter uncertainty and parametric variability 

as well as model inadequacy, residual variability, and observation error. The uncertain 

variables investigated in this dissertation are mainly related to system controls in the 

operation stage. The proposed method could apply directly to measured data, although it 

is not necessarily limited to such data.  
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Chapter 3   

Uncertainty in System Operations 

 

This chapter discusses some of the uncertainties in HVAC system operations based on 

observed data. The observed data includes historical data from building automation 

systems, on-site measurements from commissioning projects and sub-metered data of 

individual buildings. Findings from the commissioning projects are used as examples to 

illustrate system uncertainties in actual system operations.  

3.1   VAV System Operations 

Variable-air-volume (VAV) systems are intended to be an energy-efficient solution to 

multi-zone buildings with different thermal loads. While perimeter zones may require 

heating, some internal zones may require cooling. An air handling unit delivers air to all 
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the zones it serves at the same temperature. This temperature is fixed at approximately 

12.8°C throughout the year in some systems. The air temperature is set to satisfy the 

cooling demand and for dehumidification purposes. The air delivered to the zones which 

need less cooling, or need heating, is reheated by hydronic coils in the VAV terminal 

boxes.  

 

In an air handling unit, outside air is mixed with return air. The economizer modulates 

dampers to control the ratio of outside air to return air in an attempt to approach the 

desired supply air temperature when the outside air is cool. Preheating coils are located 

behind the mixing chamber to prevent freezing, and cooling coils are located next to the 

preheating coils.  

 

This chapter utilizes data from an on-campus system optimization project. As shown in 

Figure 3-1, the main components of this project include real-time energy consumption 

monitoring, building simulation, energy audit and building commissioning. Energy audit 

and on-site measurement are performed for the selected buildings as a part of this 

dissertation research. Historical data from control systems are analyzed to detect energy 

efficiency related problems. The sub-metered cooling and heating consumption is also 

used for energy audit and building commissioning. Based on the problems identified 

from the energy audits and building commissioning projects, a database which includes 

building energy consumption, major faults in system operations and energy saving 

potentials is compiled. Building simulation software EnergyPlus is used to model 



  29 

building performance, study retrofit strategies, and estimate potential energy savings. 

Local weather data and metered data are used to calibrate the simulation models. Using 

detailed investigations in conjunction with energy simulations, energy saving strategies 

are proposed and implemented. 

 

 

Figure 3-1 Components of system optimization project 

 

3.2   Typical Faults in VAV Systems 

Typical problems identified from the commissioning projects include inefficient use of 

economizers, cooling and heating counteraction in air handling units, and excessive zone 
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heating. Inefficient use of economizers exists in 56% of the buildings, cooling and 

heating counteraction exists in 53% of the buildings, and excessive reheating exists in 85% 

of the buildings in the commissioning project. 

3.2.1   Inefficient Use of Economizers and Cooling and Heating Counteraction in 

AHUs 

When the outside air temperature is several Celsius degrees lower than the supply air 

temperature set-point, free cooling can be utilized and there should be no chilled water 

consumption. Figure 3-2 shows the cooling energy consumption versus outside air 

temperature of an educational building. When outside air temperature is lower than 10°C, 

cooling energy consumption still takes place. Both the inefficient use of an economizer 

and cooling and heating counteraction in air handling units can explain this phenomenon. 

First, the economizer fails to modulate the dampers to achieve the correct ratio of outside 

air to return air so that free cooling can be utilized to the maximum extent. Therefore, the 

system is forced to use more energy to reach the required supply air temperature. Second, 

simultaneous cooling and heating might occur in the air handling units. Flaws in control 

logic, improper set-points and malfunction of valves and/or actuators can lead to 

simultaneous cooling and heating. With both coils operating, the downstream cooling coil 

must remove the heat introduced by the heating coil to maintain the supply air 

temperature set-point. In addition to these two deficiencies, measurement noise may 

contribute to the amount of unnecessary cooling energy consumption.  
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Figure 3-2 Cooling energy consumption of an educational building 

 

Figure 3-3 shows the simulated and metered cooling consumption of a public building. It 

can be observed from metered cooling consumption that in December, January and 

February, there is still a certain amount of chilled water consumption even though 

simulation results show little or almost no chilled water consumption. Unlike under 

actual conditions, in the simulation, the idealized utilization of free cooling through an 

economizer can be achieved to a precise degree, and no cooling and heating 

counteraction takes place in air handling units. This example illustrates one type of 
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discrepancy between simulated and actual operations. In Chapter 6, cooling and heating 

counteraction in the AHUs is selected as a fault to be detected in one of the studies, in 

order to verify the proposed fault detection method.  

 
Figure 3-3 Simulated and metered cooling consumption 

 

3.2.2   Excessive Reheating in VAVs 

Excessive reheating can be caused by deficiencies in VAV air flow rate control. The 

VAV-box air damper should modulate the air flow rate to its minimum amount before the 

reheat commences. If the air flow rate is larger than minimum amount when the reheat 

function is on, simultaneous heating and cooling will take place, which is prohibited by 

most energy codes. This can be caused by failure of the VAV box controller because of 

inadequate or excessive static pressure, stuck dampers or sensor errors. Since dampers 

and air flow rate sensors are more prone to faults, the actual air flow rate is likely to 
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deviate even further from its most efficient and optimal level. Oversizing the minimum 

VAV air flow rate in the design stage will also cause excessive reheating. 

 

It is very common for air flow sensors to underestimate air flow rate. Figure 3-4 shows 

sensor readings versus on-site measurements of air flow rate in a public building. The 

four sensor readings are much lower than the on-site measurements. Both damper 

malfunction and inaccurate sensor measurements cause excessive air flow supply and 

reheating.  

 

 

Figure 3-4 Sensor readings versus on-site measurements of air flow rate 

 

Figure 3-5 shows the total supply air flow rate of a laboratory building versus outside air 

dry-bulb temperature. The mean values and standard deviation are plotted for each five-
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degree interval of outside air temperature. The air flow rate is normalized by the max 

mean value, in this case, the mean value of air flow rate when outside air temperature is 

between 27.5°C and 32.5°C. As shown in Figure 3-5, air flow rate is correlated with 

outside air temperature. When outside air temperature is below 10°C, the air flow rate is 

about 70% to 90% of the maximum mean value observed. This indicates that the range of 

actual air flow rate change is very small. The VAV minimum flow rate is typically 

specified as a fraction of the maximum air flow rate. This fraction is often referred to as 

the VAV turndown ratio. The actual VAV turndown ratio on average is very likely to be 

over 0.7, based on the information in Figure 3-5, which indicates excessive air flow 

supply. 
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Figure 3-5 Mean values and standard deviation of normalized air flow rate by outside air dry-bulb 
temperature 

 

Figure 3-6 and Figure 3-7 plot the air flow rate by hour in a similar way to Figure 3-5. 

Average normalized hourly outside air temperature is also plotted so that the fluctuation 

in outside air temperature can also be taken into consideration. When outside air 

temperature remains more or less constant, a lower air flow rate should be required at 

night because the internal load is lower during the night. Figure 3-6 and Figure 3-7 show 

that there is a 5% to 10% change in the air flow rate between nighttime and daytime 

when outside air temperature is between 8°C and 16°C. This small change supports the 

hypothesis that the minimum air flow rate is suboptimal. 
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Figure 3-6 Mean values and standard deviation of normalized air flow rate by hour when outside 
air temperature is between 8°C and 12°C 
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Figure 3-7 Mean values and standard deviation of normalized air flow rate by hour when outside 
air temperature is between 12°C and 16°C 

 

Figure 3-8 shows the amount of excessive reheating of an educational building in the 

summer. The VAV system operates 24 hours a day throughout the year. Excessive 

reheating accounts for more than half of the current reheating consumption. Sensor error 

accounts for the excessive air flow rate, which results in excessive reheating in this case. 

The amount of excessive reheating is calculated based on measurements and simulations. 

More details about the calculation of the amount of excessive reheating can be found in 

Yan et al. (2009). 
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Figure 3-8 Excessive reheating of an educational building 

 

In Chapter 6, excessive reheating in the VAVs is selected as a fault to be detected in two 

studies, in order to verify the proposed fault detection method.  

3.3   Uncertain Variables Related to System Controls 

In system operations, uncertainty may result from any deviation from the intended 

performance of a system. Most energy modeling assumes that systems operate under 

ideal conditions. Control is assumed to be precise and set-points are always met. This is 

not necessarily the case when systems operate under actual conditions. Deviation from 

set points and fluctuation both occur. If systems are assumed to operate under ideal 

conditions, the results are really a prediction of energy consumption of buildings that 

perform as intended, rather than a reflection of their performance under actual conditions. 
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In this section, observations based on on-site measurements in system operations with 

respect to AHU supply air temperature are used to demonstrate that both deviation from 

set points and fluctuation can occur in variables related to system control. AHU supply 

air temperature is an important control target in VAV systems. Sub-optimal AHU supply 

air temperature will increase energy consumption and affect thermal comfort levels. In 

addition, AHU supply air temperature can be measured relatively accurately, as opposed 

to other temperature measurements in AHUs. Measurements of mixed air temperature 

and temperature after preheating are taken before the air is mixed by a supply fan, with 

the result that a single point of measurement is not likely to represent actual temperatures. 

The sensor that measures supply air temperature is located on the downstream side of the 

supply fan, where the air is well mixed. This ensures a relatively accurate measurement. 

Therefore, measurements of AHU supply air temperature are used to illustrate the 

uncertainty in variables related to system control. 

 

Figure 3-9 and Figure 3-10 provide two examples of the well-controlled AHU supply air 

temperature of two different AHUs. The hourly AHU supply air temperatures are stable. 

Only a very small fluctuation in temperature is observed. In both cases, the actual supply 

air temperature is controlled at almost exactly 12.8 ± 0.5°C. In the first case, shown in 

Figure 3-9, the mean temperature is 12.8°C and the standard deviation is 0.2°C. In the 

second case, seen in Figure 3-10, the mean temperature is 12.8°C and the standard 

deviation is 0.3°C. 
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Figure 3-9 Histogram of AHU supply air temperature 11/1/2008-3/9/2009 

 

 

Figure 3-10 Histogram of AHU supply air temperature 2/8/2008 – 4/30/2008 
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Figures 3-11 to 3-16 provide examples of AHU supply air temperature not meeting the 

respective set-points. In two AHUs, shown in Figure 3-11 and Figure 3-12, the set-point 

is 12.8°C, although the AHU supply air temperature is mostly approximately 0.5°C to 

1°C higher. The AHU supply air temperature shown in Figure 3-13 and Figure 3-15 

varies across a larger range. Poor control of AHU supply air temperature could be the 

result of bad proportional integral derivate (PID) loop control, or caused by the 

malfunction of valves and dampers. An insufficient supply of chilled water could also 

contribute to the high supply air temperature during the summer.  

 

 

Figure 3-11 Histogram of AHU supply air temperature 4/8/2008 – 4/30/2008 
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Figure 3-12 Histogram of AHU supply air temperature 4/8/2008 – 4/30/2008 

 

 

Figure 3-13 Histogram of AHU supply air temperature 3/19/2009 – 4/7/2009 
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Figure 3-14 Temperature log of outside air, mixed air, supply air and return air in the same AHU 
as shown in Figure 3-13.  

 

 

Figure 3-15 Histogram of AHU supply air temperature 7/16/2008 – 7/30/2008 
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Figure 3-16 Temperature log of outside air, air after preheat, supply air and return air in the same 
AHU as shown in Figure 3-15.  

 

Figure 3-14 plots the outside air, mixed air, supply air and return air in the same AHU as 

in Figure 3-13. The return air temperature is within an acceptable range, typically 

between 21°C and 23°C. However, several conspicuous faults in this AHU might be 

taking place, according to these measurements. First, the economizer is not fully 

functional. The ratio of outside air flow rate to total supply air is not optimal. As shown 

in Figure 3-14, while the system should take in 100% outside air temperature, the 

measurements indicate that the mixed air temperature is close to the return air 

temperature, which means a large portion of return air continues to be used. Second, 

excessive preheating may be occurring, which causes AHU supply air temperature to rise 

above the set-point. Third, an insufficient chilled water supply could have the result that 
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the AHU supply air temperature fails to maintain the set-point when mixed air 

temperature is high. 

 

Figure 3-16 plots the outside air, mixed air, supply air, and return air in the same AHU, 

as shown in Figure 3-15. It can be seen that when the AHU supply air temperature rises 

above 12.8°C, the return air temperature sometimes exceeds 26°C, which indicates that 

the AHU fails to meet the cooling demand of the building and thermal comfort level is 

compromised. 

 

Fluctuation in actual AHU supply air temperature and deviation from set-points could 

directly affect zone thermal comfort levels and system energy consumption. A low AHU 

supply air temperature could increase chilled water usage as well as steam usage. A high 

AHU supply air temperature could compromise thermal comfort levels, and might 

necessitate an increase in fan electricity, since a larger supply air flow rate would then be 

required. Even small fluctuations in the well-controlled AHU supply air temperature 

could still introduce uncertainty into predictions of energy consumption, particularly 

when considered in terms of hourly energy consumption levels. In Chapter 5, the impact 

of uncertain AHU supply air temperature on hourly cooling and heating will be 

evaluated. 
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Chapter 4  

Gaussian Process Regression 

 

Gaussian Process regression is used to predict energy consumption of existing systems 

and to quantify the uncertainty in predictions. In this chapter, the types of uncertainty 

included in the Gaussian Process modeling are discussed. This discussion is followed by 

a summary of the theory and implementation of Gaussian Process regression based on 

book chapters by Rasmussen and Williams (2006) and MacKay (2003). The analytical 

approach for Gaussian process modeling with noisy inputs is also summarized. The 

following discussion proposes several possible extensions to the standard Gaussian 

Process modeling method that might improve uncertainty analysis in future research 

studies. 
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4.1   Predicting with Gaussian Processes 

In the chapter on Gaussian Processes of MacKay’s book (2003), MacKay traces  the first 

use of Gaussian Processes for time-series analysis back to 1880 (Lauritzen, 1981). 

Gaussian Processes for regression are believed to have been first introduced by O’Hagan 

(1978). There has been a surge of interest in Gaussian Process modeling following recent 

advances in the machine learning community (Neal, 1995; Rasmussen, 1996). Gaussian 

Processes have been successful in solving many real-word data modeling problems 

(MacKay, 1997).  

 

Rasmussen (1996) explores the idea of replacing supervised Neural Networks with 

Gaussian Processes, while making a thorough comparison with other methods, including 

Neural Networks. Rasmussen finds that Gaussian Processes consistently outperform 

conventional Neural Networks, Nearest Neighbor models, and Multivariate Adaptive 

Regression Splines. Apart from a high level of prediction accuracy, Gaussian Processes 

are also relatively simple to implement and use. They are useful statistical modeling tools 

for automated tasks, not least because the outcomes of Gaussian Process regression come 

in the form of probability distributions, which take uncertainty in the modeling process 

into account. With certain adaptations, parameter uncertainty and parametric variability 

can also be integrated into predictions. 
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One could begin with the assumption that there are 𝑁 historical data points. Each point 

consists of an input vector 𝐱 and a target 𝑦. Figure 4-1 summarizes the procedure of using 

Gaussian Processes to predict the value of 𝑦∗ at a new point 𝐱∗. A Gaussian Process is 

trained upon the historical data. Next, it takes new inputs and outputs a predictive 

distribution.  

 

Gaussian Process regression can capture various uncertainty sources. In Figure 4-1, the 

probability distributions of the inputs of a new point express parametric variability and/or 

parameter uncertainty. Probability distributions of training inputs express parameter 

uncertainty and observation error. Observation error refers to the measurement error or 

noise in temperatures, flow rate and other variables. Observation error also exists in 

training targets. Apart from observation error, probability distributions of training targets 

express residual variability. There is residual variability when the process is inherently 

stochastic. It is also possible that the features in the current model could not fully explain 

the variance in training targets. There might also be other important features that affect 

the outputs. If additional related features can be identified and included in the model, the 

residual variability can be reduced. One additional source of uncertainty is absent in 

Figure 4-1. Gaussian Process regression can also account for inadequacies in a model, 

specifically, it can take interpolation uncertainty into consideration. Gaussian Process 

regression is an interpolation method. The variance of a prediction depends on the 
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distance between its input point and training points. If a new input point lies beyond the 

scope of the training input domain, the variance in the prediction will be great.  

 

 

Figure 4-1 Diagram of making predictions with uncertainty through Gaussian Process regression 

4.2   Basic Ideas of Gaussian Processes 

In this section, the basic principles of Gaussian Processes and the mathematics used in 

this dissertation are briefly discussed, based largely on the work of Rasmussen and 

Williams (2006).   
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There are 𝑁 data points. Each point consists of input 𝐱 and target 𝑦.  It is assumed that 

there is a function 𝑓(𝐱) that underlies the observed data. The goal is to infer the function 

from the given data. Then the 𝑓(𝐱∗) can be used to predict the value of 𝑦∗ at a new point 

𝐱∗. The prediction should be in the form of a probability distribution, which quantifies 

uncertainty.  𝑁 input vectors are denoted by 𝐗 and the set of corresponding target values 

are denoted by the vector 𝐲. Using Bayes’ theorem, the posterior probability distribution 

of 𝑓(𝐱) is  

 𝑃(𝑓(𝐱)|𝐲,𝐗) =
𝑃(𝐲|𝑓(𝐱),𝐗)𝑃�𝑓(𝐱)�

𝑃(𝐲|𝐗)  (4.1)  

In the regression problem, 𝑃(𝐲|𝑓(𝐱),𝐗), the probability distribution of the target values 

given the function 𝑓(𝐱) and inputs 𝐗 is usually assumed to be Gaussian.  

 

The prior 𝑃�𝑓(𝐱)�  is placed in the space of functions, without parameterizing 𝑓(𝐱) 

(MacKay, 2003). A Gaussian Process can be understood as the generalization of a 

Gaussian distribution over a vector space to a function space. A Gaussian distribution is 

fully specified by its mean and covariance matrix. Correspondingly, a Gaussian process is 

completely specified by a mean function and a covariance function. Usually, the mean 

function is taken to be zero for the purpose of notational simplicity. A covariance 

function 𝑘(𝐱𝑖 , 𝐱𝑗) expresses the covariance between the values of the function 𝑓(𝐱) at the 

points 𝐱𝑖 and 𝐱𝑗. The choice of covariance function in this study is a Gaussian kernel,  
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 𝑘(𝐱𝑖 , 𝐱𝑗) = 𝜎𝑓2 exp �−
1
2
�𝐱𝑖 − 𝐱𝑗�

𝑇𝐖−1�𝐱𝑖 − 𝐱𝑗�� (4.2)  

where 

 𝐖 = diag[𝑤12,𝑤22, … ,𝑤𝐷2] (4.3)  

where diag denotes diagonal matrix. 

 

Inputs that are judged to be close to each other as a result of the covariance function are 

likely to have similar outputs. A prediction is made by considering the covariance 

between the predictive case and all the training cases (Rasmussen, 1996). For a noise-free 

input 𝐱∗, the predictive distribution of 𝑓(𝐱∗) is Gaussian with mean 𝜇(𝐱∗) and variance 

𝜎2(𝐱∗) (Rasmussen & Williams, 2006) 

 𝜇(𝐱∗) = 𝐤(𝐗, 𝐱∗)T(𝐊 + σ𝑛2𝐈)−1𝐲 (4.4)  

 𝜎2(𝐱∗) = 𝑘(𝐱∗, 𝐱∗) − 𝐤(𝐗, 𝐱∗)T(𝐊 + σ𝑛2𝐈)−1 𝐤(𝐗, 𝐱∗) (4.5)  

𝐈 is the unit matrix. 𝐤(𝐗, 𝐱∗) is the 𝑁 × 1 vector of covariance functions between training 

inputs 𝐗 and the new input 𝐱∗. 𝐊 is the 𝑁 × 𝑁 matrix of covariance functions between 

each pair of training inputs. σ𝑛2  denotes the variance of Gaussian noise in training targets 

𝐲. 𝜎𝑓, σ𝑛 and 𝑤1,𝑤2 …𝑤𝐷 are hyperparameters to be trained in a Gaussian Process.  
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After a form of covariance function has been chosen, the undetermined hyperparameters 

𝜽 must be determined from the given dataset 𝒟. Ideally, predictions would be based on 

the integration over the prior distribution of hyperparameters, 

 𝑃(𝑦∗|𝐱∗,𝒟) = �𝑃(𝑦∗|𝐱∗,𝜽,𝒟)𝑃(𝜽|𝒟)d𝜽 (4.6)  

However, this integral is usually intractable, and the following two approaches are 

usually taken:  

1. Perform the integration over 𝜽 numerically using Monte Carlo methods, and  

2. Approximate the integral by using the most probable values of hyperparameters 

(Mackay, 2003). 

 𝑃(𝑦∗|𝐱∗,𝒟) ≃ 𝑃(𝑦∗|𝐱∗,𝒟,𝜽MP) (4.7)  

According to Rasmussen (1996), these two approaches are usually quite close in 

performance. Particularly in the case of a large number of training cases, predictions 

using the most probable hyperparameters generally differ only slightly from the results of 

integrating over hyperparameters by using Monte Carlo methods. Integrating over 

hyperparameters using the Monte Carlo approach leads to better results for small 

datasets, while using the most probable hyperparameters for predictions is a better choice 

for intermediate and large data sizes because it is faster. Given that the size of the 

datasets used in this dissertation is at least intermediate, the second approach is used. 
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The most probable 𝜽 is the set of hyperparameters that maximizes the probability of the 

model given the data based on the computation of marginal likelihood. The Log marginal 

likelihood is, 

 log𝑃(𝐲|𝐗,𝜽) = −
1
2
𝐲T𝐊𝑦

−1𝐲 −
1
2

log�𝐊𝑦� −
𝑁
2

log 2𝜋 (4.8)  

where 𝐊𝑦 = 𝐊 + σ𝑛2𝐈 can be viewed as the covariance matrix when targets 𝐲 are noisy. 

1
2

log�𝐊𝑦� is the complexity penalty. The conjugate gradient optimization technique is 

used to search the hyperparameters that maximize the marginal likelihood in response to 

the given data. Multiple local maxima may be present, each corresponding to an 

interpretation of the data. There is a chance that the search will result in a bad local 

optimum, however, practical experience suggests that this is not an insurmountable 

problem. 

 

The partial derivative of the marginal likelihood with respect to a hyperparameter 𝜃𝑗 is, 

 
∂
∂𝜃𝑗

log𝑃(𝐲|𝐗,𝜽) =
1
2
𝐲T𝐊𝑦

−1 𝜕𝐊𝑦

𝜕𝜃𝑗
𝐊𝑦
−1𝐲 −

1
2

tr�𝐊𝑦
−1 𝜕𝐊𝑦

𝜕𝜃𝑗
� (4.9)  

 

To compute the inverse covariance matrix 𝐊𝑦
−1, the Cholesky decomposition is used. This 

is an exact method which has a computational cost of order 𝑁3. Once 𝐊𝑦
−1 is known, the 
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computation of derivatives in Equation (4.9) requires time 𝒪(𝑁2) per hyperparameter. It 

takes 𝒪(𝑁) operations to make a prediction after the derivatives are calculated. 

 

The basic form of Gaussian Process regression does not include parameter uncertainty 

and parametric variability. Observation error is only accounted for in training targets, not 

in training inputs.  The Matlab code written by Rasmussen and Williams (2013) supplies 

the learning process of basic Gaussian Process regression. 

4.3   Dealing with Uncertain Inputs 

In the previous section, the predictive distribution from a Gaussian Process model 

corresponds to the noise-free input values of a new point. Parameter uncertainty and 

parametric variability lead to additional prediction uncertainty. Moreover, noise can come 

from measurements as well. In some cases, the inputs of a new point that is to be 

predicted are uncertain because it is not possible to know precisely what the values are. In 

this case, a distribution is assigned to each uncertain input as an estimate. As discussed in 

Chapter 2, this is called parameter uncertainty. Sometimes, it is most beneficial to 

investigate the impact of uncertain inputs on outputs by varying inputs according to 

appropriate distributions and examining the corresponding distributions of outputs. This 

is defined as parametric variability. To account for the parameter uncertainty and 

parametric variability described above, this section summarizes an analytical approach 

that uses Gaussian approximation to compute the mean and variance of the predictive 
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distribution with uncertain inputs when the covariance function is a Gaussian kernel 

(Girard et al., 2003). 

 

To incorporate parametric variability, assuming the input distribution is Gaussian 

𝐱∗~𝓝𝐱∗(𝝁𝐱∗ ,𝚺𝐱∗), then the predictive mean 𝜇(𝝁𝐱∗ ,𝚺𝐱∗) and variance 𝜎2(𝝁𝐱∗ ,𝚺𝐱∗) of a 

prediction with noisy inputs can be computed according to Equations (4.10) to (4.14) 

(Girard et al., 2003): 

𝜇(𝝁𝐱∗ ,𝚺𝐱∗) = 𝐪T𝜷 (4.10)  

𝜎2(𝝁𝐱∗ ,𝚺𝐱∗) = 𝑘(𝝁𝐱∗ ,𝝁𝐱∗) + Tr[(𝜷𝜷T − (𝐊 + σ𝑛2𝐈)−1𝐐)] − (𝐪T𝜷)2 (4.11)  

With 

𝜷 = (𝐊 + σ𝑛2𝐈)−1𝐲 (4.12)  

𝑞𝑖 = |𝐖−1𝚺𝐱∗ + 𝐈|−
1
2𝜎𝑓2 exp�−

1
2

(𝝁𝐱∗ − 𝐱𝑖)T(𝚺𝐱∗ + 𝐖)−1(𝝁𝐱∗ − 𝐱𝑖)� (4.13)  

𝑄𝑖𝑗 = |2𝐖−1𝚺𝐱∗ + 𝐈|−
1
2 𝜎𝑓2exp�−

1
2
�
𝐱𝑖 + 𝐱𝑗

2
− 𝝁𝐱∗�

T
�𝚺𝐱∗ +

1
2
𝐖�

−1

�
𝐱𝑖 + 𝐱𝑗

2
− 𝝁𝐱∗�� 

            ∙ 𝜎𝑓2exp �−
1
2
�𝐱𝑖 − 𝐱𝑗�

T(2𝐖)−1(𝐱𝑖 − 𝐱𝑗)� 
(4.14)  

 

 

By employing a Gaussian input distribution and using a Gaussian kernel, it is 

unnecessary to run additional simulations to incorporate the uncertain values of an input 
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point. It can be simply derived from the analytical expressions above. This significantly 

reduces the time cost of uncertainty analysis. It also allows uncertainty analysis to be 

derived from measured data. 

 

Some constraints continue to remain when the predictive distribution of output is derived 

from the analytical expressions of Equations (4.10) to (4.14). First, the distributions of 

the inputs to be examined are assumed to be Gaussian. For other distributions, 

approximate or exact analytical expressions are also possible, but these will be different. 

Second, training sets need to account for most of the input domain to be examined in the 

study. Otherwise, prediction accuracy will be compromised and the uncertainty 

introduced by the modeling process will dominate. Third, since the predictive distribution 

includes the uncertainty of the modeling process, a comparison with the predictive 

distribution derived from noise-free inputs is necessary. Finally, the computational cost 

of the Gaussian Process is 𝑂(𝑁3) , where 𝑁  is the number of training points. If the 

number of training points needed for the model is large, the advantage of using Gaussian 

Processes is less prominent, unless a more efficient algorithm is used for the inversion of 

the covariance matrix.  

4.4   Possible Extensions 

This chapter summarizes the Gaussian Process modeling techniques used in this 

dissertation. There are three possible extensions to the specific Gaussian Processes used 
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here. These include training Gaussian Processes with noisy input to provide more 

comprehensive uncertainty interpolations, using more complicated covariance functions 

to improve prediction accuracy, and improving computational algorithms to allow 

Gaussian processes to be applied to large datasets.  

 

Parameter uncertainty and parametric variability of points to be predicted can be 

accounted for using the Gaussian Process regression described in this chapter. However, 

training inputs are assumed to be noisy-free. As training inputs may also have parameter 

uncertainty and observation error, a more comprehensive uncertainty interpolation can be 

achieved if Gaussian Processes are trained with input noise. McHutchon and Rasmussen 

(2011) propose the use of a Taylor series with Gaussian Processes to allow training on 

noisy input data. The variances of training inputs are inferred from the given training data 

as extra hyperparameters. They are learned along with other hyperparameters by the same 

method of maximization of the marginal likelihood. The Matlab code provided by 

McHutchon (2012) can easily manage datasets with 1000 training points and 20 input 

features.  

 

Gaussian kernels are selected as the covariance function in this research. However, the 

prediction accuracy might still be improved if more complicated covariance functions or 

certain extensions to the basic Gaussian kernel were applied. Alternatively, a slightly 

different approach might be to modify the noise model in training targets 𝐲. In this 
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dissertation, the variance in training targets 𝐲  is assumed to be input-independent 

Gaussian noise σ𝑛2 , as shown in Equations (4.4) and (4.5).  This could be replaced by an 

input-dependent noise model 𝒩(𝐱;𝜽) (Abrahamsen, 1997; Mackay, 2003),  

 𝒩(𝐱;𝜽) = exp�� 𝛾𝑗𝜙𝑗(𝐱)
𝐽

𝑗=1
� (4.15)  

𝛾𝑗 can be trained along with other hyperparameters. 

 

The computational cost of Gaussian Process modeling increases according to the number 

of variables resulting from the inversion of the covariance matrix. The Cholesky 

decomposition used in this research has an associated computational cost of order 𝑁3. It 

can be time consuming for large data sets. An alternative method proposed by Skilling 

(1993) that makes approximations to 𝐊𝑦
−1𝐲  and Trace 𝐊𝑦

−1  has an associated 

computational cost of order 𝑁2. This can be very useful when the number of data points 

is large. 
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Chapter 5  

Predicting Cooling and Heating Consumption 

 

In this chapter, two studies are performed in order to demonstrate the effectiveness of 

modeling through Gaussian Processes and to verify prediction accuracy. The first study 

compares the prediction accuracy of Gaussian Processes and Neural Networks using sub-

metered building cooling and heating consumption. The second study demonstrates how 

to analyze the impact of uncertain variables related to system control on energy use by 

using Gaussian Processes. 

5.1   Predicting Energy Use or Demand 

In this case study, time and weather information are used to predict building cooling and 

heating consumption based on historical data. This type of modeling is frequently applied 
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to energy demand prediction for smart grid technologies and energy saving verification 

for commissioning (Heo & Zavala, 2012). In the past, Neural Networks were most 

commonly used for these tasks. The reported error rates of short-term prediction (1h to 

24h) using Neural Networks can be as low as 1%-5%. Long-term prediction accuracy is 

equally promising (Dodier & Henze, 2004). Gaussian Processes can also serve this 

purpose with the additional advantage that predictions made by Gaussian Processes are in 

the form of probabilistic distributions instead of fixed values. Therefore, the results of 

Gaussian Process modeling express the uncertainty of predictions, whereas this 

uncertainty could not be quantified explicitly and directly through Neural Networks. 

 

In this study, data samples are collected from an on-campus laboratory building. The 

building is served by three primary air-handling units with heat recovery, along with 

radiators and VAV boxes with hot water reheat as terminal units. The metered energy use 

is aggregated into hourly data every five minutes. In other words, all the data samples 

used in the model are on an hourly basis. The targets are 

• Hourly chilled water use (W/m2)  

• Hourly steam use (W/m2).  

The input features include  

• Outside air dry-bulb temperature (°C) 

• Humidity ratio (kg/kg) 

• Hour of day, represented by sin �2𝜋∙hour
24

� and cos �2𝜋∙hour
24

�. 
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It is assumed that measurements of time, temperature and humidity ratio are noise-free, 

while measurements of chilled water and steam use are noisy. 

 

Figure 5-1 24-hour prediction of chilled water and steam use 

 

Figure 5-1 shows the 24-hour prediction of chilled water and steam use by a Gaussian 

Process (Equations (4.4) and (4.5)) trained by 216 hourly data points. The solid line 

indicates the predictive mean, the gray area includes values within a 95% confidence 

region, compared with the observed values, shown as dots. Most of the predictive means 

are close to the observed values. Observation error, residual variability and interpolation 

uncertainty are included in the predictions. 

 

In order to evaluate the prediction accuracy, Gaussian Process modeling is tested on 

metered chilled water and steam use and the prediction results are compared with those of 

Neural Networks. Neural network training is implemented through the Matlab (version 
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R2011a) Neural Network Toolbox. As shown in Figure 5-2, in this model, there is one 

hidden layer with 15 neurons. The activation equation in the hidden layer is sigmoid, and 

linear in the output layer. The training algorithm is Levenberg-Marquardt 

backpropagation. 

 

 

 Figure 5-2 Structure of Neural Network used in the study 

 

To compare the accuracy of Gaussian Processes with Neural Networks, ten-fold cross-

validations are performed on three types of prediction tasks, including 24-hour 

prediction, 72-hour prediction and 9-day prediction. The coefficient of determination is 

used to compare the accuracy of the predictions of Gaussian Processes and Neural 

Networks, respectively. The coefficient of determination 𝑅2 is 

 𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)2𝑖
∑ (𝑦𝑖 − 𝑦�)2𝑖

 (5.1) 
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where the values 𝑦𝑖 are observed values of targets, the values 𝑓𝑖 are predicted values. For 

Gaussian Processes, values 𝑓𝑖 are the predicted mean values. 𝑦� is the mean value of the 

observed targets. The more accurately a model predicts future outcomes, the closer the 

value of 𝑅2  is to 1. A larger 𝑅2  value indicates a smaller sum of squared errors of 

prediction. 

 

Metered chilled water and steam use over a period of four months is used in this study. 

Ten groups of ten-fold cross-validation are performed for 24-hour prediction, three 

groups for 72-hour prediction and one group for 9-day prediction. The overall 𝑅2 value is 

used for the purpose of comparison. The results are shown in Figure 5-3. 

 

  

Figure 5-3 Comparison of 𝑹𝟐 values of Gaussian Processes to Neural Networks 
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As seen in Figure 5-3, Gaussian Processes outperform Neural Networks when predicting 

chilled water use 24 hours in advance. 𝑅2 values of the two modeling methods are similar 

for 72-hour prediction and 9-day prediction. It can be concluded from the cross-

validations above that the predictive accuracy of Gaussian Processes is close to that of the 

more widely used Neural Networks approach. For short-term prediction, the accuracy of 

Gaussian Processes is even higher than that of Neural Networks. More careful research 

design for future comparative studies might be necessary in order to generalize the 

conclusions of this experiment. Nevertheless, this experiment makes it possible to get an 

idea of how well Gaussian Processes will perform on other datasets with similar 

characteristics, which holds considerable promise for future research. 

5.2   Evaluating the Impact of Uncertain Inputs 

The input values associated with predictions can arise from estimations or measurements 

corrupted with noise. Furthermore, input variables themselves can be intrinsically non-

deterministic. Therefore, it makes more sense to assign probability distributions over the 

domains of plausible values than to assign fixed single-point values. In some cases, it is 

desirable to investigate the impact of uncertain inputs on outputs by allowing inputs to 

vary in their domains. For example, in order to make real-time predictions for the energy 

demand of the next 24 hours, it is necessary to use the next 24-hour weather forecast. 

Weather forecasting involves uncertainty. Several other random factors affect a 

prediction. Human behavior is stochastic. System control also contributes randomness to 
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the process. Gaussian Processes with uncertain inputs, as shown in Equations (4.10) and 

(4.11), incorporate the Gaussian noise of inputs into predictions. Therefore, Gaussian 

Processes can take parameter uncertainty and parametric variability into account. 

 

In this case study, the impact of variance in AHU supply air temperature on chilled water 

use and steam use is examined. The system being studied is an AHU VAV system with 

terminal reheat for an office building that runs 24 hours a day.  The AHU supply air 

temperature from one summer month, measured hourly, is available for study. The 

histogram is shown in Figure 5-4. The set-point of AHU supply air temperature is 11.1°C 

(52°F). The mean value of measured hourly AHU supply air temperature is almost the 

same as the set-point. However, a standard deviation of 1.1°C is observed. The AHU 

supply air temperature varies from 9°C to 15°C. Poor PID control, or an insufficient or 

excessive supply of chilled water could account for the deviation from the set-point. 

AHU supply air temperature is a system control related factor. The wide range of 

variation in actual AHU supply air temperature directly affects system energy use. 

Gaussian Process regression is built on the available data points and the input distribution 

is plugged into Equations (4.10) and (4.11) to get the predictive distribution of energy use 

directly. 
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Figure 5-4 Histogram of measured AHU supply air temperature 

 

The input features of the Gaussian Process in this case study include time, outside air 

temperature and humidity, and data from one month of measured AHU supply air 

temperature. The outputs are cooling and reheating consumption.  The training inputs are 

treated as noise-free, while training targets are treated as noisy. The training 𝑅2 is 0.9808 

for cooling and 0.9987 for reheating. Then, for each point,  𝓝(11.1,1. 12) is used as the 

input distribution of AHU supply air temperature. The predictive distributions of hourly 

cooling and reheating are modeled according to Equations (4.10) and (4.11). Additional 

uncertainty in predictions is introduced by the variance in AHU supply air temperatures.  

 

Figure 5-5 shows the predictive distributions of cooling and reheating over the course of 

48 hours. In this time period, the outside air dry-bulb temperature is between 24°C and 

32°C from 8:00 – 20:00 and between 20°C and 26°C during the night. The results are 
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compared with the predictive distributions derived from the noise-free input of AHU 

supply air temperature, which is consistently assumed to be 11.1°C. With a variance of 

1. 12 in AHU supply air temperature, the predictive means stay almost the same, while 

the region of 95% confidence expands during certain time periods. The dark area is the 

additional uncertainty introduced by the variance of AHU supply air temperature. 

 

 

Figure 5-5 Predictive distributions of hourly chilled water use which include the uncertainty 
introduced by the variance in AHU supply air temperatures 

 

Figure 5-5 shows that, during working hours, the variation in AHU supply air 

temperature has almost no effect on cooling and reheating. In summer, during working 

hours, the amount of chilled water needed to process the cooling load does not change 

with AHU supply air temperature. When the cooling load is large, a higher AHU supply 

air temperature results in a larger supply air flow rate, and the amount of chilled water 
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needed to process the air remains the same. The reverse is also true. Due to the large 

cooling load, little reheating is needed, and cooling and heating is hardly affected by 

AHU supply air temperature. At night, the outside air temperature drops and the internal 

load is minimal. When the cooling load decreases, the supply air flow rate is fixed at its 

minimum setting. Therefore, increasing the AHU supply air temperature reduces cooling 

and reheating. A low AHU supply air temperature will increase cooling consumption, and 

additional reheating is necessary to compensate for the excessive cooling. 

 

A standard deviation of approximately 1°C in AHU supply air temperature accounts for a 

standard deviation as large as 5-8% of the predictive mean values of cooling and 

approximately 20-25% of reheating during certain hours at night. This information will 

help optimize AHU supply air temperature and analyze cost-effectiveness in 

commissioning. Targeting a more precise control of AHU supply air temperature and 

increasing AHU supply air temperature at night, when the outside temperature is low, 

will conserve both cooling and heating consumption. 

 

The example above shows how Gaussian Processes may be used to study uncertainty 

introduced by uncertain inputs. Assuming that the input distributions are Gaussian, the 

predictive distribution can be computed directly without Monte Carlo experiments. It is 

necessary for the training set to cover most of the input domain. Otherwise, the 

uncertainty introduced by the modeling process itself would be too large. Usually, this is 

not an issue if data is generated from simulations. It might, however, be more challenging 
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if a Gaussian Process is built based on observations from actual performance values. The 

example above uses measured AHU supply air temperature to ensure a realistic pattern, 

while simulated data by EnergyPlus is used to determine the energy use for cooling and 

reheating because metered data is not available. 
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Chapter 6   

Applications in Fault Detection 

In this chapter, a framework for fault detection that uses Gaussian Processes to predict 

baselines is developed and verified using simulated data. Bayes classifiers and 

probabilistic graphical models are introduced into the proposed framework in order to 

detect whether faults have occurred in different system components. 

6.1   Bayesian FDD Method 

Many fault diagnostic and detection (FDD) tools use model-based methods, as discussed 

in Chapter 2. Observations from an actual process are compared with the outputs from a 

baseline model. A fault is indicated when the difference between the model outputs and 

observations is greater than a threshold. The model-based FDD method can be employed 

to detect excessive building energy consumption, especially for continuous 
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commissioning during the lifecycle of a building. After commissioning, faults are 

corrected and systems operate normally. However, some faults might reoccur after a 

certain period of time and cause an increase in energy consumption. One goal of the 

research presented in this dissertation is to develop an automated FDD method for 

continuous commissioning. The FDD method should be able to detect the increase in 

energy consumption due to system faults without sending false alarms when the increase 

in energy consumption actually lies within the range of the uncertainty. 

 

Inaccurate baseline predictions will cause model-based FDD tools to malfunction. 

Including uncertainty in baseline predictions is crucial to decision making in fault 

detection. In order to determine the threshold for whether a fault occurs, modeling 

uncertainty must be considered. Simulation models based on physical principles are not 

ideal for fault detection. Such models are too expensive, as they require a deep 

understanding of the system and model parameters are difficult to estimate. Moreover, 

physics-based models usually assume that systems are operating under ideal conditions as 

opposed to reflecting actual system operations, and therefore do not include uncertainties 

in their predictions. Gaussian Process modeling is a promising candidate for modeling 

baselines because it is able to predict actual system performance based on historical data 

in an inexpensive way, and because it can quantify prediction uncertainty in the form of a 

Gaussian distribution.  
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Figure 6-2 illustrates the proposed FDD method in order to detect excessive building 

energy use by employing both a Gaussian Process and a Bayes classifier. For an existing 

building, data is collected during normal operations, for example, for the first few months 

following commissioning. Using that data as a training set, a Gaussian Process is built to 

predict baseline consumption, that is to say, it is a prediction of energy consumption 

assuming normal operations. When it is no longer certain whether faults have reoccurred, 

the Gaussian Process is used to predict baseline consumption. Then, the baseline 

consumption and observed energy consumption are input into a Bayes classifier to 

determine whether the observed energy consumption is excessive. After more data is 

accumulated, patterns can be derived based on primary results for the purpose of more 

advanced fault detection. This dissertation concentrates on the first part, primary fault 

detection, in order to detect whether faults have occurred and if they have caused 

excessive energy consumption. 
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Figure 6-1 Proposed Bayesian FDD method 

 

The Bayes classifier in the proposed method is a simple probabilistic classifier based on 

Bayes’ theorem. The three classes for energy consumption are labeled as normal, faulty, 

and the gray area in between. The probability 𝑃 of an observation that belongs to a class 

can be computed using Bayes’ theorem as shown in Equation (6.1)  

𝑃(𝐶 = 𝑘|𝑌) =
𝑃(𝑌|𝐶 = 𝑘)𝑃(𝐶 = 𝑘)

∑ 𝑃(𝑌|𝐶 = 𝑘)𝑃(𝐶 = 𝑘)𝐾
𝑘=1

 (6.1) 

where 𝐶 is the class variable and 𝑌 is energy consumption. 𝑘 = 1, 2, 3 indexes the three 

classes as normal, in-between and faulty,  respectively.  

 

The outputs of the trained Gaussian Process regression are used to compute the 

conditional probability of observed energy consumption given the class label 𝑃(𝑌|𝐶 = 𝑘). 

As described in the previous chapters of this dissertation, the output of Gaussian Process 
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modeling includes a mean value 𝜇 and a standard deviation 𝜎. If a system performs in the 

same way as when the training data is collected, there is an approximately 68% chance 

that the observed energy consumption will fall within one standard deviation of the mean 

value. The standard deviation includes uncertainty caused by interpolation as well as the 

underlying randomness in system operations. The parameters for the baseline distribution 

(the normal class) are 

𝑌|𝐶 = 1 ~ 𝓝 (𝜇,𝜎2) (6.2) 

where 𝜇 and 𝜎 are derived from the Gaussian Process. The mean value of the Gaussian 

distribution for the second class is assigned to be one standard deviation larger than that 

of the normal class, and two standard deviations larger for the faulty class,  

𝑌|𝐶 = 2 ~ 𝓝 (𝜇 + 𝜎,𝜎2) (6.3) 

𝑌|𝐶 = 3 ~ 𝓝 (𝜇 + 2𝜎,𝜎2) (6.4) 

Then, to determine whether the current energy consumption is excessive, the class 

assignment 𝑘 with the highest posterior probability 𝑃(𝐶 = 𝑘|𝑌) is picked: 

𝐶 = arg max
𝑘

𝑃(𝐶 = 𝑘|𝑌)  (6.5) 

If the prior 𝑃(𝐶 = 𝑘) for all three classes are equal, then it will be classified as faulty 

when the observed energy consumption is higher than 𝜇 + 1.5𝜎, because the posterior 

probability 𝑃(𝐶 = 𝑘|𝑌) is the highest when 𝑘 = 3, as illustrated in Figure 6-3. 
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Figure 6-2 Posterior distributions of three classes when their priors are equal 

 

A large 𝜎 indicates high levels of uncertainty in the baseline prediction. The proposed 

FDD method will rarely send an alarm when there is little confidence in the baseline 

prediction. Here, it is proposed that the mean value of the Gaussian distribution for the 

faulty class is two standard deviations higher than the mean value of the Gaussian 

distribution for the normal class, which creates a balance between the false positive errors 

and the false negative errors. The size of the difference between these two mean values 

can be chosen based on different preferences, fewer false positive errors (false alarms), or 

fewer false negative errors. A difference lower than two standard deviations between the 

mean values of the normal and faulty classes will raise more false alarms, while a 

difference higher than two standard deviations between the two classes will ignore more 

faulty conditions. Improving the accuracy of Gaussian Process modeling could help 

reduce both types of error. For example, choosing the proper training sample size and 
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including important features can improve the accuracy of mean value predictions and 

reduce modeling uncertainty. As a result, more faulty conditions will be recognized and 

some false alarms might be avoided. 

 

The prosed FDD method is tested on synthetic data generated by EnergyPlus. The energy 

consumption of a typical office building with four floors is simulated through EnergyPlus. 

The layout of each floor is shown in Figure 6-4. The internal load density settings are 

shown in Table 6-1. Figure 6-5 shows a one-week sample of the plug-in load schedule 

used in the energy model. The electric equipment usage is assumed to be high in the 

daytime on working days, and low at night and on weekends. Random elements are 

added to the schedule in order to make the energy model more realistic. 
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Figure 6-3 Floor plan of the simulated building 

 

Table 6-1 Internal load density settings in the energy model 

Lighting (W/m2) 20 

People (m2 per person) 9.01 

Plug and Process (W/m2) 30 
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Figure 6-4 One-week sample of the plug-in load schedule used in the energy model 

 

The building is served by AHUs. The terminal units are VAV boxes with reheat. In order 

to provide a realistic model, the system parameters are calibrated to match the pattern and 

magnitude of energy consumption with metered data from similar HVAC systems. 

 

Figure 6-6 shows the metered cooling and heating consumption of a building with a 

similar system type to the simulated building. The metered energy consumption, 

measured every five minutes, is aggregated into hourly data, and the data is grouped 

according to outside air dry-bulb temperature. The mean and standard deviation of each 

temperature interval are plotted in Figure 6-6. The simulated cooling and heating 

consumption are plotted in Figure 6-7 in the same way. The pattern and magnitude of 

metered and simulated cooling and heating are to some extent similar. The highest 
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cooling consumption is approximately 90 W/m2, and it decreases steadily as the outside 

air temperature drops, but relatively more rapidly when the outside air temperature is 

between 14°C and 18°C. Cooling consumption continues even when the system should 

be able to utilize free cooling to the fullest extent (when the outside air temperature is 

below 10°C). The heating consumption steadily decreases as the outside air temperature 

increases. Heating consumption continues to occur in the summer. In general, the system 

in the simulation model is configured based on the energy audit and sensor readings from 

the building commissioning project. The key parameter that has been fine-tuned to match 

the energy consumption magnitude is the VAV turn-down ratio. Reheating is observed 

throughout the year in metered data, which indicates an oversized VAV turn-down ratio. 

As described in Chapter 3, this can be caused by stuck VAV dampers, faulty air flow rate 

sensors or carbon dioxide concentration sensors, and oversizing during the design stage. 

The economizer’s settings are also adjusted in the simulation to match the pattern of 

cooling consumption when the outside air temperature approaches the economizer’s 

upper and lower temperature limits and the AHU supply air temperature.  
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Figure 6-5 Metered cooling and heating consumption of a building with similar system type as 
the simulated building 
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Figure 6-6 Simulated cooling and heating by EnergyPlus 

 

Two sets of simulated cooling and heating consumption are generated through 

EnergyPlus: one set as energy consumption under normal operations, and the other set as 

energy consumption under faulty operations. These are referred to as the “normal dataset” 

and the “faulty dataset,” respectively. Both datasets consist of the following variables: 

• Outside air dry-bulb temperature of the current hour (°C) 

• Outside air humidity ratio (kg/kg) 

• Electricity consumption of lighting and plug-ins of the current hour (kJ) 

• Electricity consumption of lighting and plug-ins of the previous hour (kJ) 

• Heating consumption of the current hour (kJ).  
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For Gaussian Process training and predicting, weather and electricity consumption are 

inputs, and cooling and heating consumption are targets. In Chapter 5, the hour of day is 

used as an indicator of internal load attributed to occupants, lighting and plug-ins for the 

Gaussian Process prediction. This is because metered hourly electricity consumption is 

not available in that dataset. Here, electricity consumption of lighting and plug-ins is used 

directly because it is available in the synthetic dataset and because it can be acquired if 

electricity meters are properly configured. The heat balance in buildings is not 

completely steady-state. Weather conditions, internal load, and the state of HVAC 

systems in the previous hour can affect the cooling and heating consumption of the 

current hour, especially when there is a sudden change in temperature. Including the 

electricity consumption of lighting and the plug-ins of the previous hour as inputs for 

Gaussian Process training and predictions significantly improves the accuracy of heating 

prediction. 

 

The normal dataset features a model with a VAV turn-down ratio of 0.3. In this study, 

data from three months of normal operations is used to train a Gaussian Process. In 

practice, such data could be collected during or after commissioning if steps are taken to 

ensure that there are no faults in the system. Next, a fault is introduced into the system to 

generate the faulty dataset. The VAV turndown ratio is increased from 0.3 to 0.6 in three 

of the twenty VAV terminal boxes to mimic a fault that could be caused by stuck 

dampers or faulty air flow sensors. This causes a 17% increase in the total minimum air 

flow rate setting as compared with that under normal operations.  
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The fault detection procedure is shown in Figure 6-8. The simulated data is gathered for 

nine months when there are faults in system operations. While weather conditions and 

electricity consumption are fed into the trained Gaussian Process, hourly predictions of 

cooling or heating consumption are made. The predictions are used as the baseline 

consumption levels, and these are compared with observed cooling or heating 

consumption values. The Bayes Classifier described in Equations (6.1) to (6.5) is used to 

determine whether the hourly energy consumption is excessive. In this study, as shown in 

Table 6-2, 65% of hourly heating consumption is determined to be faulty. 

 

Figure 6-7 Process of detecting excessive cooling or heating consumption using Gaussian Process 

 

Table 6-2 Percentage of class assignments 

Normal In-between Faulty 

7.9% 27.1% 65.0% 

 



  84 

It is to be expected that some data points are classified as normal. In this case, the fault 

only affects system operations when the faulty VAV terminal boxes need reheating and 

cause excessive heating. This is most likely to occur when it is cool or cold outside, 

and/or if the internal load is low. Figure 6-9 shows the percentage of alarm occurrence for 

each outside air temperature interval, and Figure 6-10 shows the percentage of alarm 

occurrence for each hour. More alarms are triggered at night, when the internal load is 

low, and/or when the outside air temperature is low. This preliminary result can be used 

for further FDD. The method has also been tested on the nine-month simulated heating 

consumption of the normal dataset. The false positive rate is found to be 5.6%. 

 

Figure 6-8 Percentage of alarm occurrence versus outside air temperature 
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Figure 6-9 Percentage of alarm occurrence versus the hour of day 

6.2   Multi-level Fault Detection 

The case study in Section 6.1 uses the proposed Bayesian FDD method to detect 

excessive heating on the whole building level.  Excessive whole-building heating 

consumption might indicate one or several faults on the system component level. Typical 

possible faults include (but are not limited to) cooling and heating counteraction in AHUs 

and excessive reheating in the VAV boxes. As described in Section 3.2, cooling and 

heating counteraction can be caused by sensor and/or valve malfunction in AHUs. 

Excessive reheating typically results from an excessive air flow rate due to sensor and/or 

damper malfunction in the VAV boxes. Heating in AHUs and reheating in VAVs are 

usually not sub-metered separately. However, faults in AHUs and VAVs can be 

distinguished more easily if the concept of probabilistic graphical models, yet another 

machine learning technique, is introduced into fault detection. 
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Figure 6-10 Graphical model representation of possible faults that result in excessive heating 

 

The graphical model in Figure 6-11 shows the relationship of two typical types of faults 

that result in excessive heating consumption. The faults in the VAV boxes cause 

excessive air flow rate. The faults in the AHUs cause cooling and heating counteraction. 

Both excessive air flow rate and cooling and heating counteraction eventually cause 

excessive overall heating consumption. Air flow rate is a function of weather, zone load, 

AHU supply air temperature (SAT) and zone temperature (return air temperature, RAT). 

Heating consumption is also a function of weather, zone load, SAT and RAT. Weather, 
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SAT and RAT measurements are typically recorded, and heating consumption is usually 

metered. Metered electricity and weather data can reflect zone load. If air flow rate is not 

observed, it is difficult to tell if detected levels of excessive heating consumption are due 

to faults in the VAVs, faults in the AHUs, or both. If air flow rate is observed, the values 

of air flow rate along with the other factors shown in Figure 6-11 can be used to 

determine whether the faults in VAVs that result in excessive air flow rate have occurred. 

The values of air flow rate, metered heating consumption and other factors shown in 

Figure 6-11 can be used to detect the faults in AHUs that result in excessive heating 

consumption. Expressed in the terminology of probabilistic graphical models, when air 

flow rate is observed, there is no active path between faults in the VAVs and faults in the 

AHUs, and therefore they are conditionally independent. Bayes Classifiers can be used 

independently on the VAV level and the AHU level to detect two types of faults. 

 

As shown in Figure 6-11, 𝑂 is used to denote the factors including weather, zone load, 

AHU supply air temperature and return air temperature, 𝑄 to denote air flow rate, 𝐻 to 

denote heating consumption, 𝐹VAV  to denote faults in the VAVs, and 𝐹AHU  to denote 

faults in the AHUs, as shown in the diagram in Figure 6-11. The values of 𝑂, 𝑄 and 𝐻 are 

continuous. 𝐹VAV and 𝐹AHU have three classes, 𝐹 = 1, 2, 3, which correspond to normal, 

in-between and faulty classes, as already shown above in Equation (6.1). The procedure 

of multi-level fault detection is described as follows. First, measurements of 𝑄 and 𝑂 are 

used to train a Gaussian Process, in which measurements of 𝑂 are training inputs and 
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measurements of 𝑄 are training targets. For each new input point 𝑂, the trained Gaussian 

Process is used to predict the baseline 𝜇𝑄(𝑂) and to estimate the uncertainty 𝜎𝑄(𝑂). 

Then, the distributions of air flow rate 𝑄 conditioned on three states of 𝐹VAV and values 

of 𝑂 can be calculated according to Equations (6.6) to (6.8), 

𝑄|𝐹VAV = 1,𝑂 ~ 𝓝 (𝜇𝑄(𝑂),𝜎𝑄2(𝑂)) (6.6) 

𝑄|𝐹VAV = 2,𝑂 ~ 𝓝 (𝜇𝑄(𝑂) + 𝜎𝑄(𝑂),𝜎𝑄2(𝑂)) (6.7) 

𝑄|𝐹VAV = 3,𝑂 ~ 𝓝 (𝜇𝑄(𝑂) + 2𝜎𝑄(𝑂),𝜎𝑄2(𝑂)) (6.8) 

Just as in Equations (6.3) and (6.4) above, the mean value of the Gaussian distribution for 

the in-between class is assigned to be one standard deviation larger than that of the 

normal class, and two standard deviations larger for the faulty class. Given the observed 

value of 𝑄, the posterior probabilities of 𝐹VAV = 1, 2,3 can be calculated using Equation 

(6.9), 

𝑃(𝐹VAV = 𝑘|𝑂,𝑄) =
𝑃(𝑄|𝐹VAV = 𝑘,𝑂)𝑃(𝐹VAV = 𝑘)

∑ 𝑃(𝑄|𝐹VAV = 𝑘,𝑂)𝑃(𝐹VAV = 𝑘)3
𝑘=1

 (6.9) 

Then it is possible to determine whether faults have occurred in the VAVs by picking the 

class assignment 𝑘 with the highest posterior probability 𝑃(𝐹VAV = 𝑘|𝑂,𝑄), as shown in 

Equation (6.10) 

𝐹VAV = arg max
𝑘

𝑃(𝐹VAV = 𝑘|𝑂,𝑄) (6.10) 

Similarly, it is possible to determine whether faults have occurred in the AHUs by using 

Equations (6.11) to (6.15). 
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𝐻|𝐹AHU = 1,𝑂,𝑄 ~ 𝓝 (𝜇𝐻(𝑂,𝑄),𝜎𝐻2(𝑂,𝑄)) (6.11) 

 

𝐻|𝐹AHU = 2,𝑂,𝑄 ~ 𝓝 (𝜇𝐻(𝑂,𝑄) + 𝜎𝐻(𝑂,𝑄),𝜎𝐻2(𝑂,𝑄)) (6.12) 

 

𝐻|𝐹AHU = 3,𝑂,𝑄 ~ 𝓝 (𝜇𝐻(𝑂,𝑄) + 2𝜎𝐻(𝑂,𝑄),𝜎𝐻2(𝑂,𝑄)) (6.13) 

 

𝑃(𝐹AHU = 𝑘|𝑂,𝑄,𝐻) =
𝑃(𝐻|𝐹AHU = 𝑘,𝑂,𝑄)𝑃(𝐹AHU = 𝑘)

∑ 𝑃(𝐻|𝐹AHU = 𝑘,𝑂,𝑄)𝑃(𝐹AHU = 𝑘)3
𝑘=1

 (6.14) 

 

𝐹AHU = arg max
𝑘

𝑃(𝐹AHU = 𝑘|𝑂,𝑄,𝐻) (6.15) 

 

These procedures are summarized in Figure 6-12. As discussed above, 𝐹VAV and 𝐹AHU are 

conditionally independent when 𝑄 is observed, and therefore two Bayes Classifiers can 

be used independently to determine the class assignment of 𝐹VAV and 𝐹AHU. 
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Figure 6-11 Procedures of multi-level fault detection 

 

The method above is tested on the same energy model in Section 6.1, and system 

measurements such as air flow rate, supply air temperature and return air temperature are 

included in the fault detection. Considering the uncertainty typically present in system 

control, noise is added to the supply air temperature according to the observations 

described in Chapter 3. The mean value of supply air temperature is 12.5°C, and the 

standard deviation is 0.2°C. The distribution of supply air temperature is shown in Figure 

6-12. 
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Figure 6-12 Distribution of supply air temperature in the energy model 

 

Two scenarios were tested and verified. In January, normal system operations were 

assumed for both scenarios. In February, for the first scenario, faults were only 

introduced to the VAVs. The faults introduced to the VAVs were the same as those in the 

case study in Section 6.1. For the second scenario, faults were introduced to both the 

VAVs and the AHUs. The multi-level fault detection results for these two scenarios are 

shown in Table 6-3 and Table 6-4. The results of 𝐹VAV class assignments are the same for 

both scenarios, while the results of 𝐹AHU class assignments are different. As shown in 

Table 6-3, 92.9% of the hourly air flow rate is classified as faulty in both scenarios when 

there are faults in the VAVs. Fault detection was also tested on a normal dataset when no 
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faults were present. The false alarm rate is 11.3%. As shown in Table 6-4, 63.0% of the 

hourly heating consumption is classified as faulty in scenario two, where faults in the 

AHUs are present. 20.1% of the hourly heating consumption in scenario one is classified 

as faulty. Since there are no faults in the AHUs in scenario one, 20.1% is considered a 

false alarm.  

 

Table 6-3 Percentage of class assignments for 𝐹VAV 

Normal In-between Faulty 

2.0% 5.1% 92.9% 

 

Table 6-4 Percentage of class assignments for 𝐹AHU 

 Normal In-between Faulty 

Scenario 1 63.1% 16.8% 20.1% 

Scenario 2 16.0% 21.0% 63.0% 

 

The fault detection on the AHU level is less accurate than that on VAV level, partly 

because there is a high degree of interpolation uncertainty in baseline predictions. Air 

flow rate is a key input in heating consumption predictions on the AHU level fault 

detection. Figure 6-13 shows the histogram of normalized air flow rate in training and 

testing datasets. Faults in VAVs exist in the testing datasets, but not in the training 
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datasets. Therefore, the air flow rate in the testing dataset is larger than that in the training 

dataset. As the testing points with large air flow rate are distant from most training points, 

their prediction uncertainties are large. Compared with the uncertainty magnitude, the 

amount of heating and cooling counteraction introduced in the simulation is relatively 

small. Figure 6-14 shows the histogram of the amount of cooling and heating 

counteraction in the AHUs in the scenario two. Figure 6-15 shows the mean value of 

standard deviation of heating consumption predictions and the percentage of faulty class 

assignment in each interval of normalized air flow rate in scenario two. When the 

prediction uncertainty is large, 𝐹AHU is less likely to be classified as faulty. 

 

Figure 6-13 Histogram of normalized air flow rate in training and testing datasets 
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Figure 6-14 Histogram of the amount of cooling and heating counteraction in AHUs in scenario 
two 
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Figure 6-15 Uncertainty magnitude and percentage of faulty class assignment versus normalized 
air flow rate in scenario two 
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Chapter 7  

Conclusion 

 

This dissertation introduces the use of Gaussian Processes to predict the cooling and 

heating consumption of existing buildings. Gaussian Processes are data-driven models. 

Unlike physics-based simulations, Gaussian Processes are based on observed system 

performance, which makes it unnecessary to configure and calibrate numerous 

parameters that are difficult to estimate and would otherwise be required. Unlike other 

data-driven models such as Neural Networks, the outputs use mean and variance instead 

of point estimation to produce predictive distributions. By assuming Gaussian input 

distributions, parameter uncertainty and parametric variability can be included in the 

predictions analytically. In contrast to traditional uncertainty analysis approaches, using 

Gaussian Processes can capture uncertainties in the modeling process in addition to 
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parameter uncertainty and parametric variability. Furthermore, this dissertation has 

investigated the uncertainty of variables related to system control. Since Gaussian 

Processes not only produce mean values as an estimate for predictions, but also offer a 

measure of confidence in those predictions, this additional information could improve 

baseline predictions in fault detection. 

 

In this dissertation, Gaussian Process regression is used to predict cooling and heating 

consumption of existing buildings based on historical data. The prediction accuracy of 

Gaussian Processes is compared to that of Neural Networks.  An extension of Gaussian 

Processes in the future could improve prediction performance. Training Gaussian 

Processes with noisy input can provide more comprehensive uncertainty interpolation. 

Using more complicated covariance functions and noise models might improve 

prediction accuracy. Selecting the right input features and the appropriate size of training 

datasets is crucial to prediction accuracy. A topic for future research might include 

identifying the most suitable input features and training size for building energy use 

prediction.  

 

The impact of the variance in AHU supply air temperature on cooling and heating 

consumption has been evaluated as a demonstration of how Gaussian Processes may be 

used to compute parametric variability of system control related variables. In addition to 

considering AHU supply air temperature, it would be beneficial to study the uncertainty 
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introduced by the non-ideal control of air mixing in AHUs, air flow rate and reheating in 

VAV terminal units, and their effects on electricity, heating and cooling energy use. 

 

Gaussian Processes are used to predict baselines in fault detection, and a Bayesian 

classifier is used to detect excessive hourly energy consumption. The proposed method 

can be expanded to develop more advanced FDD tools. The fault detection results 

obtained in this study are independent hourly results.  Future studies could consider 

decisions based on hourly results in a specific window of time in addition to the time-

series characteristics of system operations. Furthermore, additional techniques could be 

introduced into the existing Bayesian FDD method, as illustrated in Figure 7-1. The 

training datasets used in this research consist solely of observations from normal 

operations. System measurements from functional performance testing could be included 

in the training datasets. In functional tests, faulty operations are created to test system 

response. Since system measurements from faulty operations expand the input domain of 

the training dataset, the interpolation uncertainty can be reduced and the false negative 

rate will decrease. The probabilistic graphical model can be expanded to include more 

relationships among system components, and rule-based methods can be integrated into 

the current statistical method to improve fault detection accuracy. 
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Figure 7-1 Possible extension of the proposed fault detection method 
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