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Abstract
The theory of determinantal point processes has its roots in work in mathematical physics in the 1960s, but it
is only in recent years that it has been developed beyond several specific examples. While there is a rich
probabilistic theory, there are still many open questions in this area, and its applications to statistics and
machine learning are still largely unexplored.

Our contributions are threefold. First, we develop the theory of determinantal point processes on a finite set.
While there is a small body of literature on this topic, we offer a new perspective that allows us to unify and
extend previous results.

Second, we investigate several new kernels. We describe these processes explicitly, and investigate the new
discrete distribution which arises from our computations.

Finally, we show how the parameters of a determinantal point process over a finite ground set with a
symmetric kernel may be computed if infinite samples are available. This algorithm is a vital step towards the
use of determinantal point processes as a general statistical model.
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ABSTRACT

ADVANCES IN THE THEORY OF DETERMINANTAL

POINT PROCESSES

Justin K. Rising

Lawrence D. Brown

The theory of determinantal point processes has its roots in work in mathemat-

ical physics in the 1960s, but it is only in recent years that it has been developed

beyond several specific examples. While there is a rich probabilistic theory, there

are still many open questions in this area, and its applications to statistics and

machine learning are still largely unexplored.

Our contributions are threefold. First, we develop the theory of determinantal

point processes on a finite set. While there is a small body of literature on this

topic, we offer a new perspective that allows us to unify and extend previous

results.

Second, we investigate several new kernels. We describe these processes ex-

plicitly, and investigate the new discrete distribution which arises from our com-

putations.

Finally, we show how the parameters of a determinantal point process over a

finite ground set with a symmetric kernel may be computed if infinite samples are

available. This algorithm is a vital step towards the use of determinantal point

processes as a general statistical model.
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Chapter 1

Introduction

In his biography of Paul Lévy, the renowned probabilist Michel Loève observes

that

“Martingales, Markov dependence and stationarity are the only three

dependence concepts so far isolated which are sufficiently general and

sufficiently amenable to investigation yet with a great number of deep

properties.” (Loève [1973])

Any probabilist giving the same inventory of sufficiently general interesting pro-

cesses today would find that the list of candidates has not grown by much. In

recent years it has become clear that determinantal point processes deserve a

place on this list. In this dissertation, we provide an introduction to the theory

of determinantal point processes and derive several new results that we hope will

encourage others to begin work in this area.

The earliest examples of determinantal point processes appeared roughly fifty

years ago (Dyson [1962a,b,c,d,e], Ginibre [1965], Karlin and McGregor [1959],

Mehta and Gaudin [1960]). However, it was not until Macchi [1975] that they

were identified as a class. Furthermore, it is only the past two decades that they

have become objects of general interest.
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Fortunately, what we have lost in time, we have not lost in activity. The

recent mathematical literature on determinantal point processes is vast, and there

are enough good surveys of this body of literature already that to attempt to

improve on them would be folly. We refer the reader to any of Borodin [2011],

Hough et al. [2006], Johansson [2005b], König [2005], Lyons [2003], Shirai and

Takahashi [2003a,b], Soshnikov [2000, 2006], Tao [2009] for surveys that we have

found helpful in preparing this document.

In the past few years, determinantal point processes have escaped from the

clutches of mathematical physics and probability to become an important tool in

the machine learning community (Affandi et al. [2012, 2013], Gillenwater et al.

[2012a,b], Kulesza and Taskar [2011a,b,c, 2012]). This body of literature is small

but growing, and many questions concerning determinantal point processes in

general are sure to arise from the work done here.

In this dissertation, we will both address a problem arising from the work

of machine learners and investigate some interesting examples of determinantal

point processes. In Chapter 2, we will give a survey of the general theory of

determinantal point processes, with emphasis on the finite case. In Chapter 3, we

will consider the aforementioned interesting examples. Finally, in Chapter 4, we

will consider the problem of estimating the parameters of a determinantal point

process from data.

2



Chapter 2

A Brief Survey of Determinantal

Point Processes

In this chapter, we give a definition of determinantal point processes, survey their

basic properties, and give some standard examples. Although the general theory

allows us to define determinantal point processes on a very large class of spaces,

we will concentrate primarily on processes defined on finite sets and the real line

so that we may avoid most of the measure-theoretic technicalities that the general

theory demands.

2.1 Notation

We will be interested in the cardinality of finite sets, but not their specific elements.

Therefore, we will use the set [n] = {1, 2, . . . , n} as our prototype of a finite set.

We will also have occasion to use
(
[n]
k

)
to denote the set of k-element subsets of

[n].

As may be expected from the name, a determinantal point process is somehow

related to the determinant of a matrix. Although the general theory allows for the

matrix of interest to be nonsymmetric, we will restrict our attention to the class

3



of processes which are determined by a symmetric matrix. Following ?, we will

use Sn to denote the set of n×n symmetric matrices, and Sn++ to denote the set of

strictly positive definite symmetric matrices. Given a matrix L and a nonempty

α ⊆ [n], we will write Lα to denote the principal submatrix of L whose rows and

columns are indexed by α. The corresponding principal minor is then given by

det (Lα). We will not define L∅ as a matrix, but we will observe the convention

that det (L∅) = 1.

Finally, we will use Y to denote the realization of a point process.

2.2 General Point Processes

How can we rigorously define the notion of a random subset of a set X ? This is

exactly the question that is addressed by the theory of point processes1. If the

ground set X is finite, we can simply assign a probability to each subset of X and

be done. If X is not finite, then we must introduce some measure-theoretic ideas

to define exactly what we mean by a point process.

In the remainder of this brief section we will give the definition of a general

point process. The reader who is only interested in the case of a finite ground set

may skip to Section 2.3 with no loss of insight. We emphasize this only a cursory

introduction to the theory, and refer the reader to Daley and Vere-Jones [2002,

2007] for an exhaustive treatment of the topic.

To define a general point process, we require that X to be a completely sepa-

rable metric space2. Then the Borel sets B (X ) are defined, and we can consider

measures defined on these sets. We say that a measure µ defined on B(X ) is

boundedly finite if µ(A) < ∞ for every bounded A ∈ B (X ), and we define N#
X

1In an an unfortunate collsion of terminology, a point process is not generally a stochastic
process. However, if X = R, then any point process is isomorphic to a binary-valued stochastic
process. Point processes on a different set may therefore be viewed as the generalization of a
binary-valued stochastic process with an appropriately chosen index set.

2We note that point processes can be defined on more general spaces, but we will not need
this generality. We refer the reader to Soshnikov [2000] for the details.
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to be the set of boundedly finite integer-valued measures on B (X ). We will have

need of the class of measures µ ∈ N#
X with the property that µ ({x}) ∈ {0, 1} for

every x ∈ X , and we will refer to this class as N#∗
X .

With some dexterity, it can be shown that N#
X is also a completely separable

metric space, and so we can define its Borel sets B
(
N#
X

)
. We can now define

the general point process N on X as a measurable map from some probabil-

ity space (Ω,F ,P) to
(
N#
X ,B

(
N#
X

))
. We say that a point process is simple if

P
(
N ∈ N#∗

X

)
= 1.

Intuitively, we have defined a set-valued random variable Y taking values in 2X

such that Y ∩ B is almost surely finite for every bounded B ⊆ X . In particular,

when X = Rd, the number of points in any compact set is almost surely finite.

2.3 Determinantal Point Processes on a Finite

Set

In this section, we will lay out the theory of determinantal point processes when

the ground set is [n]. These processes were introduced in Exercises 5.4.7 and 5.4.8

of Daley and Vere-Jones [2002], but they have largely not been studied. We refer

the reader to Borodin and Rains [2005], Kulesza and Taskar [2012], Lyons [2003],

Lyons and Steif [2003] for an overview of the existing literature.

2.3.1 Definition and Elementary Properties

We will begin by defining an important subclass of determinantal point processes.

We will give some elementary results on these processes, and then in Section 2.3.2

we will turn to the problem of defining general determinantal point processes.

In order to define a point process on a finite set, we must assign a probability

to each subset. In this case, we will do so by fixing some L ∈ Sn++, and taking
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P (Y = A) ∝ det (LA) for all A ⊆ [n]. This gives us our first examples of deter-

minantal point processes. In the spirit of Macchi [1975], we will refer to L as the

exclusion kernel of the determinantal point process.

In order to completely specify this distribution, we must determine its normal-

izing constant, which is done in the following theorem:

Theorem 2.3.1 (Kulesza and Taskar [2012]). Let L be any matrix, and fix a set

A ⊆ [n]. Given J ⊆ [n], define IJ = diag (1 {i ∈ J}). Then

∑
A⊆S⊆[n]

det (LS) = det (IAc + L)

In particular, when A = ∅, we have that

∑
S⊆[n]

det (LS) = det (I + L)

Theorem 2.3.1 gives us our normalizing constant, and we may now compute the

probabilities assigned to any set by a determinantal point process. Throughout

this chapter, we will take the determinant point process associated with

L =


17

28

3

7

3

28
3

7

5

7

3

7
3

28

3

7

17

28


as our example. Table 2.1 gives the probability distribution associated with this

process.

We will also need to be able to compute P (A ⊆ Y ), the point process analogue

of the survival function for real random variables. By Theorem 2.3.1, we have that

P (A ⊆ Y ) =
det (IAc + L)

det (I + L)

6



S P (Y = S)

∅ 7
27

{1} 17
108

{2} 5
27

{3} 17
108

{1, 2} 7
108

{1, 3} 5
54

{2, 3} 7
108

{1, 2, 3} 1
54

Table 2.1: Equality probabilities of the example determinantal point process.

With a bit of algebra, we can show the following theorem:

Theorem 2.3.2. Borodin and Rains [2005] Let Y be distributed according to a de-

terminantal point process with exclusion kernel L. If we define K = L (I + L)−1,

then P (A ⊆ Y ) = det (KA).

We will refer to K as the kernel of the determinantal point process. The kernel

of our example process defined above is given by

K =


1

3

1

6
0

1

6

1

3

1

6

0
1

6

1

3


and Table 2.2 shows the inclusion probabilities determined by this kernel. We

note that k13 = 0 and P ({1, 3} ⊆ Y ) = P ({1} ⊆ Y )P ({3} ⊆ Y ), which is not a

coincidence. We will return to this phenomenon in the next section once we have

a few more theorems under our belt.

If Y is a realization of a determinantal point process on [n], we define the

random vector X by Xi = 1 {i ∈ Y }, which we will refer to as the indicator vector

of Y . Xi takes values in {0, 1} and P (Xi = 1) = kii, so we see that Xi ∼ Bern (kii).

P (Xi = 1, Xj = 1) = kiikjj − k2ij, so with a bit of calculation we can see that

7



S P (S ⊆ Y )

∅ 1

{1} 1
3

{2} 1
3

{3} 1
3

{1, 2} 1
12

{1, 3} 1
9

{2, 3} 1
12

{1, 2, 3} 1
54

Table 2.2: Inclusion probabilities of the example determinantal point process.

Cov (Xi, Xj) = −k2ij. The joint distribution of more than two of these variables is

complicated, but we can make one interesting claim about it:

Theorem 2.3.3. Let X be the indicator vector of a determinantal point process.

The random variables {Xi}ni=1 are jointly independent if and only if Cov (Xi, Xj) =

0 for every i, j ∈ [n].

Proof. If {Xi}ni=1 are jointly independent, then we immediately know that Cov (Xi, Xj) =

0 for every i, j ∈ [n]. Cov (Xi, Xj) = −k2ij, so if this is equal to zero for every i,

j ∈ [n], the kernel of the determinantal point process must be diagonal. In this

case, all of its principal minors are the product of the appropriate set of diagonal

entries, and we see immediately that

P

(⋂
i∈I

Xi = 1

)
=
∏
i∈I

P (Xi = 1)

for all I ⊆ [n]. Therefore the components of X are jointly independent.

Theorem 2.3.3 illustrates a general principle regarding determinantal point pro-

cesses: because a matrix is function defined on pairs of elements of [n], all the

properties of a determinantal point process are determined by the pairwise in-

teractions of the elements of [n]. This general principle evokes the multivariate

Gaussian distribution, and we note that the Gaussian is the only standard dis-

8



tribution with the property given in Theorem 2.3.3. In the next section, we will

see further similarities between multivariate Gaussians and determinantal point

processes.

We close this section by computing the characteristic function of X. This is

given by

Eei~tTX =
∑
S⊆[n]

(∏
s∈S

eits

)
det (LS)

With a simple application of Theorem 2.3.1, we can show that this is equal to

det
(
I + eidiag(

~t)L
)

. A similar computation may be used to find the moment

generating function.

2.3.2 L-ensembles and General Determinantal Point Pro-

cesses

Let Y be distributed according to a determinantal process with exclusion kernel

L, and let K denote its kernel. We note that K and L have the same set of

eigenvectors. Furthermore, if {λi}ni=1 are the eigenvalues of L, then the eigenvalues

of K are given by

{
λi

1 + λi

}n
i=1

. We have required that the eigenvalues of L be

strictly positive, which implies that the eigenvalues of K fall in the open interval

(0, 1). However, we can define the inclusion probabilities given any K with all

of its eigenvalues fall in the closed interval [0, 1], and we will take this to be the

definition of a general determinantal point process.

If we allow some of the eigenvalues of L to be zero, then the corresponding

eigenvalues of K are zero as well. On the other hand, we can rewrite the definition

of K to show that L = K (I −K)−1. From here we see that if a determinantal

point process has a kernel with eigenvalues equal to one, then it does not possess

an exclusion kernel. The reason for this simple: any determinantal point process

with an exclusion kernel must assign positive probability to the empty set, and

not every determinantal point process has this property.

9



We choose to assume that L exists and is strictly positive definite because

this will considerably simplify the results in the next section. We note that most

authors define a determinantal point process by its inclusion probabilities, and

that a determinantal point process which possesses an exclusion kernel is generally

known as an L-ensemble. There is no standard term for a determinantal point

process which possesses a positive definite exclusion kernel, so we will refer to

these as positive L-ensembles.

This leaves us with the problem of generalizing our results on positive L-

ensembles to the full class of determinantal point processes. Our solution is to

observe that the map from a matrix to its vector of principal minors is a continuous

map between finite dimensional spaces. As a result, we can define the measures

associated with a general determinantal point process as the limit of positive L-

ensembles. Most of the properties we are interested in will be preserved by this

limit operation.

2.3.3 Closure Properties

In this section, we consider operations that produce new determinantal point

processes from old. We will see that the class of determinantal point processes is

closed under most things that we could want to do to a probability distribution.

We introduce one new piece of notation to make the statements of our theorems

clearer. If Y is distributed according a determinantal point process with exclusion

kernel L, we will write Y ∼ LDPP (L). Likewise, if Y is distributed according to

a determinantal point process with kernel K, we will write Y ∼ DPP (K). In a

minor abuse of notation, we will also write X ∼ LDPP (L) and X ∼ DPP (K) to

specify the joint distribution of a set of Bernoullis.

We begin with the simplest result. Our first theorem shows that the marginal

distributions of a determinantal point process are themselves determinantal point

processes:

10



Theorem 2.3.4. Let X ∼ DPP (K), and fix I ⊆ [n]. Then {Xi}i∈I ∼ DPP (KI).

Proof. If A ⊆ I, then P (A ⊆ Y ∩ I) = det (KA). Since this holds for any A ⊆ I,

the theorem follows.

Our second theorem shows that if the distribution of a random set is a deter-

minantal point process, then the distribution of its complement is a determinantal

point process as well.

Theorem 2.3.5. Let X ∼ DPP (K). Then ~1−X ∼ DPP (I −K).

Proof. We assume X follows a positive L-ensemble and take limits for the general

case. If X ∼ DPP (K), then X ∼ LDPP (L). We then compute:

P (Y = Ac) =
det (LAc)

det (I + L)

=
det (LAc)

det (L) det (I + L−1)

=
det ([L−1]A)

det (I + L−1)

Here we have used the fact that det ([L−1]A) =
det (LAc)

det (L)
(Borodin and Rains

[2005]). We have shown that ~1 − X ∼ LDPP (L−1), and from here it is easy to

see that ~1−X ∼ DPP (I −K).

Corollary 2.3.6. Let Y ∼ DPP (K). Then P (Y ⊆ A) = det ((I −K)Ac).

Finally, we consider the operation of conditioning on the presence or absence

of some set of elements. We can show directly that conditioning on non-inclusion

produces a new determinantal point process:

Theorem 2.3.7. Kulesza and Taskar [2012] Let X ∼ LDPP (L) and fix I ⊆ [n].

Then X|Y ⊆ Ic ∼ LDPP (LIc).

As a consequence of Theorems 2.3.5 and 2.3.7, we also see that X|I ⊆ Y follows a

determinantal point processes. The general form of this exclusion kernel was first

11



given in Borodin and Rains [2005] and we refer the reader to that paper for the

specific expression.

We note that a similar conditioning property holds for determinantal point

processes which are not L-ensembles. The form of the kernel is complicated, and

as we are merely interested in its existence, we do not state it.

The closure properties of determinantal point processes with respect to condi-

tioning and marginalization are directly analogous to properties of the multivari-

ate Gaussian distribution. We interpret the closure under complementation as an

analogue of the fact that an affine transformation of any set of Gaussian random

variables is also Gaussian.

We now return to our example determinantal point process and consider ap-

plying the above operations to it. We first observe that

I −K =


2

3
−1

6
0

−1

6

2

3
−1

6

0 −1

6

2

3


and that

L−1 =


7

2
−3

3

2

−3 5 −3

3

2
−3

7

2


Table 2.3 gives the equality and inclusion probabilities for this procces.

The marginal distributions are given by the principal submatrices of K. We

note that Xi ∼ Bern

(
1

3

)
, that X1 and X3 are marginally independent, and that

Cov (X1, X2) and Cov (X2, X3) are both equal to − 1

36
.

We now consider the joint distribution of X1 and X3 given the value of X2. If

12



S P (Y = S) P (S ⊆ Y )

∅ 1
54

1

{1} 7
108

2
3

{2} 5
54

2
3

{3} 7
108

2
3

{1, 2} 17
108

5
12

{1, 3} 5
27

4
9

{2, 3} 17
108

5
12

{1, 2, 3} 7
27

7
27

Table 2.3: Equality and inclusion probabilities of the complement of the example
determinantal point process.

we condition on the event X2 = 0, the new exclusion kernel is given by

L =


17

28

3

28
3

28

17

28


and the corresponding kernel is given by

K =


3

8

1

24
1

24

3

8


We see that conditioning on X2 = 0 introduces a dependence between X1 and X3.

We now condition on the event X2 = 1. In this case, the exclusion kernel is

given by

L =


7

20
− 3

20

− 3

20

7

20
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and the corresponding kernel is given by

K =


1

4
− 1

12

− 1

12

1

4


We now see that conditioning on either value of X2 introduces a dependence

between X1 and X3, but the exact nature of the induced dependence can vary

with the value of X2.

We can take advantage of this fact to construct determinantal point processes

which contain conditional independencies. However, the conditional independen-

cies in a determinantal point process can depend on the values of the variables

being conditioned on. This is an important difference between determinantal point

processes and graphical models, and deserves some attention.

2.3.4 The Random Variable |Y |

In the previous section, we have seen similarities between determinantal point

processes and multivariate Gaussians. However, there is an important difference:

a random set drawn according to a determinantal point process has a cardinality,

and there is no corresponding concept for Gaussians. We now consider the random

variable |Y |.

We begin by observing that |Y | = ~1TX. We can apply some straightforward

calculations to this quantity to derive the following theorem:

Theorem 2.3.8. Let Y ∼ DPP (K). Then E|Y | = tr (K) and Var (|Y |) =

tr (K)− ||K||2F .

However, we can make the following far stronger claim:

Theorem 2.3.9. Hough et al. [2006] Let Y ∼ DPP (K), and let {λi}ni=1 be the

eigenvalues of K. Then |Y | D=
n∑
i=1

Zi, where {Zi}ni=1 are independent Bernoullis

with EZi = λi.
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We have two simple corollaries to Theorem 2.3.9. The first gives us bounds on

|Y |:

Corollary 2.3.10. If Y ∼ DPP (K), then n− rank (I −K) ≤ |Y | ≤ rank (K).

The second is the observation that if K = λI, then |Y | ∼ Binom (n, λ). This sug-

gests that determinantal point processes can represent interesting generalizations

of the binomial distribution, and we will return to this issue in Chapter 3.

2.3.5 Mixture Representations

In this section, we consider the general determinantal point process as a mixture

of other distributions. In both cases these distributions are concentrated on sets

of a fixed size.

Our first mixture representation requires the idea of a k-DPP (Kulesza and

Taskar [2011a, 2012]), which is the distribution achieved by sampling from a de-

terminantal point process conditional on the event |Y | = k. Given this definition,

it is trivial to see that a general determinantal point process can be written as a

mixture of k-DPPs. While this may seem too simple to be interesting, there are

two reasons to give it some consideration. First, calculating P (|Y | = k) is not a

trivial problem. Second, the class of k-DPPs contains distributions which are not

determinantal point processes.

This second point is worth exploring. If Y ∼ LDPP (I), then Y is uniformly

distributed over all subsets of [n]. A k-DPP generated from this distribution is

then a uniform distribution over sets of size K. As observed in Kulesza and Taskar

[2012], this is not a determinantal point process unless k ∈ {0, 1, n− 1, n}.

This leaves us with the problem of computing P (|Y | = k). While there is no

closed form expression, the numerical value can be computed efficiently and accu-

rately. To describe this computation, we must introduce the family of elementary

symmetric polynomials. The kth elementary symmetric polynomial on n variables

15



is defined by

ek (x1, x2, . . . , xn) =
∑

S∈([n]
k )

∏
s∈S

xs

The elementary symmetric polynomials allow us to directly compute the proba-

bilities we want:

Theorem 2.3.11. Kulesza and Taskar [2011a] Let Y ∼ LDPP (L), and let

{λi}ni=1 be the eigenvalues of L. Then

P (|Y | = k) =
ek (λ1, λ2, . . . , λn)

det (I + L)

The elementary symmetric polynomials can in principle be computed by ob-

serving that e0 (x1, x2, . . . , xn) = 1 and

ek (x1, x2, . . . , xn) = ek (x1, x2, . . . , xn−1) + xnek−1 (x1, x2, . . . , xn−1)

for k > 0. However, there are numerically superior algorithms, which are detailed

in Baker and Harwell [1996], and we refer the reader to this survey for details.

Before we turn our attention away from k-DPPs, we note that they have similar

closure properties to those discussed for general determinantal point processes in

Section 2.3.3. As the details are slightly more complicated, we refer the reader

to Kulesza and Taskar [2012] for details.

We now turn our attention to our second mixture representation. This requires

the notion of a determinantal projection process, which is simply a determinantal

point process whose kernel is an orthogonal projection matrix. As a result, all

the eigenvalues of the kernel are in {0, 1}, and these processes are not in general

L-ensembles. However, every positive L-ensemble can be written as a mixture of

determinantal projection processes.

Theorem 2.3.12. Kulesza and Taskar [2012] Let µΛ be the measure associated

with a determinantal point process with exclusion kernel Λ. Let L be a symmetric
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Algorithm 1 Sample from a determinantal point process with kernel K

Let {(λi, ~vi)}ni=1 be the eigendecomposition of K
S ← ∅
for i ∈ [n] do

S ← S ∪ {i} with probability λi
end for
V ← {~vs}s∈S
Y ← ∅
while |V | > 0 do

Select i from [n] with probability
1

|V |
∑
~v∈V

v2i

Y ← Y ∪ {i}
Replace V with an orthonormal basis of the subspace of V orthogonal to ~ei

end while
return Y

positive definite matrix, let {λi}ni=1 be the eigenvalues of L, and let {~vi}ni=1 be the

corresponding eigenvectors. Then

µL =
1

det (I + L)

∑
S⊆[n]

(∏
s∈S

λs

)
µVS

where VS =
∑
s∈S

~vs~v
T
s .

In light of Theorem 2.3.12, we see that the problem of sampling from a deter-

minal point process reduces to the problem of selecting a determinantal projection

process and sampling from it. Algorithm 1 performs this procedure, and we refer

the reader to Kulesza and Taskar [2012] for the proof.

There is one interesting fact regarding Algorithm 1. We can regard the in-

dicator vector of the set S as a collection of Bernoulli random variables, and it

is natural to ask if we can infer these Bernoullis from the draws of the process.

Surprisingly, the answer is no. These variables are in fact not measurable with

respect to the observed draws. We refer the reader to Hough et al. [2006] for a

simple example.
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2.3.6 Interpretations

We close our study of determinantal point processes on finite sets by examining

some interpretations of the entries of the kernel K and the probabilities assigned

by the exclusion kernel L. In order to do so, we will need the idea of a Gramian

matrix, which is an n× n matrix M such that mij = ~vi~vj for some set of vectors

{~vi}ni=1. It is immediately obvious that every Gramian matrix is symmetric and

positive semidefinite. It is less immediately obvious that every symmetric positive

semidefinite matrix is a Gramian (Lanckriet et al. [2004]).

Following Kulesza and Taskar [2012], we begin by examining the entries of

the kernel matrix K in light of the Gramian interpretation. K is symmetric and

positive semidefinite, so there is some set of vectors {~vi}ni=1 such that kij = ~vTi ~vj.

We decompose ~vi as qi~φi with ||~φi||2 = 1. We will refer to qi as the quality of i,

and ~φi as the feature vector of i. We can then write kij = qiqj~φ
T
i
~φj.

We can assign interpretations to these quantities by examining the moments of

X ∼ DPP (K). By the definition of K, we have P (i ∈ Y ) = kii and P ({i, j} ⊆ Y ) =

kiikjj − k2ij. We observe that kii = q2i , which implies that higher quality elements

of our ground set are more likely to be selected than lower quality items.

In order to interpret kij, we note that ~φTi
~φj = cos (θij) with θij the an-

gle between the vectors ~φi and ~φj. We can then simply calculate to see that

kiikjj − k2ij = q2i q
2
j sin2 (θij). This tells us that the angles {θij}ni,j=1 give us a

measure of similarity between the items of our ground set. If the feature vectors

corresponding to two items are parallel, they will not be selected together, and if

the feature vectors are orthogonal, their indicators are independent. Furthermore,

the transition from mutual exclusivity to independence is quadratic in the sine of

the angle between the feature vectors.

We now consider L as a Gramian matrix. There are two relevant facts here.

The first is that any principal submatrix LA is the Gramian of the set of vectors

{~vi}i∈A. The second is that the determinant of a Gramian matrix is equal to the
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squared volume of a parallelotope whose sides are given by the vectors that make

up the Gramian (Barth [1999]).

By examining K as a Gramian matrix, we were able to interpret the probabili-

ties assigned by a determinantal point process in terms of pairs of items. However,

this interpretation does not extend naturally to larger collections until we bring in

the insight gained from examining L in the same way. We now see that a determi-

nantal point process will favor sets of high quality items whose feature vectors are

mutually far apart. Following Kulesza and Taskar [2012], we refer to this quality

as diversity.

The ideas of quality and diversity have led machine learning researchers to

experiment with using determinantal point processes to randomly select subsets

which are somehow representative of the ground set, and the results so far are

encouraging (Affandi et al. [2012, 2013], Gillenwater et al. [2012a], Kulesza and

Taskar [2011a]). There is one further observation that suggests that this notion

of representativeness is somehow naturally connected to determinantal point pro-

cesses. Recall that if a random variable W ∼ N (~µ,Σ) with Σ ∈ Sn++, the entropy

of W is given by H (W ) =
1

2
log (det (2πeΣ)). With some simple algebra, we can

rearrange this to show that

det (Σ) = e2H(W )−n(log(2π)+1)

If W ∼ N (0,L), then we have that

P (Y = A) ∝ e2H(WA)−|A|(log(2π)+1)

Campbell [1966] gives an interpretation of exponential entropy as a measure of

the spread of a distribution, which fits well with the volume interpretation given

above. However, to the best of our knowledge, there is no standard interpretation

of the ratio of exponential entry penalized by the cardinality in this manner.
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We close this section by observing that the two interpretations above give us

a relationship between the entropy of a Gaussian distribution, its dimension, and

the log volume of a parallelotope whose sides are a set of vectors whose Gramian is

the covariance matrix of the Gaussian distribution. It appears that there is more

to this puzzle than has been uncovered to date.

2.4 Determinantal Point Processes on the Real

Line

We now abandon our consideration of determinantal point processes on finite sets

and consider how the same class of processes can be defined on more general spaces.

There is a general theory which allows us to define α-determinantal processes on

second countable locally compact Hausdorff spaces endowed with a nonnegative

nonatomic Radon measure (Shirai and Takahashi [2003a]), but the price that must

be paid in terms of attention to detail is high. Fortunately, the real line endowed

with Lebesgue measure is such a space, and so we can study some interesting

aspects of the general theory by considering determinantal point processes on

this space. We note that the treatment here is elementary, and we refer the

reader to Hough et al. [2006], Shirai and Takahashi [2003a,b] for more detailed

expositions.

We remind the reader that, following the discussion in Section 2.2, a sample

from a general point process on R has a finite intersection with any bounded set.

Any point process with this property is referred to as finite. As it happens, the

theory of finite point processes is technically simpler than the theory of locally

finite point processes. As a result, we will be able to avoid dealing with certain

details by defining determinantal point processes on compact subsets of R and

then extending them to larger sets by the use of an appropriate limit theorem3.

3We could directly define determinantal point processes on the real line by appeal to the
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We will have need of some general concepts from the theory of finite point pro-

cesses4. Let Y be a sample from such a process. The n-point correlation5 functions

of a point process, which are denoted ρ(n) (x1, x2, . . . , xn), give the probabilities of

the events {{xi}ni=1 ⊆ Y }. The related concept of the n-point Janossy densities,

which are denoted jn (x1, x2, . . . , xn) dx1 dx2 . . . dxn, may be interpreted as the

probability that there are exactly n points, and that they fall in the infinitesimal

intervals {[xi, xi + dxi)}. As recorded in the following theorem, both of these

quantities are sufficient to define a finite point process.

Theorem 2.4.1. Daley and Vere-Jones [2002], Macchi [1975] A finite point pro-

cess is completely determined by either its Janossy densities or its correlation

functions.

We now have sufficient machinery to define determinantal point processes

on compact subsets of R. We say that a process defined on a compact C ⊆

R is determinantal if there is some kernel K such that ρ(n) (x1, x2, . . . , xn) =

det
(
[K(xi, xj)]

n
i,j=1

)
. Our first result concerns the existence and uniqueness of

the probability measure associated with a determinantal point process.

Theorem 2.4.2. Shirai and Takahashi [2003a] Let C ⊆ R be compact, let µ denote

Lebesgue measure, and let K be an integral operator on L2(C, µ) which is bounded,

locally trace class, and has no eigenvalues outside the interval [0, 1]. Then there

is a unique determinantal measure whose correlation functions are given by the

n-point principal minors of K.

We will refer to kernels which satisfy the hypotheses of Theorem 2.4.2 as nice. We

point process version of Kolmogorov’s consistency theorem. However, the theorems that we will
use to build up the general case from determinantal point processes are of independent interest,
and so we prefer this approach. The full details of the direct approach may be found in Daley
and Vere-Jones [2007].

4In this section, we are assuming that the point processes we consider possess certain densities
with respect to Lebesgue measure. We refer the reader to Daley and Vere-Jones [2002] for the
general theory.

5In another unfortunate clash of terminology, the sense of the word “correlation” as used here
is unrelated to its ordinary statistical meaning.
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note that the converse of Theorem 2.4.2 is true as well, and we refer the reader

to Soshnikov [2000] for its statement.

We now have the continuous analogue of the kernel K, and we will now describe

the corresponding analogue of the exclusion kernel L. We begin by observing that

in the finite case, the matrices K and L are related by the equation L = K+LK.

Following Macchi [1975], we note that the obvious generalization of this matrix

equation to the continuous case is the integral equation

L(s, t) = K(s, t) +

∫
C

L(s, u)K(u, t) du (2.1)

which is generally known as the resolvent equation (Smithies [1958]). We are

in luck, as this integral equation does define a kernel L whose principal minors

are proportional to the Janossy densities of the determinantal point process with

kernel K (Macchi [1975]). Furthermore, the relationship between the eigenvalues

of K and L is exactly the same as in the finite case:

Theorem 2.4.3. Macchi [1975] Let K be a nice kernel, and let L be the corre-

sponding kernel defined by Equation 2.1. If {λi}∞i=1 are the eigenvalues of K, then

the corresponding eigenvalues of L are given by

{
λi

1− λi

}∞
i=1

.

However, there is one further similarity with the finite case. Equation 2.1 only

possesses a solution if all of the eigenvalues of K are strictly less than one. For-

tunately, there is a convergence theorem which allows us to consider limits of

sequences of kernels whose eigenvalues have this property, and we will state it as

Theorem 2.4.5.

In order to use the Janossy densities associated with a determinantal point

processes, we must be able to compute the normalizing constant associated with

them. By analogy with the finite ground set theory, we would expect to find

something like det (I + L). As it happens, the Fredholm determinant, which is

the operator-theoretic analogue of this determinant, is exactly the quantity we
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need.

While there is an elegant theory of Fredholm determinants as described in Ref-

fgen [2003], we will have need of one important property. If T is a trace class

operator with eigenvalues {λi}∞i=1, then the Fredholm determinant is equal to

∞∏
i=1

(1 + λi)

Given that K is a trace class operator, we are guaranteed that L is a trace class

operator as well by the combination of Theorem 2.4.3 and the following lemma:

Lemma 2.4.4. Let {λi}∞i=1 be such that each λi ∈ [0, 1] and
∞∑
i=1

λi < ∞. Then

∞∑
i=1

λi
1− λi

<∞ as well.

Proof.
∞∑
i=1

λi <∞ implies that λi → 0. As a result, there is some N such that for

any i > N , we have that
1

1− λi
<

3

2
. This implies that

∞∑
i=1

λi
1− λi

<
N∑
i=1

λi
1− λi

+
3

2

∞∑
i=N+1

λi

Our conclusion follows immediately.

We now consider the problem of defining determinantal point processes on

noncompact subsets of R. We can easily define them as limits of determinantal

point processes defined on compact sets with the following theorem:

Theorem 2.4.5. Shirai and Takahashi [2003a] Let {Ki}∞i=1 be a sequence of nice

kernels that converges uniformly to a kernel K on every compact set. Then K

is nice, there is a unique determinantal measure µ associated with K, and the

sequence of measures associated with each Ki converges weakly to µ.

Our general strategy for applying this theorem will be to take some sequence of

compact sets {Ci}∞i=1 such that Ci ⊆ Ci+1 and limi→∞Ci = R. We can then take
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a kernel K defined on R and define a sequence of kernels {Ki} by restricting K

to Ci. These kernels are nice and they trivially converge uniformly to K on every

compact set, so the hypotheses of Theorem 2.4.5 are satisfied.

We now present some results from the general theory of determinantal point

processes on the real line. Our first result generalizes Theorem 2.3.9 to continuous

determinantal point processes:

Theorem 2.4.6. Hough et al. [2006] Let Y be distributed according to a determi-

nantal point process with kernel K, let C be a compact subset of R, and let {λi}∞i=1

be the eigenvalues of K restricted to C. Then |Y | D=
∞∑
i=1

Zi, where {Zi}∞i=1 are

independent Bernoullis with EZi = λi.

In particular, because K is locally trace class, the number of points in a compact

set is almost surely finite by the Borel-Cantelli lemma. If K is in fact trace class

on R, then the total number of points in any realization is almost surely finite.

We have one further result regarding the distribution of the number of points in

a draw from a determinantal point process. A simple application of the Lindberg-

Feller central limit theorem combined with Theorem 2.4.6 gives us a central limit

theorem for determinantal point processes:

Theorem 2.4.7. Hough et al. [2006] Let {Yi}∞i=1 be a sequence of independent

draws from a sequence of determinantal point processes with kernels in the se-

quence {Ki}∞i=1. Let {Si}∞i=1 be a sequence of measurable subsets of R such that

Var (|Yi ∩ Si|)→∞. Then

|Yi ∩ Si| − E|Yi ∩ Si|√
Var (|Yi ∩ Si|)

d→ N (0, 1)

There are other limit theorems for determinantal point processes, but their state-

ments are complex. These theorems may be found in Shirai and Takahashi [2003a].

We note that we have not discussed the joint distribution of the number of

points occuring in disjoint sets. There are some results in this direction–in partic-
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ular, these counts will generally be dependent–but the theory is not simple. We

refer readers to Hough et al. [2006] for the details.

From the discussion in Section 2.3, we have the intuition that determinantal

point processes on finite sets capture negative associations between points of the

ground set. Our next result gives us a precise statement of this idea for general

determinantal point processes:

Theorem 2.4.8. Shirai and Takahashi [2003a] Let Y be distributed according

to a determinantal point process with kernel K, and let S1, S2 ⊆ R. Then

P (S1 ∪ S2 ⊆ Y ) ≤ P (S1 ⊆ Y )P (S2 ⊆ Y ).

Our final result in the theory of determinantal point processes on the real

line requires the notion of a renewal process. We give only the basic definition,

and refer the reader to any of the standard textbooks (e.g., Durrett [2010], Feller

[1968, 1971], Karlin and Taylor [1975], Ross [1996]) for details. If {Xi}∞i=1 are

independent and identically distributed nonnegative random variables, then we

can define the sequence {Si}∞i=0 by S0 = 0 and Sn+1 = Sn +Xn+1. We then define

the renewal process N(t) by

N(t) = sup
i
{Si ≤ t}

We observe that the values {Si}∞i=0 form a point process on the real line, and that

this is the basis of a rich theory that we will ignore. Instead, we give the following

theorem, which addresses the question of when a determinantal point process on

the right half-line is a renewal process:

Theorem 2.4.9. Soshnikov [2000] A determinantal point process on R+ with

kernel K is a renewal process if and only if the following two conditions are satisfied

almost everywhere:

1. x1 ≤ x2 ≤ x3 implies K(x1, x2)K(x2, x3) = K(x1, x3)K(x2, x2).
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2. x1 ≤ x2 implies K(x2, x2) −
K(x1, x2)K(x2, x1)

K(x1, x1)
= u(x2 − x1)K(x1, x1) for

some function u.

If a determinantal point process is a renewal process, then we can completely

specify the joint distribution of its points by specifying the distribution of the

length of the interval between zero and the first point.

We close this section by examining the relationship between determinantal

point processes on finite or discrete sets and general determinantal point pro-

cesses. We first show how finite set determinantal processes can be considered

as a special case of determinantal point processes. We simply define the kernel

of a determinantal point process to be zero everywhere except at a finite number

of points, and we assign those values so that they evaluate to the entries of the

appropriate matrix. In this way, we see that all of the results of this section apply

to determinantal point processes on finite sets.

We now discuss an open problem in the theory of determinantal point pro-

cesses. It is a standard result in probability theory that appropriately rescaled

Markov chains converge to diffusions in a sense made precise in Kushner [1974],

Turner [2002]. Is there a similar sense in which determinantal point processes

or other processes on finite sets can be made to converge to determinantal point

processes on continuous sets? There are specific examples of this phenomenon dis-

cussed in Borodin and Gorin [2009], Borodin and Olshanski [2007], Gorin [2008],

Johansson [2005a], Olshanski [2008], but there is no general theory as of this writ-

ing.

2.5 Examples

We close our survey chapter with a collection of several standard examples of

determinantal point processes. To do so, we must drop our assumption that the

kernels of the processes we consider are symmetric, as this is not generally the
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case. We note that our treatment in this section is not mean to be exhaustive,

and we refer the reader who is interested in a more encyclopedic listing to Borodin

[2011].

Perhaps the most famous example of a determinantal point processes is the

distribution of the eigenvalues of a matrix drawn according to the Gaussian unitary

ensemble. A discussion of the physics and random matrix theory involved in

this phenomenon is beyond the scope of this dissertation, so we refer the reader

to Johansson [2005b], Soshnikov [2000].

The first example of a determinantal point process was given in Karlin and

McGregor [1959]. Assume that n independent copies of a continuous time birth-

death process are started in distinct states, and condition on the event that no

pair of the sample paths intersect. Then the joint distribution of the states at

any time t follows a determinantal point process. In particular, random walks

on the integers have this property. Generalizations to Brownian motions with an

appropriate set of starting values have been given in Johansson [2004], Katori and

Tanemura [2007].

Another standard example is due to Burton and Pemantle [1993]. Let G be

a graph, and let T be a spanning tree of G chosen uniformly from the set of all

spanning trees of G. Then the set of edges of T is distributed according to a

determinantal point process.

The next example, given in ?, requires the notion of a loop-free Markov chain.

A Markov chain is said to be loop-free if the probability of visiting any state more

than once is zero. We have the perhaps surprising result that finite subsets of

the sample paths of a loop-free Markov chain on a discrete space are distributed

according to a determinantal point process. As any process with almost surely

positive independent and identically distributed increments is a loop-free Markov

chain, we have a determinantal representation for this large class of processes.

Let {Ai}∞i=0 be independent random variables distributed according to the stan-
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dard complex Gaussian distribution, and define the function f on the unit disk

by

f(z) =
∞∑
n=0

Anz
n

Then the zeros of f are distributed according to a determinantal point process.

Our final example is that of a binary one-dependent process. A binary-valued

stochastic process {Xi}∞i=0 is one-dependent if the processes {Xi}N−1i=0 and {Xi}∞i=N+1

are independent for all N . As shown in Borodin et al. [2010], the set {i : Xi = 0}

is distributed according to a determinantal point process. If {Yi}∞i=0 are inde-

pendent uniform draws from any set, then the sequence of random variables

Xi = 1 {Yi ≤ Yi+1} form a one-dependent process. As this appears to be tied

to the longest increasing subsequence problem (Logan and Shepp [1977], ?), this

hints that the theory of determinantal point processes has yet to reach its full

potential in general probability.

28



Chapter 3

New Kernels for Determinantal

Point Processes

In this chapter, we examine two new kernels which give rise to interesting de-

terminantal point processes. In both cases we will be able to characterize the

process exactly and obtain some insight into a probabilistic problem that would

be difficult to solve using other methods.

3.1 The Anticardinality and Cardinality Processes

Our first example is defined on [n] with P (Y = A) ∝ n+1−|A|. Although it is not

immediately obvious that this is a determinantal point process, we will be able to

write down a kernel and give an explicit calculation to show that the determinants

of this matrix give the desired probabilities.

Before we begin studying the process itself, we need a few results on exchange-

able matrices. A matrix M is said to be exchangeable if ΣMΣT = M for every

permutation matrix Σ. If we define J = ~1~1T , then we can write every exchange-

able matrix in the form αI + βJ . The eigenvectors of such a matrix are ~1 and

the basis of the orthogonal complement of ~1, and their respective eigenvalues are

This chapter is joint work with Larry Shepp.
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α + nβ and α. We have immediately proved our first result:

Theorem 3.1.1.

det (αI + βJ) = αn−1 (α + nβ)

We must now compute the product of a pair of exchangeable matrices and the

inverse of either of them. As the set of exchangeable matrices is closed under both

operations, we note that it is a group under matrix multiplication. The proof of

the following theorem is simple algebra and is omitted.

Theorem 3.1.2. Let α, β, γ, δ be arbitrary real numbers.

1. (αI + βJ) (γI + δJ) = αγI + (αδ + βγ + βδ)J

2. If α 6= 0 and β 6= −α
n

, then (αI + βJ)−1 exists and is equal to

1

α
I − β

α2 + nαβ
J

The following corollary is an easy consequence of Theorem 3.1.2 and shows that

determinantal point processes with exchangeable kernels cannot have arbitrary

restrictions on the size of the sets they draw:

Corollary 3.1.3. For any α, β ∈ R, we have that rank (αI + βJ) ∈ {0, 1, n−1, n}

With these results on exchangeable matrices, we can begin studying the an-

ticardinality process. We must first compute the normalizing constant for this

process. Our next result captures this computation:

Lemma 3.1.4.
n∑
k=0

(
n

k

)
(n+ 1− k) = (n+ 2)2n−1
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Proof. Let W ∼ Binom
(
n, 1

2

)
. We compute as follows:

n∑
k=0

(
n

k

)
(n+ 1− k) =

n∑
k=0

(
n

k

)
(k + 1)

= 2n
n∑
k=0

(
n

k

)
(k + 1)2−n

= 2n(EW + 1)

= (n+ 2)2n−1

Therefore the anticardinality process is a distribution over subsets of [n] defined

by

P (Y = A) =
n+ 1− |A|
(n+ 2)2n−1

for all A ⊆ [n]. We will now show that this is a determinantal point process:

Theorem 3.1.5. The anticardinality process is a positive L-ensemble parameter-

ized by the matrix

L = I − 1

n+ 1
J

The corresponding kernel is given by

K =
1

2
I − 1

2n+ 4
J

Proof. The proof is a simple application of Theorems 3.1.1 and 3.1.2, followed by

some calculation.

From here, we can compute that E|Y | =
n

2
and Var (|Y |) =

n (n2 + 3n+ 5)

4(n+ 2)2
.

While we could have done this directly, it would be considerably harder to show

that Cov (Xi, Xj) = − 1

(2n+ 4)2
. And this points out some interesting asymptotic

behavior: when n is large, the components of X are very nearly independent.
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k P (|Y | = k)

0 1
256

1 3
64

2 45
256

3 5
16

4 75
256

5 9
64

6 7
256

Table 3.1: The probability of drawing a set of a given size following the cardinality
process for n = 6.

However, we can show something more interesting. We consider the distribu-

tion of Y c, which is given by P (Y c = A) = P (Y = Ac). It follows that

P (Y = A) =
|A|+ 1

(n+ 2)2n−1

However, by Theorem 2.3.5, we know that Y c is also distributed according to a

determinantal process. While we could work out the kernel of this cardinality

process following the computations above, there is no need to do so, as we can

compute it trivially from the kernel of the anticardinality process. We record these

matrices as Theorem 3.1.6.

Theorem 3.1.6. The cardinality process is a positive L-ensemble parameterized

by the matrix

L = I + J

The corresponding kernel is given by

K =
1

2
I +

1

2n+ 4
J

The cardinality process is an important counterexample to the idea that de-

terminantal point processes favor small sets. In fact, for n = 6, the cardinality of

a set drawn according to the cardinality process is more than twice as likely to be
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above its mean than below. Table 3.1 shows the probabilities of drawing sets of

various sizes for this process.

Before we move on, we will spend a short time investigating determinantal

point processes over a finite set whose kernel is an exchangeable matrix. Because

all of the individual elements of the ground set are not distinguished by the kernel,

we must have that P (Y = A) = f(|A|) for some function f . It follows that |A|

is a minimally sufficient statistic. If a distribution over independent and identi-

cally distributed random variables admits a minimally sufficient statistic whose

dimension does not grow with the dimension of the sample, then the Pitman-

Koopman Darmois theorem (see Brown [1986] for details) guarantees that the

distribution belongs to an exponential family. It remains an open problem to de-

termine whether the distribution of the cardinality of a draw from an exchangeable

determinantal point process is an exponential family.

3.2 The Brownian Kernel Determinantal Point

Process

We now turn our the determinantal point process on the right half-line whose

kernel is defined by L(s, t) = s ∧ t for s, t ≥ 0, which the reader will recognize as

the covariance function of a Brownian motion. The process given by this kernel is

analytically tractable, and we can explicitly write down a formula for any quantity

of interest.

The kernel s ∧ t is not trace class on the right half-line, so we cannot simply

analyze it as is. Instead we will consider its restriction to intervals of the form

[0, T ] and take the weak limit as T →∞.

While in principle the nature of this process is determined by L(s, t), we can

also derive some insight from looking at the corresponding kernel K(s, t). In this

case the computation is easy, and so we perform it without hesitation.
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Theorem 3.2.1. Let P be the determinantal measure defined by L(s, t) = smin t.

Then the corresponding kernel is given by K(s, t) = sinh(s ∧ t)e−(s∨t).

Proof. We begin with the integral equation

s ∧ t = K(s, t) +

∫ ∞
0

(s ∧ u)K(u, t) du

If we consider the case s ≤ t, we can write this as

s = K(s, t) +

∫ s

0

uK(u, t) du+

∫ ∞
s

sK(u, t) du

From here, we observe that K(0, t) = 0. We differentiate the equation with respect

to s to find that

1 = Ks(s, t) +

∫ ∞
s

K(u, t) du

. We then repeat the differentiation to find that

0 = Kss(s, t)−K(s, t)

We now have a second-order differential equation for K(s, t) with the initial con-

dition K(0, t) = 0, and so we can conclude that K(s, t) = sinh(s)f(t) for some

function f .

To compute f , we must observe that for u > t, K(u, t) is equal to sinh(t)f(u),

as our calculation above was performed under the assumption s ≤ t. In light of

this observation, we can write our integral equation as

s = sinh(s)f(0)+

∫ s

0

u sinh(u)f(t) du+

∫ t

s

s sinh(u)f(t) du+

∫ ∞
t

s sinh(t)f(u) du

After a straightforward but tedious calculation, we can compute f(t) = cosh(t) +

c sinh(t) for some constant c. If c 6= −1, then f(t)→ ±∞ as t→∞, and K(s, t) is

not bounded. We therefore conclude that f(t) = cosh(t)−sinh(t), which simplifies
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to e−t. Therefore K(s, t) = sinh(s ∧ t)e−(s∨t) as claimed.

From the proof, we see that K is bounded even when defined on the right

half line. Second, we can easily check that K(s, t) satisfies the hypotheses of

Theorem 2.4.9 and our process is a renewal process. In order to verify that K is

nice, we will need to compute its eigenvalues. However, the eigenvalues of K are

difficult to compute, and we will need to compute the eigenvalues of L to find its

Janossy densities. Once we have done this, we will be able to find the eigenvalues

of K by Theorem 2.4.3.

We begin the process of finding the Janossy densities associated with L. In

order to do so, we will need the Fredholm determinant of L. We can compute this

easily once we have found the eigenvalues of L, and so we do so promptly:

Theorem 3.2.2. The eigenvalues of L(s, t) = s ∧ t restricted to [0, T ] are given

by

λn =
T 2(

n+ 1
2

)2
π2

for n = 0, 1, 2, . . . . The Fredholm determinant of L restricted to [0, T ] is equal to

cosh(T ).

Proof. The eigenvalues and eigenfunctions of L are the solutions to the integral

equation

λφ(t) =

∫ t

0

uφ(u) du+

∫ T

t

tφ(u) du

As before, we will transform this into a differential equation, so we will need the

initial condition φ(0) = 0 to specify the solution. We differentiate once with

respect to t to derive

λφ
′
(t) =

∫ T

t

φ(u) du

We observe that φ
′
(T ) = 0, and differentiate again with respect to t to derive

λφ
′′
(t) = −φ(t)
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This allows us to conclude that φ(t) = c sin(ωt) with λ = ω−2. The observation

φ
′
(T ) = 0 implies that ωT =

(
n+ 1

2

)
π for some nonnegative integer n, and so we

have that

λ =
T 2(

n+ 1
2

)2
π2

for n = 0, 1, 2, . . . as claimed. The Fredholm determinant of L is simply the

product of the eigenvalues of I + L, and so we simply compute

∞∏
n=0

(
1 +

T 2(
n+ 1

2

)2
π2

)
= cosh(T )

Corollary 3.2.3. The eigenvalues of K restricted to [0, T ] are given by

λn =
T 2(

n+ 1
2

)
π2 + T 2

for n = 0, 1, 2, . . . . Furthermore, K is locally trace class.

In order to fully specify the Janossy densities, we must compute the determi-

nant of a matrix L ({ti}ni=1) whose (i, j)-th entry is given by `ij = ti ∧ tj. We do

so in the following theorem:

Theorem 3.2.4. Let {ti}ni=1 be a set of nonnegative real numbers, and let L be

the matrix whose (i, j)-th entry is given by `ij = ti ∧ tj. Then det(L) = t1(t2 −

t1) . . . (tn − tn−1).

Proof. As noted in Shirai and Takahashi [2003a], whenever {ai}ni=1 and {bi}ni=1 are

complex numbers, the determinant of the matrix M defined by mij = ai∧jbi∨j is

given by the product

a1 ·

∣∣∣∣∣∣∣∣
b1 b2

a1 a2

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
b2 b3

a2 a3

∣∣∣∣∣∣∣∣ · · · · ·
∣∣∣∣∣∣∣∣
bn−1 bn

an−1 an

∣∣∣∣∣∣∣∣ · bn
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Our determinant is computed by applying this result to ai = ti and bi = 1.

We have now shown that the n-point Janossy density associated with L is given

by

t1(t2 − t1) . . . (tn − tn−1) dt1 dt2 . . . dtn
cosh(T )

where we have 0 ≤ t1 < t2 < · · · < tn ≤ T . In order to compute the probability

that there are exactly n points in the interval [0, T ], we must integrate this density.

We can do so directly, and we find that

∫ T

0

∫ T

t1

. . .

∫ T

tn−1

t1(t2 − t1) . . . (tn − tn−1) dt1 dt2 . . . dtn
cosh(T )

=
T 2n

(2n)! cosh(T )

This is a valid probability mass function as
T 2n

(2n)!
is the nth term in the Taylor

series for cosh(T ). We will refer to this as the hyperbolic cosine series distribution,

and study it in Section 3.2.1.

We now want to take the weak limit as T → ∞. Because the process we are

studying is a renewal process, we need only find the distribution of the location

of the first point. To do so, we must integrate over the remainder of the points in

the interval [0, T ]. The quantity we must compute is given by

t1 dt1
cosh(T )

∞∑
k=0

∫ T

t1

∫ T

x1

. . .

∫ T

xk−1

(x1 − t1)(x2 − x1) . . . (xk − xk−1) dx1 dx2 . . . dxk

After some computation, we find that this is equal to
t1 cosh(T − t1) dt1

cosh(T )
. We can

then let T →∞ to find that the density of the first point is given by t1e
−t1 dt1.

We observe that this is the density of the sum of two independent exponentials

with λ = 1, and we have now characterized the process.

Theorem 3.2.5. The Brownian kernel determinantal point process is equal in

distribution to the set of even-indexed jump times of a rate one Poisson process.
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Support 0, 1, 2, . . .

Parameters T > 0

Mean 1
2
T tanh(T )

Variance 1
4
T
(
tanh(T ) + T sech2(T )

)
Mode (2 log(T ))−1

Table 3.2: Quantities of interest for the hyperbolic cosine series distribution with
parameter T .

3.2.1 The Hyperbolic Cosine Series Distribution

In the previous section we encountered a discrete distribution with support on the

nonnegative integers whoseT probability mass function is given by

P (X = n) =
T 2n

(2n)! cosh(T )

for some T > 0. Table 3.2 lists the summary statistics of this distribution, and we

now show how they may be computed as well as some other properties.

We first observe that this is an exponential family distribution. We can see

this by writing the probability mass function as

P (X = n) =
1

(2n)!
e2n log(T )−log(cosh(T ))

As such, we are guaranteed that the moment generating function exists. However,

we will compute the characteristic function instead, as this is of more general

interest and we can derive the moment generating function easily from it. This is

a straightforward computation, and so we perform it immediately.

Theorem 3.2.6. Let W be distributed according to a hyperbolic cosine series

distribution with parameter T . Then EeitW =
cosh

(
Te

it
2

)
cosh(T )

.
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Proof.

EeitW =
∞∑
n=0

eitnT 2n

(2n)! cosh(T )

=
∞∑
n=0

(Te
it
2 )2n

(2n)! cosh(T )

=
cosh

(
Te

it
2

)
cosh(T )

∞∑
n=0

(Te
it
2 )2n

(2n)! cosh
(
Te

it
2

)
=

cosh
(
Te

it
2

)
cosh(T )

By the same reasoning, we can show that the probability generating function is

given by EzX =
cosh (T

√
z)

cosh(T )
.

In principle, we now have sufficient machinery to calculate any summary statis-

tics for the hyperbolic cosine series distribution. However, the moments of this

distribution have an elegant representation in terms of the generalized hypergeo-

metric function, and we would be remiss in not recording it.

Theorem 3.2.7. Let W be distributed according to a hyperbolic cosine series

distribution with parameter T . Then for any positive integer j, we have that

EXj =
T 2

2 cosh(T )
j−1Fj

(
2, . . . , 2; 1, . . . , 1,

3

2
;
T 2

4

)

Proof. The proof is a straightforward computation that relies on the definition

of the generalized hypergeometric function and two standard properties of the

gamma function:

1. Γ(z + 1) = zΓ(z)

2. Γ(z)Γ
(
z + 1

2

)
= 21−2z√πΓ(2z)
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We now compute with the above properties in mind:

T 2

2
j−1Fj

(
2, . . . , 2; 1, . . . , 1,

3

2
;
T 2

4

)
=

1

2

∞∑
n=0

Γ(n+ 2)j−1Γ
(
3
2

)
T 2(n+1)

4nΓ(n+ 1)j−1Γ(n+ 1)Γ
(
n+ 3

2

)
=

1

2

∞∑
n=0

(n+ 1)j−1Γ
(
3
2

)
T 2(n+1)

4nΓ(n+ 1)Γ
(
n+ 3

2

)
=
∞∑
n=0

(n+ 1)j−1T 2(n+1)

2Γ(2(n+ 1))

=
∞∑
n=1

nj−1T 2n

2Γ(2n)

=
∞∑
n=1

njT 2n

2nΓ(2n)

=
∞∑
n=1

njT 2n

Γ(2n+ 1)

=
∞∑
n=0

njT 2n

(2n)!

We will conclude our study of the hyperbolic cosine series by observing that

the probability it assigns to large integers is smaller than that assigned by the

Poisson distribution with the same parameter. In this sense, we are capturing the

repulsive nature of a determinantal point process.

Theorem 3.2.8.

lim
n→∞

T 2n

(2n)! cosh(T )
· n!

e−TT n
= 0

Proof. This ratio of probabilities is equal to
T neT

(n+ 1)(n+ 2) . . . (2n) cosh(T )
. The

denominator is greater than nn, and the desired limit follows immediately from

this observation.
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Chapter 4

Estimation of the Kernel Matrix

In this chapter, we consider the problem of estimating the kernel matrix of a

determinantal point process from data. While Kulesza and Taskar [2011b] give an

efficient algorithm for estimating the parameters of an L-ensemble conditional on

some set of features, the general problem of estimating the kernel from samples is

still open.

This is not a trivial problem. We have two issues: if we allow arbitrary kernel

matrices, we have a non-identifiable parameterization, as det (Kα) = det ([DKD−1]α)

for any diagonal matrix D and α ⊆ [n]. Furthermore, even if we have infinite data

and can compute the relevant probabilities exactly, we are left with the task of

computing a matrix from its principal minors. While this “principal minor as-

signment problem” was solved for a restricted class of matrices in Griffin and

Tsatsomeros [2006b], the general problem remains open.

We have three major results in this chapter. First, we will give a simple

characterization of the set of matrices with equal corresponding principal minors

to a given matrix. Second, we will show how to pick a canonical representative

from this set. Finally, we will give an algorithm that reconstructs an arbitrary

symmetric matrix from its principal minors. In this way we solve the infinite data

This chapter is joint work with Ben Taskar and Alex Kulesza.
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problem exactly, and lay the groundwork for performing estimation with finite

data.

We note that there is one significant caveat to our solution the reconstruction

problem. We can guarantee that if a list of numbers corresponds to the principal

minors of some matrix, then that matrix is the output of our algorithm. However,

we cannot guarantee that the list corresponds to any matrix without checking

every single principal minor, which is an O (2n) operation (Griffin and Tsatsomeros

[2006a]). However, in any situation where we are guaranteed to be given the

principal minors of some matrix, the algorithm produces the correct output.

Example: 3× 3 Matrices

Before we begin with the general theory, we consider the problem of reconstructing

a 3 × 3 matrix from its principal minors to illuminate the issues we will face.

Suppose that we are given an oracle for the principal minors of

H =


h11 h12 h13

h12 h22 h23

h13 h23 h33


In this case, we can enumerate the principal minors of H and write out an analytic

solution. We have det
(
H{i}

)
= hii for each i, so we can reconstruct the diagonal

of H exactly. We also have det
(
H{i,j}

)
= h11h22 − h212 for each i 6= j, so we can

also find the magnitude of each of the off-diagonal elements. However, we get no

information about the signs of these elements from the principal minors of size 2,

and we must examine the determinant of the matrix to find them.

We compute det (H) = h11h22h33+2h12h13h23−h11h223−h213h22−h212h33. From

this, we can infer the value of the product h11h22h33. If this value is not zero, we

can tell whether an even or odd number of the off-diagonal elements are negative.
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By inspection, we find that any assignment of signs that preserves this parity

gives the same set of determinants, so it is not possible to infer the actual signs

from the entire set of principal minors. On the other hand, if the product of the

off-diagonal elements is zero, then any combination of signs is consistent with the

determinant.

For larger matrices, we can follow the procedure above to find the diagonal

elements and the magnitude of the off-diagonal elements. However, any ad-hoc

approach to discovering the signs will quickly become unmanageable. As such, we

need to find a generalization of the three-element product that we can use in a

systematic manner to assign signs to the off-diagonal elements in a way that is

consistent with the given principal minors.

We will base our work on a certain graphical representation of the matrix H to

be defined in Section 4.1.2 in which the natural generalization of the three-element

product is a simple chordless cycle. Our algorithm will start from a spanning tree

of this graph in which the entries of the matrix corresponding to the edges are

marked positive. From there, we infer the signs of the remaining edges based on

a sufficiently systematic exploration of cycles and their chords, and we create a

matrix H
′

which has equal corresponding principal minors to H . This matrix is

unique in some sense to be described in Section 4.2.4, so the problem is solved.

4.1 Notation and Terminology

4.1.1 Matrices

We say that H and K are determinantally compatible if hii = kii for all i and

|hij| = |kij| for all i 6= j. We further say that H and K are determinantally

equivalent, and write H
det≡ K, if det(Hα) = det(Kα) for all α ⊆ [n]. Any pair

of determinantally equivalent matrices are determinantally compatible, but the

converse is not true.
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We also say that two matrices H and K are D-similar, and write H
D∼ K,

if there is some diagonal matrix D with nonzero entries in {−1, 1} such that

H = DKD−1. The set of all such n × n matrices will be denoted as Dn
±. We

observe that Dn
± is an Abelian group under matrix multiplication, so its actions on

Sn correspond to symmetries: H
D∼K if and only if H is in the orbit of K under

the action of Dn
± on Sn defined by D ·K = DKD−1. This symmetry is easy

to describe: it is simply invariance with respect to the direction of the coordinate

axes. As above, any pair of D−similar matrices are determinantally compatible,

but the converse is not true.

4.1.2 Graphs

While we can describe our algorithms and results purely in terms of matrices,

there is an equivalent and much clearer description in graph-theoretic terms. In

general, we will use n to denote the number of vertices in a graph G, m to denote

the number of edges, and ` to denote the length of the longest cycle.

For any H ∈ Sn, we define the graph G(H) to have vertex set [n] and edge set

{(i, j) : i 6= j and hij 6= 0}. As observed above, the signs of H contain essential

information about its determinants, so we give G(H) edge weights wij = sgn (hij).

The subgraph of G(H) induced by α ⊆ [n] is simply G (Kα). We will use n(H)

to denote the number of connected components of G(H).

For determinantally compatible matrices H and K, the only possible differ-

ences are the signs of the off-diagonal elements. We define the graph G(H ,K)

to have the shared vertex and edge sets of G(H) and G(K), and edge weights

wij = sgn (hijkij). As above, we will use n(H ,K) to denote the number of con-

nected components of G(H ,K).

Every graph we will consider in the remainder of this paper will be either G(H)

or G(H ,K) for some H and K. The discussion below does not apply to general

graphs, but specifically to graphs of this form.
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A rooted graph is a graph G in which some vertex r has been designated as

the root. While this does not imply any special properties of G, many graphical

algorithms, including ours, are most simply expressed with some node designated

as the root.

A path P in a graph G is a sequence of vertices
{
vij
}|P |
j=1

such that G contains

the edges
(
vij , vij+1

)
for j = 1, . . . , |C|. A graph is connected if there is a path

between any two vertices, and is otherwise partitioned into a set of connected

subgraphs referred to as connected components.

A tree is a graph T such that there is a unique path between any two vertices

of T . If G is a connected graph, a spanning tree T is a subgraph of G such that T

is a tree, each vertex of G is present in T , and each edge of T is present in G. If G

is not collected, we can define a spanning forest, which is the union of a collection

of spanning trees for each connected component of G.

If G contains a path C and also contains the edge
(
vi|C| , vi1

)
, then we say that

G contains a cycle C. If the vertices of C are all distinct, C is referred to as a

simple cycle. The set of vertices
{
vij
}|C|
j=1

is referred to as the support of C, and

denoted by supp (C).

If there is an edge between two vertices of a cycle which is not contained in the

cycle itself, this edge is referred to as a chord. A cycle with no chords is referred

to as chordless. If C does contain a chord c, then there are two cycles C1 and C2

such that supp (C1)∪ supp (C2) = supp (C) and supp (C1)∩ supp (C2) = supp (p).

In this case, we say that c separates C into the subcycles C1 and C2.

We will have occasion to consider the product of the edge weights of a cycle

C, which we will denote as p(C) and define as

p(C) = w|C|,1

|C|−1∏
j=1

wj,j+1

Note that p(C) does not depend on the weights of any k-chords in C.
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A graph coloring c is a mapping from the vertices of graph G to some set

of colors which obeys some set of constraints induced by the edge weights. In

traditional graph coloring problems, the vertices i and j must be assigned different

colors if the edge (i, j) is present. In our case, we will be interested in a coloring c

of G(H ,K) taking values in {−1, 1} such that c(j) = wijc(i). If such a mapping

exists, it will be referred to as a valid coloring of G(H ,K).

We will be interested in determining whether the graphs we consider have

unique colorings, but by the above definition, this is never true: if c is a valid

coloring for G, then −c is as well. We define a rooted coloring for G to be a valid

coloring cr with the property that c(r) = 1 for some specified vertex r, which will

be referred to as the root. Any graph with a valid coloring possesses a unique

rooted coloring. If we assign a root to a tree T , then the depth of each vertex v is

defined to be the length of the path from the root to v.

Finally, we define the set G± of graphs with edge weights in the set {−1, 1}.

We define the action of D ∈ Dn
± on a graph G ∈ G± by taking the new edge

weights w
′
ij = diidjjwij. We can furthermore define the relation of D-similarity on

G± by G1
D∼ G2 if and only if G1 = D · G2 for some D ∈ D±. By construction,

we have that G(H)
D∼ G(K) if and only if H

D∼K.

4.2 The Theory of D-Similarity

In this section, we will characterize the relationship between determinantal equiv-

alence and D-similarity. While these two relations are not in general equivalent,

they are sufficiently close that a canonical representative can be described with

ease.
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4.2.1 Preliminary Results

We open with a set of observations which will be used throughout the remainder

of our paper. Lemmas 4.2.1 and 4.2.2 allow us to assume without loss of generality

that our graphs are connected and that our vertices are labeled in any convenient

order. Theorem 4.2.3, which is an interesting result in its own right, allows us to

make arbitrary choices in our algorithms without worrying about how they affect

the correctness of the result.

Lemma 4.2.1. Let σ be a permutation of [n], and let Σ be the corresponding

permutation matrix.

1. H
D∼K if and only if ΣHΣT D∼ ΣKΣT .

2. H
det≡ K if and only if ΣHΣT det≡ ΣKΣT .

Proof. We prove each claim in turn:

1. If H = DKD−1, then ΣHΣT = (ΣDΣT )(ΣKΣT )(ΣD−1ΣT ). This fol-

lows from the observations that Σ−1 = ΣT and that ΣDΣT = ΣTDΣ.

2. Let Iα to be the diagonal matrix with [Iα]ii = 1 {i ∈ α}. If H is any matrix

and α any subset of [n], we have that det (Hα) = det
(
IαHIα + I[n]−α

)
.

With this observation, we can simply calculate to show that det (Hα) =

det
(
[ΣHΣT ]σ(α)

)
:

det
(
[ΣHΣT ]σ(α)

)
= det

(
Iσ(α)ΣHΣTIσ(α) + I[n]−σ(α)

)
= det

(
ΣIαΣ

TΣHΣTΣIαΣ
T + ΣI[n]−αΣ

T
)

= det
(
Σ(IαHIα + I[n]−α)ΣT

)
= det

(
IαHIα + I[n]−α

)
= det (Hα)
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Lemma 4.2.2. We have the following equivalences:

1. H
D∼ K if and only if Hα

D∼ Kα for every connected component α of

G(H ,K).

2. H
det≡ K if and only if Hα

det≡ Kα for every connected component α of

G(H ,K).

Proof. By Lemma 4.2.1, we can assume without loss of generality that H =

diag
(
{Hαi

}n(H,K)
i=1

)
and K = diag

(
{Kαi

}n(H,K)
i=1

)
.

1. We write D = diag
(
{Dαi

}n(H,K)
i=1

)
, and simply observe that H = D ·K if

and only if Hαi
= Dαi

·Kαi
for all i, since all entries outside of the blocks

corresponding to the connected components are zero.

2. This follows immediately from the fact that Hβ = diag
(
{Hαi∩β}

n(H,K)
i=1

)
.

Theorem 4.2.3. Let D1, D2 ∈ Dn
±. D1 ·H = D2 ·H if and only if [D1]α =

±[D2]α for every connected component α of G(K).

Proof. We first assume that [D1]α = ±[D2]α for every connected component α of

G(K). Here we can directly apply Lemma 4.2.2 to conclude that D1 ·K = D2 ·K.

We now assume that D1 ·H = D2 ·H and that G(H) has a single connected

component. Let θ = [D1]11[D2]11, and assume that D1 6= θD2. Then there is

some least index b > 1 such that [D1]bb 6= θ[D2]bb. This implies that [D1 ·H ]bj 6=

[D2 ·H ]bj for any j < b, and so we have that D1 ·H 6= D2 ·H . This contradicts

our hypothesis, and so we can conclude that D1 = θD2. By Lemma 4.2.2, the

argument above applies to each connected component of G(H), and we have the

desired result.
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4.2.2 Algorithms

In this section, we give an algorithm that correctly decides whether H
D∼K. We

then show how to extend it to be completely constructive: if H
D∼ K, we will

construct a D such that H = D ·K; and if H 6D∼K, we will construct a minimal

α such that Hα 6
D∼Kα. Throughout this section we assume that any pair H and

K are determinantally compatible and that G(H ,K) is connected.

Recall that c is a valid coloring of G(H ,K) if and only if c(j) = wijc(i) for

all i and j, and a valid rooted coloring if c(r) = 1 for some r ∈ [n]. Therefore,

G(H ,K) possesses a valid rooted coloring if and only if this system of linear

equations possesses a solution. We refer to this system as the coloring equations.

Lemma 4.2.4. H
D∼K if and only if G(H ,K) possesses a valid coloring.

Proof. H = DKD−1 if and only if hij = diidjjkij. By the construction of

G(H ,K), we have wij = sgn (hijkij). Therefore H = DKD−1 if and only if

wij = diidjj. If we define c(i) = dii, we have constructed a valid coloring c. If we

are given a valid coloring c of G(H ,K), we can use the same logic to construct a

D ∈ Dn
± such that H = DKD−1.

In light of Lemma 4.2.4, we can decide whether H
D∼ K by determining

whether the coloring equations for G(H ,K) have a solution. Any algorithm that

produces a solution to a system of linear equations may be used to find valid

colorings of G(H ,K), but the coloring equations are so sparse that a specialized

algorithm can find the solution much more quickly. We begin our discussion of

such an algorithm with a result on trees and colorability.

Lemma 4.2.5. If G(H ,K) is a tree, there is a unique valid rooted coloring of

G(H ,K) for any set of edge weights. If G(H ,K) is not a tree, there is some set

of edge weights for which no valid coloring is possible.

Proof. We first assume that G(H ,K) is a tree. Then we can permute the indices

of G(H ,K) so that the matrix corresponding to the coloring equations is n × n
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Algorithm 2 Given determinantally compatible H and K, either produce a D
such that H = DKD−1 or determine that none exists

Let T be a spanning tree of G(H ,K) with root 1
Produce a coloring c of T with c(1) = 1 and construct the corresponding D
for each edge (i, j) not in T do

Verify that wij = diidjj
end for

upper triangular with nonzero diagonal entries. In this case, we are guaranteed

that a solution exists.

We now assume that G(H ,K) is not a tree. In this case, there is a pair of

vertices u and v such that there is a path p1 from u to v, and a disjoint path p2

from v to u. If we write wp for the sum of the edge weights along the path p,

we have that c(u) = c(u)wp1wp2 . We can always choose edge weights so that this

condition is not satisfied, and so we have the desired result.

The proof of Lemma 4.2.5 gives us a relationship between the colorability of a

cycle and the sum of its edge weights. We record this result as Corollary 4.2.6.

Corollary 4.2.6. A cycle C of G(H ,K) possesses a valid coloring if and only if

p(C) = 1.

By Lemma 4.2.5, the coloring equations for any tree have a solution. Further-

more, they are sufficiently sparse that any of the standard graph search algorithms

can be used to solve them with slight modifications. Therefore, our algorithm to

find a valid coloring of an arbitrary graph is simple: we will color some spanning

tree, and verify that the coloring produced is valid for the entire graph. This idea

is captured in Algorithm 2 and proved correct in Theorem 4.2.7.

Theorem 4.2.7. Algorithm 2 produces a D ∈ Dn
± such that H = DKD−1 if

any exists, and otherwise determines that no such D exists.

Proof. By Lemma 4.2.4, if H = DKD−1 for some D ∈ Dn
±, then this D corre-

sponds to a valid coloring of G(H ,K). As discussed above, Algorithm 2 correctly
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finds a valid rooted coloring of the spanning tree T and verifies that it holds for the

entire graph. By Theorem 4.2.3 and the constraint c(1) = 1, the D produced is

irrespective of the choice of spanning tree. If H 6D∼K, then the coloring equations

have no solution, and Algorithm 2 will correctly verify this.

We now consider the problem of verifying that H 6D∼ K. While we can show

this by failing to produce a D such that H = DKD−1, we would like to be able

to produce a β ⊆ [n] such that Hβ 6
D∼ Kβ, but Hγ 6

D∼ Kγ for every γ strictly

contained in β. We will refer to such β as a minimal counterexample, and to any

α ⊇ β as a counterexample. We can easily find a minimal counterexample by

enumerating every β ⊆ [n], but we would like to find a more efficient algorithm.

To do so, we must examine the structure of any minimal counterexample.

Lemma 4.2.8. If H 6D∼ K, any minimal counterexample must be the support of

some simple chordless cycle C.

Proof. By Lemma 4.2.5 and Corollary 4.2.6, G(H ,K) must contain a cycle C such

that p(C) = −1. Assume that C has some n-chord (u, v) that separates C into

C1 and C2. Then we must have that p(C) = p(C1)p(C2), and either p(C1) = −1

or p(C2) = −1. It follows that there must be some chordless cycle C∗ such that

p(C∗) 6= 1. Any proper subgraph of C∗ is a tree and does have a valid coloring, so

C∗ is a minimal counterexample as claimed.

The proof of Lemma 4.2.8 suggests an algorithm for finding a minimal coun-

terexample when H 6D∼ K. The procedure is outlined in Algorithm 3, and its

correctness is recorded in Theorem 4.2.9.

Theorem 4.2.9. If H 6D∼ K, Algorithm 3 correctly discovers a minimal coun-

terexample.
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Algorithm 3 Given determinantally compatible H and K with H not D-similar
to K, find a minimal counterexample α

Run Algorithm 2 until a contradiction is discovered along edge e
Let C be the cycle consisting of the edge e and the path from i to j in the
spanning tree of G(H ,K)
while C contains an n-chord (u, v) do

Let C1 and C2 be the subcycles of C separated by c
if p(C1) = −1 then

C ← C1

else
C ← C2

end if
end while

4.2.3 D-Similarity and Determinantal Equivalence

In this section, we will show H
det≡ K if and only if H

D∼ K. We will show that

simple chordless cycles play a prominent role in the theory of D-similarity, and

then use this insight to prove the equivalence of our two relations. We begin with

two lemmas on D-similarity of graphs

Lemma 4.2.10. For any G ∈ G±, there is some H ∈ Sn such that G = G(H).

Proof. Define H by hii = 1 for all i, hij = 0 if (i, j) is not an edge of G, and

hij = wij if (i, j) is an edge of G. Then G = G(H) by construction.

Lemma 4.2.11. Let C1 and C2 be simple chordless cycles of length n with weights

in {−1, 1}. C1
D∼ C2 if and only if p(C1) = p(C2).

Proof. By Lemma 4.2.10, we can choose H and K such that C1 = G(H) and

C2 = G(K). Then C1
D∼ C2 if and only if H

D∼ K. By Lemma 4.2.4, H
D∼ K

if and only if G(H ,K) possesses a valid coloring. By Corollary 4.2.6, G(H ,K)

possesses a valid coloring if and only if p(G(H ,K)) = 1. The edge weights of

G(H ,K) are the product of the corresponding edge weights in G(H) and G(K),

so it follows that p(G(H ,K)) = 1 if and only if p(C1) = p(C2).

Given a determinantally compatible pair of matrices (H ,K) and a cycle C

contained in G(H ,K), we write CH to denote C with the edge weights inherited
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from G(H), CK to denote C with the edge weights inherited from G(K), and

CH,K to denote C with edge weights inherited from G(H ,K). With this notation,

we can easily state and prove a necessary and sufficient condition for H
D∼ K in

terms of the simple chordless cycles of G(H ,K).

Theorem 4.2.12. Let H, K be determinantally compatible. Then H
D∼ K if

and only if p (CH) = p (CK) for every simple chordless cycle C of G(H ,K).

Proof. We first assume that H
D∼ K. If C is any simple chordless cycle of

G(H ,K), we have CH
D∼ CK . Therefore p(CH) = p(CK) by Lemma 4.2.11.

We now assume that H 6D∼K. Then there is some minimal counterexample α.

By Lemma 4.2.8, G (Hα,Kα) must be a simple chordless cycle C. Lemma 4.2.11

allows us to conclude that p(CH) 6= p(CK).

The matrices whose graphs are simple chordless cycles are known as cyclic

tridiagonal matrices (Engeln-Müllges and Uhlig [1996]). The following lemma

gives an explicit expression for the determinant of a cyclic tridiagonal matrix T .

Lemma 4.2.13. Let T be a cyclic tridiagonal matrix. Then

det (T ) = tnn det
(
T[n−1]

)
−t2n−1,n det

(
T[n−2]

)
−t21,n det

(
T[n−1]\[1]

)
+(−1)n+1t1n

n−1∏
i=1

ti,i+1

Proof. The expression is obtained by the Laplace expansion of the determinant of

T . The details are omitted.

We now have sufficient machinery to to prove our main result, and we do so

without hesitation.

Theorem 4.2.14. H
D∼K if and only if H

det≡ K.

Proof. If H and K are not determinantally compatible, then H 6D∼K and H 6det≡

K. We therefore assume that H and K are determinantally compatible. We

first assume that H
D∼K. Then H is diagonally similar to K, and as diagonally
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similar matrices have equal corresponding principal minors, we can conclude that

H
det≡ K.

We now assume that H
det≡ K. If G(H ,K) contains no cycles, then G(H ,K)

is a tree, and we have that H
D∼ K by Lemma 4.2.5. We therefore assume that

G(H ,K) contains at least one cycle, which implies that G(H ,K) must contain

some simple chordless cycle C. We apply Lemma 4.2.13 to the matrices Hsupp(C)

and Ksupp(C) and cancel equal terms to see that

h|C|1

|C|−1∏
i=1

hi,i+1 = k|C|1

|C|−1∏
i=1

ki,i+1

We know that |hij| = |kij| for all i and j, so it must be the case that p (CH) =

p (CK). Since this holds for every simple chordles cycle in G(H ,K), Theo-

rem 4.2.12 allows us to conclude that H
D∼K.

Two comments are in order. First, as in Engel and Schneider [1980], the

hypotheses of Theorem 4.2.14 can be weakened considerably. Our argument would

still go through if we could merely assume that H and K are determinantally

compatible and the principal minors corresponding to the cycles of G(H ,K) are

equal. In particular, for any determinantally compatible H and K with no zeros

off the diagonal, we have that H
det≡ K if and only if all the corresponding 3× 3

principal minors are equal.

Second, we can reinterpret Algorithm 3 in light of Theorem 4.2.14. A minimal

counterexample α for H and K has the property that det (Hα) 6= det (Kα), but

det (Hβ) = det (Kβ) for any β strictly contained in α. Algorithm 3 therefore finds

minimal unequal corresponding principal minors.

We close this section by counting the number of matrices with equal corre-

sponding principal minors to some fixed H . The following result is an easy corol-

lary of Theorems 4.2.3 and 4.2.14.

Corollary 4.2.15. For any fixed H,
∣∣∣{K : H

det≡ K
}∣∣∣ = 2n−n(H).
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4.2.4 Canonicalization

We have one last major theorem to develop before we have a complete theory of

D-similarity and determinantal equivalence. In short, given that there infinitely

many matrices which are determinantally equal to a fixed H , how can we pick

a canonical representative from this set? As might be expected, our algorithm is

graphical in nature, but it does not give us a single canonical element. Instead,

the canonicalization is relative to a deterministic spanning tree algorithm A. We

begin with two lemmas regarding real positive spanning trees and D-similarity.

Lemma 4.2.16. Let H
D∼ K, and assume that there is a spanning tree T of

G(H ,K) with weights identically equal to one. Then H = K.

Proof. By Theorem 4.2.12, we must have p(C) = 1 for every chordless cycle C of

G(H ,K). Every edge in T has weight one, and so it follows that every edge of

G(H ,K) has weight one. Therefore H = K.

Lemma 4.2.17. Assume that G(H) is a tree, and let D be the matrix corre-

sponding to the solution of the coloring equations for G(H). If K = D−1HD,

then sgn (kij) = 1 whenever i 6= j and kij 6= 0.

Proof. Choose an arbitrary node r as the root of T , and consider the subgraph

consisting of the path from r to any leaf l. Without loss of generality we assume

every edge is of the form (u, u+ 1). Then d11 = 1 and dii =
∏i−1

j=1wj,j+1 for i > 1.

We have hij = diidjjkij for all i and j. If j 6= i + 1, hij = 0, so kij = 0 as well. If

j = i + 1, diidjj = sgn (hij), which implies that sgn (kij) = 1 as claimed. Since l

was chosen arbitrarily, this holds for every path from the root to a leaf, and so it

holds for the entire tree.

The canonicalization procedure is now clear. Given H , we take T to be a

spanning tree of G(H) generated by a spanning tree algorithm A. We let D be
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Algorithm 4 Compute the canonicalization of a symmetric matrix H with re-
spect to a spanning tree algorithm A

function Canonicalize(H , A)
Run A on G(H) to produce a spanning tree T with weights drawn from

G(H)
Mark 1 as the root of T
Produce a D corresponding to a rooted coloring for T
return D−1HD

end function

the matrix corresponding to a valid coloring of T , and we take the canonical rep-

resentation of H to be D−1HD. Algorithm 4 is a restatement of this procedure,

and is shown to be correct in Theorem 4.2.18.

Theorem 4.2.18. Let HA denote the output of Algorithm 4 when given H and

A as input. H
det≡ K if and only if HA = KA.

Proof. We first assume that HA = KA. HA
D∼ H and KA

D∼ K, so it follows

that H
D∼K. By Theorem 4.2.14, we have that H

det≡ K.

We now assume that H
det≡ K. By Theorem 4.2.14, H

D∼ K. This implies

that HA
D∼ KA, and the weights of every edge of THA and TKA are identically

one by Lemma 4.2.17. We can therefore apply Lemma 4.2.16 to conclude that

HA = KA.

We note that a more general version of Lemma 4.2.16 follows as a corollary to

Theorem 4.2.18:

Corollary 4.2.19. Let H
D∼ K, and assume that there is a spanning tree T

of G(H ,K) such that the weights of T inherited from G(H) are equal to the

correspondings weights of T inherited from G(K). Then H = K.

Proof. If we run Algorithm 4 on H and K with an algorithm A that outputs

T , we will compute a D such that DHD−1 = DKD−1. The desired equality

follows immediately.
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4.3 Solving the Symmetric Principal Minor As-

signment Problem

In Section 4.2, we have characterized the set {K : H
det≡ K} for any symmetric

matrix H and described how to pick a canonical representative from this set.

In this section, we show how to reconstruct this canonical representative given a

constant-time oracle for the principal minors of a symmetric matrix H .

As before, chordless cycles will play a prominent role in our analysis. We

begin by showing that two cyclic tridiagonal matrices with equal determinants

are determinantally equivalent. This allows us to then show that knowing the

determinant of a cyclic tridiagonal matrix, its diagonal entries, and all but one of

the off-diagonal entries allows us to infer the final entry.

Lemma 4.3.1. Let H and K be determinantally compatible and cyclic tridiagonal

such that det (H) = det (K). Furthermore, let hi,i+1 = ki,i+1 for all i between 1

and n− 1. Then h1n = k1n.

Proof. This follows immediately from Lemma 4.2.13.

We consider the problem of reconstructing a cyclic tridiagonal matrix T from

its principal minors. As always, we can infer the diagonal entries from the one-

element principal minors, and the magnitude of the off-diagonal entries from the

two-element principal minors. If we construct a spanning tree of G(T ), then

there is exactly one edge whose sign is unknown. This satisfies the hypotheses of

Lemma 4.3.1, and so we may infer the unknown sign. We refer to this process of

inferring the sign of an edge as marking, and we consider every edge not in T to

start unmarked.

We move on from this simple case to reconstructing a matrix H such that

G(H) consists of a simple cycle C with at least one chord (u, v). In this case

we can use Algorithm 5 to reconstruct H . We will prove that this procedure is
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Algorithm 5 Given a cycle C with exactly one unmarked edge e, infer the sign
of e

procedure MarkCycle(C, e)
if C contains a chord e

′
then

Let C1 be the subcycle of C not containing e, and C2 the other subcycle
if e

′
is unmarked then

MarkCycle(C1, e
′
)

end if
MarkCycle(C2, e)

else
Mark e with its sign as determined from Lemma 4.2.13

end if
end procedure

correct in Theorem 4.3.2.

Theorem 4.3.2. Let H be such that G(H) consists of a simple cycle with any

number of chords. Given the diagonal entries of H, the magnitude of the off-

diagonal entries, and a spanning tree T with each edge marked positive, Algo-

rithm 5 will correctly infer the signs of the entries corresponding to the unmarked

edges.

Proof. The proof is by induction on the number of edges in {e ∈ G(H) : e /∈ T},

which will be referred to as problematic edges. If there is exactly one problematic

edge e, then the sign may be inferred as argued above. We now assume that the

algorithm works for any cycle with up to k problematic edges, and we consider

its operation on a cycle with k + 1 problematic edges. Because there are multiple

problematic edges, G(H) must contain at least one chord e
′
. C1 contains at most

k problematic edges, so by induction it is marked correctly. Once e
′

is marked, C2

contains at most k problematic edges, so it is also marked correctly by induction.

At this point the entire cycle is marked correctly, so the algorithm works on a cycle

with up to k + 1 problematic edges. We have therefore completed the induction,

and the algorithm is shown to be correct.

We finally consider the general symmetric principal minor assignment problem.

In this case, the structure of G(H) is arbitrary. Here we may use Algorithm 6 to
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Algorithm 6 Given a principal minor oracle for H and a deterministic spanning
tree algorithm A, output the canonicalization HA

Use the first and second order principal minors of H to infer the diagonal
elements and the magnitude of the off-diagonal elements
Let T be a spanning tree of G(H) generated by A with every edge marked as
positive
while G(H) contains an unmarked edge (i, j) do

Let C be the cycle consisting of (i, j) and the path from i to j in T
MarkCycle(C, (i, j))

end while

perform the reconstruction. We will prove in Theorem 4.3.3 that this procedure

is correct.

Theorem 4.3.3. Given a principal minor oracle for H and a deterministic span-

ning tree algorithm A, Algorithm 6 will correctly reconstruct the canonicalization

HA.

Proof. Let H̃A denote the output of Algorithm 6 when given the oracle for H and

A as input. By construction, p
(
CH̃A

)
= p (CHA) for every simple chordless cycle

C of G
(
H̃A,HA

)
. Therefore H̃A

D∼ HA by Theorem 4.2.12, and H̃A
det≡ HA by

Theorem 4.2.14. H̃A and HA agree on the spanning tree T , so by Lemma 4.2.16,

we can conclude that H̃A = HA.

We close with two comments. The first regards the performance of Algorithm 6.

While the algorithm will succeed given any spanning tree of G(H) and any se-

quence of unmarked edges, we may end up considering the same cycle multiple

times if the sequence is chosen poorly. We can avoid this by taking a breadth-first

search spanning tree of G(H) and marking the edges in decreasing order of the

depths of their endpoints.

The second regards the problem of computing the determinant of a matrix H

given its diagonal entries, the magnitude of its off-diagonal entries, and the value

of p(C) for every simple chordless cycle C of G(H). In this case we can modify

Algorithm 6 to assign signs to the entries of H consistent with the given sign
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products. From there, we may compute the determinant directly.
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Chapter 5

Open Problems and Future Work

In lieu of some grand and overarching conclusion, we close by compiling a list of the

open problems and interesting future research directions given in this dissertation.

We hope that this will be useful to future researchers.

Chapter 2

• We have interpretations for the diagonal elements of the kernel of a deter-

minantal process, and for the magnitudes of its off-diagonal elements. How

shall we interpret the signs of the off-diagonal elements?

• Develop a theory of conditional independencies for determinantal point pro-

cesses.

• Flesh out the interpretation of probabilities assigned by a determinantal

point process in terms of exponential entropy.

• Develop a theory of convergence of discrete kernels to continuous.

• We have seen that determinantal point processes on a finite set behave like

multivariate Gaussian distributions. To what extent do general determinan-

tal point processes behave like Gaussian processes?
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• Is the theory of determinantal point processes useful in the study of longest

monotone subsequences?

Chapter 3

• Find new examples of interesting phenomena which are determinantal point

processes.

• Continue investigating the class of exchangeable determinantal point pro-

cesses. Is the cardinality of a draw an exponential family of distributions?

• Find new kernels which are analytically tractable and can be analyzed in

the manner of the Brownian kernel.

• Find applications of the hyperbolic cosine series distribution.

Chapter 4

• Solve the principal minor assignment problem for nonsymmetric matrices.

In particular, solve it for Hermitian matrices.

• Find a way to estimate a matrix given noisy measurements of its principal

minors.

• Study the geometry of the quotient space of symmetric matrices modulo

D-similarity.

General

• Find a simple and efficiently checkable necessary and sufficient condition for

a point process to be determinantal.

• Suppose H � 0 is determinantally compatible with αI + βJ but H 6D∼

αI + βJ . What can we say about the distribution of Y ∼ LDPP (H)?
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