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Structure and Coarsening of Foams: Beyond von Neumann's Law

Abstract
We report on the statistics of bubble size, topology, and shape and on their role in the coarsening dynamics for
foams consisting of bubbles compressed between two parallel plates. We find that in the scaling regime, all
bubble distributions are independent not only of time, but also of liquid content. For coarsening, the average
rate decreases with liquid content due to the blocking of gas diffusion by Plateau borders inflated with liquid.
By observing the growth rate of individual bubbles, we find that von Neumann's law becomes progressively
violated with increasing wetness and decreasing bubble size. We successfully model this behavior by explicitly
incorporating the border-blocking effect into the von Neumann argument.

We report on bubble growth rates and on the statistics of bubble topology for the coarsening of a dry foam
contained in the gap between two hemispheres. By contrast with coarsening in flat space, we observe that six-
sided bubbles grow with time at a rate that depends on their size. We measure the statistics of bubble topology,
and find distributions that differ from the scaling state of a flat two dimensional foam.

We report on the statistics of bubble distribution and coarsening of the two dimensional surface of a three
dimensional foam. The surface of a three dimensional foam obeys Plateau's laws, but does not obey von
Neumann's law on the individual bubble level, although it holds on average. We measure bubble distributions,
which to not change with time, but have different values from an ordinary two dimensional foam.

We report on a method for optical tomography of three dimensional foams. Using a bottle filled with dry foam
that is mounted on a rotation stage, we take pictures of the foam at many different angles. Using these images,
it is possible to reconstruct horizontal slices of the foam. By controlling the parameters of this system, it is
possible to get good slices, for possible use in reconstruction of the foam structure.
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ABSTRACT

STRUCTURE AND COARSENING OF FOAMS: BEYOND VON NEUMANN’S

LAW

Adam E Roth

Douglas J. Durian

We report on the statistics of bubble size, topology, and shape and on their role

in the coarsening dynamics for foams consisting of bubbles compressed between two

parallel plates. We find that in the scaling regime, all bubble distributions are in-

dependent not only of time, but also of liquid content. For coarsening, the average

rate decreases with liquid content due to the blocking of gas diffusion by Plateau

borders inflated with liquid. By observing the growth rate of individual bubbles, we

find that von Neumann’s law becomes progressively violated with increasing wet-

ness and decreasing bubble size. We successfully model this behavior by explicitly

incorporating the border-blocking effect into the von Neumann argument.

We report on bubble growth rates and on the statistics of bubble topology for the

coarsening of a dry foam contained in the gap between two hemispheres. By contrast

with coarsening in flat space, we observe that six-sided bubbles grow with time at a

rate that depends on their size. We measure the statistics of bubble topology, and

find distributions that differ from the scaling state of a flat two dimensional foam.
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We report on the statistics of bubble distribution and coarsening of the two

dimensional surface of a three dimensional foam. The surface of a three dimensional

foam obeys Plateau’s laws, but does not obey von Neumann’s law on the individual

bubble level, although it holds on average. We measure bubble distributions, which

to not change with time, but have different values from an ordinary two dimensional

foam.

We report on a method for optical tomography of three dimensional foams. Using

a bottle filled with dry foam that is mounted on a rotation stage, we take pictures of

the foam at many different angles. Using these images, it is possible to reconstruct

horizontal slices of the foam. By controlling the parameters of this system, it is

possible to get good slices, for possible use in reconstruction of the foam structure.
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Chapter 1

Introduction

Charm’d magic casements, opening on the foam
Of perilous seas, in faery lands forlorn

-John Keats

Foams comprise a broad class of substances, many of which are commonly en-

countered in daily life. The bread we eat at dinner and the soap suds we use to

clean up afterwards both can be classified as foams. In the broadest sense, foams

consist of a dispersed phase of gas (bubbles) enclosed by a continuous phase of ei-

ther solid or liquid. These materials have complex properties that differ from their

component materials. Though air and water are both Newtonian fluids, an aqueous

foam has much more complex rheology. The specific properties of foam make it

useful in a number of contexts, ranging from food science, to cosmetics, to mining,

to fire fighting. A greater understanding of foams can have wide applicability in a
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number of fields.

Though foams can take many forms, this thesis will deal exclusively with aque-

ous foams. These consist of a dispersed phase of gas in a continuous phase of liquid.

These two phases are kept apart by the force of surface tension. In order to make

water/air foams that are long lived, it is necessary to add molecules called surfac-

tants. These molecules consist of a hydrophilic ‘head’ attached to a hydrophobic

‘tail’. Because of the different preferences of the two ends, these molecules prefer to

live at an interface, so that both ends can be satisfied simultaneously. This lowers

the surface tension, thus reducing the energy cost of maintaining separate phases in

the foam. Additionally, layers of these molecules at the interface create a disjoining

pressure that prevents film rupture. In this way, long-lived aqueous foams can be

created.

These foams can be characterized by their relative amounts of liquid and gas.

So called ‘wet’ foams, which typically consist of 10% - 20% liquid by volume, have

nearly spherical bubbles. In contrast, in ‘dry’ foams, which generally are those with

less than 10% liquid by volume, the bubbles form polyhedra. This thesis will focus

primarily on foams in the dry limit. In the limit of perfectly dry foams, requiring

force balance can give us information about the structure of the foam. These results

are known as Plateau’s laws. First, the films will form surfaces of constant mean

curvature. Second, all intersections of films consist of threefold junctions with an

angle of 2π/3. These intersections are called Plateau borders. Third, Plateau

2



borders always meet at fourfold nodes with the tetrahedral angle of arccos (−1/3).

These nodes are called vertices.

Aqueous foams are fundamentally non-equilibrium. Even with the addition of

surfactant, there is an energy cost associated with keeping the bubbles separate, and

this energy is proportional to the surface area of the interface. The lowest energy

state is for the gas and liquid phase to be completely separate, and the foam evolves

over time to minimize the interface. There are three primary mechanism by which

the foam evolves over time: coalescence, drainage, and coarsening. Coalescence

occurs when a film ruptures and two bubbles become one. In the presence of

gravity, liquid, being denser than gas, is pulled downward, decreasing the liquid

fraction of the foam. This process is called drainage. Lastly, there is gas diffusion

between bubbles, such that some bubbles grow and others shrink. This process,

known as coarsening, increases the average bubble length scale over time through

the disappearance of small bubbles. By these mechanisms, the foam lowers its

interfacial area and evolves to a lower energy state.

In the foams considered in this thesis, the films are very stable and rupture

is never observed. Our foams drain at early times, but at the times that our

experiments occur, gravity is balance by capillary forces, and the liquid fraction

profile of the foam is constant in time. Therefore, in our experiments our foams

are evolving only by coarsening. Foams evolving in this way reach what is know

as a ‘scaling state’. This is a state where, although the length scale of the foam is

3



increasing, statistical descriptors of the foam are not changing with time. Regardless

of the initial preparation of the foam, all foams reach a scaling state, and they all

reach the same scaling state. The foam remains in this state as it evolves through

coarsening. There has never been observed, either experimentally or in simulation,

any pathological distributions that do not settle to this scaling state.

Coarsening is a complicated process, but it is made more tractable by reducing

to two dimensions. In two dimensions Plateau’s laws are simpler. In this case

the films form arcs of circles, and films meet at threefold vertices at an angle of

2π/3. This means that the bubbles consist of polygons with the sides replaced with

circular arcs. Let us now do a simple geometric calculation. We know that the sum

of turning angles around the bubble must be equal to 2π. Because the films are

arcs of circles, the turning angle around film i is just li/Ri, where l is the length

of the film and R is the radius of curvature of the film. Also, because the films all

meet threefold at an angle of 2π/3, we know that the turning angle at each vertex

is π/3. This gives us the following equation for a bubble with n sides:

2π =
n∑
i=1

li
Ri

+ n · π
3

(1.0.1)

Next, we note that the diffusion is proportional to the pressure difference across a

film times the length of the film. We know from the Laplace-Young pressure law

that the pressure is inversely proportional to the radius of curvature, so we know

4



that

dA

dt
∝ −

n∑
i=1

li
Ri

(1.0.2)

Combining these two equations gives the remarkable result

dA

dt
= K(n− 6) (1.0.3)

where K is a constant of proportionality. This relationship was first discovered by

John von Neumann, and is known as von Neumann’s law [67]. This law states that

the coarsening rate of an individual bubble depends only on its number of sides.

Its area and shape are irrelevant. While von Neumann’s law tells us about the

coarsening of bubbles, it does not tell us anything about the existence of a scaling

state, or the bubble size and shape distributions of such a state.

Von Neumann’s law is mathematically exact, but it assumes an ideal dry two

dimensional foam. The subject of this thesis is observing how the coarsening be-

havior of the foam, and the scaling state resulting from this coarsening behavior,

change as we violate the assumptions of von Neumann’s law.

Von Neumann’s law assumes that foams are perfectly dry. In chapters 2 and 3 we

make foams that are not perfectly dry. We are able to create a two dimensional foam

with tunable liquid content. We observe how this wetness changes the structure

and coarsening of the foam, and develop a model to describe the deviation from

von Neumann’s law. Chapter 2 is adapted from previously published work [77].

5



Von Neumann’s law assumes that foams exist in flat two dimensional space. In

chapter 4 we create a two dimensional foam in curved space. We create a cell of

constant positive curvature, characterize the structure of this foam, and compare

the coarsening to the deviation from von Neumann’s law predicted by Avron and

Levine [1]. This chapter is adapted from previously published work [76].

Von Neumann’s law assumes that foams transfer gas only between their two

dimensional neighbors. In chapter 5 we look at the two dimensional surface of a

three dimensional foam. Although this foam obeys Plateau’s laws in two dimensions,

coarsening can occur not only across the visible films, but also across faces in the

third dimension. We characterize the structure and coarsening of this foam.

Von Neumann’s law assumes that foams are two dimensional. In chapter 6 we

develop a method of optical tomography to look inside three dimensional foams.

This may be a useful tool to reconstruct the structure of three dimensional foams

and observe their coarsening.

Finally, we conclude with a summary and outlook for the future.

6



Chapter 2

Bubble Statistics and Coarsening

Dynamics for Quasi-Two

Dimensional Foams with

Increasing Liquid Content

2.1 Introduction

Coarsening is a process in foams where gas diffuses from one bubble to another,

so that some bubbles grow and some bubbles shrink [100]. Coarsening also occurs

elsewhere, such as for grains in metal alloys, and can often be treated by similar

7



approaches [29, 82]. Hence foam systems can be studied to understand coarsening

behavior more generally. This is simpler to accomplish in two dimensions, where

bubble areas are readily measured by conventional digital imaging. For ideal dry

foams, which have zero liquid content and obey Plateau’s rules, John von Neumann

[67] famously showed that the coarsening rate of a given bubble is exactly

dAi
dt

= K0(ni − 6), (2.1.1)

where Ai and ni are respectively the area and number of sides of bubble i (see

Section 2.4.2 for a generalized derivation). The constant of proportionality, K0,

is proportional to the film tension, the solubility and diffusivity of the gas in the

liquid, and inversely proportional to the film thickness. It is remarkable that neither

the size nor shape of a bubble matters, only its number of sides.

There have been numerous experiments with dry two-dimensional foams to mea-

sure coarsening rates and other properties, such as area and side number distri-

bution functions. This includes direct measurements on dry soap froths [27, 28,

84, 81, 83, 39], soap froths with different boundary conditions [45, 75, 74], and

measurements on lipid monolayers [87, 3]. Simulations have also been performed

[43, 26, 34, 80, 66, 78]. This body of work shows good general agreement with

von Neumann’s law.

While von Neumann’s law describes the rate of change of area for individual

bubbles in dry two-dimensional foam, it also bears on how the average bubble area,

8



〈A〉 =
∑

iAi/Ntotal = Atotal/Ntotal, changes with time. Following the argument

of Ref. [82], first note that the average square bubble area, 〈A2〉 =
∑

iAi
2/Ntotal,

depends on the width of the area distribution and hence would seem to depend on

foam production method and coarsening history. But in fact coarsening foams tend

to evolve into a self-similar growth regime, where distribution shapes are stationary

and do not depend on time except for an overall scale factor. Once this scaling

regime is reached, the quantity 〈A〉2/〈A2〉 is constant. Therefore the identity

〈A2〉
〈A〉2

〈A〉 =
1

Atotal

Ntotal∑
i=1

Ai
2 (2.1.2)

may be differentiated with respect to time, from d〈A〉/dt on the left and from

dA2
i /dt = 2AidAi/dt = 2AiK0(ni − 6) on the right. The result can be rearranged

and expressed as follows,

d〈A〉
dt

= 2K0
〈A〉2

〈A2〉
∑
n

F (n)(n− 6), (2.1.3)

= 2K0
〈A〉2

〈A2〉
[〈〈n〉〉 − 6], (2.1.4)

by introducing a new quantity, the area-weighted side-number distribution

F (n) =
∑

i s.t. ni=n

Ai/Atotal. (2.1.5)

By this definition F (n) represents the probability that a randomly chosen point

in space lies inside an n-sided bubble, which is distinct from the widely-studied
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probability p(n) that a randomly chosen bubble is n-sided. In the scaling regime,

according to Eq. (2.1.4), the rate of change of average bubble area depends on the

shape of the area distribution via 〈A〉2/〈A2〉 and the area-weighted average number

of sides per bubble, defined in Eq. (2.1.4) by 〈〈n〉〉 =
∑

n nF (n). The distribution

F (n), and in particular the difference of 〈〈n〉〉 from 6, thus play an important role

in the evolution of the foam. However, we are unaware of previous experimental

or theoretical investigation of area-weighted statistical quantities, by contrast with

numerous studies of p(n).

Coarsening in three dimensional foams has also been extensively studied, and the

generalization of von Neumann’s law is now known [54]. In terms of experiment,

most studies of coarsening in three dimensions have been on wet foams. Various

techniques include multiple light scattering [15, 16, 17, 38], magnetic resonance

imaging [32], optical tomography [63], x-ray tomography [47, 49], and observation of

surface bubbles [25, 35, 93, 24, 18]. However it is much easier to work experimentally

with two dimensional foams, where individual bubbles are readily imaged.

One aspect of coarsening that has not been fully elucidated is the effect of non-

zero liquid fraction, ε. Experiments on this effect have primarily focused on coars-

ening rates of three dimensional foams. One study suggested a mechanism for the

reduced coarsening rate of three dimensional wet foams as the reduced film area due

to liquid in the Plateau borders covering regions of the films and measured under

forced drainage that the coarsening rate was reduced by a factor of (1−
√
ε/0.36)

10



[38]. Another study measured coarsening rates for a freely draining three dimen-

sional foam and using this model of Plateau border blocking film area measured

that the coarsening rate was reduced by a factor of (1 −
√
ε/0.44)2 [35]. Other

studies on coarsening in three dimensional wet foams have found empirically that

the coarsening rate is reduced by a factor of 1/
√
ε [93, 18]. In two dimensions,

there has been theoretical [4, 99, 89, 57] and simulation [4, 5] work on the effects

of liquid fraction on coarsening. And while this chapter was in preparation, a new

theoretical approach was proposed, and tested by Potts model simulations, based

on an effective number of sides that depends on the fraction of the perimeter oc-

cupied by wet versus dry interfaces [23]. Ref. [58] describes coarsening experiments

on bubbles in a microfluidic geometry, where there is a non-zero liquid content that

affects the growth rate of average bubble area and that is modeled by an average

effective film permeability. Despite all this activity, we are unaware of any work

that systematically measures or models the bubble-level topology-dependent effects

of liquid content on coarsening.

To make progress on these issues, we present a series of experiments in which the

liquid content is systematically varied and the size, shape, and topology of individual

bubbles are measured as a function of time. We begin with a description of the

foaming system, the sample cell, and the imaging techniques. After demonstrating

the success of these methods, we report on bubble statistics, which turn out all to be

independent of both time and liquid content. Then we consider the coarsening rate,

how it varies with liquid content, and how it develops a violation of von Neumann’s
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Figure 2.1: A schematic cross section of the circular constant pressure cell; not to scale. Mea-
surements are made in a central 11 × 11 cm2 region of interest. The foam wetness is controlled
by filling depth of liquid in the trough, in terms of Eq. (2.2.1) and the distance d of the top of
the liquid reservoir below the center of the foam. The two solid black circles represent a cross
section of the inner O-ring. Not shown: outer O-ring, O-ring grooves, two filling ports, bolt circle
between the two O-rings, spacers.

law. Finally we present a model to quantitatively explain this behavior.

2.2 Materials and Methods

The liquid foaming solution consists of 75% deionized water, 20% glycerin, and

5% Dawn Ultra Concentrated dish detergent, and has liquid-vapor surface tension

γ = 25 dynes/cm. This creates foams that are stable and long lived; film ruptures

were never observed. The sample cell consists of a circular chamber made from

clear 1.91 cm thick acrylic plates separated by a H = 3.2 mm gap and sealed with

two concentric rubber O-rings, the inner of which is 23 cm in diameter. The gap

thickness and seal are maintained by a bolt circle and metal spacers, all between

the two O-rings. A cross section of the cell is schematically in Fig. 2.1. To create
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the foam, the chamber is first completely filled with solution. Pure nitrogen is then

pumped into the chamber until only the desired amount of liquid remains. This is

accomplished via two valved ports attached on opposite sides of the bottom plate.

The chamber is then shaken vigorously until it is completely filled by a uniform

opaque foam with sub-millimeter size bubbles, smaller than the gap between the

plates. The initial foam is thus three dimensional. Immediately after production

it is placed 20 cm away from a Vista Point A lightbox, and 2.5 m from a Nikon

D80 camera with a Nikkor AF-S 300 mm 1:2.8 D lens. It is then left undisturbed

to coarsen into a two-dimensional foam consisting of a single layer of bubbles with

an average size greater than the gap, which typically requires two days. The field

of view thus encompasses up to a few hundred bubbles. Under computer control,

photographs are then taken at two-minute intervals for durations ranging up to two

weeks. From all runs, a total of 14663 bubbles were observed. This is enough for

statistical purposes, though it is possible to observe many more bubbles at lower

resolution using sample cells that are larger or have thinner gaps [71, 13].

The crucial innovative feature of the sample cell is a circular trough, of width and

depth 1.27 cm and inner diameter 20.3 cm, which serves as both a liquid reservoir

and a means to control the liquid content of the foam. The initial three-dimensional

foam is quite wet, but it drains by gravity and the expelled liquid accumulates in the

trough. As the foam becomes drier, the radius of curvature r of the Plateau borders

decreases and the Laplace pressure γ/r increases. Drainage halts when hydrostatic

equilibrium is established by balance of capillary and gravity forces. For this, the
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Laplace pressure must equal the gravitational pressure ρgd, where ρ = 1.07 g/cc

is the liquid solution density, g = 980 cm/s2, and d is the distance of the Plateau

borders above the liquid in the reservoir, as depicted in Fig. 2.1. Accordingly, the

radius of curvature of the Plateau borders is given by

r =
γ

ρgd
, (2.2.1)

and hence can be controlled through d by the filling depth of liquid in the reservoir.

Here d is measured to ±0.2 mm and the dimensions of the reservoir trough are large

enough that this depth remains constant once the foam becomes two dimensional.

Thus the coarsening of interest proceeds at constant, controllable, r. A further

advantage of the trough is that the relatively large volume of liquid solution permits

easy foam production by shaking.

Example images are shown in Fig. 2.2 for foams with three different filling depths,

d, which decrease from left to right. It can be seen that as d decreases, the Plateau

borders become noticeably thicker as expected by Eq. (2.2.1). While the foams

appear to be dry and two-dimensional, their actual three-dimensional structure is

emphasized underneath the main images by schematic drawings of a vertical cut

across each foam. There, the Plateau borders running along the top and bottom

plates appear as scalloped triangular regions, and the soap films running between

plates appear as vertical lines connecting top and bottom Plateau borders. Bubble

area is thus appropriately measured by the skeletonization procedure as the area
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Figure 2.2: Images of a subregion of three foams, with different liquid filling depths d as labelled.
For smaller d, the Plateau border radius r increases according to Eq. (2.2.1). This is evident in the
main images and is shown underneath by schematic drawings of surface Plateau borders and soap
films in a vertical cross-section along the dotted lines in the middle of the main images. The scale
for all images and schematics is indicated by the bar in (a), which equals the gap H between top
and bottom plates and hence the height of the vertical soap films. In (c) note that there are bright
spots at the ‘vertices’ where three surface Plateau borders are seen to meet. This feature arises
from light channeled up through the thick vertical Plateau borders that span the gap between the
upper and lower plates of the sample cell. Note that these are well separated; therefore, there is no
ambiguity in determining the number n of sides of a bubble, even in the wettest foams measured
here.

enclosed by the vertical soap films, not as the “free area” seen by eye to be enclosed

by thick Plateau borders. Note that variation of d affects only the Plateau borders,

not the film thicknesses. Since the Plateau borders are macroscopic, while the film

thickness is of order 100 nm, the liquid content of the foam is set entirely by the

Plateau border thickness. The volumetric liquid fraction scales as r2R/(R2H) ∝

1/(d2R) where R is the typical bubble radius and H is the gap between the plates.

The projected-area liquid fraction scales as rR/(R2) ∝ 1/(dR). Neither of these

liquid fractions remains constant as the foam coarsens; rather, more importantly, the

Plateau border radii and Laplace pressures remain constant as set by the distance

d of the foam above the top of the liquid reservoir. Throughout, we thus refer to d

as controlling the liquid content, not the liquid fraction.
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d (mm) Ninitial Nfinal

11.3 114 41
10.9 73 18
9.4 144 44
9.1 298 143
8.5 104 82
8.0 384 49
7.1 290 158
6.7 217 85
6.2 252 100

Table 2.1: Initial and final numbers of bubbles in an 11 × 11 cm2 square region of interest in
the center of the cell for different liquid filling depths. The quantity d is the distance of the foam
above the liquid reservoir. The uncertainty in d is 0.2 mm. Only bubbles completely within the
region of interest are considered.

Digital images such as shown in Fig. 2.2 are collected for foams with a wide range

of different filling depths, as listed in Table 2.1 along with the number of bubbles

entirely in the central 11 × 11 cm2 region of interest at the beginning and end of

the collection period. Using standard procedures, it is relatively straightforward

to threshold and skeletonize each image and then measure the area and number of

sides of each bubble that lies entirely within the region of interest. However, when a

small bubble shrinks toward zero its diameter inevitably becomes smaller than the

distance between the plates. Then it may ‘pinch in’ and form a film horizontally

in the middle of the bubble, and thus no longer be two-dimensional. Such bubbles

and their neighbors, are excluded from the analysis.

Example results for area versus time are displayed in Fig. 2.3 for individually

selected bubbles with different side numbers n, for the same three foams depicted

above with different liquid filling depths. Note that the areas are constant for n = 0,

and either increase or decrease linearly with time for n > 6 or n < 6, respectively.
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Figure 2.3: Area versus time for selected bubbles with different number n of sides, for three
different distances d of the foam above the reservoir, as labelled. The liquid content increases
with decreasing d, as illustrated in Fig. 2.2. Note that the area change is linear in time and at
rate proportional to (n − 6). The lines are fits to the von Neumann form, A − A0 = K(n − 6)t,
with the same K value for all n: (a) K = 0.84± 0.06 mm2/hr, (b) K = 0.72± 0.06 mm2/hr, (c)
K = 0.42± 0.02 mm2/hr, Increasing the liquid content decreases the rate of change of area, such
that wetter foams coarsen more slowly; compare to Fig. 2.14.

Fits are found to the von Neumann prediction, A(t) = A0 +K(n− 6), where A0 is

the area at an initial time and a single value of K is adjusted to simultaneously fit

all the data in each panel of the figure. While these fits are excellent, the feature of

main interest in Fig. 2.3 is that the coarsening rate decreases with increasing liquid

content, as d decreases from left to right. Indeed the slopes for a given n are equal

to K(n− 6) and are seen to decrease by a factor of two from (a) to (c). Intuitively,

the thicker the Plateau border, the smaller the film area through which gas diffuses,

and hence the slower the coarsening. This serves as proof-of-principle: Our custom

sample cell design and procedures thus succeed in producing dry two-dimensional

foams with controllable Plateau border thicknesses.

As a technical aside, throughout the remainder of this chapter the rate dA/dt

of a bubble’s growth is found by fits of A(t) vs t over a time window over which
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the side number n remains constant. And there is no ambiguity in the value of n,

even for the wettest foams at smallest d values where r becomes as large as H/4,

since the foams have large enough bubbles to appear two-dimensional when viewed

from above, as in Fig. 2.2. In other words, the soap films remain vertical and are

easily located by the thresholding/skeletonization procedure for any wetness. Even

in the wet foam limit, where horizontal top and bottom Plateau borders merge, the

vertical Plateau borders are still well-separated and hence n is well-defined. The

only difficulty is for very small three-sided bubbles, which can detach from the top

or bottom plate and hence become three-dimensional. Since three-sided bubbles

tend to start small and shrink rapidly, they do not remain two-dimensional for very

long. Due to this effect, we were able to measure growth rates for only eight of the

195 three-sided bubbles seen in our combined runs.

To further characterize our liquid solution, we now measure coarsening in the

very dry limit where the border thickness is made as small as possible. For this, we

use the same sample cell but orient it vertically rather than horizontally and fill it

with liquid to a depth of 7.5 cm above the bottom of the O-ring. As usual, foam is

produced by vigorous shaking and then allowing it to drain and coarsen for about

one day into a two-dimensional froth. The rate of area change, dA/dt of individual

bubbles is then measured along with their number of sides and their height d above

the drained liquid. Since the cell is vertical, the value of d can be up to 6 cm, which

is much greater than can be attained in the horizontal orientation due to the fixed

1.27 cm depth of the trough. By Eq. (2.2.1), this gives the smallest Plateau border

18



-3

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70

d
A

 /
 d

t 
(m

m
2
 /

 h
o
u
r)

d (mm)

n = 8

7

6

5

4

Figure 2.4: Rates of area change for bubbles in a vertical cell vs height d of bubbles above the
liquid surface. The cell is the same shown in Fig. 2.1, but re-oriented and filled 7.5 cm from
the bottom of the O-ring. Symbol types distinguish bubbles with different number n of sides, as
labeled. The lines represent dA/dt = K0(n − 6) (Eq. (4.1.1)) with K0 = 1.20 ± 0.06 mm2/hr
. Since the growth rates are independent of d, the bubbles are in the dry foam limit where the
Plateau border size is negligible compared to bubble size.
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radius as 0.005 cm. The resulting coarsening rates are plotted vs d in Fig. 2.4, with

each point representing one bubble with side numbers indicated by symbol color and

label. Note that dA/dt depends on side number but has no apparent dependence

on d across the entire range of 1 cm < d < 6 cm. These data are therefore all in

the dry foam limit. Furthermore, absence of dependence on d indicates that the

film thickness is constant. In principle the thickness must decrease with height due

to gravity, but apparently a balancing disjoining pressure can be achieved by very

slight thinning away from the minimum in the effective interface potential. The fit

to von Neumann’s law, dA/dt = K0(n− 6), is shown by the solid horizontal lines,

and gives K0 = 1.20 ± 0.06 mm2/hr. This value reflects the physical chemistry of

the gas/surfactant-solution/soap-film system, independent of the geometry of the

bubbles and the Plateau borders.

This completes the description of materials and methods, and the characteriza-

tion of the foaming system. In the next sections we now turn to the main tasks of

measuring bubble statistics and coarsening rates as a systematic function of liquid

content.

2.3 Bubble Statistics

In the follow three subsections we present the statistical distributions for the topol-

ogy, size, and shapes of bubbles.
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2.3.1 Topology

n N p(n) F (n) m(n)
3 195 0.013± 0.001 0.0009± 0.00006 7.69± 0.05
4 1217 0.083± 0.002 0.034± 0.006 7.04± 0.02
5 4462 0.304± 0.005 0.173± 0.007 6.5± 0.007
6 4634 0.316± 0.005 0.326± 0.009 6.22± 0.006
7 2611 0.178± 0.003 0.259± 0.007 6.06± 0.007
8 1120 0.076± 0.002 0.141± 0.006 5.92± 0.01
9 327 0.022± 0.001 0.049± 0.004 5.82± 0.02
10 89 0.006± 0.0006 0.016± 0.002 5.73± 0.03
11 8 0.0005± 0.0002 0.001± 0.0005 5.91± 0.16

Table 2.2: Topological distributions averaged over all times and liquid contents, and their uncer-
tainties. Here n is the number of sides; N is the total number of bubbles observed with n sides;
p(n) is the fraction of bubbles having n sides, and the uncertainty is the value divided by

√
N ;

F (n) is the fraction of area occupied by n sided bubbles, and the uncertainty is the standard devi-
ation divided by the square root of the number of photographs; and m(n) is the average number of
sides of the neighbors of an n sided bubble, and the uncertainty is the standard deviation divided
by
√
N . The total number of bubbles observed is

∑
N = 14663.

The number of sides of a bubble is a key topological quantity, not just for describ-

ing the bubble but also for determining its coarsening rate according to von Neu-

mann’s law. Thus we begin by analyzing image data for the probability p(n) that

a randomly-chosen bubble has n sides and also for the probability F (n) that a

randomly-chosen point in space is inside an n-sided bubble. As discussed in the in-

troduction, F (n) is an area-weighted side number distribution that sets the average

coarsening rate in the scaling regime. Example data for these side number distri-

butions are plotted, separately for each n, versus time in Fig. 2.5 for a typical foam

sample with d = 9.1 mm. To within statistical uncertainty, the individual p(n) and

F (n) values are seen to be independent of time. This demonstrates that the foam

is in a scaling regime, which is not surprising because the production method gave

very small bubbles that coarsened greatly before data collection commenced. This
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Figure 2.5: (a) Side number distribution, and (b) area-weighted side number distribution, versus
time for a typical foam sample with d = 9.1 mm.
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holds for the other foams with different liquid content, too, and therefore we may

compute the time-averages of the side distributions. The results for p(n) and F (n)

are shown in Fig. 2.6 versus the height d of the foam above the liquid reservoir. Now

we see that, to within statistical uncertainty, there is no systematic dependence on

liquid content. This is consistent with the validity of the decoration theorem, as

expected since vertical Plateau borders do not merge [4].

Since the side distribution p(n) and the area-weighted side distribution F (n) do

not vary with time or liquid content, we therefore average together all the data and

plot the final results versus n in Fig. 2.7. Actual numerical values and uncertainties

are given in Table 2.2. Both distributions are peaked at n = 6 sides, and have

full-width at half-maximum of about three. Out of 14663 total bubbles, we never

observed any with fewer than n = 3 sides or with more than n = 11 sides. The

detailed shape of p(n) is consistent with prior observations [82, 83, 29, 26], as

shown by comparison with the data from Ref. [26] and the theoretical prediction

from Ref. [21]. The shape of F (n) is skewed from p(n) toward higher n, which is

expected because bubbles with larger n tend to have greater area (as discussed in

detail in the next sub-section). To our knowledge, there is no prior data or theory

with which to compare our F (n) data.

Definitions and values of various moments of the scaling regime distributions

p(n) and F (n) are listed in Table 2.3. The average side number is 〈n〉 = 5.92 ±

0.01, which is slightly less than the value of 6 required by topological reasons for
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Quantity Definition Value
〈n〉

∑
np(n) 5.92± 0.01

µ2

∑
[n− 〈n〉]2p(n) 1.56± 0.02

〈〈n〉〉
∑
nF (n) 6.53± 0.08

ν2
∑

[n− 〈〈n〉〉]2F (n) 1.67± 0.09
〈A2〉/〈A〉2 [

∑
A2

i /Ntot]/[
∑
Ai/Ntot]

2 1.72± 0.25
〈P 2〉/〈P 〉2 [

∑
P 2
i /Ntot]/[

∑
Pi/Ntot]

2 1.20± 0.06

Table 2.3: Measured values of several statistical quantities, averaged over all times and liquid
contents, and their uncertainties. Here n is the number of sides of a bubble; p(n) is the fraction of
bubbles with n sides; F (n) is the fraction of area occupied by n sided bubbles; A is bubble area;
P is bubble perimeter; and Ntot is the total number of bubbles.

an infinite system. The area-weighted average side number is somewhat greater,

〈〈n〉〉 = 6.53±0.08. This result is important because, from Eq. (2.1.4), the expected

average coarsening rate in the scaling regime is proportional to [〈〈n〉〉 − 6]. The

variance of p(n) is µ2 = 1.56±0.02, consistent with prior scaling-state measurements

[84]. This quantity is often used as a measure of disorder. The variance of F (n) is

slightly larger, ν2 = 1.67± 0.09.

The final purely topological quantity we consider is the average number m of

sides of the neighbors of an n-sided bubble. As done for the side distributions, we

first verify that m(n) data are independent of time and liquid content and hence may

be averaged together. The final results are displayed in Fig. 4.7. For comparison,

we obtain a satisfactory fit to the empirical Aboav-Weaire form, m(n) = (6− a) +

(6a + µ2)/n [100], where µ2 = 1.56 is the measured variance and the one fitting

parameter is found to be a = 1.1 ± 0.1. Similar values of a have been found for

many cellular patterns [100], including two-dimensional foams.
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2.3.2 Size

In this subsection we consider distributions of bubble sizes, beginning with area

since this is the quantity that appears in von Neumann’s law. As a prelude we

verify that the distributions are independent of both liquid content and time, when

the average is scaled out. This reinforces the above conclusion that the foam is in a

scaling regime, and allows us to combine the time-averaged scaled distributions for

each foam sample into a single curve. The results for one minus the cumulative area

distribution are plotted on semi-logarithmic axes in Figs. 2.9a. Error bars are given

by the range of values for different liquid contents, divided by the square root of the

number of different liquid contents measured. The data exhibit a slight but nonzero

downward curvature, and hence are not quite exponential. This is consistent with

prior work [21, 82, 83, 29, 26]. A good fit is found to a compressed exponential,

given along with the corresponding probability distribution function as

CDF = 1− e−[Γ(1+ 1
α) A

〈A〉 ]
α

(2.3.1)

PDF = αΓ

(
1 +

1

α

)α(
A

〈A〉

)α−1

e−[Γ(1+ 1
α) A

〈A〉 ]
α

(2.3.2)

with fitting parameter α = 1.21± 0.05; this, and a simple exponential (case a = 1),

are both shown in Fig. 2.9.

Recall from Eq. (2.1.4) that the value of 〈A〉2/〈A2〉 helps set the rate of change

of the average bubble area in the scaling regime. Averaging over all times and
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Figure 2.9: Cumulative distribution function data for (a) bubble area A and (b) bubble perimeter
P , averaged over all times and liquid contents. The error bars represent the uncertainty in the
mean, as estimated from the range in values for different liquid contents. In (a) the black dotted
line represents an exponential area distribution and the blue dashed curve represents a compressed
exponential. The corresponding forms for the cumulative perimeter distributions are shown in (b)
using the same line codes, further assuming A ∝ P 2 with the same proportionality constant for
all bubbles.
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liquid fractions we find 〈A〉2/〈A2〉 = 0.58± 0.09, which is close to the value of 1/2

for a perfectly exponential distribution. Combining this with the result 〈〈n〉〉 =

6.53 ± 0.08, Eq. (2.1.4) thus gives the average rate of coarsening for a 2d foam in

the self-similar scaling regime as d〈A〉/dt = (0.61±0.13)K where K is the constant

in von Neumann’s law for individual bubbles, dA/dt = K(n − 6). For the vertical

cell, the value of K0 then gives the expectation d〈A〉/dt = (0.74 ± 0.15) mm2/hr,

which is consistent with the direct measurement of d〈A〉/dt = (0.83±0.03) mm2/hr.

Since bubbles are not all identical in shape, bubble size is not uniquely specified

by area. So next we consider bubble perimeter, which is also important since in

two-dimensions coarsening is ultimately driven by a reduction of the total sum of

bubble perimeters. The cumulative distribution for perimeter, averaged over all

times and liquid contents, is plotted in Fig. 2.9b. For comparison, we also plot the

expectation corresponding to the fitted cumulative area distribution. For this we

must make the further assumption that bubble shape is constant, which implies

A = cP 2 and 〈A〉 = c〈P 2〉 where c is some constant. Thus the trial perimeter

cumulative distribution function is given by Eq. (2.3.1) with A/〈A〉 replaced by

P 2/〈P 2〉 = [〈P 〉2/〈P 2〉][P/〈P 〉]2. From the list of bubble perimeters, we directly

compute the second moment to be 〈P 2〉/〈P 〉2 = 1.20 ± 0.06. The resulting com-

pressed exponential cumulative perimeter distribution is plotted in Fig. 2.9b, and

found to agree extremely well with the data. This foreshadows a point to made

directly in a later section: the average bubble shape is remarkably constant.
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2.3.3 Size-topology

n N 〈An〉/〈A〉 ± σ ±
σ/
√
N

〈Pn〉/〈P 〉 E(n) C(n)

3 195 0.32± 0.59± 0.04 0.46± 0.42± 0.03 1.065±0.02±0.001 0.19± 0.13± 0.01
4 1217 0.62± 0.84± 0.02 0.73± 0.46± 0.01 1.071±0.02±0.002 0.299±0.14±0.004
5 4462 0.72± 0.70± 0.01 0.843±0.38±0.006 1.070±0.03±0.001 0.137±0.10±0.002
6 4634 1.01± 0.66± 0.01 1.037±0.35±0.005 1.069±0.03±0.001 −0.042 ± 0.18 ±

0.003
7 2611 1.32± 0.77± 0.02 1.183±0.40±0.008 1.070±0.02±0.001 −0.215 ± 0.28 ±

0.005
8 1120 1.55± 0.96± 0.03 1.26± 0.47± 0.01 1.070±0.03±0.002 −0.409 ± 0.16 ±

0.005
9 327 1.95± 1.3± 0.07 1.41± 0.54± 0.03 1.067±0.04±0.002 −0.59±0.25±0.01
10 89 2.9± 2.0± 0.2 1.72± 0.70± 0.08 1.065±0.01±0.001 −0.73±0.44±0.05
11 8 3.2± 3.7± 1.3 1.7± 1.2± 0.4 1.066±0.01±0.005 −0.9± 0.37± 0.1

Table 2.4: Shape quantities, averaged over all times and liquid contents, for each side number
n. The standard deviation of the distribution (σ) and the uncertainty in the mean (σ/

√
N where

N is the number of bubbles) are also given. The first two quantities are the area and perimeter,
normalized by the average over the whole sample. The second two quantities are the elongation
and circularity, defined by Eqs. (2.3.7-2.3.8).

With topology and size statistics now in hand, we turn to the relationship be-

tween these measures. For many cellular systems, a linear correlation has been

observed between either area or perimeter and side number [8]:

〈An〉/〈A〉 = 1 + λ(n− 6), (Lewis) (2.3.3)

〈Pn〉/〈P 〉 = 1 + ν(n− 6), (Desch) (2.3.4)

where λ and ν are parameters characteristic to a particular system. The first of

these empirical laws was found by Lewis for epithelial cucumber cells, and is known

as Lewis’ law [51, 52]. If 〈An〉/〈A〉 is linear in n, then it must have this form, but

to prove linearity requires additional constraints [73]. The analogous relationship

for perimeter is called Desch’s law or Feltham’s law. If the energy area of a cell
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Figure 2.10: Normalized area versus side number for all bubbles; the distribution is given in
grayscale and the average is indicated by open squares. Note that the distributions are quite
skewed, as expected since the area distribution averaged over all n is nearly exponential. The
fit to Lewis’ law, Eq. (2.3.3) with fitting value λ = 0.37 ± 0.03, is shown by a solid line. The
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simplified granocentric model prediction, Eq. (2.3.5) with no fitting parameters, is shown by the
dotted curve.
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is proportional to its perimeter, then entropy is maximized when Desch’s law is

satisfied [72]. Such size-topology relations continue to be a subject of active research

[88, 79, 14, 48, 68].

To compare the Lewis and Desch laws with our scaling-state foams, we accu-

mulate time-average statistics for areas and perimeters separately for each side

number. The averages are given in Table 2.4 and are plotted versus n as open

squares in Figs. 5.3.1-5.3.2, respectively. The scaled average area and perimeter

are both indistinguishable from 1 for n = 6, and both grow with n since larger

bubbles tend to have more sides. For area, the dependence is noticeably faster than

linear; for perimeter, the dependence is indistinguishable from linear. Thus the

Desch law provides a better description of scaling regime foams than the Lewis

law, as seen by displayed fits. Indeed the average area data are better fit to

〈An〉/〈A〉 = (0.027±0.001)n2, in accordance with some simulations and experiments

[88, 14]. The perimeter data are well fit to the Desch law with ν = 0.15 ± 0.01.

This is somewhat smaller than previous experimental measurements of ν = 0.29

[88], and ν = 0.19 [14].

Apart from the behavior of the averages, the correlation of side number with

perimeter has an advantage over area because of the shapes of the distributions,

which are also displayed in Figs. 5.3.1-5.3.2 in grayscale. For area, these are skewed

so that the mode is significantly smaller than the average, especially for small n

where the peak is near zero as for an exponential distribution. For perimeter, by
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contrast, the individual distributions are more symmetrically peaked so that the

mode coincides closely with the average.

Regarding the deviation from Lewis’ law, it is predicted that this is associated

with deviation of the area distribution from exponential [48]. Indeed the area dis-

tribution data in Fig. 2.9a are not quite exponential. Further insight into the

deviation from the Lewis law has been gained from the granocentric model [10]. In

a simplified version [68], a Voronoi-type construction is made for a central particle

uniformly surrounded by n equidistant neighbors of the same same size. This gives

the following size-topology relations, without any parameters:

An/〈A〉 = n/[4
√

3 sin(2π/n)], (2.3.5)

Pn/〈P 〉 = n/[4
√

3 cos(π/n)]. (2.3.6)

The first of these is Eq. (7) from Ref. [68] and the second we derived in analogy. The

angle brackets have been removed from An and Pn because for a given n there is

no distribution in this version of the granocentric model. These forms are included

in Figs. 5.3.1-5.3.2, and agree quite well with the data.

2.3.4 Shape

The bubbles in a foam have a wide variety of shapes, even for a given number

of sides. Two shape descriptors that we find in the next section to be relevant for
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Figure 2.13: (a) Circularity C, defined by Eq. (2.3.8), versus side number n, averaged over all
times and liquid contents. The probability distribution is shown in grayscale, and the average
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n0 = 5.73 ± 0.04 when the n = 3 data are excluded. (b) The difference in circularity between
actual and isotropic bubbles.
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coarsening dynamics are the elongation and circularity, which we define respectively

as

E = P/
√

4πA, (2.3.7)

C =

(
1

n

n∑
i

1/Ri

)√
A/π, (2.3.8)

where P is perimeter, A is area, and Ri is the radius of curvature for the ith side of

an n-sided bubble. The sign convention is such that Ri is positive for the bubble

on the high-pressure side of the film. While the quantity 1/E2 is commonly known

as “compactness”, we follow Ref. [33] in referring to E as “elongation”. The term

in brackets in Eq. (2.3.8) is an average curvature, with equal weights independent

of side length; it is particular to shapes made from circular arc segments, and does

not equal 2π/P . For a circle, these definitions give a minimum elongation of E = 1

and a maximum circularity of C = 1. Note that C = 0 holds for any shape made

of straight line segments. The simplified granocentric model treats cells as regular

n-sided polygons, for which the shape descriptors are E =
√

(n/π) tan(π/n) and

C = 0.

For comparison with data, we compute the shape descriptors for “isotropic” or

“regular” bubbles consisting of equal arc segments. These are like regular polygons

but with edges replaced by circular arcs, all of radius R, that meet at 120◦ as

required by Plateau’s laws. Isotropic bubbles have been used to model both two-
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[33] and three-dimensional [36, 37, 30, 31] foams. We find:

P = (π/3) |n− 6|R, (2.3.9)

E =

√
(π/3)(n− 6)2

3n
[
cot(π/n)−

√
3
]
− 2π(n− 6)

, (2.3.10)

C = ±
√

n

4π

[
cot(π/n)−

√
3
]
− 1

6
(n− 6). (2.3.11)

The positive root C > 0 is taken for n < 6, and the negative root C < 0 is taken for

n > 6. Our expression for the elongation is consistent with Eq. (A3) of Ref. [33],

except that our definition includes a factor of
√

4π; it approaches E = π/3 = 1.047

in the limit n → ∞. For n ≥ 3 our expression for the circularity is within 0.5% of

C = (π2/12)1/4(1− n/6) = 0.95(1− n/6), the linear expansion around n = 6. Both

Eqs. (2.3.10-2.3.11) behave badly for n ≤ 1, but approach E = 1 and C = 1 in the

limit n→ 0, as expected for a circular bubble with n = 0 vertices.

We now compute the shape parameters for all the bubbles in all the collected

images. For both, area is taken from the number of enclosed pixels. For elonga-

tion, perimeter is taken from a LabVIEW routine that interpolates the pixellated

boundary of the image. For circularity, the curvature of each segment is taken from

the circle defined by the two endpoints and the average of the three middle-most

points. No systematic deviation was ever observed between such arc segments and

the pixellated bubble boundaries. Collecting all results, we find that both E and C

are independent of age and liquid content and hence may be combined for better

statistics. The average elongation and the average circularity are plotted versus
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side number in Figs. 2.12-2.13, respectively. The probability distributions are also

shown in grayscale, and appear to be peaked fairly symmetrically around the av-

erage values. Remarkably, the average elongation appears to be nearly constant

and independent of n. Averaging over at all times and all liquid contents and all

side numbers gives an average bubble elongation of 〈E〉 = 1.0692 ± 0.0005 and a

variance of e2 = 0.004 ± 0.001. This is about 50% more elongated from a circle

than for isotropic bubbles, Eq. (2.3.10). The data for circularity is nearly linear

in n and agrees fairly well with the expectation for isotropic bubbles, Eq. (2.3.11),

except for three-sided bubbles. The difference between actual and isotropic bubble

circularities is shown for comparison in Fig. 2.13b. The circularity data are well fit

to C(n) = B(1 − n/n0), which gives B = 0.99 ± 0.02 and n0 = 5.73 ± 0.04 when

n = 3 data are excluded. The average variance of the circularity distributions is

c2 = 0.08± 0.01.

2.4 Coarsening Dynamics

2.4.1 Data

All measurements discussed so far have been for individual static photographs and

have not involved how individual bubbles change over time. It is also possible to

track individual bubbles over time and observe how various quantities change. This

was shown earlier, in Fig. 2.3, for selected bubbles of various n for three liquid
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Figure 2.14: Rate of area change versus area, for individual bubbles in three foams with increasing
liquid content, from left to right, as controlled by the distance d of the foam above the liquid
reservoir. The number n of sides of each bubble is indicated by symbol color, as labeled. The thin
horizontal lines represent a fit to von Neumann’s law, dA/dt = K(n−6) where K is adjusted fit to
the data for A > 10 mm2. The fitted values of K are plotted versus liquid content Fig. 2.16. The
thick curves represent the border-blocking model, Eq. (2.4.5), where K0 = 1.2 mm2/hr is fixed
by the data in Fig. 2.4, E and C are taken from the averages represented by the open squares in
Figs. 2.12-2.13, and r is the only fitting parameter. The fitted values of r are plotted versus liquid
content Fig. 2.17.

contents. In this plot it can be seen that the rate of change of an n-sided bubble’s

area is slower for wetter foams.

It is possible to measure the area at each time for each bubble in a sequence of

images and fit these curves to a line for each bubble. The slope is dA/dt for that

bubble. In this way it is possible to measure dA/dt for a large number of bubbles.

We can then plot dA/dt against area for a given liquid content. Examples of this

for three different liquid contents are shown in Fig. 2.14. In these graphs each point

is one bubble and the color indicates the number of sides. The horizontal lines

are dAn/dt = K(n − 6) for various n where K is the slope of the proportionality

when the data on the plot is plotted as dA/dt against n − 6. On these plots, K,

the coarsening rate, is the spacing between these horizontal lines. The values of K
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are shown against liquid content in Fig. 2.16. The first thing to note is that the

coarsening rate decreases as the liquid content increases. This makes sense as more

liquid in the foam should prevent diffusion. Note also that there is a deviation from

von Neumann’s law for small bubbles. Von Neumann’s law predicts that all bubbles

with a given number of sides should coarsen at the same rate; therefore all points of

a particular color should fall on the horizontal line of the same color. Instead, we see

that small 4 and 5 sided bubbles fall above the appropriate line, which is to say they

are shrinking more slowly than predicted. Very small bubbles with n > 5 are not

observed because by the time the foam has become two dimensional, there are no

very small bubbles with n > 5 and these bubbles do not shrink, so no examples ever

become small enough to observe this effect. Note also that this deviation appears to

be greater for higher liquid contents. This behavior is explained in the next section.

2.4.2 Border-blocking Model

In this section we model the effects of increasing liquid content, both on slowing the

coarsening rate and in causing deviation of small bubbles from von Neumann’s law.

To this end we construct a ‘border blocking’ model, with the same assumptions used

in the models of Refs. [4, 38, 35]. Namely, the Plateau borders swell with liquid

and totally block gas diffusion, reducing the film area and hence slowing the rate of

coarsening. And, as usual, we take the film thickness to be a constant independent

of liquid content. While the prior models dealt only with average growth rates, we
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Figure 2.15: Cross section of wet (a) boundary, and (b) vertical, Plateau borders, and also (c)
schematic of a vertical soap film. The Plateau borders have radii of curvature r, and are shaded
light gray in (a-c). The blocked portions of the films, though which gas is assumed not to diffuse,
are represented by dotted lines, and are seen to have respective length of (a) r and (b) r tan(30◦) =
r/
√

3. As shown in (c), this give the central unblocked area of the film as U = (L−2r/
√

3)(H−2r),
where L and H are respectively the length and height of the film in the dry limit r → 0.

now consider the effect of border blocking on individual bubbles through explicit

modification of von Neumann’s law.

The rate dV/dt at which a bubble’s volume changes with time is proportional

to the sum of the gas diffusion rates across all its films. And the gas diffusion rate

across each film is proportional to the Laplace pressure difference and the film area.

For the quasi-2d experiments here, vertical soap films span the gap H between

43



plates and have constant radius of curvature R along the plates. As the starting

point, we therefore take

dV/dt ∝ −
∑
i

(γ/Ri)Ui, (2.4.1)

where the Laplace pressure γ/Ri is positive for concave films and Ui is the unblocked

area through which gas is free to diffuse. To aid in computing the left and right-

hand sides of this expression, we show the salient geometrical features of the Plateau

borders and films in Fig. 2.15. As before, H is the gap between the plates. And

we define Li as the arclength of the films in the dry limit. For simplicity we take

the radius of curvature of the Plateau borders as r = γ/(ρgd), Eq. (2.2.1), to be

the same everywhere – for the boundary borders at the top and bottom plates and

along the vertical borders where three films meet. We also assume that the vertical

Plateau borders are symmetric. By the decoration theorem, the swelling of Plateau

borders with liquid does not affect the soap films – liquid is merely painted onto

the Plateau borders. Hence Ri and Li are independent of liquid content.

The first task is to compute the left-hand side of Eq. (2.4.1), dV/dt, in terms

of the observable skeletonized bubble area A. From the schematic diagram in

Fig. 2.15a, it may be seen that the boundary Plateau borders have cross sec-

tional area (1 − π/4)r2 inside each bubble. Thus the bubble volume is V =

AH − (1 − π/4)r2 · (2P ), minus smaller terms due to vertical Plateau borders

and vertices. And the bubble perimeter may be expressed from the definition of
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elongation as P =
√

4πAE. All this gives

dV

dt
= H

dA

dt

[
1−

(
1− π

4

) √4πEr2

H
√
A

]
. (2.4.2)

For wet foams, bubble volume is not quite proportional to bubble area; the correc-

tion depends on shape and is more important for wetter foams and smaller bubbles.

To compute the unblocked film area U as a function of liquid content, note from

from Fig. 2.15a that the length of film blocked by a boundary border is simply r.

And from Fig. 2.15b the length of film blocked by vertical border is r tan(30◦) =

r/
√

3. Each film is thus blocked by r along top and bottom and by r/
√

3 along the

sides, as shown in Fig. 2.15c. Thus the unblocked area is U = (H−2r)(L−2r/
√

3),

where L is the arc length of the curved film measured along the plates between

centers of the swollen vertical borders (i.e. the films length as measured in the dry

limit). The right-hand side of Eq. (2.4.1) is thus

∑
i

γ

Ri

Ui ∝ −
∑
i

γ

Ri

(H − 2r)(Li − 2r/
√

3), (2.4.3)

∝ −
(

1− 2r

H

)∑
i

(
Li
Ri

− 2r√
3Ri

)
. (2.4.4)

As in the usual derivation of von Neumann’s law, the sum of turning angles around

a bubble is 2π =
∑

i[(Li/Ri) + π/3], since films in the dry limit are circular arcs

that subtend angle Li/Ri and meet at angles of 2π/3 at the center of the inflated

vertical Plateau borders. The latter follows from the decoration theorem, which
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holds since vertical Plateau borders do not merge [4]. Therefore the first quantity

being summed in Eq. (2.4.4) is
∑

i(Li/Ri) = (π/3)(6−n). The other quantity being

summed may be expressed as
∑

(1/Ri) = nC/
√
A/π by the definition of circularity.

Combining all the above ingredients we arrive at the final prediction for the rate

of area change:

dA

dt
= K0

(
1− 2r

H

) [
(n− 6) + 6Cnr√

3πA

]
1−

(
1− π

4

) √
4πEr2

H
√
A

(2.4.5)

where K0 is the proportionality constant in von Neumann’s law for a perfectly dry

foam with r = 0 (see Eq. (4.1.1)). Note that the overall coarsening rate is reduced

with liquid content by a factor (1−2r/H) that is the same for all bubbles. However

there are also two terms that depend on the shape of the bubble, via circularity C

and elongation E, and that cause deviation from the usual (n − 6) von Neumann

behavior. Both of these terms become more important for wetter foams and smaller

bubbles.

Before comparing Eq. (2.4.5) with data, we first emphasize the assumptions on

which it is based. First, it incorrectly assumes that the liquid in the Plateau borders

totally blocks the diffusion of gas; rather, gas can diffuse through borders too, but

at a slower rate. Second, it assumes that the liquid in the vertical Plateau borders

does not cause deviation in the angles from Plateau’s laws, i.e. that the decoration

theorem holds. This should be valid, as discussed above. Third, for simplicity, it

incorrectly assumes that radius r of the borders is constant; rather, it decreases

continuously as a function of the height above the liquid reservoir. Despite these
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Figure 2.16: Coarsening rate K = (dAn/dt)/(n − 6), versus height d of the foam above the
liquid reservoir. Values correspond to the thin-line fits in Fig. 2.14. The solid curve is the
predicted relationship K = K0(1 − 2r/H). K0 is the observed coarsening rate for very dry
bubbles, 1 < d < 6 cm, shown as a horizontal line. This value corresponds to the fit in Fig. 2.4.
The dashed curve is the expected average K if the top and bottom plates have different r, owing
to the gap H of the sample cell.

issues, we show next that the model fits the data well and explains the deviation

from von Neumann’s law for small wet bubbles.

2.4.3 Comparison

We analyze our coarsening rate data in two ways. The first is a standard von Neumann-

type analysis for bubbles large enough that Eq. (2.4.5) reduces to dA/dt = K0(1−

2r/H)(n−6), i.e. that dA/dt = K(n−6) holds and is independent of A. For this we

plot dA/dt versus (n− 6) for each bubble for a given liquid content, and fit for an

overall coarsening rate, K. These fits correspond to the horizontal lines in Fig. 2.14,
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Figure 2.17: Fitted value r versus height of the foam above the reservoir. Values correspond to
the heavy-curve fits in Fig. 2.14. Solid line is the expected relationship r = γ/ρgd. The dashed
line is the expected average r if the top and bottom plates have different r, owing to the gap H
of the sample cell.
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which show satisfactory von Neumann behavior for bubbles with area A > 10 mm2.

The fitting results for K are plotted in Fig. 2.16 versus the height d of the foam

above the liquid reservoir. The expectation, K = K0(1 − 2r/H) with r = γ/ρgd

and γ = 25 dynes/cm, is also shown for comparison. The trend is correct, but not

quantitatively so. Allowing for r to be different at the top and bottom plates due

to their difference in height improves the agreement, which is shown as a dotted

line on the graph.

The second analysis is to fit the dA/dt vs A data shown in Fig. 2.14 to the

border-blocking prediction, Eq. (2.4.5), by adjusting only the value of r. The value

of K0 is fixed to 1.2 mm2/hr, as found from Fig. 2.4 for the dry foam limit. For each

n, the values of E and C are taken from average elongation and circularity given

by the open squares observed in Figs. 2.12-2.13, respectively. The gap H between

the plates is large enough, however, that the term involving E ranges from 0.01 to

0.15 and hence is relatively minor. Only data for bubbles with n ≤ 5 was used to

calculate a fit for r because only these bubbles included small bubbles that deviated

from von Neumann’s law. This gives fits such as shown by the heavy curves in

Fig. 2.14. We see that the model fits the coarsening rate data quite well, accurately

capturing the deviation from von Neumann’s law with a single fitting parameter,

r. The fitted values of this parameter are plotted in Fig. 2.17 versus liquid content

and compared with the expectation r = γ/ρgd. The trend and order of magnitude

is correct, but the agreement is not very good. Considering the variation in r due

to the height of the cell improves the comparison, but does not seem to account for
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the full discrepancy.

2.5 Conclusion

In this chapter we have presented several advances. First we devised a novel sample

cell that allows the liquid content of Plateau borders to be controlled while main-

taining a two-dimensional structure consistent with the decoration theorem. With

this apparatus and digital video imaging, we collected extensive data for bubble

statistics and coarsening rates. Besides the usual side-number and area distribu-

tions, we also analyzed for correlations between size and topology and compared

with several predictions. In addition we introduced several new quantities and

demonstrated how they are important for the theory of coarsening. This includes

the area-weighted side-number distribution, F (n), and the area-weighted average

side number, 〈〈n〉〉, which have general importance via Eq. (2.1.4) for the rate of

change of average bubble area in the scaling regime. This also includes two dimen-

sionless parameters for specifying the shapes of bubbles – the elongation E and the

circularity C. We acquired extensive data on all four of these quantities, of which

we are aware of no precedent. We also acquired extensive data for the rate of coars-

ening of bubbles, as a function of both side number and – more novelly – of liquid

content. We find that increasing wetness causes a deviation from von Neumann’s

law, which becomes more important for smaller bubbles. This behavior we were

able to model successfully in terms of an explicit modification of von Neumann’s
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law to include the blockage of gas diffusion by Plateau border. An interesting fea-

ture of this model is that the bubble shape parameters E and C both appear. Of

the endless ways to quantify shape, these two actually have physical significance for

the behavior of the bubbles in foam. Altogether our work significantly extends the

description of the scaling regime of two-dimensional foams, and of the influence of

wetness on coarsening. We hope this might help point the way for future studies of

bubble-scale behavior in the coarsening of wet three-dimensional foams.

2.6 Appendix: Details of Image Analysis

To do the image analysis, we begin by running an edge finding algorithm. This uses a

Sobel kernel to identify the edges in the image. We then due an automatic threshold

using the metric method. We then filter out small particles. The cutoff is much

smaller than the smallest bubble. This gets rid of particles resulting from smudges

or dust on the apparatus or lens. We then run a separate particles algorithm. We

then reject any particles with an aspect ratio greater than 8. This primarily gets rid

of particles that make up the interior of the Plateau borders. We then skeletonize

the image. This results in an image where all the particles are the bubbles of the

foam, separated by single pixel width lines. We then label each bubble so that

the interior pixels of each bubble all have a unique pixel value. Because of the

skeletonization, all border pixels touch exactly two other border pixels, except for

the vertices, which touch three. In this way we identify all the vertices. For each
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vertex we identify the three bubbles that touch it. In this way we can then identify

how many vertices correspond to each bubble, which is the same as n, the number

of sides. We also record other particle statistics, such as centroid position, area

(just the number of pixels in the bubble) and perimeter (the perimeter value is not

just the number of edge pixels, but is smoothed on the pixel level by an internal

LabVIEW routine).

For very wet foams (the two wettest liquid fractions in this experiment), light

is channeled through the vertical Plateau borders to create spots of light in the

image. This can be observed in Fig. 2.2c. It is necessary to ensure that these

spots are not identified as bubbles. These spots when going through the initial

image analysis, come out as triangle with very jagged edges. This is due to the

fact that the channelization of the light results in the intensity of the spots going

down smoothly from the center. These shapes are often elongated and very far from

rectangles. To get rid of these spots, we filter the particles and reject any particle

with a compactness less than 0.6. Compactness is defined as the area of the particle

divided by the area of its bounding rectangle. This does a good job of getting rid

of the channelized light spots without rejecting valid bubbles.

We also fit the edges of the bubbles to circles in order to calculate the circularity.

All the skeletonized boundary pixels other than the vertices touch exactly two

bubbles. For each pair of bubbles we identify all the pixels of the edge that separates

those two bubbles. We then take the two vertices that correspond to this edge, as
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well as the average of the three middle points of the edge. These three points define

a circle. We then have the radius of curvature of the edge for use in calculating the

circularity.
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Chapter 3

New Measurements of Foam

Structure and Hyperuniformity

3.1 Introduction

The structure of a two dimensional foam is set by Plateau’s laws. These state that

all vertices are threefold at 120◦ and films form arcs of circles [100]. These laws are

determined by force balance, and any initial configuration will quickly relax to a

state that satisfies these laws. The foam structure then evolves over time through

a process called coarsening. This process is driven by gas diffusion across films,

so that some bubbles grow and other bubbles shrink, and the average length scale

increases over time. This process is very slow compared to the relaxation to satisfy
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Plateau’s laws.

It is believed that for any initial configuration of a two dimensional foam, evolu-

tion through the coarsening process will eventually result in a foam that is in a self

similar scaling state. This state is one in which, other than an increase in an overall

scale factor, the statistical properties of the foam will not change. Additionally,

all initial configurations will reach the same scaling state, with the same overall

statistical properties.

There have been experiments [27, 28, 84, 81, 83, 39, 77] and simulations [43, 26,

34, 80, 66, 78] that have characterized the properties of this scaling state. They

have measured statistical distributions of bubble size, shape, and topology. They

have found good agreement with each other, regardless of the initial method of foam

preparation.

These measurements have focused on statistics that involve measurements of in-

dividual bubbles, such as the number of sides distribution and the area distribution.

We are not aware of any attempt to use the types of measurements used to describe

point patterns to describe foams. These types of measurements are based on the

positional relationships of the points in the pattern. This can give information

about the geometric structure of the foam.

One subset of point patterns that has received considerable interest is hyperuni-

form patterns [91, 104, 101, 102, 103]. These patterns are characterized by growth
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in the number density slower than Rd, and an absence of infinite wavelength fluctua-

tions. One reason for the interest in this type of pattern is that it is conjectured that

all saturated, strictly jammed systems are hyperuniform [101]. Foams, as a highly

polydisperse jammed system, provide an interesting case. Because they are so poly-

disperse, some typical tests for hyperuniformity, such as the structure factor and

the two point correlation function - though they can give insight into the structure

of the foam - do not conclusively indicate whether the structure is hyperuniform.

Instead, measurement of the spectral density is necessary [101].

In this chapter we convert images of foam into point patterns two ways, the

centroids and the vertices. Using measurements based on the positional relation-

ships of these points, we gain insight into the structure of the scaling state of a

two dimensional foam. By measuring the spectral density, we attempt to determine

whether this system can be classified as hyperuniform.

3.2 Materials and Methods

The liquid foaming solution consists of 75% deionized water, 20% glycerin, and

5% Dawn Ultra Concentrated dish detergent, and has liquid-vapor surface tension

γ = 25 dynes/cm. This creates foams that are stable and long lived; film ruptures

were never observed. The sample cell consists of a circular chamber made from

clear 1.91 cm thick acrylic plates separated by a H = 3.2 mm gap and sealed with
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two concentric rubber O-rings, the inner of which is 23 cm in diameter. The gap

thickness and seal are maintained by a bolt circle and metal spacers, all between the

two O-rings. To create the foam, the chamber is first completely filled with solution.

Pure nitrogen is then pumped into the chamber until only the desired amount of

liquid remains. This is accomplished via two valved ports attached on opposite sides

of the bottom plate. The chamber is then shaken vigorously until it is completely

filled by a uniform opaque foam with sub-millimeter size bubbles, smaller than the

gap between the plates. The initial foam is thus three dimensional. Immediately

after production it is placed 20 cm away from a Vista Point A lightbox, and 2.5 m

from a Nikon D80 camera with a Nikkor AF-S 300 mm 1:2.8 D lens. It is then left

undisturbed to coarsen into a two-dimensional foam consisting of a single layer of

bubbles with an average size greater than the gap, which typically requires two days.

The field of view thus encompasses up to a few hundred bubbles. Photographs are

taken at regular intervals for a few days up to two weeks. This process is repeated

for foams of different liquid content, although we find that the scaling state does

not depend on liquid content [77] so results are averaged over all photographs.

The images are cropped to a 12.7 × 12.7cm2 region of interest. These images

are thresholded and skeletonized, and the bubble centroids and the positions of the

vertices are recorded. The centroids and the vertices represent two point patterns for

each image. The sample point patterns for a single image can be seen in Fig. 3.1.

For comparison a Poisson point process with density equal to the density of the

vertices is also shown.
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Figure 3.1: Part a) shows a sample raw image. Part b) shows the pattern of centroids for the
sample image. Part c) shows the pattern of the vertices from the same image. Part d) shows a
Poisson point pattern with density equal to the density of the vertices.
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All measurements are averaged over 59 configurations. The number of bubbles

in the configurations ranges from 450 to 50.

3.3 Structure Measurements

Measurements of foam structure in the past have focused on measurement of in-

dividual bubble statistics. Another means of describing the scaling state of the

foam is to investigate quantities that are based on the positional relationships of

the bubbles in the foam. There are many quantities that are used to describe point

patterns, and we can use these same quantities to describe our foam.

The first step is to reduce our photograph of foam to a point pattern. We do this

in two ways. The first is to isolate the centroids of the bubbles, and the other is to

consider the vertices of the bubbles. These patterns can be seen for a sample image

in Fig. 3.1. The first thing we want to do for our foam point patterns is to define a

length scale for each photograph so that we can compare foams at different times

and liquid contents. For each particle in our pattern, we calculate the distance to its

nearest neighbor, r. We then can calculate the mean for all points in our pattern,

and this is the length scale, λ. There is a different λ for each photograph, and for a

given photograph there are separate λs for the centroids and the vertices. We can

also look at the the distribution of this quantity for our patterns. Fig. 3.2a shows the

distribution of nearest neighbor distributions for the centroids, combined over all
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times and liquid contents, Fig. 3.2b shows the vertices, also combined for all times

and liquid contents, and Fig. 3.2c shows an average of 10 Poisson distributions. The

rs for the centroids and vertices are normalized by a length scale, 〈A1/24/π〉, where

A is the bubble area, for each photograph, so that the patterns at different times,

which have different densities, can be combined.

In the case of the Poisson distribution, there is an expected form for this curve.

The probability density of the nearest neighbor distribution for a Poisson distribu-

tion is

H(r) = 2ρπre−ρπr
2

(3.3.1)

where ρ is the number density of the point pattern, r is the nearest neighbor dis-

tance, and λ = 〈r〉. We see that our Poisson distribution in Fig. 3.2c fits this form.

The vertex distribution, while skewed, is not as skewed as the Poisson distribu-

tion. The expected Poisson form is too high for small r, and is peaked lower than

the data. The vertex distribution seems better fit by the form (π1/2/4)a3/2r2e−r
2/a

where a is a fitting parameter we measure to be 0.08. The centroid distribution,

unlike both the vertices and the Poisson distribution, is highly symmetric. It is well

fit to a Gaussian form.

Another quantity we can look at is the structure factor. We calculate the struc-
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Figure 3.2: Distribution of the distance of the nearest neighbor of a point. Part a) shows the
distribution for the centroids combined for all times and liquid contents, normalized by 〈A1/24/π〉
where A is the bubble area. The black line is a Gaussian fit to the data, and describes the data
reasonably well. Part b) is the distribution for the vertices combined for all times and liquid
contents, normalized by the same factor as part a). We see that the distribution for the vertices is

much more skewed than for the centroids. We fit the distribution to the form (π1/2/4)a3/2r2e−r2/a

where a is a fitting parameter we measure to be 0.08. The bottom plot is the distribution for the
average of 10 Poisson distributions. Here we normalize r by the average value, λ. We see that the
data is fit well by the expected form of Eq. (3.3.1).
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ture factor directly from the point pattern using the equation

S(k) =
1

N
|
N∑
j=1

eik·rj | (3.3.2)

where N is the total number of points. For our plots we average over all |k| = k.

The structure factor does not depend on time or liquid content after we normalize

by λ, so we average over all times and liquid contents. We see in Fig. 3.3 that the

curves for the vertices and the Poisson distribution have the same form and are

constant. We expect the infinite system Poisson distribution to have a constant

value of S(k) = 1. That indicates that they are both essentially random and

without structure. However, the curve for the centroids has a noticeable dip for

small k. This is consistent with what we see in the distributions. While the Poisson

distribution has no minimum neighbor distance, and the vertex distribution also

has very close points, the distribution for centroids is much more symmetrical, and

has no values very close to zero. This could be due to an effective minimum bubble

size set by the area at which bubbles become 3D.

Additionally, there are additional topological and size-topology correlations that

are obeyed by foams. There is a relationship, known as the Aboav-Weaire law, that

says that bubbles with many sides are likely to have neighbors with few sides and

vice versa [100]. Also, on average, bubbles with more sides have a larger area [77].

Combining these two properties of the scaling state of two dimensional foams means

that large bubbles are more likely to be next to small bubbles and vice versa. This
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may also be a source of structure in the centroid pattern.

Another measurement is the pair correlation function, g(r). This quantity mea-

sures the likelihood of two randomly chosen points having the given separation. As

with the structure factor, we see that the curves for the vertices and for the Pois-

son distribution are very similar and display no structure. We expect the infinite

system Poisson distribution to have a constant value g(r) = 1. Again the curve for

the centroids is different, with a clear peak and a decrease for small r. This is again

consistent with a minimum bubble size and a preference for large bubbles and small

bubbles to be near each other.

A third measurement that we looked at is the number variance, σ2. We take

10000 circles of radius R and place them randomly on our image, and find the

variance in the number of points that fall inside each circle. In the case of a random

distribution, this quantity will just grow with the area of the circle. To make

this more visible, we normalize by R2. The curve for the Poisson distribution is

normalized by its number density, so that it should have a constant value of 1. The

curves for the centroids and the vertices are combined from photographs with very

different densities, so they are not normalized in this way. We see that as before,

the curves for the vertices and the Poisson distribution are similar. They are also

flat, indicating that in both cases the variance grows as R2, as we expect for a

random distribution. In contrast, the curve for the centroids has a minimum. This

is consistent with the results for S(k) and g(r).
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Figure 3.3: Structure factor for the centroids, vertices, and Poisson distribution plotted against
the dimensionless wavenumber, kλ. The data for the centroids and vertices are averaged over
all times and liquid contents. The Poisson curve is averaged over 10 Poisson distributions. The
infinite system Poisson distribution should have a constant value of S(k) = 1. λ is the mean of the
nearest neighbor distance distribution. The equation for the calculation of the structure factor is
shown in Eq. (3.3.2).
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Figure 3.4: Pair correlation function for the centroids, vertices, and Poisson distribution plotted
against the dimensionless radial distance, r/λ. The data for the centroids and vertices are averaged
over all times and liquid contents. The Poisson curve is averaged over 10 Poisson distributions.
The infinite system Poisson distribution should have a constant value of g(r) = 1 λ is the mean
of the nearest neighbor distance distribution.
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Figure 3.5: Normalized variance for the centroids, vertices, and Poisson distribution plotted against
the dimensionless radius R/λ. The data for the centroids and vertices are averaged over all
times and liquid contents To calculate the variance, a circle of radius R is randomly placed on
a photograph and the number of points falling within the circle are counted. This process is
repeated 10000 times for each R and the variance, σ2 is calculated. λ is the mean of the nearest
neighbor distance distribution. The curve for the Poisson distribution is normalized by its number
density, so that it should have a constant value of 1. The curves for the centroids and vertices are
combined from many photographs of varying density, so they are not normalized in this way.
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3.4 Hyperuniformity

There is a class of point patterns, known as hyperuniform patterns, that are char-

acterized by an absence of infinite-wavelength fluctuations [91]. To our knowledge,

there has been no study of whether the scaling state of a two-dimensional foam is

hyperuniform. To determine whether a given point pattern is hyperuniform, the

kinds of measurements we made in the previous section can all be useful. However,

for highly polydisperse systems such as our foam, these measurements are incon-

clusive. To determine whether the pattern is hyperuniform, it is necessary to look

at the spectral density [101].

To begin, we convert our centroid point pattern into a pattern of circles. To

do this, we begin with our point pattern, and grow the circles until each one just

touches the boundary of its bubble. This pattern, along with the bubble boundaries,

can be seen for a sample configuration in Fig. 3.6. To calculate the spectral density,

we subtract off the average value of the image, then take the absolute value of the

Fourier transform and average over k. In order to average over all configurations,

we normalize by the mean nearest neighbor distance, λ. The results for all centroid

configurations are shown in Fig. 3.7.

The signature of hyperuniformity is for the spectral density to go to zero as k goes

to zero. The small k limit corresponds to the large wavelength fluctuations in the

system, so the measurements in this regime are limited by the system size. Because
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the average bubble size increases with time, the smallest k points on the curve

correspond to only a small number of configurations. They are therefore quite noisy,

and it is not possible to determine whether the curve is going to zero. Therefore,

we cannot conclude whether the pattern of foam centroids is hyperuniform.

3.5 Conclusion

We converted our images of foam into point patterns in two ways, the centroids

and the vertices. Using measurements of g(r), S(k), and σ2(R), we were able to

get structural information about these point patterns. We found that the results

for the point pattern of vertices was largely indistinguishable from a random Pois-

son process. However, the results for the centroids had clear structure, visible in

our measurements of the structure factor, the pair correlation function, and the

normalized number variance. These results were consistent with each other. We

believe this structure is due to an effective minimum bubble size set by the area

at which bubbles become 3D, and by a preference for large bubbles to be next to

small bubbles and vice versa. It is conjectured that all saturated, strictly jammed

particle packings are hyperuniform [101]. Foams are a case of a highly polydisperse

jammed system. We measured the spectral density of the centroid pattern, but

the results were not conclusive to determine whether the pattern is hyperuniform.

Measurements of systems with more bubbles is needed to accurately determine the

small k behavior of the spectral density.
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Figure 3.6: Circle pattern for centroids of a sample pattern used in the calculation of spectral
density. The raw image corresponding to this pattern can be seen in Fig. 3.1. The boundaries of
the bubbles are also shown.
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Figure 3.7: Spectral density averaged over all centroid configurations plotted against the dimen-
sionless wavenumber, kλ.
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Chapter 4

Coarsening of Two Dimensional

Foam on a Dome

4.1 Introduction

Coarsening is a process in foams by which there is diffusion of gas across films such

that some bubbles grow and other bubbles shrink. This progresses in such a way

that the average bubble area increases over time [100]. Coarsening is not limited

to foams, and is also relevant in other systems involving domain growth [29, 82].

For an ideal dry two dimensional foam, John von Neumann showed that the rate of
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change of area of a bubble in a two dimensional foam is [67]:

dA

dt
= K0(n− 6), (4.1.1)

where n is the number of sides of a bubble, and K0 is a constant of proportionality.

Remarkably, the shape of the bubble, its edge lengths, and its set of neighbors, all

do not matter.

In 1992 Avron and Levine [1] generalized von Neumann’s law to predict the rate

of area change for bubbles coarsening on a curved surface. The essential ingredient

is that the sum of turning angles around each bubble is no longer 2π, as in flat space,

but rather depends on the integral of Gaussian curvature, κG, over the bubble area.

This modifies the von Neumann law to:

dA

dt
= K0

[
(n− 6) +

3

π

∫
κGdA

]
. (4.1.2)

In the case of a surface of constant positive curvature, such as a dome of radius R,

this reduces to

dA

dt
= K0

[
(n− 6) +

3A

πR2

]
(4.1.3)

The rate of change of bubble area thus depends on the number of sides and the area

of the bubble.

There have been numerous theoretical and simulation studies of coarsening for

foams in two dimensional flat space [2, 43, 26, 34, 80, 21, 83, 66, 78], but to date
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we are aware of only one simulation that includes the effect of substrate curvature

[70]. There, the authors used a modified Potts model for a two dimensional foam

coarsening on spheres, toroids, and pseudospheres. For spheres, they focus on how

the area distribution and average area change over time, and find that at late times

the dynamics are dominated by the appearance of ‘singular bubbles’ much larger

than the average that quickly grow to cover the sphere. There is minimal discussion

of the coarsening of individual bubbles, and no discussion of side number or other

distributions of the system.

While the coarsening of foams in two dimensional flat space has been well-

measured [27, 84, 81, 65, 3, 45, 75, 74, 77, 83, 39], we are unaware of any experiments

to test the modified law of Avron and Levine for foam in two dimensional curved

space. However metallurgical grain growth on curved substrates has been reported.

In Ref. [50], the results are said to be preliminary and no growth rate data are shown.

In Ref. [69], the deviation from the coarsening rate for flat space is masked by noise,

but statistical analysis is reported to demonstrate consistency with Eq. (4.1.2). In

this chapter we use a hemispheric cell to create a curved two dimensional foam. We

use image analysis to track individual bubbles and measure bubble dynamics such

as coarsening rate. We also measure bubble statistics, such as the distribution of

number of sides and compare this to results from a flat cell. Our image quality and

analysis methods are sufficient to demonstrate directly, for six sided bubbles, that

the growth rates are different from flat space and are consistent with Avron and

Levine [1].
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4.2 Materials and Methods

To measure coarsening rates of two dimensional foams on a curved surface, we

constructed a cell from two hemispherical polycarbonate domes. The smaller dome

has an outer diameter of 12.5 cm, and the larger dome has an inner diameter of

13.3 cm, creating a 4 mm gap. The smaller dome was glued to a flat acrylic plate.

The larger dome was placed over the smaller dome and separated from the plate by

an O-ring of diameter 0.25 inches. We were careful to ensure that the two domes

were aligned concentrically. The upper dome was then screwed to the plate to create

a sealed chamber of constant curvature.

The solution we used to create our foam was a liquid consisting of 75% deionized

water, 20% glycerin, and 5% Dawn Ultra Concentrated dishwashing liquid. This

created a foam that was stable and generally lasted many days. The foam was

prepared by putting 35 mL of solution into the chamber (this fills the dome to about

2 cm above the O-ring) and shaking it until a uniform opaque foam was created,

with an average bubble size much less than the separation of the domes. The

chamber was then left to coarsen until a single layer of bubbles remained between

the two domes. This took about 24 hours. Two dimensional coarsening could then

be observed for the next 2-4 days. Film ruptures were sometimes observed at the

end of this period. Bubble statistics were not taken after any ruptures, though

single bubble dynamics were still considered.
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To photograph the foam, the chamber was placed 65 cm above a Vista Point A

lightbox, which provided a spatially and temporally uniform light source. A Nikon

D80 camera with a Nikkor AF-S 300 mm 1:2.8 D lens was mounted 2.5 m above

the chamber. The camera was controlled by a computer to take pictures every two

minutes. The apparatus was left to collect pictures, for a period ranging from a few

days up to a week. This process was repeated three times to build up statistics. A

sample photograph can be seen in Fig. 4.1. Note in this photograph that, especially

towards the edge, it is possible to see both the Plateau borders on the top dome, as

well as the Plateau borders on the bottom dome. This makes it difficult to identify

the correct boundaries of the cells. We address this issue as part of our image

analysis.

After we have taken a series of images of the dome, we perform analysis to get

out the true areas of the bubbles on the dome. Note that the images constitute an

orthographic projection of a sphere (or hemisphere) onto a plane, where the point

of projection is infinity. This projection converts the positions according to the

following equations [42]:

x = R cosϕ sinλ

y = R sinϕ

(4.2.1)

where R is the radius of the sphere, λ is the longitude, ϕ is the latitude, and the

center of the domes is defined as λ = 0, ϕ = 0. The first problem is that in a given

image, both the Plateau borders on the top and bottom domes are visible. In order

to isolate a set of Plateau borders so that the cells’ edges are defined correctly, we
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Figure 4.1: Sample photograph of a two dimensional foam, coarsening between nested polycar-
bonate hemispheres with a 4 mm gap. The scale bar is 1 cm.
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recognize that the image is projected in two ways. The Plateau borders on the

top dome are an orthographic projection of the foam using the radius of the top

dome to do the transformation, and the Plateau borders on the bottom dome are an

orthographic projection of the foam using the radius of the bottom dome; both are

combined into the same image. To undo this transformation, we take the inverse

of the transformation twice, once using the radius for the top dome and once using

the radius for the bottom dome. The resulting two images are thresholded and

dilated. The images are then multiplied. This kills the Plateau borders that do not

correspond to the transformation. That is, the Plateau borders from the bottom

dome that were transformed using the radius of the top dome are killed and vice

versa. The result is a binary image with the correct latitudes and longitudes of the

Plateau borders on the dome.

After we have accounted for the fact that the Plateau borders on both the inner

and outer domes are visible, we can then consider the areas of the individual bubbles.

The binary image with the correct latitudes and longitudes of the Plateau borders

has errors, but does well for a region of interest in the center. This resulting image,

however, does not preserve the areas of the cells. A simple projection that will

preserve areas is the Lambert cylindrical equal area projection. This projection is

defined by [42]:

x = Rλ

y = R sinϕ

(4.2.2)

where as before λ is the longitude and ϕ is the latitude. The R used here is
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Figure 4.2: Transformation of the photograph in Fig. 4.1 by the Lambert equal area projection
to get the true areas of the cells. There are errors in this result, but for a region in the center
typically about 4.5 × 4.5 cm2 it works well and the areas of these cells can be tracked. This image
is skeletonized before any actual areas are measured. The scale bar is 1 cm.
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the average of the two domes used. This produces an image with cells that have

distorted shapes, but have the same areas as the actual cells on the curved surface.

This allows us to track individual bubble areas over time. The result of this image

analysis can be seen in Fig. 4.2.

4.3 Bubble Dynamics

Using the method of finding the correct areas of individual bubbles described above,

it is possible to track the areas of individual bubbles over time. The method of

identifying the correct Plateau borders and finding the correct areas sometimes has

errors of failing to identify a Plateau border or adding an extra one, especially

farther from the center, where distortion is greater. It was possible to find bubbles,

especially near the center, that would be correctly identified for a significant length

of time. The viewing region where bubbles can be tracked is typically about 4.5×

4.5 cm2. It will not necessarily be possible to track all bubbles in this region, but it

is very rare for a bubble outside this region to be trackable. The projections were

compared to the original images, to ensure that the areas of the tracked bubbles

were correct. Images were taken at 200 minute intervals and analyzed to get the

correct bubble areas. Correctly identified bubbles were labeled and tracked over this

period. From this it was possible to get area versus time graphs for many bubbles.

We can now consider the form that the area versus time traces for the bubbles
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should take. Based on Avron and Levine’s correction to von Neumann’s law as seen

in Eq. (4.1.3), we expect these traces to be exponential. This differential equation

can be solved exactly and the result is shown below. Although we can get the exact

exponential form of the area versus time curve, the argument of the exponential,

3K0t/πR
2, is much less than one. This means that the traces are well described

using the linear term in the Taylor expansion, resulting in:

A =

[
Ao +

πR2

3
(n− 6)

(
1− e−

3Kot

πR2

)]
e

3Kot

πR2 (4.3.1)

= Ao +Kot

(
n− 6 +

3Ao
πR2

)(
1 +

3Kot

2πR2
+ . . .

)
(4.3.2)

Here A0 is the area of a bubble at time 0, and Eq. (4.3.2) is the Taylor expansion

in (K0t/R
2). Note that the standard von Neumann result, A = A0 +K0(n− 6)t, is

obtained in the limit R→∞.

Example data for the area versus time of three six-sided bubbles with different

initial areas are plotted in Fig. 4.3. In this plot the initial area of the bubble has

been subtracted off so that the traces are easily comparable. The lines are a linear

fit to the data, giving a constant growth rate dA/dt that is positive. It is possible

to fit the data to the full exponential form of Eq. (4.3.1), but the additional terms

in the expansion from Eq. (4.3.2) are much, much smaller than the linear term, so

it is sufficient to fit to an ordinary line. The key feature in Fig. 4.3 is that the six-

sided bubbles grow, and that the larger ones grow faster. This agrees with Avron

and Levine and contrast strongly with the case of a flat-sided cell, where six-sided
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Figure 4.4: Growth rate of the bubble are versus the expected factor from Avron and Levine,
Eq.(4.1.3), where A is the bubble area and R is the radius of the dome. Error bars represent the
uncertainty in slopes of linear fits to bubble area versus time. The solid line is a proportionality
fit to all data, with slope K0 = 0.000176± 0.000003 cm2/min. Inset: Blowup of the data for the
n = 6-sided bubbles; growth rates for the three representative bubbles in Fig. 4.3 are circled.

bubbles neither grow nor shrink according to the usual von Neumann equation.

In particular, in our recent experiments on the coarsening of bubbles in a flat cell

[77], where the liquid fraction was varied, the six-sided bubbles all had growth rates

scattered around 0 to within statistical uncertainty.

We now measure the growth rate for all bubbles, as illustrated in Fig. 4.3, and

we compare it to the expected relationship from Avron and Levine’s modification

to von Neumann’s law. This is plotted in Fig. 4.4, where the y-axis is the coars-

ening rate, and the x-axis is the expected proportionality for a dome of constant

curvature, given by Eq. (4.1.3). Each point represents a single bubble. The line
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is a proportionality, with slope K0, which is the only fitting parameter. The inset

is a blowup showing all the six-sided bubbles and highlighting the three bubbles

featured in Fig. 4.3. For six-sided bubbles the growth rates are all positive, except

for one or two outliers. There is notable scatter, but the evident trend is that dA/dt

increases with bubble size.

Another way to compare growth rate data to Avron and Levine is to plot the

coarsening rate against the area, as shown in Fig. 4.5. There each point repre-

sents a single bubble, color coded by the number of sides. The horizontal lines

are the expected relationship from the unmodified von Neumann’s law, as seen in

Eq. (4.1.1), using the constant of proportionality K0 as found in Fig. 4.4. The solid

lines are the expected relationship from the modified von Neumann’s law, as shown

in Eq. (4.1.3), again using the same value of K0. We see that the data are generally

consistent with the predicted modification. This is most notable in the six sided

bubbles, which are virtually all growing. The rate of area change also appears to

increase with area for n = 7, but is masked by noise for other values of n.

4.4 Bubble Distributions

With our system it was also possible to measure distributions such as p(n), the

probability that a bubble has n sides, and m(n), the average number of sides of the

neighbors of an n sided bubble. Unlike the case of the flat cell, we do not expect to
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reach a scaling state where these statistical quantities remain constant over time.

Because the growth rate of a bubble grows with its area, we expect at long times to

have large bubbles grow rapidly to dominate the system, and this will cause bubble

statistics and distributions to change with time. Our system is at much earlier

times, where the modification to a bubble’s growth rate due to its area is small.

This modification still should have some impact and we do indeed find that our

statistics deviate from the ordinary scaling state observed in the flat cell.

To measure our statistics, an 8 cm × 8 cm region of interest was defined in the

center of the dome, and the number of sides of all bubbles completely or partially

within this region was recorded by hand. This was done for photographs at 400

minute intervals from the earliest photograph of a two dimensional foam to the first

occurrence of a rupture, for a total period of typically 48 hours. This was repeated

for three runs. These data were used to produce a distribution of the number of

sides, which can be seen in Fig. 4.6. Also shown for comparison is the distribution

found for a flat two dimensional foam in Ref. [77]. We see that as compared to the

flat cell, the dome has a surplus of six sided bubbles, and a deficit of 3, 4, and 5

sided bubbles.

It is also possible to describe these distributions by their average, 〈n〉 = 6.06±0.1,

and by their variance, µ2 =
∑
p(n)(n−6)2. We measure that µ2 = 1.30±0.05. This

value is lower than was measured for the flat cell, µ2 = 1.56± 0.02 [77], indicating

that the width of the distribution is narrower.
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From this same data we can measure m(n), the average number of sides of the

neighbors of an n sided bubble. We expect m(n) to be related to n by the Aboav-

Weaire law, which predicts m(n) = 6 − a + [(6a − µ2)/n]. In this equation a is

a fitting parameter which is usually found to be around 1. Our measurements for

m(n) can be seen in Fig. 4.7 along with the measurements of m(n) for a flat cell.

Fits to the Aboav-Weaire law are also shown, using the relevant value for µ2 in each

case. We find a = 1.1 ± 0.08 for the flat cell and a = 0.96 ± 0.09 for the dome.

We see that in both cases there appears to be more curvature in the data than

predicted. The data for the flat cell also seems to fit the form better than for the

dome.

4.5 Conclusion

In this experiment we were able to measure both bubble statistics and bubble

dynamics of a foam on a curved two dimensional surface of radius R. For bubble

statistics we find that bubbles with few sides are under-represented as compared

to a two dimensional foam in flat space. We also find that the Aboav-Weaire law

generally holds, though not quite as well for the dome as for the flat cell. For bubble

growth rates, in general, it is difficult to observe the effect of the term added to

von Neumann’s law by Avron and Levine to account for substrate curvature. Our

maximum bubble size is around Amax = 3.5 cm2, as compared to R2 = 41.6 cm2,

so for all our bubbles 3A/(πR2) � |n − 6| holds except for n = 6. This is why
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all the data in Fig. 4.4 lie at x values near (n − 6). Even if we managed to get a

single bubble of 20 cm2 to completely fill our viewing area, the rate of area change

would be dA/dt = K0[(n − 6) + 0.46], so that a seven sided bubble would have

less than a 50% increase in growth rate. For this reason the clearest signal we see

of this effect is that six sided bubbles grow systematically and do so more rapidly

for larger bubbles. The coarsening data as a whole are consistent with Avron and

Levine’s modification to von Neumann’s law to account for coarsening on a curved

surface.

4.6 Appendix: Details of Image Analysis

To begin, we do as described in the text and convert the image from an orthographic

projection to an equirectangular projection using both the radius of the upper

and lower dome. We then threshold both images. The threshold value is chosen

manually. The same value is used for all images in a single run, although the value

may be different between runs. The thresholded images are dilated and multiplied

to isolate the correct Plateau borders. The resulting binary image is filtered to

remove small particles. The cutoff is much smaller than the smallest bubble. This

helps remove particles caused by smudges or dirt on the apparatus or lens. The

image is then dilated again and converted to the Lambert equal area projection.

The image is then skeletonized. The area of the bubbles are recorded. The number

of sides, n, of the bubbles are determined by hand.
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Chapter 5

Structure and Coarsening of the

Surface of a 3D Foam

5.1 Introduction

The structure and coarsening of three dimensional foams is a topic that has long

been of interest [100]. However, characterizing the microstructure in the bulk is

difficult task, and generally involves the use of sophisticated techniques beyond di-

rect visual observation [59]. This includes magnetic resonance imaging [32], optical

tomography [63, 20], and x-ray tomography [47, 49, 60]. Foam microstructure is

further difficult to measure because it changes with time. Even if drainage and

film ruptures are prevented, pressure differences between bubbles result in gas dif-
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fusion across films, such that some bubbles grow and others shrink. This coarsening

process is not limited to foams and is observed in other systems as well [29, 82].

There have been measurements of coarsening in three dimensional foams using light

scattering [15, 16, 17], but such measurements involve the average of the system

as a whole, and cannot probe the individual bubble level. There have also been

measurements using tomography [63, 46] and NMR [32], but these generally involve

few bubbles or wet foams. For the case of ideal dry three dimensional foams, there

is an exact theoretical solution for the growth rate of an individual bubble with n

edges, which takes the form [54]

dV

dt
= K

(
n∑
i=1

ei − 6L

)
(5.1.1)

where K is a constant of proportionality, ei is the length of edge i, and L is a

quantity called the ‘mean length’ that depends on the size and shape of the bubble.

NMR [32] and tomography [63, 46] have been used to probe coarsening, but contact

has not yet been made with Eq (5.1.1).

Much research on coarsening in foams has been done for two dimensional foams,

where there is no difficulty in imaging the full microstructure. This includes direct

measurements of bubbles compressed between parallel plates [27, 28, 84, 81, 83, 39,

77], soap froths with different boundary conditions [45, 75, 74], and experiments on

lipid monolayers [86, 3]. There have also been simulations of two dimensional foams

[43, 26, 34, 80, 66, 78, 23]. These foams are simpler not only because of greater ease
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of measurement, but also due to simpler geometric considerations. In particular,

the coarsening rate of an individual bubble depends only on its number n of sides

according to the celebrated von Neumann’s law [67]:

dA

dt
= K(n− 6) (5.1.2)

where K is a constant of proportionality.

The surface of a three dimensional foam is where two and three dimensions meet.

When a three dimensional foam is in contact with a flat two dimensional surface,

the films meet the surface at an angle of π/2, and the resulting network of surface

Plateau borders meet at 120◦ at three-fold vertices. [55, 56]. In this way it looks

like a two dimensional foam. Here, we are interested in how this ‘surface foam’

differs from a truly two dimensional foam.

Surface foams have been of previous interest, mostly as a way of connecting

to the properties of the larger three dimensional foam. This includes experiments

on the radial distribution of very wet foams with nearly spherical bubbles [9, 6,

95], experiments on the surface of continuously bubbled foams [40, 19], work on

the effect of liquid fraction [25], and investigation of the optical properties of the

surface of a foam [94]. There has also been theoretical work on the conversion of

surface measurements to bulk measurements [95, 96, 7], as well as Surface Evolver

simulation comparisons of surface and bulk properties for very dry foams [97, 98].
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If left to coarsen, both two- and three-dimensional foams are believed to reach

a self-similar scaling state where, apart from an overall scale factor, statistical dis-

tributions of bubble size, shape, and topology are independent of time. Therefore

we expect that surface foams will also reach a scaling state - though with differ-

ent statistics from a truly two-dimensional foam. In part this is because boundary

bubbles coarsen at a different rate than bulk bubbles. In two dimensions, the von

Neumann argument can be extended to boundary bubbles by summing the diffusive

flux across interior films and using the fact that films terminate at the boundary at

right angles [34, 22]. For the case of a flat boundary the result is:

dA

dt
= K(n− 5) (5.1.3)

Thus, coarsening still only depends on the number of sides, but now 5 sided bubbles

instead of shrinking are stationary and 6 sided bubbles grow. We have similarly

calculated the growth rate for a three-dimensional bubble in contact with a flat

boundary, using the same geometric method of MacPherson and Srolovitz [54]. For

a planar boundary we find:

dV

dt
= K

[ ∑
interior

ei +

(
3

2

∑
boundary

ei

)
− 6L

]
(5.1.4)

This is similar to Eq. (5.1.1), but now the contribution from the edge length in

contact with the boundary is different from the edge length in the bulk. This

describes the growth rate of the entire bubble, and because diffusion can occur in
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three dimensions, does not determine the growth rate of the face in contact with

the boundary.

Bubble dynamics also include topological changes of the foam. These topological

changes come in two types: T1 processes, which do not change the total number of

bubbles, and T2 processes, which involve the creation or disappearance of a bubble.

In both surface foams and two dimensional foams, T1 processes and the subset of T2

processes that involve the disappearance of a bubble will look the same. However,

in two dimensional foams, the creation of a bubble is not possible. In surface foams,

the movement of a bulk bubble to the surface will result in the creation of a bubble.

In general it is difficult to examine the surface of a three dimensional dry foam

because the Plateau borders in contact with the surface are not the only ones visible.

It is also possible to see all the interior Plateau borders, and properly distinguish-

ing the only those at the surface is difficult. We have developed a novel imaging

technique based on total internal reflection that allows us to isolate the surface of a

three dimensional foam. From these nice images, we use image analysis to measure

the properties of individual bubbles. We can also track individual bubbles over

time.

Because the surface foam obeys Plateau’s laws, we use the techniques developed

to describe two dimensional foams to describe these surface foams. We also char-

acterize the scaling state of a surface foam and compare this to the scaling state

reached by two dimensional foams. We measure dynamics of the surface foam,
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including growth rates of individual bubbles.

5.2 Materials and Methods

Our apparatus can be seen in Fig. 5.1. Our foam sample is inside a plastic bottle

with a square cross section of 9 cm× 9 cm and a height of 14 cm. All areas of the

bottle were masked with electrical tape except for a single flat surface of interest.

This bottle was completely submerged in a tank of water. A Vista Point A lightbox

was placed to the side of the square tank and provided steady, uniform illumination.

A Nikon D80 camera with an AF-S Nikkor 55-200 mm 1.4-5.6G ED lens was pointed

at the face of the tank 90◦ from the lightbox. The bottle was placed so that the

surface of interest was at an angle relative to the lightbox and the camera.

To create our foam, we used a solution consisting of 75% deionized water, 20%

glycerin, and 5% Dawn ultra concentrated dish detergent. The resulting foam

was stable and long lived. Film ruptures were not observed in the course of our

experiment. To create our sample, 275 mL of this solution was put into our bottle,

which was then sealed and vigorously shaken until the bottle was filled with a

uniform opaque foam of sub-millimeter bubbles. This foam was left for two hours,

during which time it drained and coarsened into a dry, three dimensional foam,

ready for imaging.

Our setup allows us to utilize a novel imaging method to isolate the surface of
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the foam. Because the bottle is completely submerged underwater, light from the

lightbox can be totally internally reflected. The angle of the bottle is chosen so

that if the light reaches a point on the surface of the bottle that has the interior

of an air bubble on the other side, it will be totally internally reflected. If the

light reaches a Plateau border, there will not be reflection, and the light will be

scattered. This results in an image that has bright cells and dark Plateau borders.

A sample raw image can be seen in Fig. 5.2a. Because this method is based on

reflection, only the surface of the foam in contact with the boundary is imaged.

This technique eliminates the problems of distinguishing internal Plateau borders

from surface Plateau borders.

Note that the raw image in Fig. 5.2a is distorted, since the bottle is at an angle,

and this must be corrected. Fiducial marks were made at the corners to define a

rectangular region with right angle corners. Using the position of these marks, it

was possible to transform the image to a direct perspective. A sample image of the

surface foam after this transformation can be seen in Fig. 5.2b. After this was done,

image analysis and thresholding and skeletonization were performed to identify the

cells, separated by skeletonized borders. The results of this image analysis can be

seen in Fig. 5.2c. From these images it was possible to extract relevant quantities for

the individual bubbles, such as area and number of sides. Only bubbles completely

within a region of interest that excluded edge bubbles were considered.
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Figure 5.1: A schematic diagram of a top down view of the imaging setup. The square bottle in
the center is filled with foam and submerged in a tank of water. On the right of the diagram is a
lightbox that provides constant uniform illumination. At the bottom of the diagram is a camera
to image the surface of interest. Not to scale.
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Figure 5.2: Part a) shows a raw image of the region of interest of the surface foam. Part b) shows
an image of the surface foam after it has been transformed to correct for distortion from the angle
of the bottle and perspective. Part c) shows the reconstructed borders of the foam.

5.3 Bubble Distributions

5.3.1 Bubble Side Distributions

The first relevant quantity to consider for a foam is the distribution of the number

of sides, p(n). This is the probability that a randomly selected bubble from the

foam will have n sides. The probabilities for four different n, for an individual run,

are shown versus time in Fig. 5.3. Here we see that there does not appear to be

any systematic change in the probabilities over time. This is consistent with the

foam being in a scaling state. Immediately after shaking our foam begins with

surface bubbles that are typically about 0.5 mm in diameter. By the time the foam

has coarsened for two hours when data taking begins, the average surface bubble

diameter has increased by a factor of 10, so it is not surprising that the foam is in

a scaling state from the earliest times we consider.
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The distribution of number of sides is also the same for the 4 different runs.

This allows us to average the distribution, p(n), over all times and for all runs. The

overall number of sides distribution is shown in Fig. 5.4a. Also shown for comparison

is the number of sides distribution for an ordinary two dimensional foam. We see

that there is a difference in the distributions. Even though the surface foam obeys

Plateau’s laws and looks in that way like a two dimensional foam, the different

dynamics lead to a different scaling state. We see that the distribution for the

surface foam is broader, with fewer five and six sided bubbles and more four sided

bubbles. This means that the surface foam has a higher variance, µ2 = 〈(n−〈n〉)2〉,

which we measure to be µ2 = 1.99 ± 0.04, as compared to the value measured for

the two dimensional foam, µ2 = 1.56± 0.02.

A related distribution that is less common is the area weighted number of sides

distribution, F (n). This quantity is defined in Ref. [77] as the probability that a

randomly selected point within the foam will fall inside an n sided bubble. When

calculating the growth rate of the average area for a two dimensional foam, the rate

depends on the quantity
∑

n nF (n). As with p(n), this distribution does not vary

with time, and so we can average over all times for all runs, and the results are

shown in Fig. 5.4b. Also shown for comparison is the distribution of F (n) for an

ordinary two dimensional foam. This distribution is not as clearly distinct from the

ordinary two dimensional case as for p(n).

We can also look at another quantity that has been of interest, m(n), the average
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Figure 5.3: Side number distribution, p(n), versus time for 4, 5, 6, and 7 sided bubbles for a single
run.

number of sides of an n sided bubble. As with the side number distribution, this

quantity does not change over time or for the different runs. This allows us to

average over all n sided bubbles for all times and for all runs. The results are shown

in Fig. 5.4c. There is a theoretical prediction for the shape of this relationship,

known as the Aboav-Weaire law. This law takes the form m(n) = (6− a) + (6a +

µ2)/n, where µ2 is the variance, and a is the only fitting parameter. We find

a = 1.16±0.07, which is within error of measurements for ordinary two dimensional

foams [8, 100, 77].
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Figure 5.4: a) Side number distribution, p(n), averaged over all times for all runs. Bubbles with
n < 3 or n > 10 were not observed. Total number of bubbles is 5966. Average number of sides is
〈n〉 = 5.83 ± 0.02. Data for the two dimensional foam is taken from Ref. [77]. b) Area weighted
side number distribution, F (n), averaged over all time for all runs. Area weighted average number
of sides is 〈〈n〉〉 = 6.6± 0.2 Data for the two dimensional foam is taken from Ref. [77]. c) m(n) is
the average number of sides of the neighbors of an n sided bubble. The data is averaged over all
times for all runs. The solid curve is the Aboav-Weaire law, m(n) = (6− a) + (6a+ µ2)/n, where
µ2 is the variance, 〈(n− 〈n〉)2〉, of the side distribution (for our system µ2 = 1.99± 0.04) and a is
the only fitting parameter, which we measure to be a = 1.16± 0.07. Data for the two dimensional
foam is taken from Ref. [77].
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5.3.2 Bubble Size Distributions

We also measure the area of each bubble, another basic quantity. Especially of

interest is the distribution of bubble areas for the foam. Although the average

area of the bubbles increases with time, if we divide out the average area, the

distribution of the resulting normalized area does not change with time, and is

the same for all runs. This is consistent with the foam being in a scaling state.

Therefore it is possible to average the normalized area distribution for all times and

for all runs. The cumulative distribution of bubble areas is shown in Fig. 5.5a. The

curve corresponding to an exponential distribution is shown for comparison as a

dotted line. We see that our data falls below the exponential curve for large A/〈A〉.

Our data is better fit by a compressed exponential, which is shown as a dotted line.

We see that the cumulative area distribution for the surface foam is largely similar

to the distribution for a two dimensional foam, but falls above the two dimensional

data for large A/〈A〉, although this deviation is within the error bars.

As with the area, we measure the perimeter of each bubble. We average the

normalized perimeter across all times and runs. The cumulative distribution of

perimeters can be seen in Fig. 5.5b. The normalized perimeter falls below the

exponential curve, and is well fit by a compressed exponential. The compressed

exponential shown for the perimeter distribution corresponds to the compressed

exponential for the area distribution, assuming that A ∝ P 2 with the same propor-

tionality constant for all bubbles. This form is the same as equations 7 and 8 in
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Ref. [77]. We see that the perimeter distribution for the surface foam falls on top

of the distribution for a two dimensional foam and does not show the deviation for

large bubbles seen in the area distribution.

5.3.3 Size-Topology

We have characterized the distribution of the number of sides and the area dis-

tribution, but it is also useful to look at quantities that depend on both these

measurements in different ways. One example is the average area of an n sided

bubble. This is a relationship that has been of interest in the past [8]. The first em-

pirical measurements were made by Lewis for epithelial cucumber cells, who found

a linear relationship of the form

〈An〉
〈A〉

= 1 + λ(n− 6) (5.3.1)

where λ is a parameter of the system [51, 52]. It can be shown that if 〈An〉/〈A〉 is

linear in n then this relationship must hold, but additional restraints are required to

prove that this relationship must be linear [73]. A related measurement that is also

of interest is the relationship between the average perimeter of an n sided bubble

and n. This analogous relationship is called Desch’s law or Feltham’s law, and is

of the same form as Lewis’ law with the area replaced by perimeter. Specifically, it

has the form

〈Pn〉
〈P 〉

= 1 + ν(n− 6) (5.3.2)
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Figure 5.5: a) Area distribution averaged over all times for all runs. b) Perimeter distribution
averaged over all times for all runs. The y-axis, 1 − CDF (CDF is the cumulative distribution
function), is the fraction of bubbles with normalized area greater than the x value. Dotted black
line is an exponential shown for comparison. Green dashed curve is fit to a compressed exponential.
The compressed exponential in part b) corresponds to the form in part a), assuming that A ∝ P 2

with the same proportionality constant for all bubbles. Data for the two dimensional foam is taken
from Ref. [77].
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where ν is a parameter of the system. It has been shown that if the average energy

of a cell is proportional to its perimeter, then the entropy is maximized if Desch’s

law is satisfied [72]. These laws continue to be of interest [88, 79, 14].

We measured A/〈A〉 for all bubbles and the results, for all times and all runs, are

shown versus side number in Fig. 5.6a. The grayscale corresponds to the probability

of finding a bubble with that number of sides and that normalized area for each

point. The average, 〈An〉/〈A〉, is shown as squares. Note that the distribution of

normalized areas around the average for a given n is not symmetric and, especially

for small n, is peaked near zero. A fit to Lewis’ law is shown as a solid line, and does

not match the data closely. This demonstrates that Lewis’ law is not an appropriate

fit for our data, which is fit better by a generic quadratic form, shown on the plot as

a dotted line. This result is in accordance with some simulations and experiments on

ordinary two dimensional foams [88, 14, 77]. We see that the values for the surface

foam are not significantly different from the two dimensional foam, although it looks

as though the two dimensional data may have slightly more curvature. Both cases

clearly deviate from Lewis’ law. This deviation from Lewis’ law is consistent with

our result that the area distribution deviates from an exponential [48].

We similarly measured the normalized perimeters, P/〈P 〉, for all bubbles, and

the results for all times and runs are shown in Fig. 5.6b. As in the plot for Lewis’

law, the grayscale corresponds to the probability of finding a bubble with a given

number of sides, n, and a given normalized perimeter. The average for each n,
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〈Pn〉/〈P 〉, is shown as squares on the plot. Note that the distributions about the

average are much more symmetrical than in the area case shown in Fig. 5.6a. The

fit to Desch’s law, shown as a solid line on the plot, is a good fit to the data. Desch’s

law is a better fit to our data than Lewis’s law. We see that the surface foam data,

while clearly linear, as is the data for the two dimensional foam. However, the slopes

of the lines in the two cases are different. The value of ν measured for the surface

foam in the fit to Eq. (5.3.2) is ν = 0.21 ± 0.01. This value is in the same general

range as measurements made for ordinary two dimensional foams [88, 14, 77].

5.3.4 Bubble Shape Distributions

There are many ways to characterize the shape of a bubble. Among the possible

shape parameters, there are two that have special physical significance with regards

to the coarsening process of wet two dimensional foams [77]. The first is circularity,

defined as

C =

(
1

n

n∑
i

1/Ri

)√
A/π, (5.3.3)

where A is the area and Ri is the radius of curvature for the ith side of an n-sided

bubble. The sign convention is such that Ri is positive for the bubble on the high-

pressure side of the film. This dimensionless number is 1 for a circle and 0 for any

shape made up of straight line segments. Note that the surface Plateau borders must

be circular arcs for C to be well defined, which in turn requires the curvature of the

films perpendicular to the surface to be constant. While the films must certainly
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Figure 5.6: a) Normalized area versus side number for all bubbles. Grayscale shows the probability
of finding a bubble with that side number and that area. Squares are the average normalized area
for a given n, 〈An〉/〈A〉. Solid line is a fit to Lewis’ law, 〈An〉/〈A〉 = nλ + (1 − 6λ). The fitted
value is λ = 0.39± 0.03. Dotted line is a fit to the proportionality 〈An〉/〈A〉 = kn2. Data for the
two dimensional foam is taken from Ref. [77]. b) Normalized perimeter versus side number for
all bubbles. Grayscale shows the probability of finding a bubble with that side number and that
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meet the boundary at π/2 it is not obvious that the curvature condition holds.

However, as a practical matter we find no obvious deviation of surface Plateau

borders from perfect circular arcs. The second is elongation, defined as

P/
√

4πA (5.3.4)

where P is the perimeter and A is the area. This dimensionless number is 1 for a

circle, and a large elongation would correspond to a shape far from a circle.

The distribution of circularities for all times and for all runs is shown in Fig. 5.7.

The grayscale corresponds to the probability of finding a bubble with that circularity

and that number of sides. The average circularity for each n is shown as squares.

For comparison, the circularity of an isotropic bubble is shown as a straight line. An

isotropic bubble is an n sided bubble with all sides the same length and having the

same curvature. We see that the circularity for two dimensional foams and surface

foams is very similar. Both are similar to the isotropic case, except for three sided

bubbles, which fall below the line.

The distribution of elongations, for all times and for all runs, is shown in Fig. 5.8.

The grayscale corresponds to the probability of finding a bubble with that elongation

and that number of sides. The average elongation for each n is shown as squares.

This average elongation does not depend on n. For comparison, the elongation of an

isotropic bubble is shown as a dashed line. We see that, unlike the circularity, the

values for isotropic bubbles are not close to the average value. The overall shape
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of the distribution is of a large peak, with a long tail and small secondary peak

(note that the probabilities are shown on a logarithmic scale). This long tail and

secondary peak increases the average elongation, but the mode, shown as circles

on the plot, show that the distribution is peaked near the value for an isotropic

bubble. Ordinary two dimensional foams have a distribution of elongations that

is much less broad. There is no tail of highly elongated bubbles. We see that

this tail for surface bubbles causes the average value to be far from the peak of

the distribution. Although the average elongation for the surface foam and the two

dimensional foam are far apart, the average of the surface foam is close to the peak of

the distribution for the surface foam. This suggests that most surface bubbles have

an elongation in a range similar to what we see for two dimensional foams, but in

surface foams there exists a tail of highly elongated bubbles not present in ordinary

two dimensional foams. The fact that the elongation distribution is different for

the surface foam and the two dimensional foam is consistent with the fact that the

area distribution for the surface foam deviates from the area distribution for the

two dimensional foam, but the perimeter distributions are the same in both cases.

5.4 Bubble Dynamics

All measurements discussed to this point have involved individual static photographs

and have not considered how the bubbles are changing over time. An initial clear

signal that the dynamics are different in the case of the surface foam is the creation

109



-2

-1

0

1

2

C
ir
c
u
la

ri
ty

12111098765432

n

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0 L
o
g

1
0 P

ro
b
a
b
ility

 Average

 2D Foam

 Isotropic
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of bubbles. This type of T2 process is not possible in two dimensional foams, but

in our surface foam we do observe the creation of bubbles, which can happen when

bulk bubbles move to the surface. The creation of bubbles occurred at a much lower

frequency than the disappearance of bubbles.

We are also able to track individual bubbles over time, and can measure how

bubble quantities change. In a sequence of 30 images, it is possible for us to measure

the area of a bubble at each time, and fit these curves to a line for each bubble. Only

bubbles that did not change n during this window were considered, so topological

changes were not an issue. The slope of the line is dA/dt. For area versus time

curves that were not linear, each linear region was considered separately. In this

way we can measure the coarsening rate of a large number of bubbles. In a two

dimensional foam, the coarsening rate of an individual bubble depends only on

the number of sides of that bubble, a surprising result known as von Neumann’s

law, shown in Eq. (5.1.2). In the case of our surface foam, we are only seeing

the individual faces of larger three dimensional bubbles, which can exchange gas

through diffusion not just with the bubbles we can see, but others in the bulk.

The exact equation for the growth rate of a three dimensional boundary bubble is

shown in Eq. (5.1.4). Additionally, the growth or shrinkage of bubble volume does

not necessarily correspond to the area change of a single film. The von Neumann

argument for two dimensional foams thus cannot be applied and the coarsening rate

of the two dimensional surface bubbles will not be expected to depend only on the

number of sides. We expect that in three dimensions larger bubbles and bubbles
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with more faces will be more likely to grow, so we expect some correlation between

number of sides and area and coarsening rate.

In Fig. 5.9 we plot area versus time curves for four different six sided bubbles.

In two dimensions, all six sided bubbles are stationary and neither grow nor shrink.

In the case of surface bubbles we see that six sided bubbles have a wide variety

of coarsening rates, including bubbles growing at a rate comparable to the average

rate for seven sided bubbles, and bubbles shrinking at a rate comparable to the

average growth rate for five sided bubbles. These area versus time curves are also

not linear, even though there are no topological changes during this time window.

The coarsening rate, dA/dt, for individual bubbles is plotted against number

of sides in Fig. 5.10a. In this we see that there is a large scatter for coarsening

rates of bubbles with the same number of sides, and a large overlap of bubbles

with different numbers of sides having the same coarsening rates. This is very

different from coarsening in a two dimensional foam, shown in Fig. 5.10b. For a

two dimensional foam, growth rates are tightly clustered around the average.

For the case of the surface foam, we expect the coarsening to be very complicated,

with gas diffusion possible between surface bubbles and bubbles in the bulk, as well

as a limited correlation between the change in bubble volume and the change in

area of a single face on the surface. Indeed, we see a wide range of growth rates

in the case of the surface foam. However, despite this wide variation for individual

bubbles, we see that on average bubbles with more sides grow faster. Remarkably,
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Figure 5.9: Area versus time curves for four different six sided bubbles. Initial area is subtracted
off for ease of comparison. Solid lines represent the average growth rates of n sided bubbles.

the average coarsening rate of n sided bubbles follows a proportionality like von

Neumann’s law. We measure a constant of proportionality of 2.2± 0.1 mm2/hour.

5.5 Conclusion

We measured distributions and dynamics of the two dimensional surface of a three

dimensional foam. A technique involving submerging the apparatus in water allowed

us to cleanly image the surface, and image analysis allowed us to process a large
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quantity of data and build good statistics.

Some measurements were very similar to the case for an ordinary two dimensional

foam. The number of sides distribution for the surface foam was slightly broader

than for the two dimensional case, but other topological measurements, such as

F (n) and m(n), were nearly indistinguishable. Likewise, the size distributions were

very close in both cases. There was a slight difference in the area distribution

for large A/〈A〉, and the perimeter distribution was the same in both cases. The

measurement of the shape parameter circularity was also the same for the surface

foam and the two dimensional foam.

The distribution of another shape parameter, elongation, was noticeably different

in the surface foam. Unlike the two dimensional foam, for the surface foam there

was a tail of large elongation bubbles. This resulted in the average elongation being

different for the two cases, although the distributions were peaked near the same

value.

The greatest difference between the surface foam and the two dimensional foam

was in the dynamics. Unlike the two dimensional foam, which obeys von Neumann’s

law, the surface foam had individual bubbles that coarsened at a wide variety of

rates. Additionally, we observed the creation of bubbles, a topological change that

is not possible for two dimensional foams. Despite the spread in growth rates for the

surface foam, von Neumann’s law held on average. This surprising result remains

to be explained.
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5.6 Appendix: Details of Image Analysis

The raw images collected in this experiment, while nicely isolating the surface, are

much lower contrast and noisier than for the standard two dimensional case. This

requires some initial processing before the images can be plugged into the kind of

programs used for the standard two dimensional foams. First we look at the separate

red, blue, and green channels. We saw that the red channel was much worse than

either the green or blue channels, which were similar in quality. We discard the red

channel. We then operate on the green and blue channels in parallel. The noise in

these channels is largely uncorrelated, so by operating on these channels separately,

then recombining them, we can eliminate most of this noise. We begin with a low

pass filter. We then run an edge finding algorithm and threshold the images. The

threshold is chosen manually. The threshold is kept the same for all images in a

single run, but may vary between runs. We then dilate the thresholded image and

correct for the perspective distortion as described in the next appendix. We then

skeletonize the image and filter out very small particles. This gets rid of particles

caused by smudges or dust on the bottle, tank, or lens. We then skeletonize the

image again, dilate and multiply the resulting images for both the blue and green

channels. We skeletonize again to get a result that nicely identifies the bubbles.

We then label each bubble so that the pixels of each bubble all share a unique pixel

value. Due to the skeletonization process, the boundary pixels touch exactly two

other boundary pixels, except for the vertices, which touch three. In this way we can
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identify the vertices. We then identify the three bubbles that each vertex touches,

and can rearrange this to see how many vertices each bubble has. This is the same

as n, the number of sides. We can get other information about the bubbles, such as

centroid position, area (just the number of pixels inside the bubble) and perimeter

(not just the number of edge pixels, but includes smoothing at the pixel level by a

built in LabVIEW algorithm).

In order to calculate the circularity, we fit the edges of each bubble to circles. To

do this, for every pair of bubbles we identify the edge between them by looking at

the boundary pixels that touch those two bubbles. We then take the two vertices

that correspond to that edge and the average of the three middle pixels. These

three points define a circle. The radius of this circle can be calculate for each edge,

and the circularity can be calculated in that way.

5.7 Appendix: Correction of Perspective

In the raw images we collected, the bottle is turned at an angle to the camera. We

must undo this distortion in order to correctly evaluate the areas and other statistics

of the bubbles. To aid in this, we made four fiducial marks that defined the corners

of a square on the flat face. Knowing that these marks defined the corners of a

square allowed us to determine the angle of the bottle and undo the perspective

distortion. If we define x and y as the co-ordinates in the plane of the photograph,
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and z as pointing into the photograph, our fiducial marks give us four ordered pairs,

(xi, yi), where i runs from 1 to 4, numbering the points counterclockwise beginning

with the upper left point. We will also consider (xc, yc), the center point of the

photograph. The bottle is arranged so that the left side of the bottle is nearest to

the camera.

The first step is to determine w, the width of the square. Because it is a square

we can just use the length of the (undistorted) left vertical side. This is just

w =
[
(x1 − x2)2 + (y1 − y2)2

]1/2
(5.7.1)

We know that the apparent distance between the left and right vertical sides in our

photograph is w cos θ, so we can get calculate θ as

θ = arccos

[
1

w

(
(x3 − xc)(y4 − y1)

(yc − y4)
+ (x4 − x1)

)]
(5.7.2)

Now that we have θ we can just use the perspective equation to correct for the

distortion. We make a grid of pixels with the correct dimensions for the flat face,

and for each point (x′, y′) in the grid, we use the equation to find the pixel (x, y)

from the original photograph that corresponds to it and put that pixel value into

our new grid. After this is done for all points, the new grid is the undistorted image.
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The equations to find the corresponding point from the original photograph are

x =
zy′ + ycx

′ sin θ

z + x′ sin θ
(5.7.3)

y = x′ cos θ +
(xc − x′ sin θ)x′ sin θ

z + x′ sin θ
(5.7.4)

where z = w sin θ is the distance in z separating the near and far sides of the square.
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Chapter 6

Optical Tomography of a Three

Dimensional Foam

6.1 Introduction

Three dimensional foams are much more common than two dimensional foams in

daily life, but the understanding of their structure and coarsening has long lagged

behind that of two dimensional foams. This is due in large part to the greater

theoretical complexity of the geometry in three dimensions, as well as the additional

experimental challenges of imaging these more complex structures.

As far as structure is concerned, one of the earliest experiments was by Matzke

[59], who created a monodisperse foam and painstakingly focused on each bubble,
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recording the number of faces and edges. In this way he calculated statistics for

O(103) bubbles. It was only much later that more practical methods of looking

at large numbers of bubbles were developed. Modern methods for looking at the

structure of three dimensional foams include: optical tomography [63, 20, 62], X-ray

tomography [47, 46, 49, 60, 12], magnetic resonance imaging [32], nuclear magnetic

resonance [85], and observation of surface bubbles [25, 35, 93, 24, 18]. These tech-

niques all have limitations. To date, optical tomography has only been able to

reconstruct small numbers of bubbles, and most other methods deal primarily with

wet foams, and are also often limited to small numbers of bubbles. Only in recent

X-ray tomography experiments has it been possible to reconstruct large numbers of

bubbles in a dry foam [49].

Foams are not static, but evolve over time through a process known as coarsening

[100]. There is gas diffusion between bubbles so that some bubbles grow and other

bubbles shrink. Over time the average bubble volume increases. This process is

also present in two dimensional foams, and in that case coarsening is described

by the remarkable result known as von Neumann’s law. This law states that for

an ideal dry foam the growth rate of an individual bubble depends only on its

number of sides. There have been numerous attempts to extend this law to three

dimensions, most of them trying to find some analogue that depends only on the

number of faces, or some other topological quantity [36, 11, 37, 30]. There have

also been simulations of coarsening in three dimensions, including Monte Carlo [53],

Potts model [90], and Surface Evolver [64, 61, 44, 41, 12] simulations. All of these
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models were approximations. In 2007, MacPherson and Srolovitz [54] found an

exact solution for coarsening in three (and higher) dimensions. Their law takes the

form

dV

dt
= K

(
n∑
i=1

ei − L

)
(6.1.1)

where K is a constant of proportionality which is proportional to the film tension,

the solubility and diffusivity of the gas in the liquid, and inversely proportional to

the film thickness, ei is the length of edge i, and L is a quantity they call the ‘mean

length’, which is related to the size of the bubble. In three dimensions, coarsening

of an individual bubble depends not only on topology, but also on the size and

shape of a bubble. There have been experiments on coarsening in three dimensions

[63, 15, 16, 17, 38, 94, 46], but resolution is not good enough to directly apply

Eq. (6.1.1).

In this chapter we develop a method of optical tomography that can produce

reconstructed slices of dry foams at a wide range of bubble sizes. This may be useful

in the characterization of bubble statistics and coarsening in three dimensional

foams.

6.2 Materials and Methods

Our apparatus consisted of a lightbox to illuminate the sample, a bottle mounted

on a rotation stage that was filled with our foam sample, and a camera to image
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Figure 6.1: Schematic diagram of the tomography setup. Not to scale.

the sample at various angles. The lightbox was placed at one end of an optical

table. The Vista Point A lightbox provided a spatially and temporally uniform

light source. The rotation stage was mounted 125 cm in front of the lightbox. The

ThorLabs CR1-Z6 rotation stage rotated the sample smoothly and with fine angular

resolution. The camera was mounted 225 cm in front of the sample. We used a

Nikon D70 camera with a Nikkor AF-S 300 mm 1:2.8 D lens. A schematic can be

seen in Fig. 6.1

To allow for accurate reconstruction, it was important that all components of

the apparatus were accurately aligned. The rotation stage was mounted on posts

with lock washers. By carefully adjusting the tightness of the mounting screws,

the level of the rotation stage could be carefully set. A metal plate was attached

on the top of the rotation stage, and a special mount was connected to this plate,

which allowed the bottles containing the foam samples to be rigidly attached to the

rotation stage in a level position. In order to align the camera so that the vertical

axis of the camera corresponded to the axis of rotation of the rotation stage, an

124



empty bottle marked with a crosshair was put into the apparatus. The camera was

adjusted until the height of the crosshair in the photographs did not change as the

bottle was rotated.

To create our foam, we made a solution consisting of 78% deionized water, 19%

glycerin, and 3% Ivory ultra concentrated dish detergent. This solution creates a

foam that is stable and long lived. Foams will be stable without ruptures for up to

a month. To prepare a sample, 384 mL of solution were put into a plastic two liter

soda bottle. To create the foam, the bottle was shaken vigorously until the bottle

was filled with a uniform, opaque foam of sub-millimeter bubbles. This sample was

left to drain and coarsen for up to a week until the average bubble radius was of

order centimeters and tomography could be performed.

To collect data, both the camera and rotation stage were simultaneously con-

trolled through a LabVIEW program. The program caused the rotation stage to

rotate a set interval, then once the stage had come to a complete stop a photograph

was taken. A sample photograph can be seen in Fig. 6.2. This process was repeated

until the bottle had been rotated a total angle of π. The bottle only needed to be

rotated through a total angle of π, rather than 2π, because a photograph corre-

sponding to an angle θ is functionally equivalent to a photograph corresponding to

an angle of 2π − θ. These two photographs are just mirror images of each other,

and as will become clear in the section on the reconstruction method, will have

the same contribution to the final reconstruction. For this experiment, the total
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number of photographs taken for each run is 720. Examples of reconstructed slices

made using different numbers of photographs can be seen in Fig. 6.3. Taking more

photographs than this does not significantly change the quality of the image, but

does significantly increase analysis time, while taking fewer results in images of a

lower quality. The differences in image quality may not be immediately apparent

in images scaled down to figure size, but when attempts are made to do any kind of

image analysis on the images, the difference becomes clear. The time necessary to

take 720 images is on the order of 5 minutes, during which time minimal coarsening

occurs. Topological processes are also unlikely to occur in this time window.

6.3 Reconstruction

Tomographic reconstruction typically involves reconstructing materials with differ-

ent absorption coefficients. The case for foam is simpler. If a ray of light does not

encounter any Plateau borders on its straight line path to the camera, it arrives

with the same intensity that it left. If it encounters a Plateau border at any point

on its path, it is scattered and that pixel is black. In practice, scattered light can

reach the camera, there can be specular reflection off of films angled closely to the

light, and other complications. However, even without accounting for these factors

we are able to obtain a reasonable reconstruction of the interior of the foam. To

do our reconstruction, we consider a single pixel height at a time. To reconstruct a

given height, zn, consider the line of pixels at that height from a given photograph.
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Figure 6.2: Sample photograph of bottle filled with foam sample. 720 similar photographs taken
at regular angle intervals are used in the reconstruction of the foam sample slices.
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Figure 6.3: Reconstructed slices made using different number of input photographs. All recon-
structions correspond to a total angular interval of π. Reconstructions made with few images are
grainy and low contrast, while reconstructions with many images require significant processing
time.
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Figure 6.4: Schematic representation of the reconstruction process. The single horizontal row
of pixels from a photograph is shown above the red line. This row of pixels is extended into a
square. The square is then rotated according to the orientation of the photograph as recorded
by the rotation stage. The reconstructed slice is the summation of these rotated squares for all
photographs.

We know that if a pixel is dark there is a Plateau border somewhere along that

path, and if there is no obstruction along that path then the pixel is light. To

reflect this fact we expand the line of pixels to a square by repeating the line of

pixels. Then this square is rotated to account for its orientation as measured by the

position of the rotation stage. A schematic representation of this process can be

seen in Fig. 6.4. This is done for all photographs, resulting in a number of squares

equal to the number of photographs. These squares are then summed to produce

a reconstructed slice. An example of a reconstructed slice can be seen in Fig. 6.5.

This can be repeated for all heights of the bottle, allowing for a reconstruction of

the entire sample. A vertical slice through the bottle, compiled from reconstructed

horizontal slices, can be seen in Fig. 6.6.
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Figure 6.5: An example of a reconstructed horizontal slice.

130



Figure 6.6: A reconstructed vertical slice of a bottle. This is made by stacking all of the horizontal
reconstructed slices and taking a vertical slice of that stack. The ’streaky’ appearance of this
reconstruction is due to the fact that the average intensity of each horizontal slice is determined
by the total amount of scattering material at that height.

131



The reconstructed slices of the sample show the interior structure of the foam

in a way that is clearly identifiable by eye. However, these are low contrast, noisy

images that are difficult to work with. Correctly identifying all Plateau borders in

a single slice with no false positives is a very challenging task. However, this kind of

accuracy is not necessary to properly reconstruct the foam. We know that Plateau

borders are continuous across slices, with four Plateau borders meeting at an angle

of arccos (−1/3) to create a vertex. If a Plateau border is missed in an individual

slice, it can be extrapolated from the Plateau borders in the above and below slices,

and if a Plateau border is incorrectly identified, it can be discarded from the fact

that nearby slices do not also identify it. By applying Plateau’s rules directly into

the analysis, it may be possible to correctly reconstruct the structure of the foam,

even though successful reconstruction of individual slices is extremely difficult.

6.4 Conclusion

Using optical tomography we were able to reconstruct horizontal slices of a three

dimensional foam sample. Our technique allows for the use of very dry foams at a

wide range of average bubble size. Our technique allows us to collect data at a rate

much faster than the coarsening process. The resulting reconstructed slices clearly

show the internal structure of the foam. By incorporating Plateau’s laws into the

image analysis, it may be possible to fully reconstruct the internal structure of the

foam sample.
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Once the structure of the foam can be reconstructed, many avenues of analysis

are possible. Measurements of various statistical quantities can be made to char-

acterize the scaling state of a three dimensional foam. This includes topological

distributions such as the bubble edge number distribution, or the bubble face num-

ber distribution, or some correlations in these, as for a three dimensional analogue

of the Aboav-Weaire law. There are also size distributions, such as the bubble

volume distribution, or the surface area distribution. It is also possible to look

at size-topology correlations, as for a three dimensional analogue of Lewis’ law or

Desch’s law. Shape characteristics could also be measured, such as aspect ratio or

elongation. In addition to these characterizations of the scaling state, dynamics

may also be measured. The data collection time is small compared to the rate

of coarsening, so it should be possible to analyze data at closely separated times

and observe how bubble volume or other bubble measurements change over time.

Much of the analytical framework applied to two dimensional foams could thus be

extended to describe and characterize three dimensional foams.

6.5 Appendix: Determination of Axis

Due to our careful leveling and alignment of the rotation stage and camera, the

axis of rotation is parallel to the center axis of the camera. However, this does

not mean that they are identical. It is necessary in the reconstruction to define

the correct axis of rotation. To determine this we look at the initial photograph of
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Figure 6.7: Superimposed photographs of a foam sample and the same sample after rotation by
π. These photographs are shown after contrast enhancement. Callout highlights the separation of
the bottle edges. The distance between them is twice the distance between the rotation axis and
the central axis of the camera.

the bottle and at a photograph taken when the stage is rotated by π. Because the

bottle is symmetric, if the rotation axis corresponds to the center line of the camera,

the outline of the bottle will fall on top of itself in these two photographs. If the

camera axis is offset from the rotation axis, there will be an apparent translation

of the bottle. To measure this, we enhance the contrast of these two photographs

and look at the edge of the bottle in each. The distance separating them is twice

the distance between the axes. An illustration of this process is shown in Fig. 6.7

6.6 Appendix: Lightbox Distance

The tomography process is based on the scattering of light by the sample. An

assumption made in the reconstruction is that the incident light is parallel. If the
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light is not parallel then the value of a pixel does not correspond to a single section

of foam, but instead receives contribution from all the various paths that terminate

at that point. If the lightbox is moved too close to the sample, this becomes an issue

and the image of the sample foam becomes washed out. The resulting reconstruction

is also lacking in detail. This effect is illustrated in Fig. 6.8.
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Figure 6.8: Sample photograph and sample reconstructed slice for a bottle that is 12 inches in
front of the lightbox and for a bottle that is 40 inches in front of the lightbox. The distance from
the bottle to the camera is the same in both cases.
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Chapter 7

Summary and Conclusion

In this work I have done experiments to characterize foam structure and to describe

and model situations of foam coarsening where von Neumann’s law does not directly

apply.

While von Neumann’s law describes ideal, dry, two-dimensional foams, it is possi-

ble to construct experiments to see how foam behaves when some of the assumptions

underlying von Neumann’s law no longer hold. In this way we can gain some insight

into the non-ideal effects that are commonly encountered in real world foams. In

chapter 2, we varied the liquid content of foams to probe the effect of wetness on

structure and coarsening. We found that liquid content does not affect the time-

invariant scaling state of the foam, and so we were able to characterize in great

detail the statistical properties that describe this unique state that is reached by all
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two-dimensional foams when allowed sufficiently long to coarsen. We also observed

the effect of liquid content on coarsening. Wetter foams coarsen slower, and very

small bubbles deviate from von Neumann’s law by coarsening slower than expected.

We developed a simple ‘border blocking’ model that captures these effects. In chap-

ter 3, we looked at other measurements of foam structure, and found that the point

pattern of centroids has structure not found in the vertices.

Another assumption of von Neumann’s law is that the two-dimensional foam ex-

ists in flat space. Avron and Levine [1] developed a modification of von Neumann’s

law that is applicable to foams that exist in curved space. In chapter 4, we created

foams on surfaces of constant positive curvature and observed growth of six-sided

bubbles consistent with the modified von Neumann’s law. Although foam on our

surface will not reach a scaling state due to the dominant growth of large bubbles

at late times, at the early times we looked at we found that statistics did not vary

with time. We were able to characterize this state, which is distinct from the scaling

state of a two-dimensional foam in flat space.

We also looked at a kind of two-dimensional foam that coarsens by a mechanism

that is not captured by von Neumann’s law. The two-dimensional surface of a

three-dimensional foam obeys Plateau’s laws, but due to coarsening in the third

dimension, does not obey von Neumann’s law. In chapter 5, we looked at such

a foam. This foam does reach a scaling state, but one that is distinct from the

scaling state for an ordinary two-dimensional foam. We were able to measure and
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characterize the statistics that define this state. We were also able to measure the

coarsening of individual bubbles, which coarsen at a variety of rates, and these rates

change over time. Despite this wide variety of coarsening behavior, von Neumann’s

law did apply on average.

Additionally, von Neumann’s law applies to two-dimensional foams, but three-

dimensional foams are a subject of great interest. MacPherson and Srolovitz [54]

developed a three-dimensional analogue of von Neumann’s law that exactly de-

scribes the coarsening of ideal dry bubbles. In order to understand structure and

coarsening of foams in three-dimensions in the way that we did in two, in chap-

ter 6 we describe a method of optical tomography that allows us to look inside a

three-dimensional foam.

To look forward, all of these projects suggest extensions. For our experiment

on foam wetness, we developed a model that involved two shape parameters, the

circularity and the elongation. We used average values of these parameters, and

found good agreement with our data, but our model should be applicable on the

individual bubble level. Looking closely at small, wet bubbles, it should be possible

to directly measure on an individual bubble level the effect of shape on coarsening

rate. Additionally, our model assumes that there is no diffusion across the Plateau

borders, but in practice there should be diffusion, only slower. It may be possible

to incorporate this additional effect into a more sophisticated model. Also, we only

looked at situations where the decoration theorem holds. It may be interesting to
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see how things change as the bubbles start to become circular.

We looked at foam in curved geometries only for a single surface of constant

positive curvature. We were able to observe deviation from von Neumann’s law, but

the effect may be more interesting in more complicated geometries. For example,

in our dome apparatus, there are no stable stationary bubbles. All bubbles with

greater than five sides grow, and bubbles with five or less sides, will always grow

or shrink. If a bubble with five or less sides has the area term cancel out the

number of sides term, this is unstable. However, in an apparatus with negative

curvature, it will be possible to get bubbles that do not have changing area and are

stable against perturbations. Also, in a cell with nonconstant curvature, it may be

possible to observe bubble segregation and other effects.

We were able to describe the structure and average coarsening behavior of surface

foam, but can this give us insight into the bulk behavior? Also we could try to

combine this project with the curvature project, and look at the surfaces of three

dimensional foams against a curved boundary.

And we have developed a tool to look inside three dimensional foams, but have

not yet used it to characterize three dimensional foam structure and coarsening. It

is possible to repeat all the kinds of analysis done for the two dimensional foams

in three dimensions. We could do a good characterization of the scaling state of

three dimensional foam, including topological statistics, such as the distribution

of number of edges or faces. We could also look at size distributions, such as

140



surface area or volume. We could look at correlations between these, such as three

dimensional analogues of Lewis’ law or Desch’s law, or the Aboav-Weaire law. We

could also look at coarsening, including at an individual bubble level.

Beyond these established projects, von Neumann’s law can be broken in other

ways. This includes looking looking at boundary bubbles, which do not diffuse gas

across the impermeable boundary. Additionally, the films meet the boundary at

an angle of π/2, which changes the geometry of these kinds of bubbles. Another

possibility is quasi-two-dimensional bubbles that do not have a constant height.

Foams in a cell like this will have an inherent direction, the gradient of the cell,

that will cause the orientation of a bubble to matter for its coarsening. It is also

possible to look at foams with a gradient in liquid fraction, so that the position of

the bubble matters for its coarsening.

Von Neumann’s law is an amazing result, but it is only the beginning.
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